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In solving many problems, the processing of the
experimental data is reduced to the determination of
peak areas above a baseline. In the manual selection of
the baseline, as well as in the presence of

 

 a priori 

 

infor-
mation about the portions of the experimental curve
that belong to the background with certainty, the con-
struction of the baseline presents no difficulties. How-
ever, in the automatic processing of the experimental
data and in the absence of

 

 a priori

 

 information about
the basic portions, the inaccurate determination of the
baseline may introduce significant errors into the result
of processing. The problem is usually complicated by
the experimental curve in its background portion being
distorted by both random noise and parasitic signals of
intricate shape (an example is provided by thermal sta-
bilization systems generating parasitic periodic sig-
nals).

EXPERIMENTAL

Let me first consider the case when the baseline is
given by the function 

 

b

 

(

 

t

 

)

 

 = const, that is, by a horizon-
tal line. Let me construct a histogram for point distribu-

tion in the experimental curve 

 

f

 

(

 

t

 

)

 

 (Fig. 1a) along the
axis of ordinates (vertical histogram). It will evidently
take the shape shown in Fig. 1b. It is evident that the
baseline must pass through the principal maximum in
the histogram.

A question arising while constructing a vertical his-
togram concerns the size of the intervals into which the
ordinate should be divided. If the intervals are too large,
points that actually do not belong to the baseline will be
attributed to the histogram maximum, and the baseline
will shift relative to its true position. If the intervals are
too small, the number of points falling in a certain inter-
val will be small and, therefore, statistically unreliable.

Let me consider the case of small intervals using a
particular example. Let the background portion of an
experimental curve include 300 points, the distorting
signal be a normally distributed noise with a standard
deviation (SD) of 

 

σ

 

, and the axis of ordinates be divided
into intervals equal to 

 

σ

 

/3

 

. Then, the shape of the histo-
gram must be similar to that shown in Fig. 2a. However,
the number of points in one or another interval is a ran-
dom value; for our estimates, we may suppose that this
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Abstract

 

—An algorithm is proposed for automatic baseline construction in the absence of 

 

a priori 

 

information
about the shape of the experimental curve and the arrangement of basic portions in the experimental curve. The
functioning of the algorithm is considered for the case when the basic portion of the curve is distorted with a
parasitic signal of an intricate shape.
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Fig. 1.

 

 (a) Experimental curve and (b) its vertical histogram.
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value obeys the Poisson distribution. Then, the num-
ber of points in the zero interval will vary from 27 to
51; in intervals 1 and –1, from 25 to 49; in intervals
2 and –2, from 21 to 43; and so on. As a result, a real
histogram will be similar to that shown in Fig. 2b,
and its maximum will be determined incorrectly with
a high probability.

The solution is to divide the axis of ordinates into a
relatively great number of small intervals and find a
union of these intervals that includes the majority of
baseline points without covering the informative por-
tions of the experimental curve where possible. We will
search for an optimum among the unions of neighbor-
ing intervals 

 

g

 

i

 

, 

 

g

 

i

 

 + 1

 

, …, 

 

g

 

i

 

 + 

 

n

 

 – 1

 

 for all possible 

 

i

 

 and 

 

n

 

,
where 

 

i

 

 is the beginning of the union interval, 

 

n

 

 is the
number of histogram intervals in the union interval, and

 

g

 

j

 

 is the number of points in the 

 

j

 

th interval of the his-
togram. The optimality criterion for the union interval
will be sought in the form of the function 

 

F

 

(

 

i

 

, 

 

n

 

) =

 

f

 

(

 

n

 

∆

 

)

 

, where 

 

∆

 

 is the length of a unit interval

in the histogram and 

 

n

 

∆

 

 is the length of the union inter-
val. Function 

 

f

 

(

 

n

 

∆

 

)

 

, which determines the character of
the optimality criterion will be found from the condi-
tion that the distorting signal is normally distributed
with a mean value  and SD = 

 

σ

 

.

Changing from the histogram to the expectation

function, we obtain 

 

 = 

 

, where

 

M

 

 is a normalizing factor that does not affect the posi-
tion of the maximum and 

 

a

 

 and 

 

b

 

 are the beginning and
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∫

 

end of the union interval, respectively (

 

b

 

 – 

 

a

 

 = 

 

n

 

∆

 

). Let
us take 

 

(

 

b

 

 – 

 

a

 

)

 

–

 

γ

 

 as an analogue of the function 

 

f

 

(

 

n
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)

 

.
One can easily find that the function 

 

F

 

γ

 

(

 

a

 

, 

 

b

 

) =

(

 

b

 

 

 

−
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−γ

 

 at 

 

γ

 

(

 

k

 

) = 

 

 has only one

maximum at 

 

b

 

 =  + 

 

k

 

σ

 

, 

 

a

 

 =  – 

 

k

 

σ

 

. Setting 

 

k

 

 = 1.644

(that is, the value at which  = 0.9

 

)

 

, we can

find that 90% of the baseline points will fall within the
union interval (

 

a

 

, 

 

b

 

) within which 

 

F

 

γ

 

(1.644)

 

(

 

a

 

, 

 

b

 

)

 

 =
0.377392 attains a maximum. Note than 

 

γ

 

(1.644)

 

 =
0.377392; therefore, the parameter 

 

γ

 

(

 

k

 

)

 

 = 0.5 corre-
sponds to 

 

k

 

 = 1.4 and 84% of the baseline points falling
within the optimal interval.

Let me go back to histograms. Let me consider the
optimum union interval as the interval within which the

function 

 

F

 

(

 

i

 

, 

 

n

 

) = (

 

n

 

∆

 

)

 

–0.377392

 

 attains a max-

imum. This interval will include about 90% of the base-
line points, which is quite sufficient for determining the
baseline level and the variance of the distorting signal.
It is clear that if the variance is calculated without tak-
ing into account 10% of the most strongly deviating
points, it will be underestimated and, strictly speaking,
one should introduce a correction.

Strictly speaking, the function 

 

F

 

γ

 

(i, n) depends on
the interval length ∆, that is, on the partition of the ∆
axis in constructing the histogram. The comprehen-
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Fig. 2. (a) Mathematical expectation of the vertical histogram and (b) real histogram.
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sive analysis of this dependence is beyond the scope of
this paper. However, let me point to the following fact. Let
us take two histograms g1, …, gN with a union interval of
the length ∆ and , …,  with a union interval of the

length  = . Then, taking into account that gj =  +

, we obtain (2i, 2n) = (2n )–γ  =

 +  = (n∆)−γ  =

Fγ(i, n). In other words, the table of possible values of

(i, n) will consist largely of the same values as the
table Fγ(i, n). Therefore, in not very bad cases, we may
suppose that, at a relatively small ∆, the optimal union
intervals for these histograms will be close to each
other. In this case, the reduction of the unit interval of
the histogram will result in a certain refinement of the
set of baseline points at an extension of the time of cal-

g1 g2N

∆ 1
2
---∆ g2 j 1–
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∑

Fγ

culations. One of the criteria for selecting ∆ (in addition
to the number of digits of the analog-to-digital con-
verter, the required precision, and so on) may also be
the number of unit intervals in the optimum union inter-
val: if this number is greater than ten, the further reduc-
tion of ∆ will not improve the accuracy significantly.

RESULTS AND DISCUSSION

Let me consider the functioning of the algorithm in
the case when the baseline is distorted with a saw-tooth
signal with vertical boundaries c and d (see Fig. 3a). It
is clear that the mathematical expectation of the sum

 this case will be (c, d, x)dx, where M

is a normalizing factor; a and b are the beginning and
end of the union interval segment, respectively (b – a =
n∆); and p(c, d, x) is vertical probability density func-
tion, which is equal to 1/(d – c) inside the interval [c, d]
and zero outside this interval (Fig. 3b). It can easily be
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n

∑ M p

a

b

∫

c

t

d

c

0
Number of points

d
(‡) (b)

Fig. 3. (a) A saw-tooth distorting signal and (b) its vertical
probability density function.
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Fig. 4. (a) A portion of sinusoid and (b) its vertical proba-
bility density function.
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Fig. 5. (a) A stair-like curve and (b) its vertical probability density function.
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found that the function Fγ(a, b) = (b – a)–γ (c, d, x)dx

at 0 < γ < 1 attains a maximum at a = c and b = d. The
value γ = 0.377392 found for the normal distribution of
the distorting signal also gives a good result for the
saw-tooth distorting signal.

Consider the functioning of the algorithm for a sinu-
soidal distorting signal. The shape of the histogram in
this case can be assessed using only one sinusoid half-
period (Fig. 4a). In this case, the vertical probability
density function will be as follows: Φ(y) = P(sin(x) < y) =

P(x < ) = /π + . Correspondingly,

the vertical probability density function (and histogram

estimate) will be equal to p(y) =  (Fig. 4b).

p
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Function (b – a)–γ dy passes through the max-

imum a = –1, b = 1 at γ <  and approaches +∞ at

a = −1, b  –1 and b = 1, a  1 when γ > . Thus,

the optimum sum of histogram intervals will cover all

baseline points at γ <  and be restricted to the upper or

bottom boundary of the baseline at γ > . The value

γ = 0.377392 found for the normal distribution of the
distorting signal will give a good result for the sinusoi-
dal distorting signal.

Consider the functioning of the algorithm in the case
when the experimental curve is a step distorted by a
normally distributed noise with SD = σ (Fig. 5a). The
vertical probability density function in this case will be
a sum of two Gaussian functions (Fig. 5b). Let me sup-
pose for definiteness that the background portion is
two-thirds of the whole experimental curves. Then, the
“smaller” Gaussian of the vertical distribution will be
one-half of the “larger” Gaussian. In this case, function
Fγ(a, b) will have three local maxima (Fig. 6). The glo-
bal maximum may be either the maximum (a1, b1)
including only points of the larger Gaussian, or the
maximum (a0, b0) including all points of the experi-
mental curve. In the former case, the algorithm will find
the foot of the step; in the latter case, the whole experi-
mental curve will be considered the baseline. The selec-
tion between the two cases depends on the parameter γ and

the ratio between the step height and noise SD, . At
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Fig. 6. Local minima of the optimization function of the
vertical histogram for the experimental stairlike curve.
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Fig. 7. An experimental curve with an incline baseline and its vertical histogram. The global maximum in the histogram is diffuse
because of a difference between the slope of the baseline and the projection angle.
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γ = 0.377392, the foot of the step will be selected at p –
q > 8.05σ; at γ = 0.5 the sufficient criterion is p – q >
4.9σ.

Let me consider the case when the baseline is an
inclined line given by the equation b(t ) = At + B. In this
case, setting A equal to a constant, we can project points
of the experimental curve onto the axis of ordinates at
an angle of  rather than at the right angle.
Then, for each A we will obtain its specific baseline,
and the question will be what baseline should be con-
sidered optimal. If the true slope of the baseline differs
from A, the main maximum in the histogram con-
structed at an angle of  will be diffuse
(Fig. 7). Using this property, we can take the ratio
between the number of points attributed to the baseline
and its variance as the objective function h(A). The
problem can be, therefore, reduced to the determination
of the maximum of h(A). Note that the function h(A)
will not be continuous and will, most probably, have
several local maxima, so that the use of fast optimiza-
tion methods (such as the Newton method) will be
excluded and optimization will be difficult. One should
most likely use the enumeration of all reasonable pos-
sibilities. Therefore, attempts at constructing a baseline
of a more intricate shape using this method will be
time-consuming. An example of constructing an
inclined baseline for an experimental curve recorded
with a solid-electrolyte analyzer [1] is shown in Fig. 8.

A( )arctan

A( )arctan

Note in conclusion that the algorithm is stable to
distorting signals of different shapes. This makes it use-
ful for the preliminary processing of experimental data
(for example, differentiation, smoothing, Fourier trans-
formations, and so on).
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Fig. 8. An experimental curve recorded with a solid-electrolyte analyzer and a baseline constructed using the proposed algorithm. 


