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Abstract
We examined the relationship between the Early start Denver model (ESDM) intervention and mu rhythm attenuation, an 
EEG paradigm reflecting neural processes associated with action perception and social information processing. Children 
were assigned to either receive comprehensive ESDM intervention for two years, or were encouraged to pursue resources in 
the community. Two years after intervention, EEG was collected during the execution and observation of grasping actions 
performed by familiar and unfamiliar agents. The ESDM group showed significantly greater attenuation when viewing a 
parent or caregiver executing a grasping action, compared with an unfamiliar individual executing the same action. Our 
findings suggest that the ESDM may have a unique impact on neural circuitry underlying social cognition and familiarity.
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Introduction

The attenuation of the mu rhythm in the human brain has 
been demonstrated during the observation and execution of 
motor actions, and has been characterized as an observation-
execution matching system (Muthukumaraswamy & John-
son, 2004) Mu attenuation is theorized to play an integral 
role in action interpretation along with more advanced ele-
ments of social cognition (for review, see Kilner & Lemon, 
2013; Rizzolatti & Craighero, 2004). There has been sig-
nificant interest spanning over two decades in this neural 
system, including multi-modal experimental investigations 
and complex theoretical models (Heyes & Catmur, 2020). 
While there has been some concerns expressed regarding 

the interpretation of the EEG mu rhythm in particular (Coll 
et al., 2017; Hobson & Bishop, 2016, 2017), others have 
continued to defend it as useful index of neural activity 
(Bowman et al., 2017; Vanderwert et al., 2013).

Oberman and colleagues (2005) investigated mu 
attenuation in a sample of individuals ages 6–47 (mean 
age = 16.6) with a clinical diagnosis of ASD and corre-
sponding sample of age and gender-matched controls. 
They found that although the ASD group displayed mu 
attenuation during the execution of motor actions, mu 
attenuation was not exhibited during the observation of 
motor actions (Oberman et al., 2005). Later studies repli-
cated this finding (Bernier et al., 2007; Martineau et al., 
2008) and demonstrated a correlation between mu attenu-
ation and imitation ability in a sample of adults (mean 
age = 25.15) with ASD (Bernier et al., 2007). Further stud-
ies failed to show differences between diagnostic groups 
(Fan et al., 2010; Raymaekers et al., 2009), although a 
subsequent study in children (mean age = 6.65) dem-
onstrated that mu attenuation correlated with imitation 
ability, independent of diagnosis (Bernier et al., 2013), 
noting that since imitation deficits are commonly associ-
ated with ASD but are not part of the diagnostic criteria, 
ASD groups may inconsistently demonstrate mu attenua-
tion depending on imitation and social cognitive abilities. 
Other studies have not supported a correlation with imita-
tion abilities (Fan et al., 2010; Ruysschaert et al., 2014), 
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though imitation was assessed through various and poten-
tially less rigorous methods (for a critical review, see Hob-
son & Bishop, 2017). A review of 4 EEG studies found a 
significant relationship between mu attenuation and age, 
irrespective of diagnosis (Oberman et al., 2013).

Familiarity may be a significant factor in modulating 
neural functioning. For example, face processing differences 
have been well documented in ASD (Dawson et al., 2005; 
McPartland et al., 2004; Pierce, 2001; Schultz et al., 2000; 
for review see Campatelli et al., 2013). However, familiar-
ity with the face seems to alleviate the observed differences 
(Pierce & Redcay, 2008; Pierce et al., 2004). Similar results 
were found using eye-tracking to observe differential gaze 
patterns (Gillespie-Smith et al., 2014). Familiarity and atten-
tional engagement have also been shown to modulate ERPs 
to faces (Dawson et al., 2002).

Oberman and colleagues (2008) examined mu attenua-
tion in children ages 8–12 (mean age = 10.23) with ASD in 
response to the observation of familiar and unfamiliar actors. 
They found that the children with ASD showed greater acti-
vation in response to the observation of familiar actors com-
pared with unfamiliar actors (Oberman et al., 2008). How-
ever, in this paradigm, the unfamiliar condition contained 
only a video of a hand without a person visible in the screen, 
whereas the familiar condition contained both the familiar 
individual and hand. This requires an inference as to the 
presence of an unfamiliar person. Given documented defi-
cits in holistic processing in ASD (Behrmann et al., 2006; 
Dawson et al., 2005; Nakahachi et al., 2008), this may have 
influenced the lack of attenuation to the unfamiliar condition 
in the ASD group (Oberman et al., 2008). It is also not clear 
whether the familiarity effect is evident in younger individu-
als with ASD or whether it may be enhanced through inter-
ventions that promote social learning and development.

The early start Denver model (ESDM; Dawson 
et al.,2010, 2012), a naturalistic developmental behavioral 
intervention (Schreibman et al., 2015), focuses on building 
foundational cognitive, social, communication, motor, and 
adaptive skills, using evidence-based teaching practices. 
It incorporates principles of applied behavior analysis and 
developmental science to inform a developmental cur-
riculum that targets goals across key domains. Caregivers 
receive training in basic ESDM strategies facilitating imple-
mentation across environments. There is a specific emphasis 
on facilitating caregiver-child engagement and interaction, 
with a focus on foundational social affective processes. 
A randomized-control trial examining the efficacy of the 
ESDM demonstrated significant gains in IQ, language devel-
opment, social, and adaptive skills (Dawson et al., 2010) and 
these gains were generally maintained 2 years after treatment 
ended (Estes et al., 2015). There have since been further 
extensions (Rogers et al.,2019a) and replications (Rogers 
et al., 2019b) examining the clinical impact of ESDM.

In a follow-up study of this ESDM sample, changes in 
brain activity attributed to ESDM intervention were iden-
tified (Dawson et al., 2012). EEG activity (event-related 
potentials and spectral power) was measured during the 
presentation of faces versus objects. The ESDM group 
and chronological-age-matched typical children showed 
a shorter Nc latency and increased cortical activation 
(decreased alpha power and increased theta power) when 
viewing faces, whereas the community group showed the 
opposite pattern (shorter latency event-related potential 
and greater cortical activation when viewing objects). 
Greater cortical activation while viewing faces was asso-
ciated with improved social behavior (Dawson et  al., 
2012). Additional studies have shown changes in brain 
activity in response to pivotal response treatment using 
fMRI. A study examining the effects of 4 months of piv-
otal response treatment indicated greater activation in the 
right posterior superior temporal sulcus, fusiform gyrus, 
dorsolateral and ventrolateral prefrontal cortex, key brain 
areas related to biological motion (Voos et al., 2013). A 
further study of pivotal response treatment demonstrated 
reduced activation in thalamus, amygdala, and hippocam-
pus post treatment in a group that displayed hyperactiva-
tion at baseline, and increased activation in the ventral 
striatum and putamen in a group that displayed hypoacti-
vation at baseline (Ventola et al., 2015).

Given ESDM’s presumptive impact on IQ, language 
development, and adaptive skills, with a focus on founda-
tional social affective processes, mu attenuation may be an 
appropriate marker of treatment change given its role as an 
index of neural activity related social cognition.

Purpose and Hypotheses

Our primary aim was to investigate the relationship between 
ESDM intervention and neural activity underlying social 
cognitive abilities, as assessed by EEG mu attenuation. The 
current study capitalizes on the rigorous design of the ESDM 
intervention study (Dawson et al., 2010), and applies a care-
fully defined and established social neuroscience paradigm 
of mu rhythm attenuation. Given the evidence that ESDM 
impacts neural functioning (Dawson et al., 2012), that the 
intervention targets social cognitive behaviors such as imita-
tion (Dawson et al., 2010; Rogers et al., 2012), and that mu 
attenuation is linked to imitation ability (Bernier et al., 2007, 
2013), we hypothesized greater mu attenuation in response 
to the observation of motor actions would be found in the 
ESDM group as compared with the community group. A 
further aim was to examine the impact of familiarity on this 
neural index. We hypothesized that greater mu attenuation 
would be observed across both groups in response to view-
ing familiar actors compared with unfamiliar actors.
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Methods

All procedures were reviewed and approved by our Institu-
tional review board (IRB).

Participants

Participants were recruited from the original 48 partici-
pants in the ESDM randomized controlled trial (Dawson 
et al., 2010). As described in that trial, forty-eight children 
between 18 and 30 months with a documented diagnosis 
of an autism spectrum disorder were randomized into two 
groups using a stratified randomization procedure based on 
gender and IQ. The intervention (ESDM) group received two 
years of comprehensive behavioral intervention by trained 
ESDM therapists in children’s homes for 15.2 h per week. 
The community (COM) control group received regular 
assessment and monitoring and was encouraged to pursue 
services available in the community. Measures of IQ, ASD 
symptoms, adaptive behavior, and repetitive behavior were 
collected at one-year post-entry and two years post-entry 
into the study by clinicians who were blind to subject sta-
tus. These findings have been previously reported (Dawson 
et al., 2010).

In the current study, participants were recruited to par-
ticipate in a follow-up study when the children were 6 years 
of age, approximately 2 years post-experimental interven-
tion. Of the original sample, 39 children participated in the 
follow-up study. Clinicians who were naive to intervention 
group status collected measures of IQ (Differential Abili-
ties Scales), adaptive behavior (Vineland Adaptive Behavior 
Scales), and ASD symptoms using the Autism diagnostic 
observation schedule (ADOS; Lord et al., 2000). These 

results have also been previously reported (Estes et al., 
2015).

Of the 39 children who participated at the 6-year old 
time point, 27 participants agreed to participate in the EEG 
assessment within 4 weeks of their 6th birthday. Twenty 
participants (10 ESDM, 10 COM group) completed the 
EEG assessment successfully and produced usable EEG 
data. Seven participants did not produce usable data. In the 
ESDM group, 3 did not produce artifact free rest data, and 
1 did not complete the paradigm. In the COM group, 1 did 
not produce artifact free rest data, and 2 did not complete 
the paradigm. The group of 20 that participated in the EEG 
demonstrated higher IQ than the 19 that did not participate 
in the EEG t(37) = 3.60, p < 0.05. This is consistent with 
other ASD imaging research, which often features children 
with higher IQ due to the constraints of participation. The 
intervention and community groups that participated in 
the EEG did not differ significantly in age, gender, verbal 
IQ, nonverbal IQ, adaptive behavior, or autism symptoms. 
Results of these comparisons are listed in Table 1. Thus the 
EEG assessment was conducted on well-matched groups.

EEG Assessment

Brain activity was recorded at rest and during the observa-
tion and execution of motor actions using a 128-electrode 
EEG system (Electrical Geodesics, Eugene OR). The elec-
trical brain activity was analog filtered (01. Hz high-pass, 
100 Hz elliptical low-pass), amplified, and digitized at 500 
samples per second. Impedances were below 50 kΩ with 
signals referenced to the vertex at acquisition. EEG and 
video were recorded simultaneously using NetStation 4.3. 
This allows for subsequent video inspection of the session to 
ensure the participant was attending to the presented stimuli, 

Table 1   Comparison of 
measures collected at age 
six: ESDM and community 
subsamples with EEG data

GCA​ general conceptual ability, ABC adaptive behavior composite, ADOS CSS autism diagnostic observa-
tion schedule - calibrated severity score
*p < .05 when adjusted for multiple comparisons using Bonferroni (controlling familywise by construct). 
Observed unadjusted p-values also given

Measures ESDM COM t p

n = 10 n = 10

M (SD) M (SD)

IQ
 Verbal IQ 103.80 (10.36) 97.00 (17.11) 1.08 .297
 Non-verbal IQ 98.80 (11.67) 96.70 (9.63) 0.44 .666
 GCA​ 101.80 (11.48) 94.30 (15.17) 1.24 .232

Vineland
 ABC 86.25 (10.91) 79.00 (12.01) 1.30 .214
 Socialization 84.88 (13.29) 76.78 (10.85) 1.38 .187

Autism symptoms
 ADOS - CSS 5.20 (2.53) 7.20 (3.19) − 1.55 .138



3307Journal of Autism and Developmental Disorders (2022) 52:3304–3313	

1 3

and assists with identifying eye blink and other movement 
artifacts.

EEG Paradigm

The paradigm included an observe condition, an execute 
condition, and a rest condition to evaluate baseline activity, 
adapted from an established procedure designed to assess 
mu attenuation via EEG (Muthukumaraswamy & Johnson, 
2004). In the observe condition, participants watched a 
6-s clip on a video monitor displaying a person grasping a 
block of wood. Within the observe condition, participants 
observed videos of their parent or guardian conducting a 
grasping motion, as well as an unfamiliar person executing 
the same grasping motion. This allowed for the examination 
of potential differential brain responses to the observation 
of actions performed by familiar versus unfamiliar actors. A 
photocell installed on the video monitor allowed the EEG 
recording to be time-locked to the display of the grasping 
motion. In the execute condition, participants grasped a 
block of wood identical to the one displayed in the video 
clip. A sensor on the block of wood allowed the EEG record-
ing to be time-locked to the participant’s grasping motion. 
In the rest condition, participants sat with eyes opened and 
watched a plus sign on the monitor.

The blocks proceeded as follows: Unfamiliar Observe 
(10 trials), Familiar Observe (10 trials), Execute (10 trials), 
Rest (30 s), Unfamiliar Observe (10 trials), Familiar Observe 
(10 trials), Execute (10 trials), Rest (30 s). Block order was 
counterbalanced for familiarity to eliminate order effects.

EEG Analysis

While signals are referenced to the vertex at acquisition, 
signals were re-referenced to an average reference offline. 
Artifact detection was conducted using an automated algo-
rithm in NetStation 4.3 to remove eye-blinks and movement 
artifacts, defined as and fast average amplitudes exceeding 
200 μVs, differential average amplitudes exceeding 100 
μVs, and zero variance across trials. Manual video inspec-
tion using NetStation 4.3 ensured subjects were attending 
to the stimuli, and further visual inspection of each trial to 
eliminate eye-blinks was conducted, identifying any large 
power changes across frontal electrodes in the 1–4 Hz band. 
Matlab was also used to identify trials with movement arti-
facts indicated by large power fluctuations within a trial to 
be excluded from analysis. The rejection rate did not dif-
fer across groups, with an average rejection rate of 53.38% 
(intervention 52.50%, community 54.25%).

Following procedures outlined by Muthukumaraswamy 
and colleagues (2004), a group of eight electrodes in each 
hemisphere surrounding the standardized positions for C3 
and C4 respectively were selected for analysis. A photocell 

was used to identify the culmination of the grasping motion 
during the observe condition, and 1 s of data preceding and 
succeeding the grasp was selected for analysis. The output 
from each condition was divided into 2-s epochs and a fast 
Fourier transform (FFT) was performed. Similar to previ-
ously described methods focused on the mu (8–13 Hz) range 
(Babiloni et al., 1999; Muthukumaraswamy et al., 2004; 
Muthukumaraswamy & Johnson, 2004; Pfurtscheller et al., 
1997), individual spectral plots were generated for each 
subject, and the Hz band yielding the maximum difference 
in power between the execute condition and rest condition 
was selected as the subject’s specific Hz band, instead of 
averaging across the entire range (Coll et al., 2017; Marshall 
& Meltzoff, 2011; Wang et al., 2012). The mean identified 
peak frequency was 8.55 (SD = 1.26) for the ESDM group 
and for the COM group was 8.00 (SD = 0.913). The mean 
did not differ across groups t(18) = 1.21, p = 0.28. Power was 
averaged across trials within conditions and across blocks, 
and these values were then exported to Matlab in order to 
provide a single numerical value representing the average 
power for a given condition.

This paradigm yields a score representing a scale-depend-
ent variable of mu attenuation. This was calculated by com-
puting the log of the ratio between the observe and rest con-
dition. The dependent variables of interest are the log of the 
ratio of the observe-familiar over the rest condition, and the 
log of the ratio of the observe-unfamiliar over the rest condi-
tion. This yields a single numerical value representing mu 
attenuation for a given subject in a given condition, which 
can be compared across conditions and across subjects.

Results

An examination of studentized residuals revealed no outliers 
(> ± 3). Shapiro–Wilk’s test (p > 0.05) and visual inspection 
of Q-Q Plot indicated the data was normally distributed. 
Levene’s test showed homogeneity of variance (p > 0.05) 
and Box’s test of equality of covariance matrices showed 
homogeneity of covariances (p = 0.750). t-Tests revealed no 
significant differences in overall power between groups dur-
ing the observe familiar t(18) = 0.38, p > 0.05, observe unfa-
miliar t(18) = . 96, p > 0.05, and rest t(18) = 1.42, p > 0.05 
conditions, indicating consistent recording and analysis 
across groups. Values by individual subject are represented 
in Fig. 1 and listed in Table 2.

A two-way repeated measures ANOVA was computed 
to examine main effects of group and familiarity on mu 
attenuation, as well as the interaction between the two. As 
shown in Fig. 2, results indicated no main effect for group 
(F(1,19) = 1.23, p > 0.05, partial η2 = 0.000) and no sig-
nificant difference between mu attenuation to familiar and 
unfamiliar actions within subjects, F(1,18) = 2.35, p > 0.05, 
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partial η2 = 0.115. However, there was a significant famili-
arity by group interaction, F(1,18) = 6.405, p < 0.05, partial 
η2 = 0.262, with the intervention group showing significantly 
greater mu attenuation during familiar observation (Fig. 2).

Correlational analyses of mu attenuation with measures 
of Global conceptual ability (GCA) as assessed by the Dif-
ferential abilities scale II (DAS-II; Elliot, 2007), hand and 
face imitation as assessed by the Mature Imitation Task 
(Rogers et al., 2005), and autism symptoms based on the 
ADOS (Lord et  al., 2000) calibrated severity score are 
displayed in Table 3. There was no significant correlation 
between mu attenuation and global conceptual ability, hand 
or face imitation, or autism symptom severity (Table 3). 

Discussion

The primary aim of this study was to further examine neural 
functioning in young children with ASD who received inten-
sive early comprehensive intervention based on the ESDM 
or services in the community. We found that mu attenua-
tion during the observation of grasping actions did not differ 
between the intervention (ESDM) and community (COM) 
groups, as both groups displayed attenuation to the observa-
tion of motor actions. However, there was a significant group 
by treatment interaction in which mu attenuation was greater 
within the ESDM group when viewing a parent or caregiver 
versus an unfamiliar individual executing identical actions. 

Fig. 1   Attenuation of mu rhythm in response the observation of a motor action, by individual subject, divided by familiar or unfamiliar actor 
over rest condition
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The COM group showed no difference in mu attenuation 
when viewing familiar versus unfamiliar individuals. Our 
findings suggest a potential relationship between the ESDM 
and neural development in a carefully designed paradigm. 
Our study provides evidence indicating a potential effect 
of the ESDM on neural activity underlying social-cognitive 
processes.

Overall, the presence of a familiarity effect is consistent 
with existing literature. Our findings may indicate unique 
neural responsiveness to familiarity. Previous research has 
demonstrated sensitivity within neural circuitry associated 
with social cognition to context (Iacoboni, 1999), intention 
(Iacoboni et al., 2005), and even experience with the action 
being performed (Calvo-Merino et al., 2006). However, the 
observed difference may also be the result of modulation 
from other brain regions sensitive to familiarity (Perkins 
et al., 2010). With connections to the limbic system (Carr 
et al., 2003), empathy and emotional valence may influence 
neural activation, as well as attentional, perceptual, and 
motivational factors. For example, the anterior cingulate cor-
tex has been implicated in both personal familiarity (Donix 
et al., 2010; Shah et al., 2001) and vicarious responses to 
pain (Morrison et al., 2004), supporting the notion of mul-
tiple systems involved in human action perception (Filimon 
et al., 2007). The differential response observed may be 

specific to the circuitry of the execution-observation match-
ing system, or a system to connected to this network.

Our results are consistent with the possibility that spe-
cific features of the ESDM intervention program may 
influence the development of neural circuitry. The ESDM 
includes a strong focus on promoting social relationships, 
including joint attention and shared engagement, imitating 
and being imitated, positive social affect, adult responsive-
ness, and verbal and non-verbal communication. Caregiv-
ers are taught specific strategies and asked to implement 
these strategies across many activities daily (Dawson 
et al., 2010). These factors may increase the number of 
specific types of social interactions that children with ASD 
have with parents and other caregivers. This may in turn 
modulate attention and motivation, and early training and 
experience may alter the child’s neural responsiveness to 
familiar individuals. Future studies are needed to evaluate 
the active ingredients of efficacious early ASD interven-
tions such as the ESDM.

Previous research using multiple modalities demonstrates 
differential responses to familiarity across samples of chil-
dren and adults with ASD and typical development (Key & 
Stone, 2012; Taylor et al., 2009; Webb et al., 2010). Several 
regions have been implicated in this differentiation, includ-
ing the posterior cingulate, amygdala, and medial frontal 
lobes, the posterior cingulate cortex (Shah et al., 2001), and 
the inferior parietal lobule (Liew et al., 2011). Research has 
shown that individuals with ASD demonstrated an expected 
pattern of face processing to their mother or other children, 
but attenuated responses to unfamiliar adults (Pierce & Red-
cay, 2008). Although simultaneous eye-tracking was not 

Table 2   Attenuation of mu rhythm values in response the observa-
tion of a motor action, by individual subject, the log transform of the 
familiar or unfamiliar condition over rest condition

Fam/Rest Unfam/Rest

ESDM 1 − 0.545344 − 0.267628
ESDM 2 − 0.595952 − 0.706332
ESDM 3 − 0.25255 − 0.1491
ESDM 4 − 1.40263 − 1.006261
ESDM 5 − 0.41936 − 0.056478
ESDM 6 − 0.833425 − 0.747447
ESDM 7 − 0.325708 − 0.492652
ESDM 8 − 0.587256 − 0.169914
ESDM 9 − 0.550415 − 0.356417
ESDM 10 − 0.85611 − 0.292363
COM 11 − 0.281792 − 0.483899
COM 12 − 0.623051 − 0.61536
COM 13 − 0.499026 − 0.412485
COM 14 − 0.673415 − 0.802769
COM 15 − 0.135408 − 0.324267
COM 16 − 0.576126 − 0.394285
COM 17 − 0.402416 − 0.221742
COM 18 − 0.100604 − 0.676819
COM 19 − 0.480141 − 0.378821
COM 20 − 0.019974 − 0.003919

Fig. 2   Attenuation of mu rhythm in response the observation of a 
motor action executed by a familiar actor, unfamiliar actor, and both 
combined. The ESDM group showed significantly greater attenuation 
in response to a familiar actor
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recorded in our study, we used behavioral coding and visual 
inspection via time-locked video to ensure participants were 
attending to the stimuli during included trials. However, dif-
ferential responses to familiarity are likely due to differences 
in neural activation and not attention or gaze patterns (Ster-
ling et al., 2008), diagnosis (Gillespie-Smith et al., 2014), 
or fixation patterns (Key & Stone, 2012).

While Oberman and colleagues (2008) did find a famil-
iarity effect, their study compared the observation of a 
familiar person executing a motor action with the observa-
tion of an unfamiliar hand with no person attached to it. 
Their results may thus not reflect a differential response 
to familiarity, but may rather reflect differences in holistic 
processing (Behrmann et al., 2006; Dawson et al., 2005; 
Nakahachi et al., 2008) or context (Iacoboni, 2005; Iaco-
boni & Dapretto, 2006).

Mu attenuation did not correlate with any of the evalu-
ated behavioral measures, including face and hand imi-
tation, IQ, or autism symptom severity. This stands in 
contrast to previous findings using a similar paradigm indi-
cating a correlation between imitation and mu attenuation 
(Bernier et al., 2007; Bernier et al., 2013). These findings 
are included for transparency, though further investigation 
is warranted, especially given the small sample size, as to 
whether there exists a relationship among these factors.

The implications of this study must be considered in the 
context of existing limitations. Attrition within the sample 
stands as the most significant limitation. Only a subset of 
the 48 children who participated in the original trial were 
included in this study. EEG as a modality presents some 
inherent limitations to acquiring usable data in children 
and clinical populations. This limits conclusions that can 

be drawn from our results. Secondly, there is a lack of 
baseline mu activity prior to the intervention. Ideally, mu 
rhythm attenuation would have been assessed pre and post 
intervention. In this instance, we were forced to rely on 
data from a single time point. Nonetheless, the careful ran-
domization procedures prior to intervention, and the fact 
that the groups were similar across measures of IQ, adap-
tive behavior, and ASD symptoms at the EEG, make the 
comparison worthy of consideration. Another limitation 
concerns the nature of the control group. In many interven-
tion studies, the control group receives no intervention or 
delayed intervention. However, the COM control group in 
this trial received a similar number of intervention hours 
to the ESDM intervention group. Without details of the 
individual interventions received, it is difficult to precisely 
characterize the COM group. Taken together, this study 
provides preliminary evidence of a connection between 
the effects of ESDM and mu attenuation, but replication 
in a larger prospective study is needed.

This study applied an established cognitive neurosci-
ence paradigm to examine the association between ESDM 
intervention and neural activity associated with social 
information processing. Our findings indicate a potential 
relationship between the ESDM and neural activity under-
lying responses to social cognition and familiarity.
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