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Abstract In the present work, we have undertaken a

proof-of-concept study to determine whether a simple

upper-limb movement could be useful to accurately clas-

sify low-functioning children with autism spectrum disor-

der (ASD) aged 2–4. To answer this question, we

developed a supervised machine-learning method to cor-

rectly discriminate 15 preschool children with ASD from

15 typically developing children by means of kinematic

analysis of a simple reach-to-drop task. Our method

reached a maximum classification accuracy of 96.7 % with

seven features related to the goal-oriented part of the

movement. These preliminary findings offer insight into a

possible motor signature of ASD that may be potentially

useful in identifying a well-defined subset of patients,

reducing the clinical heterogeneity within the broad

behavioral phenotype.

Keywords Autism spectrum disorder � Kinematics �
Classification � Machine learning � Support vector

machines

Introduction

Autism spectrum disorder (ASD) is a highly heterogeneous

neurodevelopmental disorder with multiple causes, cour-

ses, and a wide range in symptom severity (Amaral et al.

2008). Although the core features of ASD are persistent

deficits in social communication and interaction and the

presence of restricted, repetitive patterns of behavior,

interests, or activities (DSM V, American Psychiatric

Association 2013), it is of great importance not to ignore

the motor impairments associated with ASD as they are

highly prevalent, at 79 %, and can have a significant

impact on quality of life and social development (Lai et al.

2014). Motor abnormalities in ASD may occur very early

in development (Teitelbaum et al. 1998, Brian et al. 2008)

and be apparent over time (Fournier et al. 2010; Van

Waelvelde et al. 2010) being a pervasive feature of the

disorder. Recent studies have also provided evidence for

the specificity of motor impairments identified in high-

functioning children with ASD compared to children with

attention deficit/hyperactivity (ADHD) (Izawa et al. 2012;

Ament et al. 2014) and to typically developing children

matched by nonverbal IQ and receptive language (Whyatt

and Craig 2013). Overall, these findings suggest that motor

abnormalities could be a consistent marker of ASD (Dowd

et al. 2012). A number of different motor deficits have been

reported in ASD, including anomalies in walking patterns

(e.g., Rinehart and McGinley 2010; Nobile et al. 2011),

hand movements such as reaching (e.g., Mari et al. 2003;

Glazebrook et al. 2006; Forti et al. 2011), and eye-hand
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coordination (e.g., Glazebrook et al. 2009; Crippa et al.

2013). The severity of motor deficits correlates with the

degree of social withdrawal and the severity of symptoms

(Freitag et al. 2007). Motor control has even been specu-

lated to be crucial for communication and social interaction

(Leary and Hill 1996). Indeed, Minshew et al. (2004)

proposed that studies on motor function could have sig-

nificant potential in elucidating the neurobiological basis

and even improving the diagnostic definition of ASD.

Currently, the gold standard for the diagnosis of ASD

has been formalized with the clinical judgment of symp-

toms and with semistructured, play-based behavioral

observations (Lord et al. 2000) and standardized interviews

or questionnaires (e.g., Lord et al. 1994). However, recent

studies have started to explore the predictive value of

neurobiological as well as behavioral measures in ASD in

order to identify a well-defined phenotype of individuals

and—possibly—to enable a computer-aided diagnosis

perspective. These studies typically implement pattern

classification methods that are based on machine-learning

algorithms to predict or classify individuals of different

groups by maximizing the distance between groups of

datasets. Machine learning commonly refers to all proce-

dures that train a computer algorithm to identify a complex

pattern of data (i.e., ‘‘features’’) that can then be used to

predict group membership of new subjects (e.g., patients

vs. controls). Machine-learning techniques based, for

example, on support vector machines (SVMs; Vapnik

1995) require a well-characterized dataset in the training

phase in order to extract the classification algorithm that

best separates the groups (i.e., the ‘‘hyperplane’’ or

‘‘decision function’’). In the testing phase, the classification

algorithm can be used to predict the class membership of a

participant not involved in the training procedure (e.g.,

whether a new child has ASD). Pattern classification

methods can also identify complex patterns of anomalies

not efficiently recognized by other univariate statistical

methods. Thus, the use of pattern recognition methods to

predict group membership should not be considered merely

in a potentially ‘‘diagnostic’’ perspective but also as a

useful tool used to develop objective measures for each

individual from a set of sample data. Most of the studies

have applied pattern classification methods to neuroana-

tomical data measured by structural magnetic resonance

(MRI; Ecker et al. 2010a, b) or by diffusion tensor imaging

(Lange et al. 2010; Ingalhalikar et al. 2011; Deshpande

et al. 2013), although Oller et al. (2010) analysis of data

regarding automated vocal analysis produced promising

results.

In the present work, we have undertaken a proof-of-

concept study to determine whether a simple upper-limb

movement could be useful to accurately classify low-

functioning children with ASD who are between the ages

of 2 and 4. In order to answer this question, we developed a

supervised machine-learning method to identify preschool

children with ASD and correctly discriminate them from

typically developing children by means of kinematic ana-

lysis of a simple reach, grasp and drop task. We decided to

analyze this simple motor task because the motor system

can be more easily probed in low-functioning autistic

children than systems that underlie complex cognitive

functions. In addition to the potential predictive value of

our machine-learning method in exploring the clinical

relevance of simple upper-limb movement measures in

ASD, we could identify a limited set of kinematic char-

acteristics that even suggests the hypothesis of a motor

signature of autism.

Methods

Participants

Fifteen preschool-aged children with autism (ASD) were

compared to fifteen typically developing (TD) children

who were matched by mental age. IQ and mental age were

assessed in our institute by using the Griffiths Mental

Development Scales (Griffiths 1970) as a part of the rou-

tine clinical practice with low-functioning children. A poor

score on the Griffiths scales at 1 and/or 2 years has been

demonstrated to be a good predictor of impairment at

school age (Barnett et al. 2004). All participants had nor-

mal or corrected-to-normal vision and were drug-naı̈ve.

The participants in the ASD group were recruited at our

institute over an 18-month period. All participants in the

clinical group had been previously diagnosed according

with the criteria described in the Diagnostic and Statistical

Manual of Mental Disorders-IV TR (American Psychiatric

Association 2000) by a medical doctor specialized in child

neuropsychiatry with expertise in autism. The diagnoses

were then confirmed independently by a child psychologist

through direct observation and discussion with each child’s

parents. Seven children had been administered the Autism

Diagnostic Observation Schedule (ADOS; Lord et al.

2000). The participants in the control group were recruited

by local pediatricians and from kindergartens to be men-

tally age-matched to the clinical sample from the normally

developing population. We decided to include, as a com-

parison group, typically developing children matched by

mental age, following the assumption that mental age

usually predict ability to understand task instructions, use

appropriate strategies and inhibit inappropriate responses

(Jarrold and Brock 2004). The TD children had no previous

history of social/communicative disorders, developmental

abnormalities, or medical disorders with central nervous

system implications. All of the participants’ legal guardians
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gave their informed written consent prior to the children’s

participation. The research was approved by the ethics

board of our institute in accordance with the Declaration of

Helsinki.

Procedure

The participants sat in front of a table of variable height,

which was adjusted to the base of the children’s trunk. The

experimenter sat at the opposite side of the table, and one

parent was present in the room. All trials started with the

children’s hands resting at a set position 20 cm away from

the ball support. The experimental task consisted of

grasping a rubber ball (6-cm diameter) that was placed over

a support (see Fig. 1a); that is, a reach-to-grasp movement

before they dropped it in a hole (7-cm diameter). The hole

(see Fig. 1b) was located inside a see-through square box

(21 cm high, 20 cm wide; see Fig. 1) and was large enough

not to require fine movements. Ten trials per participant

were conducted: five consecutive trials on the left side (and

left hand) and five consecutive trials on the right side (and

right hand). The order of trial blocks was counterbalanced

between participants. The experimenter performed the task

first in order to overtly illustrate the task demand (i.e.,

reach for the ball, grasp it and drop it in the hole) without

any verbal cue. Practice trials, the number of which varied

individually, were given to participants before recording in

order to verify the children’s understanding of the task. The

participants were allowed to interrupt the experiment at

will in order to rest. The experimental task was simple and

interesting enough to ensure the full motivation and com-

pliance of all participants across groups.

Apparatus

An optoelectronic system (The SMART D from BTS

Bioengineering� Garbagnate Milanese, Italy) was used to

acquire the kinematics data. Three-dimensional kinematic

data were collected by eight infrared-motion analysis

cameras at 60 Hz (spatial accuracy\0.2 mm), located four

per side at 2.5 m from the participants. Passive markers

(1 cm) were attached to the ulnar and radial surfaces of the

participants’ wrists and to the hand dorsum on the fourth

and fifth metacarpals (see Fig. 1). Moreover, two markers

were placed on the ball and four on the box edges under the

goal area. All raw data were first preprocessed with Matlab

(Mathworks� Natick, MA, USA); a fifth-order Butter-

worth, 8-Hz low-pass filter was applied, and movement

segmentation and parameters estimation were computed

with self-written software.

The overall movement was divided into two sub-

movements: Sub-movement 1—the movement necessary to

reach the ball and place it on its support; Sub-movement

2—the movement to transport the ball from its support to

the target box hole where the ball was to be dropped. For

each of these sub-movements, statistics pertaining to a set

of dependent measures was collected: (a) total movement

duration (TD), (b) number of movement units1 (MU),

(c) peak velocity (PV), (d) time of PV from sub-movement

onset (tPV), (e) peak acceleration (PA), (f) time of PA

(tPA), (g) peak deceleration (PD), and (h) time of peak

deceleration (tPD). Moreover, final movement accuracy

was evaluated by the wrist inclination at the time of the ball

drop (delta_WA), calculated as the angle between the palm

and the vertical axis of the coordinate system (more pre-

cisely, the difference between the WA at the end of the

transport phase and the WA at the time of peak decelera-

tion). These 17 kinematic measures were used as input

features for the pattern classification procedure.

Fig. 1 The experimental task consisted of grasping a rubber ball (2)

that was placed over a support (see 1, a); that is, a reach-to-grasp

movement before they dropped it in a hole (3). The hole (1, c) was

located inside a see-through square box (21 cm high, 20 cm wide)

and was large enough not to require fine movements. The goal area is

transparent to allow seeing through. 4 markers are placed on the

basket under the goal area, 2 on the ball and 3 on each hand (attached

to the ulnar and radial surfaces of the participant’s wrist and to the

hand dorsum on the 4th and 5th metacarpals)

1 A movement unit is defined as an acceleration phase followed by a

deceleration phase higher than 10 mm/s, starting from the moment at

which the increase or decrease in cumulative velocity is over 20 mm/s

(Von Hofsten 1991; Thelen et al. 1996).
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Data Analysis

After checking that the assumptions were not violated, an

analysis of covariance (ANCOVA) was carried out to

compare the two groups of children on all kinematic

measures with Group (ASD vs. TD) as a between-partici-

pant factor, and with IQ and chronological age as between-

participant covariates. The alpha level was set to .05 for all

data analyses. Effect sizes for ANCOVA are reported using

partial eta squared (gp
2).

The Machine-Learning Method

A pattern classification method based on a machine-learning

algorithm was used to classify ASD versus TD by maxi-

mizing the distance between the two groups of datasets. A

validated supervised machine-learning method (Salvatore

et al. 2013) was used. The method involves two different

steps: (1) feature selection, the process of selecting a subset

of relevant features to be used for classification, and (2)

classification, the process of using the selected features to

separate the two considered groups of subjects (ASD vs. TD).

Feature Selection

In order to understand which of the collected kinematic

features were more discriminative for the ASD versus TD

comparison, feature selection was implemented by using a

Fisher discriminant ratio (FDR)-based technique (Padilla

et al. 2012).

By this technique, for each subject, the collected fea-

tures and the ‘‘label’’ associated to that subject on a clinical

diagnosis basis (i.e., ASD or TD) were considered to cal-

culate a score (FDR score) for each feature.

Specifically, for the feature i, the FDR score was cal-

culated using the following formula:

FDRi ¼
li�ASD � li�TDð Þ2

r2
i�ASD þ r2

i�TD

where li�ASD and li�TD are the mean value of the feature

i calculated across the whole ASD and TD datasets,

respectively. r2
i�ASD and r2

i�TD are the variance of the

feature i calculated across the whole ASD and TD datasets,

respectively.

Ranked features were then sorted in a decreasing order,

from the most to the least discriminative, according to their

FDR score.

Classification Algorithm

Classification of ASD and TD subjects was performed using

a Support Vector Machine (SVM) approach (Schölkopf

et al. 2000; Vapnik 1995, 1998; Vapnik and Chapelle 1999,

López et al. 2011), already optimized and validated in a

clinical setting (Salvatore et al. 2013).

The aim of the considered SVM is to generate a model

able to (1) learn from the selected features of labeled sub-

jects how to discriminate subjects of different groups (binary

labeled training datasets), and (2) correctly classify, by

means of the same selected features, new unlabeled subjects

as belonging to one of the two groups (ASD or TD).

The learning process of the classifier consists of a

training phase in which the selected features of the ASD

and TD subjects are two training datasets associated to the

ASD and TD labels, respectively.

Mathematically, if we have training data consisting of a

vector xi 2 RN ; i ¼ 1; . . .;N and the associated binary label

yi 2 �1f g (e.g., ?1 for ASD, -1 for TD), then SVM uses

the principle of structural risk minimization to design an

optimal hyperplane (OH) that maximizes the distance

between the two training groups and that separates them.

The lower the distance of a training subject from the OH,

the more important that training subject to define the OH.

Thus, the distance identifies the ‘‘weight’’ of that training

subject in the definition of OH.

The OH can then be used as model to classify new

subjects, i.e., subjects for which the label is unknown.

Mathematically, the model used for the identification of

the binary label y0 of a new subject x, as a result of the

classification of that new subject, is given by the following

function:

y0 xð Þ ¼
XN

i¼1

ai � yi � k x; xið Þ þ b

ai being the weight of the training subject xi, yi being the

binary label of the training subject i, kðx; xiÞ being a linear

kernel function, b being a threshold parameter called bias,

and N being the number of training subjects. We chose to

employ a linear kernel because it represents the more

general form of a decision function and because it ensures

better computational efficiency.

In this study, the whole machine-learning method was

implemented on the Matlab platform (Matlab version

R2013b, The MathWorks, Natick, MA). In particular, we

used functions of the biolearning toolbox of Matlab to

implement the classification algorithm.

Performance of the Classification Algorithm

Performance of the classification algorithm was assessed by

using a cross-validation strategy. In general, cross validation

involves splitting the original dataset into two complemen-

tary subsets: a training set and a testing set. The training set

is a set of data associated to a label and used to perform the
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training of the classifier (as already described in the previous

section); the testing set is a set of data not associated to a

label and used to perform the validation of the classifier. By

considering different partitions of the data, multiple rounds

of cross-validation can then be performed.

In a particular case of cross-validation, called leave-one-

out (LOO) cross-validation, the testing set is solely com-

posed of one sample of the original dataset and the training

set is made up of the remaining samples of the original

dataset (N - 1). Therefore, if we want to test all N samples

in the original dataset, then it is sufficient that the number

of rounds to be performed equals the number N of samples

in the original dataset. LOO is a widely used validation

approach in literature because it has been proven able to

return an almost unbiased estimate of the probability of

error (e.g., Vapnik 1998; Chapelle et al. 1999).

In this study, validation of the classifier for the ASD

versus TD comparison was performed by using an LOO

cross-validation strategy for a number i of selected features

running from one to the whole number of features (i.e., 17).

A schematic description of the whole procedure is shown

in Fig. 2.

In order to quantify the performance of the proposed

classification algorithm, the accuracy, specificity, and sensi-

tivity rates were computed. Accuracy of classification mea-

sures the rate of correctly classified samples in both positive

(ASD) and negative (TD) classes. Specificity and sensitivity

measure the rate of correctly classified samples in the posi-

tive (ASD) and in the negative (TD) class, respectively.

Mathematically, the accuracy, specificity and sensitivity

of the classifier when the first i selected features are used,

were computed as follows:

Accuracyi ¼
NCC

N

Specificityi ¼
NCC
TD

NCC
TD þ NIC

TD

Sensitivityi ¼
NCC
ASD

NCC
ASD þ NIC

ASD

where N is the total number of classified subjects; NCC is

the total number of correctly classified (CC) subjects, NCC
TD

is the number of TD samples that were CC as belonging to

the TD gr (true negatives), NIC
TD is the number of TD

samples that were incorrectly classified (IC) as belonging

to the ASD class (false positives); NCC
ASD is the number of

ASD samples that were CC as belonging to the ASD class

(true positives), NIC
ASD is the number of ASD samples that

were IC as belonging to the TD class (false negatives).

We then studied the dependency of accuracy, specificity,

and sensitivity on the number i of selected features.

The maximum values reached for accuracy, specificity,

and sensitivity, referred to as maximum accuracy, speci-

ficity, and sensitivity, allowed the definition of the most

discriminative features.

Overall mean accuracy, specificity, and sensitivity rates

were calculated as mean values of accuracy, specificity,

and sensitivity as follows:

Overall mean accuracy ¼ 1

F
�
XF

i¼1

Accuracyi

Overall mean specificity ¼ 1

F
�
XF

i¼1

Specificityi

Overall mean sensitivity ¼ 1

F
�
XF

i¼1

Sensitivityi

where F is the whole number of features (17).

Results

Data on the demographic, cognitive, and clinical charac-

teristics of the participants are summarized in Table 1.

Fig. 2 Flowchart of

preprocessing, support vector

regression and leave-one-

subject-out procedures
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The validity of mental age matching was confirmed

(p[ 0.05). Gender was also balanced between groups, as

there were 3 girls in the ASD group and 2 girls in the healthy

control group (v2(1) = .240; p[ 0.05). As expected, IQ and

chronological age were not balanced across groups (both

p\ 0.001). Table 2 shows kinematic feature values of the

two groups of children included in the study (ASD vs. TD) and

the results of ANCOVA calculated on all kinematic measures.

We found several significant group differences based on the

kinematic variables even after having controlled for between-

participant differences in IQ and chronological age.

The Machine-Learning Method

Classification Algorithm

In Fig. 3, the optimal hyper-plane separating ASD from TD

participants is shown as a representative example of the

training phase of the machine-learning method.

Performance of the Classification Algorithm

In Table 3, the accuracy, specificity, and sensitivity of the

machine-learning method for the comparison of ASD

versus TD are reported.

The machine-learning method was able to successfully

classify participants by diagnosis. The classification accuracy

reached a maximum accuracy of 96.7 % (specificity 93.8 %

and sensitivity 100 %) by using seven features selected by

the Fisher discriminant ratio-based technique. Overall mean

accuracy, specificity, and sensitivity rates were also calcu-

lated over a number of selected features ranging from one to

17 (the whole number of features). The overall mean clas-

sification accuracy (specificity/sensitivity) was 84.9 %

(mean specificity 89.1 % and mean sensitivity 82.2 %).

Table 1 Demographics of the participants

ASD TD t (1, 28) p

N 15 15

Females:males 3:12 2:13

Chronological agea 3.5 ± 7.7

(2.8–4.6)

2.6 ± 5.2

(1.7–2.9)

-4.55 \.001

Mental agea 2.6 ± 5.7

(1.7–3.4)

2.7 ± 5.9

(1.6–3.2)

.513 n.s.

IQb 75 ± 13.4

(51–96)

105 ± 12.7

(81–119)

6.52 \.001

ADOSc

Social 11 ± 2.2 -

Communication 7 ± 1.5 -

SBRId 2 ± 1.6 -

ASD autism group, TD typically developing group; IQ and mental

age were assessed using the Griffiths Mental Development Scales

(Griffiths 1970)
a Mean years; months ± standard deviation (range)
b Mean ± standard deviation (range)
c ADOS autism diagnostic observation schedule, Lord et al. (2000)
d Stereotyped Behavior and Restricted Interests scale

Table 2 Kinematic data were

initially analyzed through an

ANCOVA with Group (ASD vs.

TD) as a between-participant

factor, and with IQ and

chronological age as covariates

Bold value indicates

significant contrasts

The alpha level was set to .05

for all data analyses. Table

depicts group means and

standard deviations for

kinematic variables, values of

F test, p values and effect sizes

reported using partial eta

squared (gp
2)

ASD autism group, TD typically

developing group

ASD TD F(1, 26) Sig. gp
2

Submovement 1

Movement units M (SD) 1.91 (0.62) 1.70 (0.37) \1.0 n.s. .012

Total movement duration M (SD) 0.69 (0.14) 0.66 (0.12) \1.0 n.s. .010

Peak velocity M (SD) 0.46 (0.12) 0.59 (0.17) 5,626 <0.05 .178

Time of peak velocity M (SD) 0.34 (0.07) 0.31 (0.04) \1.0 n.s. .036

Peak acceleration M (SD) 3.18 (0.93) 4.26 (1.52) 7,884 <0.01 .233

Time of peak acceleration M (SD) 0.21 (0.07) 0.16 (0.05) \1.0 n.s. .031

Peak deceleration M (SD) -3.59 (1.28) -3.93 (1.44) \1.0 n.s. .067

Time of peak deceleration M (SD) 0.47 (0.08) 0.44 (0.06) \1.0 n.s. .017

Submovement 2

Movement units M (SD) 3.45 (1.78) 1.76 (0.39) 4,408 <0.05 .145

Total movement duration M (SD) 1.35 (0.44) 0.79 (0.15) 13,832 =0.001 .347

Peak velocity M (SD) 0.61 (0.15) 0.76 (0.16) 13,475 =0.001 .341

Time of peak velocity M (SD) 0.41 (0.14) 0.31 (0.05) 18.501 <0.001 .416

Peak acceleration M (SD) 3.85 (1.13) 5.58 (1.94) 12,416 <0.01 .323

Time of peak acceleration M (SD) 0.23 (0.20) 0.13 (0.04) 6,303 <0.05 .195

Pick deceleration M (SD) -3.29 (1.15) -4.27 (1.88) 2,632 n.s. .092

Time of peak deceleration M (SD) 0.75 (0.24) 0.51 (0.11) 26,652 <0.001 .506

Wrist angle M (SD) -4.25 (16.34) -25 (12.40) 6,604 <0.05 .203
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In Fig. 4, the dependence of the metrics on the number

of considered features is shown. The resulting data are

shown for a number of features ranging from one to 17. As

expected, accuracy, specificity, and sensitivity rates

increase with the number of selected features, reaching

their maximum values when considering seven selected

features.

Besides calculating the accuracy of the SVM method,

we were particularly interested in identifying which kine-

matic features contributed toward the classification. Our

analysis showed that seven of 17 features were sufficient to

classify autism with a 96.7 % accuracy rate. All of these

seven kinematic features are related to the second part of

the movement, sub-movement 2 (i.e., the movement to

transport the ball from a support to the target hole in which

the ball was to be dropped): (1) total duration; (2) delta

wrist angle; (3) number of movement units; (4) time of

peak deceleration; (5) peak acceleration; (6) time of peak

velocity; and (7) peak velocity. Finally, the most discrim-

inative features between the two groups when considering

all of the N rounds (30) of the LOO cross-validation

strategy are reported here in descending order: Total

Duration sub movement 2, Delta Wrist Angle, Movement

Units sub movement 2, time of Peak Deceleration sub

movement 2, Peak Acceleration sub movement 2, time of

Peak Velocity sub movement 2, Peak Velocity sub

movement 2, Peak Velocity sub movement 1, time of Peak

Acceleration sub movement 1, Peak Acceleration sub

movement 1, time of Peak Acceleration sub movement 2,

Peak Deceleration sub movement 2, time of Peak Velocity

sub movement 1, Movement Units sub movement 1, time

of Peak Deceleration sub movement 1, Peak Deceleration

sub movement 1, Total Duration sub movement 1.

Discussion

Autism spectrum disorder is currently diagnosed on the

basis of symptoms as qualitatively judged by clinicians and

by means of semistructured observations (ADOS) and

standardized interviews or questionnaires (ADI-R). Given

this gold standard for the diagnosis of ASD, the use of

pattern recognition methods to predict group membership

has recently attracted strong attention, not only from a

computer-aided diagnosis perspective, but also as suitable

tool to define objective, quantitative measures of the dis-

order. Previous works have investigated the predictive

value of neurobiological and behavioral measures in

patients with ASD. The purpose of the present study was to

explore the ability of the kinematic analysis of a simple

upper-limb movement to correctly discriminate young low-

functioning children with ASD from typically developing

Fig. 3 Optimal separating

hyper-plane for the autism

group (ASD) versus typically

developing groups (TD) (1st,

2nd and 3rd components) is

shown as a representative

example of the training phase of

the machine-learning method

Table 3 Accuracy, specificity and densitivity rates of SVM using LOO validation

Maximum accuracy (%)

(# selected features)

Maximum specificity (%)

(# selected features)

Maximum sensitivity (%)

(# selected features)

Overall mean accuracy (%) Overall mean specificity (%) Overall mean sensitivity (%)

ASD versus TD 96.7 (7) 93.8 (7) 100.0 (7)

84.9 89.1 82.2

ASD autism group, TD typically developing group. The maximum values reached by accuracy, specificity and sensitivity were referred to as

maximum accuracy, specificity and sensitivity rates. Accuracy, specificity and sensitivity reached their maximum values using 7 features, all

related to the second part of the movement—Sub movement 2: (1) Total Duration; (2) delta Wrist Angle; (3) number of Movement Units; (4)

time of Peak Deceleration; (5) Peak Acceleration; (6) time of Peak Velocity; (7) Peak Velocity
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children. To achieve this goal, we applied our validated

supervised machine-learning procedure (Salvatore et al.

2013) to the kinematic analysis of a simple reach, grasp,

and drop task performed by preschool children with ASD

in comparison to their mental-age-matched, typically

developing peers.

The SVM algorithm reached a good mean individual

classification in the comparisons between children with

ASD and healthy controls (overall mean accuracy =

84.9 %, with overall mean specificity = 89.1 % and

overall mean sensitivity = 82.2 %), with a maximum

accuracy of 96.7 % (with maximum specificity of 93.8 %

and maximum sensitivity of 100 %). The classification

accuracy that was achieved in this study is consistent with

previous SVM applications to MRI data (Ecker et al.

2010a, b) and to diffusion tensor imaging (DTI) data (In-

galhalikar et al. 2011; Deshpande et al. 2013) or with

quadratic discriminant function application on diffusion

tensor asymmetries (Lange et al. 2010). Our results are also

consistent with the findings of Oller et al. (2010), who

derived algorithms that were based on linear discriminant

analysis by using an automated analysis of the acoustic

characteristics of babble and early language to discriminate

typical from language disordered development, such as

autism or language delay. Thus, the present findings clearly

show the feasibility and the applicability of our SVM

method in correctly classifying preschool children with

ASD on the basis of a motor task. Indeed, an autism

diagnosis is particularly difficult in young, low-functioning

children with autism, even using the gold standard

diagnostic procedure. Our motor measure might have

potential clinical application in such cases, thus providing

useful information for clinicians to support a diagnostic

decision. A point of relevance of our work, in fact, is that

we decided to study the predictive value of a simple reach,

grasp, and drop task, because the motor system can be

more easily evaluated (i.e., even in young low-functioning

children with ASD) than other more complex systems (e.g.,

cognitive functions). Indeed, because of the easiness and

self-explanatory nature of the task, all participants were

able to fully understand the experimental demand and to

complete the movement successfully. Furthermore, kine-

matics analysis provides a constraint-free, non-intrusive

environment for a challenging clinical population such as

ASD in comparison with a magnetic resonance examina-

tion that is mostly used in previous pattern-recognition

applications. Lastly, kinematic analysis is also a more

convenient and less expensive technology than MRI to

implement in a clinical setting equipped with an opto-

electronic system to acquire kinematic data. Indeed, the

task can be easily administered by any professional who

works with children. Testing sessions last 15 min, and data

analysis can be performed by a trained bioengineer in

approximately 30 min for each subject.

Using feature selection, we also found the best classi-

fication accuracy of 96.7 % with seven features which had

the highest discriminative ability between the groups. All

of these seven kinematic features are related to the second

part of the movement—sub-movement 2—in which the

child transported the ball from a support to the target hole

Fig. 4 Graph showing classification accuracy, specificity and sensi-

tivity rates (%) of SVM (Y-axis) in relation of the number of

considered features (X-axis). As expected, accuracy, specificity and

sensitivity rates increased with the number of selected features. The

classification accuracy reached a maximum accuracy of 96.7 %

(specificity 93.8 %, and sensitivity 100 %) utilizing seven features.

All of these seven kinematic features are related to the second part of

the movement—sub-movement 2—the movement to transport the ball

from a support to the target hole in which the ball was to be dropped.

Such suggests that goal-oriented movements may be critical in

separating children with ASD from typically developing children
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where the ball was to be dropped. This suggests that goal-

oriented movements may be critical in separating children

with ASD from typically developing children. More spe-

cifically, the top three features within the seven kinematic

characteristics of sub-movement 2—time duration, move-

ment units, and wrist angle—indicate respectively slower

and more fragmented movements in children with ASD

with inappropriate hand inclination for ball-drops during

the final phases of hand transport. Thus, our results extend

previous investigations in ASD that report the difficulty of

translating intention into a motor chain leading to the

action goal (Cattaneo et al. 2007; Fabbri-Destro et al. 2009;

Forti et al. 2011). These findings demonstrate that a limited

set of kinematic characteristics could reliably identify

children with ASD in order to describe a well-defined

phenotype of individuals within a complex and highly

heterogeneous disorder, even suggesting a possible motor

signature of autism related to disrupted planning movement

sequences.

Despite our promising results, some methodological

limitations of the present exploratory study should be

considered. The main limitation is related to the small

sample sizes of participant groups; the present findings,

therefore, need to be replicated in a larger sample in order

to validate the present SVM method by using a data set

upon which it has not trained. Another potential limitation

of this study is that our SVM classification is highly spe-

cific to the sample employed in training the classifier (i.e.,

preschool children with ASD). Future studies involving

females with ASD, children with high-functioning autism,

and adult patients are needed to generalize our findings to

the heterogeneous spectrum of the disorder. Although we

found that our significant between-groups differences were

not dependent on IQ and chronological age, it could be

worthwhile in future studies to train the computer algo-

rithm with data from age-matched typically developing

participants as well. Unfortunately, we did not collect

ADOS scores from the entire clinical sample; thus, we

could not perform a correlation analysis between our sig-

nificant findings and the clinical characteristics of children

with ASD. Future extensions of this work should also

include other neurodevelopmental conditions (e.g., intel-

lectual disability, developmental delays without intellec-

tual disability, or developmental coordination disorders) in

order to verify the classifier specificity to ASD, rather than

a neurodevelopmental disorder in general. Indeed, some

studies have recently indicated the specificity of motor

difficulties in older high-functioning children with ASD

compared to children with ADHD (Izawa et al. 2012;

Ament et al. 2014) and to healthy children matched by

nonverbal IQ and receptive language (Whyatt and Craig

2013). Finally, it should be noted that the predictive values

of classification methods are restrained by the base rate of

neurodevelopmental disorder in the population (Bishop

2010; Heneghan 2010; Yerys and Pennington 2011).

Therefore, caution is needed when comparing classifica-

tion-based accuracy values to the conventional diagnostic

measures.

Nevertheless, although the present results should be

considered preliminary, this study represents a ‘‘proof-of-

concept’’ that kinematic analysis of simple upper-limb

movement can reliably identify preschool-aged, low-func-

tioning children with ASD. The significant predictive value

of our SVM classification approach might be valuable to

support the clinical practice of diagnosing ASD, thus

encouraging a computer-aided diagnosis perspective.

Moreover, our findings offer insight on a possible motor

signature of autism that is potentially useful to identify a

well-defined subset of patients, thus reducing the clinical

heterogeneity within the broad behavioral phenotype. This

may guide further exploration of neuropathology of the

disorder with neuroimaging techniques or genetic analysis.
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