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Abstract The aim of this study was to investigate reward

circuitry responses in autism during reward anticipation

and outcomes for monetary and social rewards. During

monetary anticipation, participants with autism spectrum

disorders (ASDs) showed hypoactivation in right nucleus

accumbens and hyperactivation in right hippocampus,

whereas during monetary outcomes, participants with

ASDs showed hyperactivation in left midfrontal and ante-

rior cingulate gyrus. Groups did not differ in nucleus

accumbens responses to faces. The ASD group demon-

strated hyperactivation in bilateral amygdala during face

anticipation that predicted social symptom severity and in

bilateral insular cortex during face outcomes. These results

add to the growing body of evidence that autism is char-

acterized by altered functioning of reward circuitry.

Additionally, atypical amygdala activation during the

processing of social rewards may contribute to the devel-

opment or expression of autistic features.

Keywords Autism � Nucleus accumbens � Anticipation �
Functional magnetic resonance imaging � Social cognition �
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Introduction

Orientation to social stimuli in typical development begins

during early infancy (Farroni et al. 2002) and is critical for

optimal social development (Brooks and Meltzoff 2002)

and social adaptation through the lifespan (Emery 2000). It

is believed that attention towards social stimuli, even in

infancy, is accompanied with feelings of pleasure and

reward (Dawson et al. 2004, 2005). Such reward mecha-

nisms, in turn, may serve to encode and consolidate posi-

tive memories of social experiences (Labar 2007) that, in

turn, ultimately influence future responses to social stimuli.

Thus, in typical development, reward brain circuitry may

be shaped to guide responses to social sources of infor-

mation through a complex integrative process.

A number of theorists have suggested that autism is

characterized by social motivational deficits centered on

the detection, decoding, and interpretation of social signals

conveyed through the face (Dawson et al. 1998, 2005;

Schultz 2005). Decreased motivation to engage in
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reciprocal social behaviors may result in fewer experiences

with social sources of information. This relatively impov-

erished social environment may negatively impact the

development of social cognition and language skills, per-

haps due to lack of motivation to participate in activities

where such skills are typically forged (Schultz et al. 2000;

Kuhl et al. 2005). Consistent with this model, very young

children with autism demonstrate decreased orienting to

social stimuli (Dawson et al. 1998; Klin et al. 2009) that is

predictive of decreased social competence (Klin et al. 2002).

Despite the potential causal linkages between social

motivational deficits and decreased social competence,

only two published studies have assessed the neural bases

of social reward processing in autism. Schmitz et al. (2008)

investigated the neural substrates of reward feedback in the

context of a sustained attention task and reported increased

activation in left anterior cingulate gyrus and left mid-

frontal gyrus on rewarded trials in autism. Scott-Van

Zeeland et al. (2010) investigated the neural correlates of

rewarded implicit learning in children with autism using

both social and monetary rewards. They found diminished

ventral striatal response during social, but not monetary,

rewarded learning, and reported that activity within the

ventral striatum predicted social reciprocity within the

control group, but not the autism group.

The goal of the present study was to extend this line of

autism research to address reward network responses to

social stimuli during both anticipatory and outcome phases

of the reward response. This was accomplished via a

modified incentive delay task to probe responses to both

monetary rewards and to pictures of faces. A strength of

this task is the ability to probe responses during both

anticipatory and outcome phases. This is critical, given that

the anticipation and experience of reward are mediated by

distinct neurobiological systems (Wise 2008; Berridge

1996; Aberman et al. 1998) the dysregulation of which may

be treated via independent mechanisms (Willner 1983; Xi

and Gardner 2008; Howes and Kapur 2009).

Animal and human nonclinical research has identified a

neural network sensitive to rewards that receives dense

dopaminergic projections from the ventral tegmental area

and is comprised of both dorsal and ventral aspects of the

striatum, orbitofrontal cortex (OFC), ventromedial pre-

frontal cortex (VMPFC), and anterior cingulate cortex

(ACC) (Schultz 1998, 2000; Ikemoto and Panksepp 1999;

Berridge and Robinson 1998). Anticipation of pleasurable

stimuli recruits the nucleus accumbens (NAc), a marker of

incentive motivation underlying approach behaviors to

salient goals, whereas the experience of pleasure activates

VMPFC (Knutson et al. 2001; Knutson and Cooper 2005).

There is also evidence that some brain regions, including

the medial OFC, ACC, and, in certain contexts, the NAc,

are active during both the anticipatory and consummatory

phase of the reward response (Kim et al. 2006; Bjork and

Hommer 2007; Forbes et al. 2009).

Although the majority of reward studies have employed

monetary incentives, reactivity of reward brain circuits has

been demonstrated in response to a range of stimuli,

including pleasant pictures (Canli et al. 2001) and appe-

tizing foods (Stice et al. 2010). Additionally, there is a

growing body of literature describing reward network

responses to social stimuli during both anticipatory and

outcome periods (Hayden et al. 2007; Winston et al. 2007;

Rademacher et al. 2010), suggesting that social stimuli may

be used in the context of reward tasks to assay responses of

the reward system.

We recently reported results of a functional magnetic

resonance imaging (fMRI) study wherein individuals with

autism completed an incentive delay task modified such that

participants could win money or the opportunity to view non-

social objects (Dichter et al. 2011). Participants with autism

showed decreased NAc activation during monetary antici-

pation and outcomes but VMPFC hyperactivation during

object outcomes. This result indicates that reward network

function in autism is contingent on both the temporal phase of

the response and the type of reward processed, suggesting

that it is critical to assess the temporal chronometry of

responses in a study of reward processing in autism.

In the present study, we probed brain activation during

anticipation and outcome phases of an incentive delay task

that presented both monetary and social rewards to indi-

viduals with autism spectrum disorders (ASDs). In the

monetary conditions we hypothesized NAc hypoactivation

during anticipation and outcomes (Dichter et al. 2011) and

ACC hyperactivation during outcomes (Schmitz et al.

2008) in the ASD group. Based on a prevailing model of

social-motivation deficit in autism (Dawson et al. 1998,

2005; Schultz 2005) and the findings of Scott-Van Zeeland

et al. (2010), we further predicted reward system dys-

function to social rewards in the ASD group. Though no

study has assessed anticipatory response to social rewards

in autism, we hypothesized NAc hypoactivation during this

condition based on the premise that social stimuli have

decreased salience (Sasson et al. 2007, 2008) and thus

possibly decreased motivational properties in ASD.

Finally, relations between reward system dysfunction to

social stimuli and the severity of autism symptoms were

examined in an exploratory manner.

Method

Participants

Twenty neurotypical right-handed control participants

(fourteen male; mean (SD) age: 25.3 (7.0); age range:
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18.9–49.0) were recruited from lists of control samples

maintained by the Duke-UNC Brain Imaging and Analysis

Center. Control participants were not taking psychotropic

medications. The ASD group was comprised of sixteen

right-handed participants (two female; mean (SD) age: 26.0

(9.1); age range: 16.9–45.3; two diagnosed with Asperger’s

Disorder and fourteen with high functioning autism) and

were recruited via the Autism Subject Registry maintained

through the Carolina Institute for Developmental Disabil-

ities. Exclusion criteria for the ASD group included a

history of medical conditions associated with autism,

including Fragile X syndrome, tuberous sclerosis, neuro-

fibromatosis, phenylketouria, epilepsy and gross brain

injury, full-scale intelligence \80, and MRI contraindica-

tions. Groups did not differ in age, t(34) = .24; p [ .80, or

gender distribution, v2 (1) = 1.58, p [ 0.21. Seven ASD

participants were not taking psychotropic medications; of

the remaining nine, four were taking Abilify, one was

taking Adderall, one was taking Celexa, one was taking

Prozac, one was taking Risperdal, and one was taking both

Adderall and Prozac. The present study was conducted as a

companion study to Dichter et al. (2011), and nine partic-

ipants with ASDs and three control participants partici-

pated in both studies.

Diagnoses were based on a history of clinical diagnosis

confirmed by proband assessment by a research reliable

assessor via the Autism Diagnostic Observation Schedule-

Generic (ADOS-G; Lord et al. 2000) with standard clinical

algorithm cutoffs. Participants consented to a protocol

approved by the local Human Investigations Committees at

both UNC-Chapel Hill and Duke University Medical

Centers and were paid between $35 and $45 for the

imaging portion of the study. Participants had normal or

corrected-to-normal vision and completed a mock scan

session prior to imaging. Table 1 illustrates symptom

profiles of both diagnostic groups.

fMRI Task

The fMRI task was modified from the Monetary Incentive

Delay (MID) task as implemented in Knutson et al. (2000).

On three runs, money could be won or not won, but money

could not be lost; on the other three runs, trial ‘‘wins’’

resulted in the presentation of a static image of a face rather

than monetary gain. Face stimuli were neutral expression,

closed mouth images selected from the NimStim set of

facial expressions (Tottenham et al. 2009). Run types (i.e.,

‘‘money runs’’ or ‘‘face runs’’) were presented in alternat-

ing and counterbalanced order. Runs began with a 10-s

instructional screen indicating the run type. Money and

faces rewards were segregated by run to minimize the

number of cues to be memorized.

Task conditions and trial timings are summarized in

Fig. 1. Each trial consisted of: (1) a 2,000 ms cue indi-

cating whether adequately quick responses to the bulls-eye

would result in a ‘‘win’’ (a triangle) or not (a circle); (2) a

2,000–2,500 ms crosshair fixation; (3) a target bulls-eye

presented for up to 500 ms that required a speeded button

press; (4) 3,000 ms of feedback that indicated whether that

trial was a ‘‘win’’ or not, with wins accompanied by either

an image of money or a face; and (5) a variable length ITI

crosshair resulting in a total trail duration of 12 s. Potential

win and non-win trials were aperiodic and pseudorandomly

ordered. Each 8-min run contained 40 trials, of which half

were potential win trials.

During money runs, potential win trials resulted in $1

won if bulls-eye responses were adequately quick. During

face runs, potential win trials resulted in presentation of a

face image if bulls-eye responses were adequately quick.

Coincident with feedback, cumulative win totals were

presented. Participants were instructed to try to win on as

many trials as possible, and win or non-win outcomes were

contingent on reaction times. The task was adaptive such

that participants were successful on two-thirds of trials,

regardless of individual differences in reaction times.

Standard administration of the MID task involves show-

ing participants, prior to scanning, rewards that may be won

(Knutson et al. 2001). Consistent with this procedure, par-

ticipants were shown the money they could win and were

informed they would receive the amount of money won.

Table 1 Mean (SDs) age and symptom profiles

Age Autism

(n = 16)

Control

(n = 20)

t (p)

26.0 (9.1) 25.4 (7.0) 0.24 (.8)

ADOS comm 6.1 (5.5)

ADOS SI 8.7 (2.2)

ADOS SBRI 2.25 (1.8)

WASI (full-scale) 109.9 (20.3) 127.0 (8.1) 3.1 (.007)

WASI (performance) 109.1 (14.1) 122.2 (7.5) 3.3 (.004)

WASI (verbal) 108.1 (24.0) 125.6 (9.5) 2.7 (.02)

AQ total score 24.7 (13.1) 12.4 (5.3) 3.55 (.002)

RBS-R total score 20.8 (24.8) 3.6 (4.7) 4.44 (.0004)

SRS-SR total scores 70.7 (34.3) 33.7 (18.5) 3.89 (0.0008)

Both groups completed: (1) The Weschler Abbreviated Scale of

Intelligence (WASI) (Weschler 1999) (one ASD participant com-

pleted the Leiter-R (Roid and Miller 1997); (2) The Repetitive

Behavior Scale-Revised (RBS-R) (Bodfish et al. 1999; Lam and

Aman 2007), a measure designed to assess multiple RRB factors; (3)

the Autism Quotient (AQ) (Baron-Cohen et al. 2001), administered to

assess the overall severity of autism symptom as well as to verify that

the neurotypical group did not have significant autistic symptoms, and

(4) the Social Responsiveness Scale (SRS), a continuous measure of

autism symptom severity (Constantino et al. 2003)
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Prior to scanning, participants rated face stimuli on the

dimensions of valence and arousal. Stimuli were presented

using E-Prime v. 1.1 (Psychology Software Tools Inc.,

Pittsburgh, PA) and displayed through magnet-compatible

goggles (Resonance Technology, Inc., Northridge CA).

Imaging Methods

Scanning was performed on a GE Health Technologies, 3

Tesla Signa Excite HD scanner with 50-mT/m gradients

(General Electric, Waukesha, Wisconsin, USA). Head

movement was restricted using foam cushions. An eight-

channel head coil was used for parallel imaging. Thirty

high resolution images were acquired using a 3D fast

SPGR pulse sequence (TR = 7.332 ms; TE = 3.032 ms;

FOV = 22 cm; image matrix = 2562; voxel size = 0.86

9 0.86 9 3.80 mm) and used for coregistration with the

functional data. Structural images were aligned in the near-

axial plane defined by the anterior and posterior commis-

sures. Whole-brain functional images consisted of 30 slices

parallel to the AC-PC plane using a BOLD-sensitive gra-

dient-echo EPI sequence with higher-order shimming, at

TR of 2,000 ms (TE: 30 ms; FOV: 22 cm; isotropic voxel

size: 3.4375 9 3.4375 9 4.0000). Runs began with 4 dis-

carded RF excitations to allow for steady state equilibrium.

Imaging Data Analysis

Functional data were preprocessed using FSL version 4.1.4

(Oxford Centre for Functional Magnetic Resonance Imaging

of the Brain (FMRIB), Oxford University, U.K.). Prepro-

cessing was applied as follows: (1) brain extraction (Smith

et al. 2004), (2) motion correction using MCFLIRT (Smith,

2002), (3) spatial smoothing using a Gaussian kernel of

FWHM 5 mm, (4) mean-based intensity normalization of all

volumes by the same factor, (5) high-pass filtering (Jen-

kinson et al. 2002), and (6) resampled to 2 9 2 9 2 cm.

Functional and structural images were co-registered in

native space and normalized to a standard stereotaxic space

(Montreal Neurological Institute). Registrations used an

intermodal registration tool (Jenkinson et al. 2002; Smith

et al. 2004), and voxel-wise temporal autocorrelation was

estimated and corrected using FMRIB’s Improved Linear

Model (Jenkinson and Smith 2001).

Event onset times were used to model signal responses

containing a regressor for each response type convolved

with a double-c function to model the hemodynamic

response. Model fitting generated whole-brain images of

parameter estimates and variances, representing average

signal changes from baseline. Group-wise activation ima-

ges were calculated by a mixed effects higher level analysis

using Bayesian estimation techniques, FMRIB Local

Analysis of Mixed Effects (FILM, Woolrich et al. 2001)

with cluster mean threshold of Z [ 2.3 and a cluster-cor-

rected significance threshold of p \ 0.05 (FLAME 1 ? 2,

Beckmann et al. 2003).

Imaging Data Analytic Strategy

Anticipation and outcome phases were analyzed sepa-

rately; within each, group differences with respect to

responses to money and faces were modeled. Next, 2

(Group: ASD, control) 9 2 (Reward Type: money, faces)

interaction models were tested during both anticipation and

outcome phases to evaluate group differences with respect

to reward types.

Localizations were based on Harvard-Oxford cortical

and subcortical structural probabilistic atlases as imple-

mented in FSLView v3.0. Cortical activations were visu-

alized with Freesurfer (Fischl et al. 1999a, b) and displayed

on a partially inflated cortical surface. Because groups

differed in estimated intelligence, models were evaluated

that included this covariate. These analyses yielded highly

similar results (see Supplementary Figures 5 and 6), and

results without this covariate are presented for comparison

with other studies of reward network function in autism

(Schmitz et al. 2008; Scott-Van Zeeland et al. 2010;

Dichter et al. 2011) that did not covary intelligence.

Additionally, we note that results of only males participants

(14 control and 14 ASD participants) also yielded highly

similar results (see Supplementary Figures 7 and 8).

Results

Head motion, measured as average amount of movement in

six planes of motion, did not differ between groups (ASD

Incentive Trials Nonincentive Trials
Cue Outcome Cue Outcome

Money 
Runs

Fast
enough

Not fast
enough

Face 
Runs

Cue (2s) Anticipation (2.0-2.5s) Target (0-0.5 s) Outcome (3s)

$

Fig. 1 Modified MID task. Participants alternated completing

‘‘money’’ and ‘‘face’’ runs, denoted by a 10-s instructional screen at

the start of each run. Each trial consisted of a cue (i.e., a triangle
indicated an incentive trial, a circle indicated a non-incentive trial), an

anticipatory delay, a target, and outcome feedback
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mean absolute displacement = 0.9 mm (SD = 0.8); con-

trol mean absolute displacement = 0.4 mm (SD = 0.2),

p [ .05).

Image Ratings

Groups did not differ in ratings of faces on the dimensions

of Valence (p [ .75) and Arousal (p [ .90) (see Fig. 2).

MID Reaction Times

Reaction times (RTs) to MID bulls-eyes are depicted in

Fig. 2 and were compared via a 2 (Group: ASD, Con-

trol) 9 2 (Stimulus Type: Money, Faces) mixed ANOVA.

There was no Group X Stimulus Type interaction,

F(1,34) = 0.11, p [ .70, or main effect of Group,

F(1,34) = 1.68, p = .20. There was a main effect for

Stimulus Type, F(1,34) = 11.18, p \ .002 reflecting faster

RTs overall on money trials relative to face trials.

fMRI Responses to Monetary Incentives

Figure 3 and Table 2 depict responses to monetary incen-

tives. Responses of the control group alone replicated

patterns observed in the nonclinical literature (Knutson and

Greer 2008), including NAc activation during monetary

anticipation and medial prefrontal activation during mon-

etary outcomes (see Supplementary Materials Figure 2).

Replicating our previous findings (Dichter et al. 2011),

individuals with ASDs demonstrated hypoactivation in

right NAc during monetary anticipation. Decreased

activation was also observed in right OFC, the ACC, as

well as a number of regions outside of the reward network.

The ASD group demonstrated greater activation during

monetary anticipation in a ventral cluster that included the

hippocampus and entorhinal cortex, as well as precentral

gyrus and right temporal pole. During monetary outcomes,

there were no clusters with decreased activation in the ASD

group. There were, however, a number of prefrontal

regions that demonstrated relatively greater activation in

the ASD group, including bilateral inferior frontal gyrus,

the left midfrontal gyrus (MFG), right superior frontal

gyrus, right insular cortex, and left frontal pole.

fMRI Responses to Faces

Figure 4 and Table 3 depict response to faces. There were

no clusters with relatively decreased activation in the ASD

group. However, there were a number of regions with

relatively greater responses in the ASD group: during face

anticipation, greater activation in the ASD group was

observed in bilateral amygdala as well as the left frontal

pole, whereas during face outcomes, relatively greater

activation in the ASD group was observed in a number of

prefrontal regions, including right middle frontal gyrus,

bilateral superior frontal gyrus, and bilateral insular cortex.

Group 9 Reward Type fMRI Results

2 (Group: ASD, control) 9 2 (Reward Type: money, faces)

interaction tests during reward anticipation revealed a

0

1
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5

VALENCE AROUSAL
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im

e 
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ill
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ds

0

50

100

150

200

250

300

ASD

Control

In – Scanner Reaction TimesSubjective Ratings of Faces

$

ASD

Control

Fig. 2 Left: Average valence and arousal ratings of faces.

Valence = 0 (extremely unpleasant) to ?8 (extremely pleasant);

Arousal = 0 (not at all aroused) to ?8 (extremely aroused). Right:
Average reaction times during face and money conditions. The main

effect of Stimulus Type reflected faster RTs on money trials relative

to face trials in both the control group (money mean (SD): 256 (31)

ms; face mean (SD): 270 (41) ms; t(1,19) = 2.21, p \ .001) and the

ASD group (money mean (SD): 270 (42) ms; face mean (SD): 290

(53) ms; t(1,15) = 2.54, p \ .05). Error bars represent standard

errors of the mean
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significant interaction cluster in right NAc (see Supple-

mentary Materials Figure 3). Simple effects tests revealed

that this interaction term reflected relatively greater

response to money than faces in the control group (p \ .05)

but not in the ASD group. A similar analysis conducted

during reward outcomes revealed no interaction effects in

NAc or VMPFC, but a significant interaction cluster in

anterior cingulate cortex (see Supplementary Materials

Figure 4). Simple effects tests revealed that this interaction

term reflected relatively greater response to money than

faces in the control group (p \ .05) but not in the ASD

group.

Brain-Symptom Correlations

To test whether responses to social rewards predicted

social symptom severity within the ASD group, relations

between neural responses to social rewards and social

functioning were evaluated. Significant correlations were

found between the social interaction subdomain algorithm

scores of the ADOS-G (Lord et al. 2000) and both the left

(r = .74, p = .0011) and right (r = .58, p = .018) amyg-

dala clusters that differentiated groups during face antici-

pation. Signal strengths in these clusters were derived by

extracting signal strength values for each participant for the

clusters defined by the between-groups analysis. These

direct associations indicate that more severe social deficits

predicted greater bilateral amygdala activation during face

anticipation.

Discussion

Social-motivation deficits in ASDs have long been theo-

rized to mediate difficulties with social information pro-

cessing by decreasing the saliency of social information

(Dawson et al. 1998, 2004, 2005; Schultz 2005). The

objective of the present study was to evaluate responses to

money and faces presented within the context of an

incentive delay task. This approach was informed by the

wealth of infrahuman and human data indicating that

reward anticipation outcomes recruit distinct neurobio-

logical systems (e.g., Berridge and Robinson 1998; Knut-

son et al. 2001) and that various neuropsychiatric disorders

are characterized by anomalous patterns of brain function

during different temporal phases of the reward response

(Smoski et al. 2009; Juckel et al. 2006b; Abler et al. 2007).

Responses to Monetary Rewards

Brain activation during monetary anticipation revealed

decreased NAc activation in the ASD group, replicating

our previous findings (Dichter et al. 2011) and suggestive

of reward system dysfunction in ASD during anticipation

of a standard laboratory incentive. The NAc receives dense

dopaminergic projections from the ventral tegmental area

and mediates incentive motivation salience in a number of

contexts (for a review, see Knutson and Greer 2008).

Responses during monetary anticipation also revealed the

novel but complimentary finding of OFC hypoactivation in

the ASD group. Nonclinical investigations of neural

responses during incentive delay tasks have not consis-

tently observed OFC activation (Knutson et al. 2001; Dil-

lon et al. 2008), possibly due to the potential for fMRI

artifact just above the sinus cavities. In the present study,

the use of higher-order shimming improved BOLD signal

coverage within the OFC, increasing power to detect

effects in this ventral brain region (see Supplementary

Materials Figure 1).

The OFC codes the magnitude and affective value of

positive and negative rewards and primary reinforcers

(Bechara et al. 2000), tracks the subjective utility of

delayed rewards (Kable and Glimcher 2007), and facilitates

decision-making based on cost-benefit gradients (de Lafu-

ente and Romo 2006), particularly in ambiguous contexts

(Hsu et al. 2005). As such, the OFC codes hedonic value

and abstract representations of positive and negative out-

comes and responds similarly to obtained rewards and

avoided losses (Rolls 1996; Kim et al. 2006). Thus, the

OFC aids in forming associations between uncondi-

tioned stimuli and primary reinforcers to adaptively guide

behavior. Lesions of the OFC result in impaired

reward learning and impaired adaptive behavior in the

face of changing reinforcement contingencies (Rolls and

Money Trials
Anticipation Outcome

A
S

D
<

C
on

tr
ol

A
S

D
>

C
on

tr
ol

NAc

MFG

R                            

HC/EC

R     

R     
5.02.3

OFC
Y=50

X=-6

X=-24

R

Fig. 3 Brain areas showing significant group differences in response

to monetary incentives. Anticipatory responses are on the left and

outcome responses are on the right; clusters with relatively less

activation in the ASD group are in the top panels, clusters with

relatively greater activation in the ASD group are in the bottom
panels. Outcome panels depict the anterior view of the brain. OFC
orbital frontal cortex, NAc nucleus accumbens, HC/EC hippocampus/

entorhinal cortex, MFG midfrontal gyrus
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Table 2 Clusters showing significant group differences during money trials (minimum cluster size = 8 voxels)

Region Brodmann Area Size (mm3) Z Max MNI coordinates

X Y Z

Anticipation

Control [ Autism

Accumbens (left) 256 3.21 -4 6 -4

Amygdala (right) 34 96 2.7 24 4 -20

Cingulate gyrus (Anterior, right) 1,168 4 0 -2 24

Frontal orbital cortex (left) 1,240 2.66 -30 38 -2

Frontal pole

Right 10 168 2.71 30 58 16

Left 128 2.59 -26 38 -14

Occipital frontal cortex (right) 1,848 3.36 20 50 -16

Occipital cortex (superior, lateral, right) 224 2.75 40 -68 24

Planum porale (right) 41 352 2.92 54 -30 16

Precentral gyrus (right) 6 88 2.58 38 2 40

Subcallosal cortex (right) 224 2.65 10 12 -14

Subcallosal cortex (left) 24 144 2.58 -4 22 -8

Supramarginal gyrus (anterior, right) 288 3.2 64 -28 40

Supramarginal gyrus (posterior)

Right 464 2.83 58 -42 32

Left 40 520 3.44 -62 -44 40

Temporal gyrus (posterior, middle)

Right 144 2.61 46 -22 -14

Left 112 3.15 -48 -36 -6

Autism [ Control

Hippocampus (right) 35 512 3.12 24 -12 -30

Precentral gyrus (left) 6 104 2.7 -8 -20 54

Temporal pole (right) 408 3.22 46 6 -28

Outcome

Autism [ Control

Frontal gyrus (inferior)

Righta 368 2.7 54 12 4

Left 232 2.8 -48 14 6

Frontal gyrus (middle, left) 1,880 3.3 -24 2 52

Frontal gyrus (superior)

Righta 1,512 3.2 14 -10 72

Frontal pole (left) 336 2.9 -40 46 18

Insular cortex (right) 160 2.7 44 10 -6

Intracalcarine cortex

Right 200 2.7 26 -62 4

Left 224 3.1 -10 -76 4

Lingual gyrus (right) 1,064 3.3 8 -62 4

Occipital cortex (lateral, superoir)

Right 39 80 3.5 50 -76 30

Right 7 272 2.9 26 -64 34

Right 200 3 18 -80 42

Opercular cortex (central, Right) 112 2.6 46 -8 12

Operculum cortex (frontal)

Left 160 2.7 -46 16 -4
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Grabenhorst 2008). These lines of evidence suggest that in

incentive tasks the OFC functions to code for the hedonic

value of incentives with respect to optimizing behavioral

choices (Kim et al. 2006). Thus, decreased OFC activation

in the ASD group during monetary anticipation may reflect

diminished tagging of this reward stimulus with affective

value. Because a major function of the OFC in incentive

contexts is to influence future decision making (Deco and

Rolls 2006), this has implications for the downstream

effects of decreased OFC activation on goal-oriented

behaviors.

Findings during monetary anticipation overlapped with

those of Scott-Van Zeeland et al. (2010), who examined

responses to rewards presented within the context of an

implicit learning task and found decreased NAc and OFC

activation to monetary rewards. Though the disparity with

respect to the temporal phases of these responses (i.e.,

during anticipation in the present study and rewarded

feedback in Scott-Van Zeeland et al. (2010)), such con-

vergence suggests that NAc and OFC hypoactivation to

rewards may reflect a replicable effect in autism.

Our finding of ACC hyperactivation during monetary

anticipation in the ASD group overlaps with findings of

Schmitz et al. (2008) who reported ACC hyperactivation in

ASD during a rewarded continuous performance task. ACC

activity is associated with reward anticipation (Dillon et al.

2008) and numerous theories of ACC function suggest that

this structure maximizes adaptive responses by mediating

cognitive control in ambiguous contexts (Brown and

Braver 2005; Magno et al. 2006) and evaluations about

whether to expend effort for rewards (Walton et al. 2002,

2003). This finding may thus suggest increased allocation

of resources in what may be interpreted as an ambiguous

context.

An unexpected finding during monetary anticipation

was greater ASD activation in a ventral cluster that

included the hippocampus and entorhinal cortex. The hip-

pocampus mediates declarative memory consolidation

(Eichenbaum 2000) and has dense projections to the ven-

tral striatum (Friedman et al. 2002). Animal studies have

identified ‘‘hippocampal ripples’’ that covary with ventral

striatal activation to contribute to reward-related memory

consolidation (Le Van Quyen et al. 2008), and human

studies have demonstrated complex associations between

hippocampus, entorhinal cortex, and NAc activations in

motivated learning tasks (Adcock et al. 2006). Greater

hippocampus/entorhinal cortex activation may signal

increased allocation of resources towards reward-related

memory formation, perhaps as a compensatory mechanism

engaged coincident with decreased NAc activation during

the same task period.

The ASD group also demonstrated greater left mid-

frontal gyrus activation during monetary outcomes. This is

somewhat surprising given that outcome reward responses

are typically localized to medial ventral aspects of the

prefrontal cortex. Dorsal lateral prefrontal cortex is
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Fig. 4 Brain areas showing

significantly greater activation

in ASD participants relative to

control participants in response

to face incentives. Anticipatory

responses are on the left and

outcome responses are on the

right

Table 2 continued

Region Brodmann Area Size (mm3) Z Max MNI coordinates

X Y Z

Right 104 2.6 40 22 2

Precentral gyrus

Righta 304 3.4 56 2 44

Putamen

Right 272 2.5 24 10 -6

a Two clusters within same region, coordinates and peak activation reported for highest peak activation
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typically engaged in contexts that require working memory

(Fletcher and Henson 2001; MacDonald et al. 2000; for a

review, see Haber and Knutson 2010), when multiple value

options must be compared and held in memory (Haber and

Knutson 2010; Ridderinkhof et al. 2004; Knutson et al.

2007). It may be the case that reward value is more

uncertain in the ASD group, thus prompting greater mid-

frontal gyrus activation. It is noteworthy that, despite task

differences, this finding is also consistent with those of

Schmitz et al. (2008) who found left middle frontal gyrus

hyperactivation in autism during a rewarded continuous

performance task.

Table 3 Clusters showing significant group differences during face trials (minimum cluster size = 8 voxels)

Region Brodmann Area Size (mm3) Z Max MNI coordinates

X Y Z

Anticipation

Autism [ Control

Amygdala (right) 1,344 4.54 22 -4 -32

Amygdala (left) 544 3.46 -26 -4 -30

Cingulate gyrus (posterior, right) 168 2.71 4 -36 4

Frontal pole (left) 9 88 2.8 -20 54 28

Hippocampus (left) 216 2.74 -14 -40 4

Intracalcarine cortex (right) 712 3.07 32 -66 8

Occipital cortex (inferior, lateral, left) 304 3.32 -36 -66 8

Occipital fusiform gyrus (right) 264 2.78 36 -58 -6

Opercular cortex (central, left) 152 2.95 -34 -2 18

Parietal operculum cortex (left) 416 3.35 -36 -32 28

Planum temporale (left) 104 2.69 -34 -38 10

Precuneous cortex

Right 288 3.03 24 -52 24

Left 88 2.79 -28 -62 14

Temporal gyrus (inferior, temporooccipital, left) 208 3.21 -56 -54 -14

Outcome

Autism [ Control

Angular gyrus (right) 19 776 3.34 42 -58 16

Frontal gyrus (middle, right) 160 3.08 44 6 52

Frontal gyrus (superior)

Right 120 3.03 0 18 60

Left 136 2.78 -26 4 60

Insular cortex

Right 4,160 3.36 38 14 -6

Left 144 2.72 -30 12 -12

Left 13 584 3.13 -42 14 -4

Intracalcarine cortex (left) 18 248 2.89 -8 -76 4

Lingual gyrus (right) 944 2.97 10 -56 -2

Occipital cortex (superoir, lateral, right) 19 584 3.59 18 -82 42

Pallidum (left) 272 2.71 -20 2 -4

Parahippocampal gyrus (posterior, left) 152 2.83 -10 -34 -16

Precuneous cortex (left) 104 2.52 -18 -62 16

Putamen

Right 352 2.67 32 -2 4

Lefta 792 2.81 -28 -4 8

Temporal gyrus (middle, temporooccipital, left) 104 2.54 -46 -58 8

Temporal pole (right) 80 2.43 52 6 -20

a Two clusters within same region, coordinates and peak activation reported for highest peak activation
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Responses to Social Rewards

Responses to social rewards revealed strikingly different

patterns of activations. Contrary to hypotheses, groups did

not differ with respect to NAc or VMPFC activation during

face anticipation or outcomes, suggesting that faces held

motivational relevance for both groups. It is noteworthy that

this pattern of data stands in stark contrast to the findings of

Scott-Van Zeeland et al. (2010), who reported decreased

ACC, ventral PFC, and NAc activation in ASD to social

rewards in an implicit learning task and highlights the likely

context-dependent nature of reward circuitry function in

autism.

The ASD group, however, demonstrated increased

bilateral amygdala activation during anticipation of faces.

Although the functions of the amygdala are varied and

multifaceted, it is a critical structure for face processing

specifically and social cognition more generally (for a

review, see Adolphs 2010). There a rich literature linking

the amygdala to social dysfunction in autism: structural

MRI studies have documented abnormal amygdala growth

trajectories linked to the severity of anxiety and social

communication skills (Juranek et al. 2006; Munson et al.

2006), and fMRI studies have found both decreased (Pierce

et al. 2001; Bookheimer et al. 2008) and increased (Dalton

et al. 2005b; Monk et al. 2010) amygdala activation to

faces, as well as decreased amygdala habituation to faces in

autism (Lombardo et al. 2009; Kleinhans et al. 2009).

Though the amygdala is critical for fear conditioning,

amygdala neurons also code for both rewarding and pun-

ishing stimuli and their predictors and thus play a critical

role in reward learning (Shabel and Janak 2009). Thus, the

amygdala appears to code social value, and, more specifi-

cally, mediates the flexible updating of representations of

stimulus value (Gottfried et al. 2003). Although heightened

amygdala activation during face anticipation may reflect

increased arousal in the autism group (cf. Dalton et al.

2005a), alternatively it may more specifically reflect

increased resource allocation to coding value from an

ambiguous, uncertain, or abstract stimulus (Hsu et al.

2005). Of particular interest is the finding that the magni-

tude of amygdala activation to social rewards correlated

with the degree of social impairments in the ASD sample,

suggesting that amygdala activation during the processing

of social rewards may contribute to the development or

expression of autistic features. However, we note that the

literature on amygdala activation to faces in autism is

inconsistent: some studies have documented increased

amygdala activation to faces in ASD (Dalton et al. 2005a;

Kleinhans et al. 2009; Monk et al. 2010; Weng et al. 2010),

whereas others have documented decreased amygdala

activation to faces in ASD (Ashwin et al. 2007; Critchley

et al. 2000; Dapretto et al. 2006; Grelotti et al. 2005;

Hadjikhani et al. 2007; Pinkham et al. 2008). Thus, the

implications of direct associations between amygdala

activation to social rewards and clinical symptom severity

are contingent on a better understanding of the nature of

amygdala activation to faces in ASD.

The ASD group also demonstrated relatively increased

bilateral insular cortex activation during face outcomes. In

nonclinical studies, anticipation of monetary loss is

accompanied by activation within insular cortex (Knutson

et al. 2007), suggesting the possibility that faces outcomes

were coded as a ‘‘loss’’ relative to expectations. An

alternative function of the insular cortex is its role in the

mirror neuron system engaged during empathy tasks

(Singer et al. 2004; de Vignemont and Singer 2006;

Wicker et al. 2003). The mirror neuron system plays a

critical part in theory-of-mind functions (Gallese et al.

1996) and acts as an interface between frontal and limbic

components of the mirror neuron system, facilitating the

translation of an observed facial expression to its expe-

rienced significance (Carr et al. 2003). A number of

studies have indicated mirror neuron dysfunction in aut-

ism, though not all have implicated the insular cortex

(Nishitani et al. 2004; Dapretto et al. 2006; Oberman

et al. 2005; Williams 2008), suggesting that theory-of-

mind deficits in autism may be mediated by mirror neuron

dysfunction. In this regard, aberrant insular cortex acti-

vation during face outcomes may reflect dysfunction of

the mirror neuron system, although the direction of this

effect bears replication.

Faces with neutral expression, rather than with happy

expression, were used in the social reward condition to

eliminate the potential confound of facial attractiveness or

‘‘approachablilty’’ with the ‘‘socialness’’ of this condition.

Although the clear majority of nonclinical studies exam-

ining reward circuit reactivity to faces has investigated

responses to attractive faces (e.g., Aharon et al. 2001;

Cloutier et al. 2008; Liang et al. 2010) or positively

valenced faces (e.g., O’Doherty et al. 2003; Chakrabarti

et al. 2006). However, we note that the NAc is responsive

to a broad range of socio-emotional stimuli (Phillips et al.

2003) as well as to unattractive faces (Liang et al. 2010),

particularly in males (Cloutier et al. 2008). Additionally,

we highlight a recent neuroimaging study that reported

differential nucleus accumbens activation in autism to

faces broadly, irrespective of emotional expression (Weng

et al. 2010). Future studies that parametrically manipulate

face attractiveness and face expression will be needed to

define the boundary conditions of differential reward

circuitry responses to faces in autism. Finally, we note

that data suggesting differential brain activation responses

to familiar versus unfamiliar faces in autism (Dalton et al.

2005b), as well as data suggesting that circumscribed

interests may improve social behavior in children with
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autism (Boyd et al. 2007) underscore potential mecha-

nisms by which responses to faces in ASD may be

modulated.

Reaction times and subjective ratings revealed no group

differences, highlighting the unique information conveyed

by fMRI data and the utility of brain imaging to reflect

neurobiological processes not accessible to conscious

awareness or evaluation. Divergence between self-report,

behavioral, and neurobiological data is consistent with

findings in other domains of clinical neurobiological

research (Dichter and Tomarken 2008; Hempel et al. 2005;

Rehme et al. 2009). Divergence between fMRI and self-

report data in autism is also not surprising given that autism

is characterized by poor insight into feeling states and

manifest symptomatology (Johnson et al. 2009).

One limitation of the present study is that a significant

portion of participants in the ASD group were taking

psychotropic medications. Because these agents have dis-

parate (Juckel et al. 2006a; McCabe et al. 2010) or

unknown effects on neural response to rewards, particu-

larly in contexts where more than one agent is taken

simultaneously, the present study does not have a sufficient

sample to conduct a systematic analysis of medication

effects in the ASD group or to conduct an analyses

restricted to only ASD participants not taking any medi-

cations. Such studies will be the focus of future research.

In sum, results suggest that the processing of reward-

related information in autism is characterized by

(a) diminished reward-circuitry (i.e., NAc OFC) activation

in response to monetary incentives, (b) comparable acti-

vation of reward-circuitry (i.e., NAc, OFC, VMPFC) in

response to social incentives, and (c) increased activation

of multiple brain areas during reward processing (i.e., ACC

and HC to monetary incentives; amygdala and insular

cortex to social incentives). These results both replicate our

previous findings with respect to monetary incentives

(Dichter et al. 2011) and extend our model of atypical

reward circuitry function in ASD to include the domain of

social rewards. Taken together, these results suggest that a

possible ‘‘bias’’ in reward processing may exist in ASD that

favors nonsocial rewards at the expenses of social rewards.

Such a bias could influence experience-dependent devel-

opment such that nonsocial events acquire salience over

social events in a manner consistent with the expression of

the autism phenotype.
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