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Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder that is known to have 
a polygenic (i.e., many genes of individually small effects) architecture. Polygenic scores (PGS), which characterize this 
polygenicity as a single score for a given individual, are considered the state-of-the-art in psychiatric genetics research. 
Despite the proliferation of ADHD studies adopting this approach and its clinical implications, remarkably little is known 
about the predictive utility of PGS in ADHD research to date, given that there have not yet been any systematic or meta-
analytic reviews of this rapidly developing literature. We meta-analyzed 12 unique effect sizes from ADHD PGS studies, 
yielding an N = 40,088. These studies, which included a mixture of large population-based cohorts and case–control samples 
of predominantly European ancestry, yielded a pooled ADHD PGS effect size of rrandom = 0.201 (95% CI = [0.144, 0.288]) 
and an rfixed = 0.190 (95% CI = [0.180, 0.199]) in predicting ADHD. In other words, ADHD PGS reliably account for between 
3.6% (in the fixed effects model) to 4.0% (in the random effects model) of the variance in broadly defined phenotypic ADHD. 
Findings provide important insights into the genetics of psychiatric outcomes and raise several key questions about the impact 
of PGS on psychiatric research moving forward. Our review concludes by providing recommendations for future research 
directions in the use of PGS, including new methods to account for comorbidities, integrating bioinformatics to elucidate 
biological pathways, and leveraging PGS to test mechanistic models of ADHD.
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Attention-deficit/hyperactivity disorder (ADHD) is a 
neurodevelopmental disorder with an estimated worldwide 
prevalence of 7.2% (Thomas et al., 2015). ADHD is reliably 
associated with a range of adverse social, behavioral, and 
emotional outcomes in later life, including low educational 
attainment (Kuriyan et al., 2013), depression and substance 
misuse (Agnew-Blais et al., 2018), criminality (Fletcher 
& Wolfe, 2009), and poor physical health (Kuriyan et al., 
2013). The negative impact of childhood ADHD is pervasive 
in ways beyond its effects on the individual; it also affects 
society through the substantial economic burden it places on 

mental health systems and education services (Doshi et al., 
2012).

Although decades of behavioral and molecular genetics 
research have indicated the critical role that genes play in 
the etiology of ADHD (Chang et al., 2013; Chen et al., 
2017; Faraone & Larsson, 2018; Nikolas & Burt, 2010), 
recent studies leveraging genome-wide methods have 
begun to challenge some of our previous knowledge about 
the genetics of ADHD while ushering in a new set of tools 
to our pursuit of uncovering its genetic architecture. One 
method that has gained considerable traction in psychiatric 
genetics research are polygenic scores (PGS) (Wray et al., 
2007). Study adoption of PGS methods has been rapid; from 
2007 to 2013, there were a total of 138 published studies 
cataloged on PubMed involving the use of PGS (three of 
which were related to ADHD). In just 2018 alone, there were 
279 studies published on PGS, which is more than double the 
total number of published PGS studies prior to 2013. Given 
the high degree of heritability of many complex traits and 
disorders, there is optimism that PGS can eventually be used 
in the prediction of human health and behavioral outcomes 
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(Anderson et al., 2019; Martin et al., 2019; Torkamani et al., 
2018). Despite its tremendous promise, little is known about 
whether psychiatric PGS are particularly useful for clinical 
prediction. Furthermore, as more studies involving PGS are 
published, it is paramount to consider the limitations and 
future directions of PGS research. This study examines the 
predictive performance of ADHD PGS by conducting the 
first meta-analytic review of the ADHD PGS literature.

Genome‑Wide Association Studies of ADHD

Before discussing the PGS approach, we first summarize 
genome-wide association studies (GWAS) of ADHD, a 
critical aspect of PGS computations. GWAS examine the 
association between single nucleotide polymorphism (SNP) 
variation in the genome and a quantitative trait of interest 
(Hirschhorn & Daly, 2005). Most GWAS to-date have 
employed microarrays to genotype hundreds of thousands to 
several million SNPs in individuals. Because of the volume 
of SNP-phenotype associations tested and the expected 
small effect of even a significant association, GWAS have 
far larger sample size requirements than behavioral genetic 
or candidate gene studies (Visscher et al., 2017). Thus, 
nearly all major GWAS of psychiatric outcomes are led by 
consortia, consisting of international research teams that 
combine their cohorts to form a large pooled sample (e.g., 
Psychiatric Genomics Consortium; PGC) (Sullivan, 2010).

PGC-led efforts have produced two meta-analyses 
specific to ADHD GWAS, the first of which was performed 
by B. M. Neale and colleagues (2010). This GWAS was 
comprised of four independent child and adolescent cohorts 
of predominantly Western European descent, resulting in 
a pooled study sample of 2,064 parent-ADHD proband 
trios, 896 ADHD probands and 2,455 controls. Participants 
in all cohorts were assessed for ADHD using a semi-
structured clinical interview (keyed to either the DSM-IV 
or ICD-10, depending on the population) conducted 
with a caregiver. The majority of ADHD probands were 
diagnosed with combined-type ADHD (n = 868). Genetic 
data were imputed using the HapMap Phase III reference 
panel, resulting in 1,206,463 SNPs analyzed in the GWAS. 
Test statistics from each cohort were transformed into Z 
scores, which was the effect size statistic in the GWAS. The 
GWAS yielded no genome-wide significant findings (i.e., 
p < 5 × 10–8). Regions on chromosome 7 (e.g., SHFM1), 
8 (e.g., CHMP7), and 11 (e.g., DHCR7 and NADSYN1) 
were implicated based on having the most SNPs that were 
among the top 50 associations, but the authors pointed to 
being underpowered in their sample to detect small genetic 
effects. Other noted limitations of the GWAS included: 
measurement variability and differences in ADHD referral 
patterns across cohorts, unmeasured effects from rare and 

copy number variants, and unaccounted environmental 
differences (e.g., diet, culture) due to having drawn from 
different populations (Neale et al., 2010).

The most recent meta-analysis of ADHD GWAS was 
conducted by Demontis and colleagues (2019). The 
research team analyzed genetic data from 12 child and adult 
cohorts, resulting in 20,183 ADHD probands and 35,191 
controls. However, the vast majority of the probands and 
controls (n = 14,583 and 22,494 respectively) came from 
a single child and adult cohort from Denmark (iPSYCH). 
The 11 other cohorts were aggregated by the PGC and 
represented smaller child and adult samples from Europe, 
Canada, United States and China. To address the possibility 
of population stratification, genetic principal components 
were included in their analysis. Imputation was performed 
using the 1000 Genomes Project Phase 3 reference panel, 
resulting in 8,047,421 variants analyzed in the GWAS. In 
iPSYCH, ADHD status was determined by a psychiatrist 
according to the ICD-10. ADHD status in the PGC samples 
were assessed using semi-structured clinical interviews 
(e.g., Schedule for Affective Disorders and Schizophrenia 
for School-Age Children, K-SADS; Child and Adolescent 
Psychiatric Assessment, CAPA). Twelve unique SNPs were 
identified in the full GWAS sample, including a locus in the 
FOXP2 gene, which is believed to play a role in learning 
and speech (Schreiweis et al., 2014) and SEMA6D, which 
is believed to play a role in embryonic brain development 
and educational attainment (Okbay et al., 2016). Notably, 
none of the regions that were implicated in the earlier B.M. 
Neale et al. (2010) GWAS were genome-wide significant 
in the more recent GWAS. Furthermore, one of the loci (in 
SPAG16 on chromosome 2) failed to pass the significance 
threshold when only the European ancestry subsample was 
meta-analyzed. And the 12 loci that were genome-wide 
significant only captured a small fraction of variance in 
ADHD, with odds ratios for each of the loci ranging from 
1.077 to 1.198 (the SNP heritability of ADHD was an 
estimated 0.22). A number of important limitations should 
be noted, including the high degree of age heterogeneity 
in the pooled sample (combining children and adults), 
diagnostic heterogeneity from the use of different measures 
of ADHD, and an overrepresentation of cases and controls 
from a single Western European cohort (i.e., iPSYCH). 
Results from these GWAS have made it abundantly clear that 
many genes with individually small effects, rather than a few 
genes with large effects, are likely involved in the etiology of 
ADHD. As sample sizes for these GWAS have increased, so 
too has the rate of genetic discovery (Visscher et al., 2017). 
Given the prominence of consortia-led efforts towards gene 
identification, GWAS sample sizes are projected to be large 
enough to capture a substantial amount of the common 
genetic variation underlying the psychiatric disorders in time 
(Sullivan, 2010).
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Polygenic Scores (PGS)

PGS leverage of our knowledge from GWAS into 
a single score that characterizes an individual’s 
polygenic (via common SNPs) liability for a trait 
of interest (Wray et  al., 2007). Notably, PGS have 
been widely referred to as a polygenic “risk” scores 
(PRS) in the broader literature (Anderson et al., 2019; 
Bogdan et al., 2018). The inclusion of the term “risk” 
is perhaps a misnomer because the traditional scoring 
approach does not differentiate true risk alleles (i.e., 
those that confer an increased liability to a trait in 
question) from unassociated variants (The International 
Schizophrenia Consortium, 2009). Furthermore, there is 
emerging evidence that PGS may also have promotive 
associations, particularly for those on the “low” end of 
the distribution (Krapohl et al., 2016; Li, 2019b; Plomin 
et al., 2009; Torkamani et al., 2018). We therefore prefer 
the more general term “polygenic score,” which is the 
nomenclature used throughout the review.

The traditional PGS approach takes an ensemble of 
genetic variants from a GWAS sample, referred to as the 
“discovery” population, and computes a weighted linear 
composite of these variants for individuals sampled from 
an independent “target” population (Anderson et al., 2019; 
The International Schizophrenia Consortium, 2009):

PGS = 
∑

i SNPij�j

where the PGS for individual i in a target population 
is the summation of the total number of alleles, j, for a 
SNP in individual i multiplied by the SNP’s effect size, 
β, taken from GWAS conducted on a separate discovery 
population. In PGS, the number of SNPs included in the 
computation is based on the p-value threshold (PT) set 
in the discovery GWAS. A more liberal threshold, e.g. 
PT = 1, captures much more of the genetic signal into the 
PGS computation, but also more unassociated variants as 
well. Conversely, setting a more conservative threshold, 
e.g. PT < 0.01, captures less of the genetic signal but 
also fewer unassociated variants that may contribute to a 
noisy signal (Dudbridge, 2013). Although most studies 
have used PT < 0.5 as a matter of convention (see example 
set by The International Schizophrenia Consortium, 
2009), a “best fit” PT can also be empirically derived 
by selecting the PT that explains the largest amount of 
variance in the phenotype as measured in the target 
population (Euesden, Lewis, & O’Reilly, 2016). There 
are, however, issues with model overfit (Benjamini et al., 
2001) and a lack of generalizability when using a PT that 
is optimally-predictive only for a particular phenotype in 
a particular target population.

Purcell and colleagues (2009) published the first 
major application of PGS in psychiatric genetics (The 
International Schizophrenia Consortium, 2009). Using 
a discovery GWAS on schizophrenia, which at the time 
consisted of 3,322 European proband individuals and 3,587 
controls, schizophrenia PGS (at GWAS PT < 0.5) explained 
approximately 3% of the variance in schizophrenia in a 
completely independent target sample, with larger effects 
at increasingly more liberal GWAS PT. Moreover, they 
replicated the schizophrenia PGS association in two 
European ancestry target samples, once again showing 
that schizophrenia PGS (at GWAS PT < 0.5) explained 
between 2.3 – 3.2% of the variance in schizophrenia. 
A systematic review identified 31 studies involving the 
use of schizophrenia PGS in relation to a broad set of 
outcomes (Mistry et al., 2018b). The authors noted that a 
meta-analysis was not conducted due to a lack of enough 
information provided by most PGS studies as well excessive 
variability in both the types of outcomes examined and 
discovery populations across each study. The same 
authors also conducted a review of studies on bipolar and 
major depressive disorder PGS, making similarly limited 
conclusions with respect to the state-of-the-field (Mistry 
et al., 2018a). Excessive outcome heterogeneity and the 
current lack of reporting standards in PGS studies of 
psychiatric disorders obfuscates our knowledge about the 
predictive utility of PGS for these outcomes, which has 
implications on future research in this area and its clinical 
applications.

The Current Study

Recent years have seen psychiatric genetics research 
developed rapidly, given the combination of publicly-
available GWAS summary statistics for psychiatric 
disorders, the relatively low cost of microarrays and 
genotyping (Visscher et al., 2017), and the availability of 
open-source software for GWAS and PGS computations 
(Euesden et al., 2016; Purcell et al., 2007). Despite the 
rapid emergence ADHD PGS studies, there has yet to be 
a systematic or meta-analytic review of this literature. This 
study provides the first meta-analysis of the ADHD PGS 
literature and provides recommendations for future PGS 
studies.

Due to the possibility of heterogeneity in the effect 
sizes of ADHD PGS across studies, we explored a number 
of potential moderators, including the GWAS discovery 
sample, publication year, sampling method of the target 
sample (i.e., population-based vs. case–control), informant 
type of the ADHD measurement (i.e., parent only vs. multi-
informant), and whether the ADHD outcome was measured 
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categorically or continuously. Because of the greater power 
afforded by larger GWAS discovery samples (Chatterjee 
et al., 2013), we hypothesized that more recently published 
and larger discovery samples (i.e., Demontis et al., 2019) 
would be associated with larger PGS effect sizes than older 
studies using smaller discovery samples (i.e., Cross-Disorder 
Group of the Psychiatric Genomics Consortium, 2013; Neale 
et al., 2010). We also hypothesized that studies that focused 
on clinical populations (i.e., case–control) would have 
larger effect sizes than studies that sampled from general 
populations, especially given prior research showing that 
psychiatric PGS are more predictive in clinical populations 
than non-clinical ones (Savage et al., 2018). With respect 
to the various measurement methods used to assess ADHD 
across studies (e.g., categorical vs. continuous, parent-only 
vs. multi-informant), we make no specific hypothesizes 
regarding genetic prediction estimates given that we are not 
aware of any prior studies that have considered analyzing 
the effects of measurement method on PGS effect sizes 
specifically.

Method

Eligibility Criteria

This review followed the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines (Moher et  al., 2009). Eligibility criteria for 
the meta-analysis were as follows: 1) published in a peer 
reviewed journal, 2) written in English, 3) used an ADHD 
GWAS discovery sample, 4) used an independent target 

population (i.e., target participants cannot overlap with those 
in the ADHD GWAS discovery sample), 5) derived ADHD 
PGS on said target population, and 6) examined associations 
between ADHD PGS and ADHD (broadly defined). In the 
final meta-analyzed sample, we also removed studies that 
featured the same target sample, but used an older (i.e., lesser 
powered) discovery GWAS sample. The decision to focus 
on phenotypic ADHD in the ADHD PGS meta-analysis was 
driven by 1) the larger number of studies having measured 
this phenotype relative to a non-ADHD phenotype, and 
2) the importance of establishing the construct validity of 
the ADHD PGS, which remains a crucial endeavor in the 
psychological sciences (Cronbach & Meehl, 1955). In order 
to facilitate comparisons between ADHD PGS studies as 
well as to reduce some of the heterogeneity that typifies 
this literature, we only included ADHD PGS studies that 
employed ADHD GWAS disseminated by the PGC: B. 
M. Neale et al. (2010), the Cross-Disorder Group of the 
Psychiatric Genomics Consortium (2013), and Demontis 
et al. (2019).

Search Procedure and Data Extraction

A flow chart of the meta-analysis procedure is presented in 
Supplemental Fig. 1. Data collection was conducted by Q.H. 
The review focused on all studies published from January 2010 
to January 2020. Potential studies were identified in PubMed 
and Google Scholar databases. Searches targeted studies with 
all possible variants of the term “ADHD” (e.g., “attention 
deficit disorder,” “attention,” “hyperactivity”) and variants of 
the term “polygenic score” (e.g., “polygen*”, “polygenic risk 
scores,” “profile scores,” “risk profile scores”). A full list of 
the search criteria employed in the current review are listed in 

Fig. 1  Forest plot of ADHDPGS effect sizes
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Supplemental Table 1. Study authors were contacted in cases 
where relevant information about a study was missing (e.g., 
sample demographics, association statistics, p-values, etc.).

Effect Sizes

To determine the overall effect size of the association between 
ADHD PGS on phenotypic ADHD, Pearson’s r effect sizes 
were computed for each study (using the “esc” package in R), 
thus allowing us to combine studies that used a case–control 
design (i.e., logistic regression) with population-based 
cohorts (i.e., linear regression or correlations). We used 
analyzed (rather than total) sample sizes in the effect size 
computation. Some studies reported odds ratios (OR’s) or 
standardized betas (β’s) for multiple ADHD phenotypes (e.g., 
parent versus teacher report, questionnaire versus interview) 
and at multiple GWAS PT. Rather than including each of 
these effect sizes into the meta-analysis, we instead included 
only the strongest reported association of the ADHD PGS 
on ADHD for each study. We assumed that these estimates 
would be more consistent with the effects reported in studies 
that did not test multiple ADHD PGS associations at multiple 
thresholds and phenotypes.

Analyses

All analyses were performed in R, Version 3.6.2. The meta-
analysis was performed in the R packages “meta”, “dmetar”, 
and “metafor”. We reported both fixed- and random-effects 
models to the estimate the pooled effect size across ADHD 
PGS studies (Borenstein et  al., 2010). Between-study 
heterogeneity was estimated using Cochran’s Q test, which 
measures the weighted and summed difference between the 
observed effect sizes and the pooled effect, and Higgin’s 
and Thompson’s I2, which assesses the percentage of 
variability in effect sizes not due to sampling error (Higgins 
& Thompson, 2002). High heterogeneity may be suggestive 
of excessive study differences, which can complicate 
interpretations of the meta-analytic pooled effect size 
(Higgins & Thompson, 2002). For potential moderators, we 
also explored whether 1) the effects of the GWAS discovery 
sample that was used, 2) the publication year, 3) the 
sampling strategy of the target sample (i.e., case–control or 
population-based), 4) the primary method of measurement 
(i.e., parent report only vs. multi-informant), and 5) ADHD 
was measured categorically or continuously, moderated 
the association of ADHD PGS and phenotypic ADHD 
effect sizes via meta-regression. Finally, we evaluated the 
possibility of publication bias in two ways: the Egger’s test 
of the intercept (Egger et al., 1997), which tests asymmetry 
in the effect size estimates relative to sample sizes, and 
p-curve analysis (Simonsohn et al., 2014), which plots the 
distribution of the p-values across studies and estimates the 

true meta-analytic effect size after accounting for possible 
“p-hacking.”

Results

Summary of ADHD PGS Studies

There were 18 studies that met our criteria for the meta-
analysis, although only 12 effect sizes were ultimately 
included in the meta-analysis, yielding a pooled 
N = 40,088 (see Fig. 1). Three of the 18 studies (Albaugh 
et al., 2019; Benca et al., 2017; Hawi et al., 2018) did not 
report the information needed to compute effect sizes and 
could not be included in the meta-analysis. We also identified 
several studies that published on the same target samples: 
Child and Adolescent Twin Study in Sweden (CATSS) 
(Brikell et  al., 2018; Taylor et  al., 2019), Generation R 
(Alemany et al., 2019; P. R. Jansen et al., 2018), the Avon 
Longitudinal Study of Parents and Children (ALSPAC) 
(Riglin et  al., 2016; Stergiakouli et  al., 2017), and a 
community case–control (Nigg et al., 2018, 2019). To avoid 
sample overlap in our effect sizes, we included the study 
among each pair that either featured the most recent GWAS 
discovery sample (Generation R: Alemany et  al., 2019; 
ALSPAC: Stergiakouli et al., 2017), the study that used that 
utilized a larger portion of the target sample (CATTS: Taylor 
et al., 2019; ALSPAC: Stergiakouli et al., 2017) or the study 
most recently published (Nigg et al., 2019). Table 1 provides 
an abbreviated summary of the 12 effect sizes included in the 
meta-analysis; more detailed characteristics of each study can 
be found in Supplemental Table 1.

We highlight several characteristics of the studies 
included in our meta-analysis (Table 1). The most used 
GWAS PT was PT < 0.50. ADHD was measured across 
studies in a variety of ways, including parent-rated 
questionnaires (e.g., Child Behavior Checklist, CBCL; 
Strengths and Difficulty Questionnaire, SDQ), semi or 
fully-structured clinical interview (e.g., Kiddie Schedule 
for Affective Disorders and Schizophrenia; K-SADS, 
Diagnostic Interview Schedule for Children; DISC) or a 
combination of both methods. Seven studies included in 
the meta-analysis used population-based target samples 
where ADHD was measured continuously (e.g., symptom 
counts or latent factors), except for Li (2019a, b). All 
studies included in the meta-analysis accounted for 
age, child sex, and population stratification effects via 
genetic principal components (PCs) as covariates in their 
association analyses. However, not all studies included the 
same number of genetic PCs (see Supplemental Table 3 for 
additional details about each study). All studies consisted 
of target populations that were predominantly or entirely of 
Western European descent.
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Meta‑analysis, Heterogeneity, and Moderation 
Analysis

In the random-effects model, the pooled effect size of 
the ADHD PGS was rrandom = 0.201, 95% CI = [0.144, 
0.288], p < 0.001 (r2

random = 0.040) (see Fig.  1). In the 
fixed-effects model, the pooled effect size of the ADHD 
PGS was rfixed = 0.190, 95% CI = [0.180, 0.199], p < 0.001 
(r2

fixed = 0.036). However, there was evidence of excessive 
heterogeneity, Cochran’s Q = 360.40, df = 11, p < 0.001; 
I2 = 96.9%, 95% CI = [95.9—97.8%]. A multiple meta-
regression analysis showed significant associations of 
sampling [i.e., population-based (0) vs case–control (1)] 
of the target sample, B = 0.128, se = 0.050, p = 0.015, 
95% CI = [0.030, 0.225] and the use of continuous (1) vs. 
categorical (2) measures of ADHD, B = 0.115, se = 0.051, 
p = 0.025, 95% CI = [0.014, 0.216] on the effect sizes of 
the PGS across studies. That is, studies with target samples 
that featured cases and controls (n = 5 studies) and used 
categorical measures of ADHD (n = 5 studies) reported 
greater effect sizes than studies that used population-
based (n = 7 studies) sampling methods and continuous 
measures of ADHD (n = 7 studies). There was no significant 
association of the discovery sample, B = 0.057, se = 0.075, 
p = 0.446, 95% CI = [.-0.090, 0.205], publication year, 
B = 0.001, se = 0.027, p = 0.960, 95% CI = [-0.052, 0.054], 
and informant type, B = -0.048, se = 0.060, p = 0.426, 95% 
CI = [-0.166, 0.070] on the effect sizes. Notably, only 3 of 
the 12 studies in our meta-analysis used a non-Demontis 
et al. (2019) GWAS discovery sample, and only 2 studies of 
the 12 studies used a multi-informant measurement method 
as opposed to a parent-only method. Thus, one reason why 
we may not have detected any moderating effects of the 
discovery sample or informant method is due to the relative 
lack of variability in these variables. Overall, 73.7% of the 
heterogeneity of the effect sizes was accounted for by the 
five moderators we tested.

Publication Bias

The Egger’s test for effect size asymmetry showed a non-
significant deviation from the Y = 0 intercept (B = -0.580, 
95% CI = [-8.028, 6.868], p = 0.883) and no clear evidence 
of publication bias. We then performed a p-curve analysis, 
a tool that corrects for inflated effect sizes that publication 
bias produces. For any given sample size, the bigger the 
“true” effect, the more right-skewed the expected p-curve 
(Simonsohn et  al., 2014). If a “true” effect exists, one 
expects lower significant p-values than higher significant 
p-values. Figure 2 shows the results of the p-curve analysis 
of the 12 meta-analyzed effect sizes. The p-curve analysis 
indicated that at 99% power, 92% of the p-values are < 0.01. 

In fact, all 12 of the studies had a p-values lower than 0.025, 
reflecting a significant right-skewedness of the p-curve 
(p < 0.0001). Collectively, results from Egger’s test and 
p-curve analysis suggest no strong evidence of publication 
bias or “p-hacking” in the meta-analysis.

Discussion

To our knowledge, this is the first meta-analysis of ADHD 
PGS studies. The meta-analysis included 12 unique effect 
sizes spanning population-based and case–control target 
samples (albeit, predominantly of European ancestry) with 
a pooled N = 40,008. Overall, ADHD PGS were consistently 
and significantly associated with phenotypic ADHD across 
studies. ADHD PGS accounted for between 3.6% (in the 
fixed effects model) to 4.0% (in the random effects model) 
of the variance in broadly defined phenotypic ADHD. This 
prediction estimate is in line with PGS estimates observed 
for other psychiatric disorders with similarly large GWAS 
samples, including schizophrenia (Mistry et al., 2018b), 
bipolar disorder (Mistry et al., 2018a; Stahl et al., 2019), 
and autism spectrum disorder (Grove et al., 2019). This 
estimate reflects the tremendous progress being made in 
psychiatric genetics, especially when considering that just 
over a decade ago the dominant methodology for directly 
quantifying genetic risk for complex traits like ADHD was 
via candidate genes, an approach that not only failed to 
capture much of the variation in ADHD, but also required 
us to suspend our long-held belief that most complex traits 
are driven by polygenic, rather than monogenic, influences 
(Lander & Schork, 1994). As we enter the post-GWAS era, 
our findings provide important insights into the state-of-the-
science in the genetics of ADHD and lay a foundation for 
future directions in this field.

Results indicate that ADHD PGS reliably predict ADHD 
symptoms and diagnosis across different samples, with 
every study reporting a statistically significant effect size. 
However, there was excessive heterogeneity as we observed 
a wide range of reported effect sizes. For instance, ADHD 
PGS effect sizes were r = 0.062 (r2 = 0.004) on the lowest 
end (Stojanovski et al., 2019) and r = 0.490 (r2 = 0.240) 
on the highest end (Jansen et al., 2019). Stojanovski et al. 
(2019) may have been relatively underpowered given that 
they conducted their association analyses on subsamples 
of individuals with and without traumatic brain injuries 
in the Philadelphia Neurodevelopmental Cohort (PNC), a 
population-based dataset children, adolescents and young 
adults from the United States. In contrast, Jansen et al.’s 
(2019) target sample was ascertained from a psychiatric 
outpatient hospital in the Netherlands that oversampled 
for children with ADHD (controls were recruited from 
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the general population). In fact, studies with the largest 
effect sizes in our meta-analysis were typically outpatient 
or case–control populations that oversampled or focused 
on individuals with ADHD and related disorders (Jansen 
et al., 2019; Nigg et al., 2019; Vuijk et al., 2019). The GWAS 
cohorts in the discovery sample were largely recruited from 
clinical populations themselves, potentially making them a 
better ‘match’ to other case–control studies (Savage et al., 
2018).

Qualitative differences between the discovery sample 
and target populations might have contributed to stronger 
predictive performance of ADHD PGS in clinical or 
case–control samples relative to population-based samples. 
The classic liability threshold model (Gottesman & Shields, 
1967) provides a plausible theory for why matching the 
composition of the discovery and target samples in PGS 
studies may be crucial for optimizing the PGS signal. 
Clinical populations may thus reflect a different genetic 
liability distribution than those in the general population, 
as individuals from clinical populations also typically 
present with more severe psychopathology and additional 
comorbidities (Savage et  al., 2018). Thus, sampling 

from a clinical population in the ADHD GWAS may 
have attenuated the ADHD PGS predictive effect in the 
general population (Supplemental Fig. 2), where a higher 
PGS would be required to meet the liability threshold in 
a general population than a clinical population. Existing 
GWAS discovery samples for ADHD seem optimized for 
studies where the target population is also a case–control 
sample and/or a clinical population, and possibly less so for 
samples featuring a general population. We note, however, 
that there may be other differences besides sampling type 
that could contribute to differences in the PGS distribution 
(e.g., age of the sample, informants that were used to 
phenotype, ancestry, etc.). Future studies should examine 
these effects by comparing the performance of PGS based 
on various discovery samples as they pertain to different 
target populations. Furthermore, the excessive study 
heterogeneity could also be partly due to the different 
GWAS PT used across studies, although most studies used 
PT < 0.50. We already discussed the problem with this 
convention, including issues with model overfit (Benjamini 
et al., 2001) and a lack of generalizability when using a 
standard PT across studies and populations. As it stands, 

Fig. 2  p-curve analysis of publi-
cation bias and p-hacking Note. 
The p-curve reflects the distri-
bution of p-values as a function 
of the “true” underlying effect. 
For any given sample size, the 
bigger the effect, the more right-
skewed the expected p-curve 
becomes (Simonsohn et al., 
2014). If a “true” effect exists, 
one expects lower significant 
p-values than higher significant 
p-values. The observed p-curve 
indicates that at 99% power, 
all 12 statistically significant 
results (100%) had p < 0.025
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there is currently no established, universal, or agreed upon 
GWAS PT with which to specify in deriving a PGS. Few, 
if any psychiatric PGS studies have employed a separate 
discovery population, independent from the GWAS, to select 
an optimal PT for the target population. At the same time, 
selecting an optimal GWAS PT this way limits the validity 
and reliability of PGS as predictors since it means that a 
different GWAS PT will have to be used each time a different 
sample is analyzed. We recommend future studies consider 
reporting PGS effects sizes using a GWAS PT of 1.0, which 
incorporates all available genotypic information without the 
need for model selection. While it is highly unlikely that all 
genes contribute to the various outcomes, the computation 
of the PGS accordingly downweighs trivial variants based 
its small (or null) GWAS effect size.

Limitations of the Meta‑analysis

Some limitations of the meta-analysis should be noted. 
First, we focused our review on studies that exclusively 
used ADHD GWAS summary statistics that were publicly 
available via the PGC, rather than studies that used GWAS 
summary statistics from smaller/local samples. This decision 
was motivated by our desire to enhance the comparability 
across ADHD PGS studies and to subsequently perform a 
meta-analysis of these studies. However, we have already 
noted that the small overall effect size of the ADHD PGS 
across studies may have been due to the discrepancy between 
the ADHD discovery sample (i.e., case–control samples) and 
the target samples (predominantly population-based). Meta-
analyzed GWAS of population-based samples for ADHD 

Table 1  Abbreviated summary of ADHD PGS studies included in meta-analysis

Additional information about the ADHD PGS studies are available in Supplemental Table 1
*Decimal values shown here reflect the number of the decimals that were reported in the original article

Author and year Discovery GWAS Target sample Analytic N Target ages Strongest reported 
effect size

S.E. or C.I p*

Groen-Blokuis 
et al., 2014

Cross Disorder PGC 
(2013)

Young Netherlands 
Twin Register

1612 7–13 β =0 .08 S.E. =0 .03 0.0067

Martin et al., 2015 Neale (2010) "UK-based" cases 
and controls

4670 6–17 OR = 1.15 95% CI = 1.04–
1.27

0.009

Stergiakouli et al., 
2017

Cross Disorder 
(2013)

Avon Longitudinal 
Study of Parents 
and Children 
(ALSPAC)

4164 7–17 β =0 .07 S.E. = .03 0.0043

Stojanovski et al., 
2019

Demontis (2019)—
Caucasian Only

Philadelphia Neu-
rodevelopmental 
Cohort (PNC), 
No-TBI subgroup

1233 8–21 T = 3.5, df = 1224 Not reported 0.004

Nigg et al., 2019 Demontis (2019)—
Caucasian Only

Community case–
control

514 7–11 OR = 1.43; 
r2 = 0.033

CI = 1.17–1.75 0.0004

Sudre et al., 2020 Demontis (2019) Community case–
control

489  > 3 β = 0.11 s.e. = .046 0.02

Jansen et al., 2019 Demontis (2019) Community case–
control

280 3–18 β = 0.49; 
OR = 1.625; 
r2 = 0.045

Not reported 4.7E-08

Alemany et al., 
2019

Demontis (2019) Generation R 1053 8–11 β = 0.120 s.e. = .000  <0 .0001

Li et al., 2019 Demontis (2019) National Longi-
tudinal Study of 
Adolescent to 
Adult Health (Add 
Health)

7088  < 12 OR = 1.22 CI = 1.10–1.36  < 0.001

Taylor et al., 2019 Demontis (2019) Child and Ado-
lescent Twin 
Study in Sweden 
(CATSS)

13,412 9–12 β = 0.268 s.e. = .029  < 0.0001

Vuijk et al., in press Demontis (2019) Community clinical 
sample

433 7–18 OR = 1.44, 
r2 = 0.020

CI = 1.14–1.81 0.0011

Vuijk et al., in press Demontis (2019) Hospital biobank 5140 19–60 OR = 1.21, 
r2 = 0.004

CI = 1.07–1.37 0.0028
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(e.g., UK Biobank, 23andMe) thus offer a compelling 
direction for a future GWAS in this area. Second, we noted 
that some studies reported multiple ADHD outcomes at 
multiple PT, thus providing multiple effect sizes with which 
to include in our meta-analysis. We mentioned that we 
selected the most significant effect size that was reported 
in each study, in part because we assumed that studies that 
did not report multiple effect sizes likely also just reported 
what was most robust. Thus, the pooled effect size reported 
in this meta-analysis is likely more liberal of an estimate 
than if we had only included the least significant effect 
sizes across studies. Third, nearly every study in our meta-
analysis (as well as the GWAS discovery cohorts) consisted 
of individuals of predominantly (Western) European 
ancestries. PGS are known to be imprecise in non-European 
populations because these populations are underrepresented 
in GWAS discovery samples (Martin et al., 2019). Although 
well-powered transancestral GWAS studies of psychiatric 
outcomes have just recently emerged (Bigdeli et al., 2017; 
Walters et al., 2018), the lack of racial diversity is concerning 
and has the potential for exacerbating health disparities if 
and when genomic information becomes widely used for 
clinical applications (Martin et al., 2019). Fourth, all studies 
in our meta-analysis assumed an underlying linearity with 
respect to the PGS. This ignores the possibility of non-linear 
or non-additive allelic effects in the PGS computation, 
which is problematic when considering that not all genes 
have the same mode of inheritance. Additionally, emerging 
studies have shown that polygenic risks may not be linearly 
associated with psychiatric risks, especially at the upper end 
of the PGS distribution (Khera et al., 2018; Li, 2019b).

Future Directions

Accounting for comorbidity There is shared genetic 
variation between most of the major disorders in the 
DSM (Cross-Disorder Group of the Psychiatric Genomics 
Consortium, 2013). Psychiatric comorbidity complicates the 
interpretation of PGS for a single disorder because these 
scores likely contain a mixture of pleiotropic variants and 
variants that are unique to the disorder. It is important to 
disambiguate the genetic signals that are shared from those 
that are specific to discrete disorders in order to enhance 
the prediction accuracy of trait-specific PGS. In the absence 
of accounting for this phenomenon, it is unsurprising 
that psychiatric GWAS, and by extension, PGS studies 
informed by these GWAS, have yet to yield any high impact 
discoveries and large effect sizes, respectively.

Most well-powered psychiatric GWAS do not allow for 
the direct identification of higher-order or pleiotropic SNP 
effects because they typically employ case–control samples, 
where cases are recruited and measured on the presence of 

a single (or a few related) disorder of interest. Genomic 
Structural Equation Modeling (GSEM) was developed as 
a way to identify the variants that affect cross-trait liability 
(i.e., influencing a general factor) and trait-specific liability 
leveraging only the GWAS summary statistics for these 
phenotypes (Grotzinger et  al., 2019). One of the more 
promising applications of GSEM is in PGS. The proof of this 
concept was demonstrated by modeling a general factor PGS 
from GWAS summary statistics of schizophrenia and major 
depressive disorder in GSEM (Grotzinger et al., 2019). The 
general factor PGS was more predictive of the phenotypic 
general factor, psychotic experiences, depression, mania, 
anxiety and post-traumatic stress disorder in the completely 
independent UK Biobank dataset than any univariate version 
of the PGS (Grotzinger et al., 2019). Their findings not only 
show what a substantial effect that the general factor has on 
any single psychiatric outcome, but also potential gains in 
prediction accuracy and specificity when we control for the 
general factor disorder specific PGS studies.

Integrating bioinformatics into PGS computations A 
common criticism of PGS is that the presence of a statistical 
association does not necessarily reveal information about the 
biological mechanisms underlying the trait (Schaub et al., 
2012; Subramanian et al., 2005). While gene expression 
panels such as the Encyclopedia of DNA Elements (The 
ENCODE Project Consortium, 2011) and the Epigenomics 
Roadmap Project (Roadmap Epigenomics Consortium 
et  al., 2015) have generated a wealth of data on the 
linkages between genetic variation and gene function, their 
applications for PGS have yet to fully develop and take 
hold in the field. Software are available to functionally 
annotate GWAS summary statistics from gene expression 
panels like ENCODE and the Roadmap Project (e.g., 
DAVID; Dennis et al., 2003; GenoSkyline; Lu et al., 2016). 
These approaches integrate bioinformatics with GWAS to 
partition the SNP heritability by how strongly enriched 
the genetic signals are in human cells and tissues. Using 
GenoSkyline, which corrects for multiple testing and linkage 
disequilibrium (LD), genes for ADHD have been shown 
to be significantly overrepresented in the anterior caudate 
of the brain, although enrichment in other brain regions 
were also implicated to a lesser degree (Supplemental 
Fig. 3). Another gene expression assay for ADHD GWAS 
(which did not control for multiple testing or LD) detected 
gene enrichment across a broader range of brain regions, 
including the anterior cingulate gyrus (ACC), the anterior 
caudate, and the dorsolateral prefrontal cortex (DLPFC) 
(Demontis et al., 2019). These structures collectively play 
a crucial role in human reward processing and decision-
making (Volkow et al., 2011). Thus, in the case of ADHD, 
functional annotations of the GWAS confirmed the regions 
of the brain that we had long suspected in its etiology (Li, 
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2018; Luman et al., 2005), but they also provide us with 
clues as to which brain regions are more relevant to ADHD 
than others.

Once GWAS summaries have been mapped onto gene 
expression panels, the resultant information can then be 
directly leveraged into PGS computations, where SNPs 
that are overrepresented in functionally annotated sites can 
be prioritized and weighted in the PGS computation. This 
contrasts with the traditional approach to computing PGS 
that prioritize SNPs based solely on statistical significance. 
PGS using highly enriched GWAS signals via AnnoPred 
significantly outperformed prediction estimates from a 
traditional PGS approach in predicting several complex 
phenotypes, including Crohn’s disease, breast cancer, 
rheumatoid arthritis, Type-II diabetes, and celiac disease 
(Hu et al., 2017). We are not aware of any applications of this 
approach in psychiatric genetics at this time but integrating 
bioinformatics into PGS computations can promisingly 
lead to new hypotheses or provide evidence in support of 
existing hypotheses with respect to the biological processes 
underlying many complex traits.

Testing mechanistic theories of psychiatric outcomes PGS 
can also be leveraged to validate psychological constructs 
or to test new or existing models of heritable psychiatric 
disorders. One empirical framework is the Polygenic-
Phenotypic Mediation Model (PPMM) (Li, 2019a; Li 
et al., 2019), which involves comparing two mediational 
models of a given trait B: 1) a phenotypic model, in which 
the independent variable for trait A is measured using 
traditional psychological methods, such as self-report or a 
behavioral paradigm, and 2) a polygenic model, in which 
the independent variable is characterized by a PGS of trait 
A. Both models are tested in relation to another trait B, 
where concordance between the phenotypic and polygenic 
mediation models provides robust validation of a mechanism 
involved in trait B and robust evidence of a genetic 
relationship between the two traits (Supplemental Fig. 4). 
The strength of PPMM is that the two models complement 
each other by addressing their respective limitations. 
Polygenic models, which are derived mechanically from 
completely independent GWAS datasets, are impervious 
to many of the methodological confounds that typify 
a traditional phenotypic model (i.e., common method 
variance, self-reporter bias). Phenotypic models on the 
other hand, address limitations of the polygenic model by 
virtue of providing construct validity of the PGS, whereby 
the genetic associations between the two traits also reflect 
observed associations as well. Furthermore, temporally 
separating measures of traits A and B allow researchers to 
test even more robust models of causality, particularly in 
cases where specific mechanisms are theorized to intervene 
in these pathways.

PPMM was first illustrated in the context of ADHD in 
examining that causal pathways of psychosocial risk from 
early childhood ADHD to later antisocial behaviors in 
adulthood (Li, 2019a). Using the PPMM framework, results 
of the study revealed that children with ADHD exhibited 
greater difficulties in school, which in turn predicted 
their antisocial development during adulthood even after 
accounting for the simultaneous effects of supportive 
parenting and peer effects during adolescence. Importantly, 
this indirect effect was completely replicated in the 
polygenic model of ADHD. Another study using the same 
PPMM framework showed that phenotypic and polygenic 
models of neuroticism indirectly predict late life depression 
via mid-life stressful life events and low social support in the 
Wisconsin Longitudinal Study (Li et al., 2019). Collectively, 
these studies show how PPMM could be used to validate 
theories about the psychosocial mechanisms involved in 
complex psychiatric development.

The two study examples focused on psychosocial factors 
as mechanisms rather than as moderators of genetic liability. 
This represents a significant departure from convention in 
the gene-environment literature. In fact, gene-environment 
correlation effects are quite pervasive in the psychopathology 
literature and are likely to explain why gene-environment 
interactions are so difficult to detect and replicate (Knafo 
& Jaffee, 2013). Furthermore, PPMM can be used to test 
more proximal mechanisms of genetic liability, including 
neurobiological or cognitive endophenotypes (Gottesman 
& Gould, 2003). One of the studies included in the meta-
analysis (Nigg et al., 2018) showed that ADHD PGS was 
indirectly associated with phenotypic ADHD via working 
memory and arousal/alertness. New paradigms such as 
PPMM can be used to incorporate measures at multiple 
levels of analysis, including those rigorously assayed in 
the laboratory, to shed new light on biological as well as 
psychosocial mechanisms of risk for ADHD and other 
psychiatric outcomes (Hinshaw, 2018).

Conclusion

The rapid rise in PGS studies published in just the last 
half decade reflects the multidisciplinary enthusiasm 
the approach has garnered, from scientists who view 
PGS as a new model for explaining the genetic variation 
underlying complex traits (Wray et al., 2014), to those 
who view PGS as a tool for clinical prediction and 
diagnosis (Anderson et al., 2019; Martin et al., 2019; 
Torkamani et  al., 2018). Prediction estimates from 
ADHD PGS should become even more robust as our 
GWAS sample sizes increase (Chatterjee et al., 2016). 
For instance, the increase from just a few thousand (B. 
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M. Neale et al., 2010) to several tens of thousands of 
ADHD cases and controls (Demontis et  al., 2019) in 
GWAS have only just enabled the detection of genome-
wide significant findings for ADHD. We note that 
simulations of genetic data indicate that increases in the 
proportion of phenotypic variance explained by PGS in 
several complex traits is non-linearly associated with 
the GWAS sample size (Chatterjee et al., 2013). Greater 
prediction accuracy depends on the heritability of the 
trait as well, where more heritable traits (e.g., height) 
require fewer samples to achieve the same gains in 
prediction accuracy than less heritable and presumably 
more complex traits. PGS are projected to be a major part 
of precision medicine moving forward as our technology 
improves and the science becomes more refined.

At the same time, it is also important to mitigate any 
unbridled enthusiasm around this conceivably not-too-
distant future where our genes are used to predict our 
health and behavior. The current lack of diversity in GWAS 
studies of ADHD crucially limits the utility of ADHD 
PGS to those with Western European-ancestries. Unless 
substantially greater efforts are made to collect genetic 
samples from a broader range (i.e., non-Western European 
descent) of populations, PGS studies will only continue to 
be disproportionately focused on Western European-descent 
populations (Martin et  al., 2019). Furthermore, history 
has been fraught with infamous examples of the social 
consequences that stemmed from strong beliefs about genetic 
determinism (Epstein, 2003; Galton, 1904). Prominent 
experts have already warned about the potential invasions 
of privacy and cavalier presentations of genetic information 
that direct-to-consumer genetic testing companies have 
introduced to mass audiences (Zettler et  al., 2014). As 
psychiatric genetics continues to rise, we must be careful 
not to also perpetuate the old and dangerous stereotype that 
our destiny is in our genes. Despite the valuable information 
they provide about us, genes alone do not determine who 
we become.
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