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Abstract
We define a second (higher) homotopy group for digital images. Namely, we construct
a functor from digital images to abelian groups, which closely resembles the ordinary
second homotopy group from algebraic topology. We illustrate that our approach can
be effective by computing this (digital) second homotopy group for a digital 2-sphere.
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1 Introduction

Digital topology refers to the use of notions and methods from (algebraic) topology to
study digital images. A digital image in our sense is an idealization of an actual digital
image which consists of pixels in the plane, or higher-dimensional analogues of such.
Specifically, a digital image is a subset of Zn together with some chosen “adjacency
relation” induced by the integer lattice. The aim of digital topology is to provide useful
theoretical background for certain steps of image processing, such as contour filling,
border and boundary following, thinning, and feature extraction or recognition (e.g.,
see p.273 of [12]). There is an extensive literature on digital topology (see, e.g., [4, 9,
12, 18] and the references therein).

A number of authors have studied the fundamental group in the setting of digital
topology (see [4, 11, 14, 16] for a sample). In this paper, we begin a development
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of higher homotopy groups in the digital topology setting, essentially extending the
approach of [14, 16] to an initial study of the second homotopy group of a digital
image. In subsequent work, we hope to continue the development begun here into a
fuller treatment of higher homotopy groups of digital images. These notions do appear
in the digital topology literature [17, 20], but these earlier treatments differ from ours,
as we describe in Remark 4.4. Higher homotopy groups have also been developed in
a graph-theoretic setting that is very closely related to the setting in which we work
(see [2, 5, 6] for a sample of work in this area). Our emphasis on the operations
of trivial extension and subdivision of maps between digital images separates our
work from this graph-theoretic work because these operations rely on specifics of the
orthogonal integer lattice and do not naturally generalize to arbitrary graphs. Also,
our present treatment is more computational: the second half of the paper focuses on
a very hands-on calculation of a non-trivial second homotopy group.

The paper is organized as follows. In Sect. 2, we give basic definitions and define the
fundamental notion of extension homotopy. In Sect. 3,we discuss amore general notion
of column- or row-doubling, and subdivision of a map on a digital image. In Sect. 4,
we define the second homotopy group π2(X , x0), show that it is an abelian group
(Thm. 4.3 and Thm. 4.8), and establish some basic properties such as independence of
basepoint (Prop. 4.5) and functoriality (Prop. 4.6). We take the general development
far enough to establish behavior with respect to products (Thm. 4.9).

The remainder of the paper is devoted to a calculation of the second homotopy group
of a digital 2-sphere. Perhaps unsurprisingly, we find that this group is isomorphic toZ.
But theway inwhichwe calculate this to be so involves some interesting combinatorial
ingredients. Notably, in Sect. 5 we develop a triangle-counting function for a map of
the kind that represents an element of the homotopy group. This may be conceived
of as the degree of such a map, and it may be determined directly from the map in a
very transparent way. We complete the calculation of the second homotopy group of
a digital 2-sphere in Sect. 6. A short Sect. 7 ends the paper with some suggestions for
future work.

2 Homotopy, trivial extension, and extension-homotopy

Definition 2.1 A digital image X ⊂ Z
n is a finite subset of the integer lattice, together

with a chosen reflexive adjacency relation denoted ∼.
Typical choices of the adjacency relation are the various adjacencies denoted ci for

i ∈ {1, . . . , n}, in which x ∼ y when the coordinates of x and y differ by at most 1 in
at most i positions, and are equal in all other positions. These ci adjacencies follow
the lattice structure of Zn , with different interpretations of diagonal adjacencies. The
c1 relation includes no diagonally adjacent points, while the cn adjacency counts any
diagonal points as adjacent. In Z

2, the c1 adjacency is referred to as “4-adjacency,”
because each point is adjacent to 4 points other than itself, while the c2 adjacency is
referred to as “8-adjacency.”

In the digital topology literature, the adjacency relation is often taken to be antire-
flexive, so that a point is not adjacent to itself. In our case, though, we follow [14, 16]
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and require our relation to be reflexive, which simplifies some definitions and clarifies
the connections to related work in graph theory.

Let In = {0, . . . , n} be the digital interval, considered with the usual adjacency in
which a ∼ b if and only if |a − b| ≤ 1.

For a real interval [n,m], define [n,m]Z = [n,m]∩Z, so that In = [0, n]Z. We will
also consider products of the form Im,n = Im × In , which we refer to as rectangles.
For a rectangle Im,n , let ∂ Im,n be the boundary, defined by:

∂ Im,n = ({0,m} × In) ∪ (Im × {0, n}).

For products of digital images, we always use the categorical product adjacency.
That is, if x, x ′ ∈ X and y, y′ ∈ Y , then (x, y) ∼ (x ′, y′) ∈ X × Y if and only if
x ∼ x ′ and y ∼ y′. In the case of Im,n ⊂ Z

2, we have (a, b) ∼ (a′, b′) if and only
if |a − a′| ≤ 1 and |b − b′| ≤ 1. This choice of product essentially dictates that we
always use the c2 adjacency (or 8-adjacency) on the rectangle Im,n .

Definition 2.2 For two digital images X ,Y , a function f : X → Y is (digitally)
continuous when x ∼ x ′ implies f (x) ∼ f (x ′) for all x, x ′ ∈ X .

It is easy to see that the composition of two continuous functions is continuous.

There is a natural interpretation of this setup in the context of graph theory, and
in fact a body of very similar work has developed in graph theory, independent from
and until recently unknown to the digital topology community. Notably the areas of
A-theory (see [1–3]) and ×-homotopy theory (see [5–7]). From the graph theoretic
point of view, any digital image X may be regarded as an induced (reflexive) subgraph
of the integer lattice Zn . Then a digitally continuous function f : X → Y is simply a
graph homomorphism, provided that we represent X and Y as reflexive graphs (that
is, we must have a looped edge at every vertex in the graph). These looped edges
must be present in the codomain to allow the map f to collapse an edge to a vertex
and yet to map edges to edges. For example, if a ∼ b ∈ X with a 
= b ∈ X and
f (a) = f (b) = c, then there must be a looped edge at c in order for f to carry the
edge (a, b) to an edge in Y . These connections with graph theory have often been
left implicit in the digital topology literature, but some authors have emphasized the
graph-theoretic aspects of their work. See [13] for a recent example.

In abstract terms, the category of digital images and digitally continuous functions
is the same as the category of reflexive graphs and graph homomorphisms. Thus in
many cases, the constructions used in A-theory and ×-homotopy theory of, e.g., [2, 5,
6] are the same as the constructions in the digital topology literature, which developed
independently.

The differences between A-theory and ×-homotopy theory and the digital theory
arise in different choices made in the definition of homotopy:

Definition 2.3 Two continuous maps f , g : X → Y are (digitally) homotopic if there
is some k with a continuous map H : X × Ik → Y with H(x, 0) = f (x) and
H(x, k) = g(x) for all x . In this case we write f � g.

123



Journal of Algebraic Combinatorics

This notion of homotopy gives an equivalence relation on the set of all maps X →
Y (see Lemma 3.16 of [15], for example). The choice of product in the definition
of homotopy has an important effect on developments. As noted above, we use the
categorical product, which leads to the homotopy notion typically featured in the ×-
homotopy theory of [6]. The development in A-theory [2] has traditionally used the
“box product,” in which (x, t) ∼ (y, s) if and only if either x ∼ y and t = s, or x = y
and t ∼ s, which leads to a weaker notion of homotopy often referred to as the box
homotopy.

The digital topology literature following Boxer [4] has typically used the word
“homotopy” to indicate the box homotopy, though some papers have explored the
categorical product homotopy: it is called “strong homotopy” in [19]. The present
paper follows the terminology used in [14, 16], with the relation of Definition 2.3
simply called “homotopy.”

If k = 1 in Definition 2.3, then we refer to the homotopy as a one-step homotopy.
That is, a one-step homotopy between maps f , g : X → Y is a continuous map
H : X × I1 → Y with H(x, 0) = f (x) and H(x, 1) = g(x). In this case, we say that
f and g are one-step homotopic. There is a simple criterion for maps to be one-step
homotopic:

Lemma 2.4 [19, Theorem 2.4] Suppose continuous maps f , g : X → Y satisfy
f (x) ∼ g(x ′) in Y whenever x ∼ x ′ in X. Then f and g are one-step homo-
topic. Indeed, the homotopy H : X × I1 → Y defined by H(x, 0) = f (x) and
H(x, 1) = g(x) is a one-step homotopy from f to g.

Proof We need to confirm continuity of H . That is, we require H(x, t) ∼ H(x ′, t ′) in
Y whenever we have (x, t) ∼ (x ′, t ′) in X× I1 (recall that we are using the categorical
product for adjacencies in X × I1). If t ′ = t ∈ I1, then the adjacencies in Y follow
from continuity of f or g. If t ′ 
= t ∈ I1, then the hypothesis provides the required
adjacencies.

In fact, the hypothesis on f and g in Lemma 2.4 gives a characterization of when
maps f and g are one-step homotopic, but we will not need the converse here. We
will make repeated use of the following simple kind of a one-step homotopy.

Lemma 2.5 Let f : X → Y be a continuous map of digital images, with f (a) = b at
some particular a ∈ X. Suppose b′ ∈ Y is adjacent to b and also adjacent to f (a′)
for every a′ ∈ X adjacent to a. Define a map

g(x) =
{
f (x) x 
= a

b′ x = a

Then, g is continuous and one-step homotopic to f via the one-step homotopy H : X×
I1 → Y with H(x, 0) = f (x) and H(x, 1) = g(x).

Proof Continuity of g follows because (continuous) f and g agree apart from at a ∈ X ,
where we have g(a) = b′ ∼ f (x) = g(x) for all x ∼ a (but not equal to a) in X .
Then the maps f (x) and g(x) satisfy the condition of Lemma 2.4.
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Fig. 1 Representation of a
typical map
f : (I4,4, ∂ I4,4) → (X , x0) for
xi ∈ X . Each pixel is labeled
with its function value, so that,
e.g., f (2, 1) = x8 ∈ X . Values
representing the base point x0
are labeled with a dot

Definition 2.6 The type of one-step homotopy in Lemma 2.5, whereby a map is
changed in value at a single point, is called a spider move.

The following theorem, which has appeared in both the digital topology literature
and the ×-homotopy literature, shows that an arbitrary homotopy can be realized by
a finite sequence of spider moves.

Theorem 2.7 [5, Proposition 4.4] [19, Theorem 3.2] For continuous f , g : X → Y ,
the maps f and g are homotopic if and only if they are homotopic by a finite sequence
of spider moves. �

For positive integers m, n and a pointed digital image (X , x0), we will consider
continuous maps of pairs f : (Im,n, ∂ Im,n) → (X , x0). That is, continuous maps f
with f (∂ Im,n) = {x0}.

It is often convenient to visualize a function f : (Im,n, ∂ Im,n) → (X , x0) as a
labeling of the points of the rectangle Im,n with labels taken from the set X . For
example, a function f : (I4,4, ∂ I4,4) → (X , x0) would be represented by the labeled
rectangle in Fig. 1. For simplicity in our pictures, we will indicate the label of the
basepoint with a dot.

Our second homotopy group is modeled on homotopy classes of maps of pairs
(Im,n, ∂ Im,n) → (X , x0), where the homotopies preserve values at the boundary in
the following sense:

Given f , g : (Im,n, ∂ Im,n) → (X , x0) a homotopy H : Im,n × Ik → X , we say H
is a homotopy relative to the boundary when H(∂ Im,n × Ik) = {x0}.

In our development, we often encounter a situation in which we have a “local"
homotopy that only involves values of a map in some part of the rectangle Im,n . If
such a homotopy is stationary on the boundary of a subrectangle, then it may be
extended to a homotopy of the whole rectangle in an obvious way.

Lemma 2.8 Let R be a subrectangle of Im,n. Let f : (Im,n, ∂ Im,n) → (X , x0) be
a map for which fR, the restriction of f to the subrectangle R, is a map of pairs
fR : (R, ∂R) → (X , x0). Let g : (R, ∂R) → (X , x0) be a map on the subrectangle
such that fR � g by a homotopy that is stationary on the boundary ∂R. Then, the
map A : (Im,n, ∂ Im,n) → (X , x0) defined by:

A(a, b) =
{
g(a, b) if (a, b) ∈ R

f (a, b) if (a, b) /∈ R
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Fig. 2 Schematic of a map f : I4,4 → X with its trivial extension f : I8,5 → X

is continuous and we have f � A by a homotopy relative to the boundary.

Proof Continuity of the map A is assured because the maps f and g agree on the
boundary of the rectangle ∂R, which separates Im,n into non-adjacent interior and
exterior: A point interior to the rectangle R cannot be adjacent to a point exterior to
the rectangle R. Thus, A(a, b) ∼ A(a′, b′) follows from continuity of g for points
(a, b) ∼ (a′, b′) in R (including its boundary), and from continuity of f for points
(a, b) ∼ (a′, b′) in RC ∪ ∂R. (Here, RC denotes the complement of R in Im,n .)

Suppose G : R × Ik → X is the homotopy—stationary on ∂R—from fR to g.
Then, the homotopy H : Im,n × Ik → X defined by

H ((a, b), t) =
{
G((a, b), t) if (a, b) ∈ R

f (a, b) if (a, b) /∈ R

starts at f and ends at A. This homotopy is continuous by reasoning similar to that
of the first part. Namely, ∂R × Ik separates Im,n × Ik into non-adjacent interior and
exterior. Then, H ((a, b), t) ∼ H

(
(a′, b′), t ′

)
follows from continuity of G for points

((a, b), t) ∼ (
(a′, b′), t ′

)
in R × Ik and from continuity of f for points ((a, b), t) ∼(

(a′, b′), t ′
)
in (RC ∪ ∂R) × Ik .

Boxer’s definition of the fundamental group in [4] uses a construction which he
calls trivial extension of a loop. We adapt this concept for our higher-dimensional
setting by simply repeating values of the base point.

We define trivial extensions of maps (Im,n, ∂ Im,n) → (X , x0) as follows: if
m′ ≥ m and n′ ≥ n, then there is a natural inclusion Im,n ⊆ Im′,n′ . We say
f : (Im′,n′ , ∂ Im′,n′) → (X , x0) is a trivial extension of f : (Im,n, ∂ Im,n) → (X , x0)
when

f (x) =
{
f (x) if x ∈ Im,n,

x0 otherwise.

See Fig. 2 for a pictorial representation of a trivial extension.
Whereas homotopy is a relation between maps with the same domain, we will need

to compare maps whose domains are differently sized rectangles. We do this through
the following device.
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Definition 2.9 Given two maps f : (Im,n, ∂ Im,n) → (X , x0) and g :
(Im′,n′ , ∂ Im′,n′) → (X , x0), we write f ≈ g, and say that f and g are extension-
homotopic, when there existm ≥ max(m,m′) and n ≥ max(n, n′) and f , g : Im,n →
X with f a trivial extension of f and g a trivial extension of g and f homotopic to g
by a homotopy relative to the boundary.

Theorem 2.10 Extension homotopy of maps is an equivalence relation on the set of
maps (Im,n, ∂ Im,n) → (X , x0) for all sizes of rectangles.

Reflexivity and symmetry follow immediately because homotopy (relative the
boundary) of maps is an equivalence relation. Transitivity is a consequence of the
following simple lemma:

Lemma 2.11 Suppose we have maps f � g : (Im,n, ∂ Im,n) → (X , x0) homotopic
relative to the boundary. Let f ′, g′ : (Im′,n′ , ∂ Im′,n′) → (X , x0) be trivial extensions
of f and g to the same-sized rectangle, for m′ ≥ m and n′ ≥ n. Then, we have f ′ � g′.

Proof The proof is fairly obvious. A homotopy H : Im,n× Ik → X from f to g relative
the boundary extends to a homotopy H : Im′,n′ × Ik → X from f ′ to g′ relative the
boundary, by setting H to be stationary at x0 on all points of Im′,n′ not in Im,n . This
extension H is easily seen to be a continuous map on Im′,n′ × Ik since a point of Im′,n′
not in Im,n cannot be adjacent to a point in the interior of Im,n , and the original H is
already stationary at x0 on all points of ∂ Im,n .

Proof of Theorem 2.10 As observed above, we only need to show transitivity. So,
suppose we have maps ft : (Imt ,nt , ∂ Imt ,nt ) → (X , x0) for t = 1, 2, 3 and that
f1 ≈ f2 ≈ f3. Since f1 ≈ f2 there are m′ ≥ max{m1,m2} and n′ ≥ max{n1, n2}
along with trivial extensions f ′

1, f ′
2 : Im′,n′ → X of f1 and f2 and a homotopy from f ′

1
to f ′

2. Similarly, since f2 ≈ f3 there are m′′ ≥ max{m2,m3} and n′′ ≥ max{n2, n3}
along with trivial extensions f ′′

2 , f ′′
3 : Im′′,n′′ → X of f2 and f3 and a homotopy from

f ′′
2 to f ′′

3 .
Let m = max{m′,m′′} and n = max{n′, n′′}, and let f1, f2, f3 : Im,n → X be

trivial extensions of f1, f2 and f3, respectively. Then, f1 and f3 are trivial extensions
of f ′

1 and f ′′
3 , respectively, while f2 is a common trivial extension of both f ′

2 and f ′′
2 .

Hence, we have f1 � f2 and f2 � f3 by Lemma 2.11. Since homotopy is transitive,
we have f1 � f3 and the result follows.

3 Column-Doubling and Row-Doubling

In this section we define column- and row-doubling operators and subdivisions of a
digital map, and show their relations to trivial extensions.

Definition 3.1 Given i ∈ {0, . . . ,m} and j ∈ {0, . . . , n}, let αi : Im+1,n → Im,n and
β j : Im,n+1 → Im,n be the maps defined by

αi (a, b) =
{

(a, b) if a ≤ i,

(a − 1, b) if a > i .
β j (a, b) =

{
(a, b) if b ≤ j,

(a, b − 1) if b > j .
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The map αi simply omits one column of the domain, so the composition f ◦ αi :
Im+1,n → X is a map which resembles f , but with column i repeated once and all
following columns shifted to the right by one position. Namely, viewing f as a labeling
of the points of Im,n with values from X , we have doubled the i th column of labeled
values to result in a similar labeling of Im+1,n for f ◦ αi . Likewise, f ◦ β j is a map
which resembles f , but with row j doubled.

Theorem 3.2 Let f : (Im,n, ∂ Im,n) → (X , x0) be continuous. We have homotopies
relative the boundary f ◦ αm � f ◦ αm−1 � · · · � f ◦ α0 and f ◦ βn � f ◦ βn−1 �
· · · � f ◦ β0. Consequently, we have f ≈ f ◦ αi for each i ∈ {0, . . . ,m} and
f ≈ f ◦ β j for each j ∈ {0, . . . , n}.
Proof We will prove the statement for the f ◦ αi . The proof for the f ◦ β j is similar
and we omit it. Let f : Im+1,n → X be the trivial extension of f , which we may write
as f = f ◦ αm . We will show that f ◦ αi � f ◦ αi−1 for each i ∈ {1, . . . ,m} and it
follows that we have f ≈ f ◦ αi for each i .

Indeed, we will use the criterion of Lemma 2.4 to show f ◦ αi and f ◦ αi−1 are
one-step homotopic. For x ∼ x ′ ∈ Im+1,n , wemust show that f ◦αi (x) ∼ f ◦αi−1(x ′)
in X . Notice that f ◦ αi and f ◦ αi−1 agree in value except at points (i, b) ∈ Im+1,n :
Unless one of x or x ′ has coordinates (i, b) for some b, the desired conclusion follows
from continuity of eithermap f ◦αi or f ◦αi−1. So, assume x = (i, b) and x ′ = (a′, b′)
with i ∼ a′ (and thus a′ ∈ {i − 1, i, i + 1}) and b ∼ b′.

If a′ = i −1, we may use continuity of f and the definitions of f ◦αi and f ◦αi−1
to write

f ◦ αi (x) = f ◦ αi (i, b) = f (i, b) ∼ f (i − 1, b′) = f ◦ αi−1(i − 1, b′) = f ◦ αi−1(x
′).

Similarly, if a′ = i , we may write

f ◦ αi (x) = f ◦ αi (i, b) = f (i, j) ∼ f (i − 1, b′) = f ◦ αi−1(i, b
′) = f ◦ αi−1(x

′).

Finally, if a′ = i + 1, we may write

f ◦ αi (x) = f ◦ αi (i, b) = f (i, b) ∼ f (i, b′) = f ◦ αi−1(i + 1, b′) = f ◦ αi−1(x
′).

It follows from Lemma 2.4 that f ◦ αi and f ◦ αi−1 are one-step homotopic, and the
result follows.

Observe that if f : (Im,n, ∂ Im,n) → (X , x0), then any trivial extension of f may
be obtained by repeatedly doubling the mth row and the nth column.

Lemma 3.3 Let f : (Im,n, ∂ Im,n) → (X , x0), and let f : (Ir ,s, ∂ Ir ,s) → (X , x0) be a
trivial extension. Then we have

f = f ◦ αr−m
m ◦ βs−n

n .

Furthermore, in this expression the r −m iterations of αm and the s − n iterations of
βn may be shuffled amongst themselves in this expression (any order of these row- or
column-doublings achieves the same effect).
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Fig. 3 Schematic of maps f and g from Corollary 3.4: a horizontal shift by one unit

Fig. 4 Translations by homotopy of subrectangles surrounded by basepoint values illustrating Remark 3.5

Proof Each pre-composition with an αm or a βn doubles the nth row or mth column
of values of f . Since the nth row and mth column of f are constant maps at x0, this
produces the same map as the trivial extension f .

Corollary 3.4 Let f , g : (Im,n, ∂ Im,n) → (X , x0) be continuous maps with f (m −
1, b) = x0 and g(1, b) = x0 for each j ∈ In, and g(a, b) = f (a − 1, b) for each
a ∈ {2, . . . ,m − 1} and each j ∈ In. That is, the maps f and g are horizontal shifts
of one another, as illustrated in Fig.3. Then, we have f � g.

Proof The assumption on f means that f is a trivial extension of some continuous
map h : Im−1,n → X . In fact we have f = h ◦ αm−1 and g = h ◦ α0. By the proof of
Theorem 3.2, we have that h ◦ αm−1 � h ◦ α0, which implies that f � g.

Remark 3.5 Repeated application of Corollary 3.4 and Lemma 2.8 allows for shifting
horizontally up to homotopy, respectively, extension homotopy, of a subrectangle of a
function within a region of Im,n surrounded by basepoints. A similar argument using
row-doubling rather than column-doubling in Corollary 3.4 shows that the same is
possible for vertical shifts. Combining these, we see that any “translation” of a sub-
rectangle through a region of constant basepoint values will not change the homotopy
class of a map. For example, we may achieve up to homotopy any translation of the
type appearing in Fig. 4, where three blocks of values from X , each surrounded by
basepoints, can be maneuvered into a different configuration within Im,n .

The following is a version of Lemma 2.8 for “local extension homotopy."
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Lemma 3.6 Let R be a subrectangle of Im,n. Let f : (Im,n, ∂ Im,n) → (X , x0) be
a map for which fR, the restriction of f to the subrectangle R, is a map of pairs
fR : (R, ∂R) → (X , x0). Let g : (R, ∂R) → (X , x0) be a map on the subrectangle
such that fR ≈ g by an extension homotopy in the sense of Definition 2.9.

Then, the map A : (Im,n, ∂ Im,n) → (X , x0) defined by:

A(x) =
{
f (x) if x /∈ R,

g(x) if x ∈ R

is continuous and we have f ≈ A.

Proof Let R = [r , s]Z × [p, q]Z. Since fR ≈ g, there is a larger rectangle R =
[r , s + u]Z × [p, q + v]Z with u, v ≥ 0 and trivial extensions f R, g : R → X and a
homotopy relative to the boundary HR : R × Ik → X from f R to g. By Lemma 3.3
we have f R = fR ◦ αu

s ◦ βv
q and g = g ◦ αu

s ◦ βv
q .

Now we define a homotopy H : Im+u,n+v × Ik → X to be a row- and column-
doubled version of f outside of R, and equal to HR inside of R:

H(x, t) =
{
f ◦ αu

s ◦ βv
q (x) if x /∈ R,

HR(x, t) if x ∈ R.

We will show that HR is a homotopy relative to the boundary from f ◦ αu
s ◦ βv

q
to A ◦ αu

s ◦ βv
q . Since f ≈ f ◦ αu

s ◦ βv
q and A ≈ A ◦ αu

s ◦ βv
q by Theorem 3.2 and

following, this will demonstrate that f ≈ A as desired.
We have:

H(x, 0) =
{
f ◦ αu

s ◦ βv
q (x) if x /∈ R,

f R(x) if x ∈ R
= f ◦ αu

s ◦ βv
q (x)

and

H(x, k) =
{
f ◦ αu

s ◦ βv
q (x) if x /∈ R,

g(x) if x ∈ R
= A ◦ αu

s ◦ βv
q (x)

so H begins at f ◦ αu
s ◦ βv

q and ends at A ◦ αu
s ◦ βv

q .
Also it is easy to see that H is a homotopy relative to the boundary: if x ∈ ∂ Im+u,n+v

then either x /∈ R or x ∈ ∂R. In either case we have H(x, t) = x0 for all t because
f (∂ Im,n) = x0 and HR is a homotopy relative to the boundary. Thus, it remains only
to show that H is continuous.

Let (x, t) ∼ (x ′, t ′) ∈ Im+u,n+v × Ik , and we must show that H(x, t) ∼ H(x ′, t ′).
We prove this in simple cases according to whether or not the points x, x ′ are in R.

If x ∈ R and x ′ ∈ R, then we have:

H(x, t) = HR(x, t) ∼ HR(x ′, t ′) = H(x ′, t ′)
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where the middle step is because HR is continuous. Thus, H(x, t) ∼ H(x ′, t ′) as
desired.

If x /∈ R and x ′ /∈ R, then we have:

H(x, t) = f ◦ αu
s ◦ βv

q (x) ∼ f ◦ αu
s ◦ βv

q (x ′) = HR(x ′, t ′)

where the middle step is because f , αs , and βq are continuous. Thus, again H(x, t) ∼
H(x ′, t ′) as desired.

If x ∈ R and x ′ /∈ R, this is only possible when x ∈ ∂R. In that case we must have
f ◦ αu

s ◦ βv
q (x) = x0 because f maps ∂R to x0. Since x ∈ ∂R and HR maps ∂R to

x0, we have:

H(x, t) = HR(x, t) = x0 = f ◦ αu
s ◦ βv

q (x).

Since x ′ /∈ R, we have H(x ′, t ′) = f ◦αu
s ◦βv

q (x ′). Since f , αs, and βq are continuous
and x ∼ x ′, this means

H(x ′, t ′) = f ◦ αu
s ◦ βv

q (x ′) ∼ f ◦ αu
s ◦ βv

q (x) = H(x, t)

and so H(x, t) ∼ H(x ′, t ′), which completes the proof that H is continuous.

The row- and column-doubling operations are closely related to subdivision of a
digital image, which was defined in [8] to define digitally continuous multivalued
maps. The subdivision was used fundamentally in [14] as the basis for the definition
of a digital fundamental group. In [14] the authors use a general subdivision of a
digital image which they denote S(X , k) for some natural number k, which essentially
replaces each point of X by a k × k block of points. This subdivision comes with a
natural projection map ρk : S(X , k) → X which collapses k × k blocks into single
points.

For our purposes, we will only need to subdivide the rectangle Im,n , in which case
the k-fold subdivision is simply the rectangle Ikm+k−1,kn+k−1. And then the projection
map ρk : Ikm+k−1,kn+k−1 → Im,n is obtained by iterated row and column omissions
as follows:

ρk = αk−1
0 ◦ αk−1

k ◦ · · · ◦ αk−1
mk ◦ βk−1

0 ◦ · · · ◦ βk−1
kn .

Applying Theorem 3.2 repeatedly to the above gives:

Theorem 3.7 Let f : (Im,n, ∂ Im,n) → (X , x0) be continuous and k ≥ 1. Then f ≈
f ◦ ρk . �

4 Definition of �2(X, x0)

We now give the definition of our second homotopy group and establish its basic
general properties.
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Fig. 5 Schematic of the product
f · g of two maps f and g

Definition 4.1 Given a based digital image (X , x0), the second homotopy group
of (X , x0), written π2(X , x0), is the set of equivalence classes of maps f :
(Im,n, ∂ Im,n) → (X , x0), for all rectangles Im,n , modulo the equivalence relation
of extension homotopy.

The group operation in π2(X , x0) is induced by the following operation on maps.
Let f : (Im,n, ∂ Im,n) → (X , x0) and g : (Ir ,s, ∂ Ir ,s) → (X , x0) be maps. Define
f · g : (Im+r+1,n+s+1, ∂ Im+r+1,n+s+1) → (X , x0) by

( f · g)(a, b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (a, b) if (a, b) ∈ [0,m]Z × [0, n]Z
g(a − (m + 1), b − (n + 1)) if (a, b) ∈ [m + 1,m + r + 1]Z × [n + 1, n + s + 1]Z
x0 otherwise.

See Fig. 5 for an illustration with Im,n = I5,5 and Ir ,s = I6,4

Proposition 4.2 Suppose we have maps

f1 : (Im1,n1, ∂ Im1,n1) → (X , x0), f2 : (Im2,n2 , ∂ Im2,n2) → (X , x0),

and

g1 : (Ir1,s1 , ∂ Ir1,s1) → (X , x0), g2 : (Ir2,s2 , ∂ Ir2,s2) → (X , x0)

with f1 ≈ f2 and g1 ≈ g2. Then f1 · g1 ≈ f2 · g2.
Proof Let f1, f2, g1, and g2 satisfy the above. Then there are trivial extensions
f1, f2 : Im,n → X of f1 and f2, respectively, that are homotopic relative the boundary.
Similarly, there are trivial extensions g1, g2 : Ir ,s → X of g1 and g2, respectively, that
are homotopic relative the boundary.

In the notation of Definition 3.1, we may write f1 as f1 ◦α
m−m1
m1 ◦β

n−n1
n1 . Since the

firstm1 +1 columns and first n1 +1 rows (aside from extra x0s to the right and above)
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of f1 · g1 are those of f1, we may further write f1 · g1 as ( f1 · g1) ◦ α
m−m1
m1 ◦ β

n−n1
n1 .

Continuing to break down the trivial extensions into successive column- and row-
doubling, being careful with the indexing of rows and columns in the products, and
using Theorem 3.2, we have a sequence of extension homotopies as follows:

f1 · g1 ≈ ( f1 · g1) ◦ αm−m1
m1

◦ βn−n1
n1 = f1 · g1

≈ ( f1 · g1) ◦ α
r−r1
m+r1+1 ◦ β

s−s1
n+s1+1 = f1 · g1.

Likewise, we may write f2 · g2 ≈ f2 · g2 by changing all subscripts from 1 to 2 in
the above steps. Now the homotopies f1 � f2 and g1 � g2 extend to homotopies
f1 · g1 � f2 · g1 � f2 · g2 by Lemma 2.8. It follows that we have f1 · g1 ≈ f2 · g2.
Now let [ f ], [g] ∈ π2(X , x0) and define [ f ] · [g] = [ f · g]. This operation is well

defined by Proposition 4.2.

Theorem 4.3 With the operation given above, the set of equivalence classes π2(X , x0)
is a group.

Proof Associativity follows immediately since ( f · g) · h = f · (g · h) at the level of
maps.

Next, let cx0 : Im,n → X be the constant map at x0 ∈ X from any rectangle. Any
such map may be viewed as a trivial extension of the constant map cx0 : I0,0 → X ,
where I0,0 = {(0, 0)}. We show that [cx0 ] acts as a two-sided identity, where—by
the preceding remark—we may as well assume the representative cx0 has domain the
single point I(0,0). Let f : (Im,n, ∂ Im,n) → (X , x0) be any map. On the right, we see
that f ·cx0 : Im+1,n+1 → X is simply equal to the trivial extension f : Im+1,n+1 → X .
Thus [ f ] · [cx0 ] = [ f · cx0 ] = [ f ] = [ f ] and so [cx0 ] acts on the right as an identity
element. On the left, we see that cx0 · f : Im+1,n+1 → X may be written as the result
of doubling the first row and column of f , in the sense of Sect. 3. From Theorem 3.2,
we may write

cx0 · f = f ◦ α0 ◦ β0 ≈ f ◦ α0 ≈ f .

That is, we have [cx0 ] · [ f ] = [ f ] and [cx0 ] acts as a left identity too.
Finally, we consider inverses. For a map f : Im,n → X , define f −1 : Im,n → X

by f −1(a, b) = f (m − a, b). As a pre-processing step, we show that f · f −1

has the same extension homotopy type of the map that we denote by ( f |
f −1) : (I2m+1,n, ∂ I2m+1,n) → (X , x0) and define as

( f | f −1)(a, b) =
{
f (a, b) if 0 ≤ a ≤ m

f −1(a − (m + 1), b) if m + 1 ≤ a ≤ 2m + 1.

To see this, note that on the sub-rectangle R = [m+1, 2m+1]Z×[n+1, 2n+1]Z ⊆
I2m+1,2n+1, the map f · f −1 restricts to the map f −1 ◦ βn+1

0 in the notation of
Theorem 3.2. By using translations of the type described in Remark 3.5 and which

123



Journal of Algebraic Combinatorics

flow fromCorollary 3.4 and Lemma 2.8, f −1◦βn+1
0 and f −1◦βn+1

n+1 on the right-hand
half of the rectangle are homotopic via a homotopy that extends to one of f · f −1

on the whole rectangle I2m+1,2n+1 and leaves the left-hand half fixed. This map may
now be written as ( f | f −1) ◦ βn+1

n+1 and repeated application of Theorem 3.2 yields
an extension homotopy to ( f | f −1). This pre-processing step may be summarized
pictorially as a combination of translation and collapsing of repeated rows as follows:

f · g =
f

f −1x0

x0

�
f

x0x0

f −1

≈ f f −1 = ( f | f −1)

Now display the values of ( f | f −1) on the rectangle I2m+1,n in column-wise form
as ( f | f −1) = [v0 | v1 | · · · | vm−1 | vm | vm | vm−1 | · · · | v0], where each vi is a
column vector of entries from X given by

vi =

⎡
⎢⎢⎢⎢⎢⎣

f (a, n)

f (a, n − 1)
...

f (a, 1)
f (a, 0)

⎤
⎥⎥⎥⎥⎥⎦ .

Since the middle pair of columns repeat, we may write ( f | f −1) = gm ◦ αm , in the
notation of Theorem 3.2, where the values of gm on the rectangle I2m,n in column-wise
form are

gm = [v0 | v1 | · · · | vm−1 | vm | vm−1 | · · · | v0].

Namely, we have “collapsed" the repeated vm column into a single column and we
have ( f | f −1) ≈ gm by Theorem 3.2. Now define, for each k = 0, . . . ,m, a map
gk : (I2k,n, ∂ I2k,n) → (X , x0) by

gk(a, b) =
{
f (a, b) a = 0, . . . , k

f (2k − a, b) a = k + 1, . . . , 2k.

The map gm we arrived at above is the case in which k = m, and the general gk may
be pictured column-wise as a reduced form of gm , with

gk = [v0 | · · · | vk−1 | vk | vk−1 | · · · | v0].
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We note in this case that:

gk−1 ◦ α2
k−1 = [v0 | · · · | vk−1 | vk−1 | vk−1 | · · · | v0].

Claim. For each k ∈ {m,m − 1, . . . , 1}, we have gk � gk−1 ◦ α2
k−1 ≈ gk−1, where

the first homotopy is relative to the boundary.
Proof of Claim. Repeated application of Theorem 3.2 gives an extension homotopy

gk−1◦α2
k−1 ≈ gk−1, so we need only show that gk � gk−1◦α2

k−1. In fact wewill prove
that gk � gk−1 ◦α2

k−1 by a one-step homotopy. By Lemma 2.4, take (a, b) ∼ (a′, b′),
and we must show that gk(a, b) ∼ gk−1 ◦ α2

k−1(a
′, b′).

Since gk and gk−1 ◦ α2
k−1 differ only in column k, we need only consider the cases

where {a, a′} = {k − 1, k}. (The cases where {a, a′} = {k, k + 1} are similar.)
In the case where a = k − 1 and a′ = k, we have:

gk−1 ◦ α2
k−1(a

′, b′) = gk−1 ◦ α2
k−1(k, b

′) = gk(k − 1, b′) ∼ gk(k − 1, b) = gk(a, b)

so gk−1 ◦ α2
k−1(a

′, b′) ∼ gk(a, b) as desired.
In the case where a = k and a′ = k − 1, we have:

gk−1 ◦ α2
k−1(a

′, b′) = gk−1 ◦ α2
k−1(k − 1, b′) = gk(k, b

′) ∼ gk(k − 1, b′) = gk(a
′, b′)

so again gk−1 ◦ α2
k−1(a

′, b′) ∼ gk(a, b) as desired. End of Proof of Claim.
The preceding arguments give a chain of extension homotopies as follows:

f · f −1 ≈ ( f | f −1) ≈ gm ≈ gm−1 ≈ · · · ≈ g1 ≈ g0,

where the final map is a constant map at x0. This shows that, for any map f , we have
a right inverse [ f −1] for [ f ], which is sufficient for [ f −1] to be a two-sided inverse
for [ f ].
Remark 4.4 The earlier papers [17, 20] define a higher digital homotopy group in away
that superficially uses the same ingredients that we do here. Some of the deductions in
that work appear to be logically flawed, and a number of proofs are omitted. But the
main difference between that work and ours stems from subtle but vital differences in
the basic approach. In [17, 20] a rectangle Im,m is assumed to have only 4-adjacencies,
which means that many more maps from a rectangle are admitted as continuous than
are in our work. Furthermore, the “box" homotopy is used, which means that maps
are more easily homotopic there than in our work here. These differences result in
totally different invariants. For instance, the 2-sphere that we use in this paper is easily
shown to be contractible if the box homotopy is used in place of ours. All the higher
homotopy groups of [17, 20] would thus be trivial for our 2-sphere and in fact no
non-trivial example of a higher homotopy group is given in that work.

The next result shows that the second homotopy group is independent of choice of
basepoint.
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Proposition 4.5 If x and x ′ are in the same (path-connected) component of X, then
π2(X , x) ∼= π2(X , x ′).
Proof Since x and x ′ are in the same component of X , there is a sequence of adjacencies
x = x0 ∼ x1 ∼ · · · ∼ xn = x ′. By induction, it suffices to show that π2(X , x0)
is isomorphic to π2(X , x1). For a map f : (Im,n, ∂ Im,n) → (X , x0), define a map
fx1 : (Im+2,n+2, ∂ Im+2,n+2) → (X , x1) by

fx1(a, b) =
{
f (a − 1, b − 1) if (a, b) ∈ [1,m + 1]Z × [1, n + 1]Z
x1 otherwise .

If we picture maps from a rectangle as a labeling of points by their values in X , as
we have before, this simply takes f and surrounds it by a border of x1. We claim that
this induces a well-defined map �x1 : π2(X , x0) → π2(X , x1). For suppose we have
[ f ] = [g] ∈ π2(X , x0), with f : (Im,n, ∂ Im,n) → (X , x0) and g : (Ir ,s, ∂ Ir ,s) →
(X , x0). Then, there are trivial extensions f , g : (Im,n, ∂ Im,n) → (X , x0) of each and
a homotopy relative the boundary H : Im,n → X from f to g. By Lemma 2.8, this
homotopy extends to a homotopy relative the boundary H : Im+2,n+2 → X from
( f )x1 to (g)x1 . In the following sequence of extension homotopies, identifications and
homotopies

fx1 ≈ fx1 ◦ αm−m
m+2 ◦ βn−n

n+2 = ( f )x1 � (g)x1 = gx1 ◦ αm−r
r+2 ◦ βn−s

s+2 ≈ gx1,

the first and last extension homotopies follow from repeated application of Theo-
rem 3.2, the middle homotopy is the one we just observed, and the identifications
follow from the definitions of the maps involved. Hence, we may define a map
�x1 : π2(X , x0) → π2(X , x1) by setting �x1([ f ]) = [ fx1]. We show that �x1 is
an isomorphism.

To show that �x1 is a homomorphism, we must show that [( f · g)x1] = [ fx1 ] · [gx1]
in π2(X , x1), for [ f ], [g] ∈ π2(X , x0). Firstly, if f : (Im,n, ∂ Im,n) → (X , x0) and
g : (Ir ,s, ∂ Ir ,s) → (X , x0), then we have an extension homotopy

( f · g)x1 ≈ ( f · g)x1 ◦ α2
m+1 ◦ β2

n+1

from repeated application of Theorem 3.2. For brevity, let h = ( f ·g)x1 ◦α2
m+1 ◦β2

n+1.
It suffices now to show that h � fx1 · gx1 . These maps are pictured in Fig. 6. We

see that h and fx1 · gx1 differ only in certain points whose value under h is x0, while
the value under fx1 · gx1 is x1. But all of these points have adjacent values only of x0
or x1. Thus, we may perform repeated spider moves on h which change all of these
values of x0 to x1. In this way, we obtain a homotopy h � fx1 · gx1 as required.

Next we show that given a continuous map of based digital images φ : (X , x0) →
(Y , y0), there is a natural induced homomorphism on the fundamental group. This
induced homomorphism is invariant under the following natural type of homotopy:
We say that two based maps φ,ψ : (X , x0) → (Y , y0) are homotopic relative to the
basepoint or based homotopic when there is some continuous H : X × Ik → Y such
that H is a homotopy from φ to ψ and H(x0, t) = y0 for all t ∈ Ik .
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Fig. 6 Various maps used in the proof of Proposition 4.5, which shows that ( f · g)x1 ≈ ( f · g)x1 ◦ α2m+1 ◦
β2
n+1 � fx1 · gx1 . (Dots represent the base point x0)

Proposition 4.6 If φ : (X , x0) → (Y , y0) is a based digital map between based digital
images, there is an induced homomorphism φ∗ : π2(X , x0) → π2(Y , y0) given by
φ∗([ f ]) = [φ ◦ f ].

This ∗ operator is functorial in the sense that (φ ◦ ψ)∗ = φ∗ ◦ ψ∗ for any based
maps φ and ψ , and also (idX )∗ = idπ2(X ,x0), where idX denotes the identity function
of X.

Furthermore, if φ and ψ are based homotopic, then φ∗ = ψ∗.

Proof To show that φ∗ is a group homomorphism, we observe:

φ∗([ f ] · [g]) = φ∗([ f · g]) = [φ ◦ ( f · g)] = [(φ ◦ f ) · (φ ◦ g)] = [φ ◦ f ] · [φ ◦ g] = φ∗([ f ]) · φ∗([g]).
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It is clear from our definitions that (ψ ◦ φ)∗([ f ]) = [ψ ◦ φ ◦ f ] = ψ∗[φ ◦ f ] = ψ∗ ◦
φ∗([ f ]) and (idX )∗([ f ]) = [idX ◦ f ] = [ f ] = idπ2(X ,x0)[ f ], proving functoriality.

For the last statement, let φ,ψ : X → Y be based homotopic, and we will show
φ∗ = ψ∗. Since φ and ψ are homotopic, there exists a based homotopy H : X × Ik →
Y . Let [ f ] ∈ π2(X , x0). To see that [φ ◦ f ] = [ψ ◦ f ], observe that Im,n × Ik →
X × Ik → Y is a homotopy between φ ◦ f andψ ◦g. Because H is a based homotopy,
this homotopy of φ ◦ f and ψ ◦ g is a homotopy relative to the boundary, and so
[φ ◦ f ] = [ψ ◦ f ].

Stated more abstractly, the above means that the second homotopy group π2 is a
functor from the category of based digital images and homotopy classes of digitally
continuous maps to the category of abelian groups and group homomorphisms.

Two based digital images (X , x0) and (Y , y0) are based homotopy equivalent when
there are based maps φ : (X , x0) → (Y , y0) and ψ : (Y , y0) → (X , x0) with φ ◦ ψ

andψ ◦φ each based homotopic to identity maps on (X , x0) and (Y , y0), respectively.

Theorem 4.7 Let (X , x0) and (Y , y0) be based homotopy equivalent. Then, π2(X , x0)
and π2(Y , y0) are isomorphic.

Proof Suppose we have based maps φ : (X , x0) → (Y , y0) and ψ : (Y , y0) →
(X , x0) with φ ◦ ψ and ψ ◦ φ each based homotopic to identity maps on (X , x0) and
(Y , y0), respectively. Then, it follows from Proposition 4.6 that we have φ∗ ◦ ψ∗ =
(φ ◦ ψ)∗ = (idX )∗ = idπ2(X ,x0) and likewise ψ∗ ◦ φ∗ = idπ2(Y ,y0). Hence, each of φ∗
and ψ∗ must be an isomorphism.

Theorem 4.8 Given any pointed digital image (X , x0), the groupπ2(X , x0) is abelian.

Proof The result follows using translations of the type described in Remark 3.5 and
which flow from Corollary 3.4 and Lemma 2.8. We have f · g � g · f by homotopies
indicated as follows:

f · g =
f

gx0

x0
�

f

x0

g

x0
�

x0

f

g

x0

�
g

f

x0

x0
�

g

x0

x0

f
= g · f

Recall that both f and gmap their boundaries to the base point x0. This means that, in
the diagrams above, we may slide these blocks alongside each other without breaking
continuity of the intermediate maps.

The last general result that we give shows that our second homotopy group behaves
with respect to products like the second homotopy group in the ordinary topological
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setting. That is, our second homotopy group preserves products in the functorial sense.
Recall that, for based digital images (X , x0) and (Y , y0), their product X × Y is the
categorical product and its basepoint is the point (x0, y0) ∈ X × Y . The product of
two (abelian) groups, denoted here by ‘×,’ means their direct product. This result uses
the induced homomorphisms just discussed.

Theorem 4.9 Let (X , x0) and (Y , y0) be any based digital images. Let p1 : X×Y → X
and p2 : X × Y → Y denote the projections onto either factor. Define a map


 : π2
(
X × Y ; (x0, y0)

) → π2(X; x0) × π2(Y ; y0),

by setting 
([α]) := (
(p1)∗([α]), (p2)∗([α])) for each [α] ∈ π2

(
X × Y ; (x0, y0)

)
.

Then 
 is an isomorphism.

Proof Because (p1)∗ and (p2)∗ are both well defined and homomorphisms, it follows
that so too is 
 well-defined and a homomorphism. We show that 
 is both surjective
and injective, and thus an isomorphism.

For surjectivity, suppose that we have ([α], [β]) ∈ π2(X; x0) × π2(Y ; y0), with
α : (Im,n, ∂ Im,n) → (X , x0) and β : (Im′,n′ , ∂ Im′,n′) → (Y , y0). Then the maps
(α, cy0) : Im,n → X × Y and (cx0 , β) : Im′,n′ → X × Y represent elements of
π2

(
X × Y ; (x0, y0)

)
. We have



([(α, cy0 )] · [(cx0 , β)])=


([(α, cy0 )]
)



([(cx0 , β)])=([α], [cy0 ])([cx0 ], [β]) = ([α], [β]).

It follows that 
 is surjective.
For injectivity, suppose thatwehave [α] ∈ π2

(
X×Y ; (x0, y0)

)
representedbyamap

α : Im,n → X×Y , such thatα ∈ ker
. That is,
([α]) = ([cx0 ], [cy0 ]) ∈ π2(X; x0)×
π2(Y ; y0). Then, p1◦α and p2◦α are extension-homotopic to constant maps. Suppose
we have p1 ◦ α � cx0 via a homotopy relative to the boundary H : Im′,n′ × IT → X
and p2 ◦ α � cy0 via a homotopy relative to the boundary G : Im′′,n′′ × IS → Y .
The idea is simply to “same size" the domains of these homotopies using a process
akin to a “3D trivial extension.". Firstly, we trivially extend p1 ◦ α and p2 ◦ α to a
larger common domain Im′′′,n′′′ . We continue to write these new trivial extensions as
p1 ◦ α and p2 ◦ α. On any point (i, j) of Im′′′,n′′′ not in Im′,n′ , extend H by setting
H(i, j, t) = x0 for all t ∈ IT . Likewise, extend G to the stationary homotopy at y0
on points of Im′′′,n′′′ not in Im′′,n′′ . Since H and G were originally homotopies relative
to the boundary (stationary at their respective basepoints), these extensions of the
homotopies to the larger domains are evidently continuous. Secondly, if S 
= T , then
we may lengthen the shorter one by adding stationary steps at the basepoint. Note that
this depends on either homotopy ending at the constant map. Thus, we have trivially
extended our homotopies to maps H : Im′′′,n′′′ × IR → X and G : Im′′′,n′′′ × IR → Y ,
on some common domain. Then, we have a homotopy relative to the boundary

(
H ,G

) : Im′′′,n′′′ × IR → X × Y

from
(
p1 ◦ α, p2 ◦ α

)
to

(
cx0 , cy0

)
. Now may write α = (p1 ◦ α, p2 ◦ α) and hence(

p1 ◦ α, p2 ◦ α
)
as a trivial extension α of α, and also c(x0,y0) = (

cx0 , cy0
)
. it follows
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that we have [α] = [c(x0,y0)] ∈ π2
(
X × Y ; (x0, y0)

)
. Hence 
 is injective and the

result follows.

5 A triangle-counting function on �2(S2)

We now turn to the computation of the second homotopy group of a digital two-sphere.
Various models have appeared in the literature of sphere-like digital images (see [10]
for instance). We will define the digital sphere Sn as in classical geometry as the set
of points in (n + 1)-dimensional space at unit distance from the origin. In the digital
setting, namely with points from Z

n , this includes only points with a single nonzero
coordinate of magnitude 1.

Specifically let ei = (0, . . . , 0, 1, 0, . . . , 0) be the i-th standard basis vector in
Z
n+1, and define the digital n-sphere

Sn := {±e1, . . . ,±en+1}.

By Sn wealwaysmean this digital image of 2n points, rather than the classicalmanifold
Sn . We always consider Sn as a digital image with cn adjacency, that is, two points
are adjacent when they differ by at most 1 in each of their coordinates.

From now on, we deal exclusively with S2, the set of 6 points whose (non-self-)
adjacencies form the octahedral graph:

S2 : e1−e1

e3

−e3

e2

−e2

For a, b ∈ S2 with our chosen adjacency, we will have a ∼ b if and only if a 
= −b.
As discussed between Definitions 2.2 and 2.3, we should really add loops at each
vertex in the figure above to represent our S2 strictly from the graph-theoretic point
of view. But we typically suppress these self-adjacencies from our figures.

The rest of the paper is concerned with showing that we have a group isomorphism
π2(S2,−e1) ∼= Z. The main tool we use for showing this is the following triangle-
counting function for maps from the rectangle into S2.

Wemay view amap f : (Im,n, ∂ Im,n) → (S2,−e1) as a labeling of the points of the
rectangle Im,n with values from S2 = {±e1,±e2,±e3}. Furthermore, we choose the
triangulation of the rectangle Im,n that uses horizontal and vertical edges (adjacencies)
between points, togetherwith all positively sloped diagonal edges (adjacencies). (Here,
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Fig. 7 Triangulation of Im,n
shown with m = 5 and n = 4.
Labeling with points from S2

shows a map with d( f ) = 0

we are setting aside all negatively sloped diagonal edges (adjacencies) that also exist
in the adjacency relation of Z2.)

Definition 5.1 (Triangle-counting function) With the conventions above, define an
integer d( f ) as the signed sum of the number of oriented triangles labeled 〈e1, e2, e3〉
in this triangulation. By oriented triangles, we mean that a triangle labeled 〈e1, e2, e3〉
in a counter-clockwise sense counts as +1 and a triangle labeled 〈e1, e2, e3〉 in a
clockwise sense counts as −1.

Example 5.2 Take the map f : (I5,4, ∂ I5,4) → (S2,−e1) whose values on the points
of I5,4 are as specified in Fig. 7. We have triangulated I5,4 in the way described above.
Note that although we have not included diagonal edges of slope −1 in our triangu-
lation, pairs of points that would be connected by such must be labeled with adjacent
values from S2 as well, to preserve continuity of the map f . We find that there are
two triangles labeled 〈e1, e2, e3〉 in a counter-clockwise sense and two in a clock-
wise sense, leading to a signed sum of 0. We will see that d provides a function
d : π2(S2,−e1) → Z, which we will eventually prove is a group isomorphism.
Thus, this map represents the trivial element in π2(S2,−e1), namely it must be
extension-homotopic to the constant map c−e1 ∈ S2.

First we show that the triangle-counting function is preserved by extension-
homotopy.

Lemma 5.3 If f ≈ g, then we have d( f ) = d(g). Thus, the integer d( f ) described
above induces a well-defined induced triangle-counting function d : π2(S2,−e1) →
Z, given by setting d([ f ]) = d( f ).

Proof Let f : (Im,n, ∂ Im,n) → (S2,−e1) and g : (Im′,n′ , ∂ Im′,n′) → (S2,−e1) be
maps with f ≈ g. Recall that this means there are trivial extensions f of f and g
of g such that f and g are defined on the same-sized rectangle as each other and
are homotopic via a homotopy relative to the boundary. Firstly, it is clear that we
have d( f ) = d( f ) and d(g) = d(g), since a trivial extension preserves the labels
of the original rectangle and simply labels additional points in the larger containing
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Fig. 8 The hexagon of the 6 triangles in Im,n surrounding (a, b) labeled with points from S2

rectangle with −e1, thereby preserving all the original triangles labeled 〈e1, e2, e3〉
and not introducing any additional ones. So, it is sufficient to show that we have
d( f ) = d(g) when f and g are homotopic (and defined on the same-sized rectangle
as each other).

By Theorem 2.7, any homotopy can be effected by a sequence of spider moves
which change only one point at a time. Thus, it suffices to show that d( f ) = d(g)
when f and g are homotopic by a spider move that changes the values of f at only
one point. So, we consider the situation in which f , g : (Im,n, ∂ Im,n) → (S2,−e1)
differ in value only at the point (a, b) ∈ Im,n , for some a and b with 0 < a < m and
0 < b < n (recall that we do not change the value of boundary points through our
homotopy).

Since the spider move only changes the map at the point (a, b), with everything else
remaining unchanged, the signed counts of triangles d( f ) and d(g) may only differ
according as the counts of triangles labeled 〈e1, e2, e3〉 differ in what we will call
the hexagon of labeled points in Im,n , namely the points (labeled in their respective
positions) illustrated in Fig. 8.

If either f (a, b) or g(a, b) has a value from {−e1,−e2,−e3} then the hexagon
does not contribute any triangles labeled 〈e1, e2, e3〉 either before or after the spider
move. This follows because both f (a, b) and g(a, b) must be adjacent to all values
taken by points of the hexagon—including both f (a, b) and g(a, b). But if one of
f (a, b) or g(a, b) takes a negative value −ei , then its positive counterpart ei must be
absent from the hexagon—again including both values f (a, b) and g(a, b). However,
we need all three values {e1, e2, e3} to be taken on the hexagon by f or g in order to
have any triangles to count at all. Thus, in this case the signed sums d( f ) and d(g) are
determined entirely by triangles in Im,n not involving the point (a, b), and on which
f and g agree. That is, we have d( f ) = d(g).
It remains to consider the cases inwhich both of f (a, b) and g(a, b) have (different)

values from {e1, e2, e3}. Say f (a, b) = ei and g(a, b) = e j . Let k be the third value so
that no two of {ei , e j , ek} are equal. Without loss of generality, assume that j = i + 1
mod 3, which means that k = i + 2 mod 3. Then the oriented count of 〈e1, e2, e3〉
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Fig. 9 Subgraph of S2 on which
we have the circuit (1)

triangles will equal the oriented count of 〈ei , e j , ek〉 triangles, so we can compute
d( f ) and d(g) by counting 〈ei , e j , ek〉 triangles.

Consider the values assigned to the 6 points of the hexagon that surround (a, b).
Since each of these points must be labeled with values in S2 adjacent to both ei and
e j , all 6 points must be labeled from amongst the points {ei , e j ,±ek} ⊆ S2. If none
of these 6 points is labeled ek , then the hexagon does not display any triangles labeled
〈ei , e j , ek〉 either before or after this spider move. So, further assume that at least one
of the 6 points of the hexagon that surround (a, b) is labeled ek . Starting at one such
point, travel counter-clockwise in a loop around the six vertices, listing the values with
which they are labeled. The result is a circuit γ of length at most 6

γ = (ek, v1, v2, v3, v4, v5, ek) (1)

in the subgraph {ei , e j ,±ek} of S2, pictured with its adjacencies in Fig. 9.
Let N ( f ) be the oriented count of 〈ei , e j , ek〉 triangles of f occurring in the hexagon

of Fig. 8. Let N (g) be the same count in the hexagon for g. Since f and g agree outside
of the hexagon, we need only show that N ( f ) = N (g).

Since f maps the center point to ei , and γ is oriented clockwise around the hexagon,
the count N ( f ) will equal the oriented count of the number of edges (e j , ek) in γ .
Similarly, the count N (g) equals the oriented count of the number of edges (ek, ei ) in
γ .

For some edge given as a vertex-pair (v, v′), let Kγ (v, v′) be the number of
occurrences of the edge (v, v′) in γ . Then, the above means that:

N ( f ) = Kγ (e j , ek) − Kγ (ek, e j ),

N (g) = Kγ (ek, ei ) − Kγ (ei , ek).

Since γ is a cycle based at ek , its in-degree at ek must match its out-degree at ek .
That is, Kγ (ei , ek)+ Kγ (e j , ek) = Kγ (ek, ei )+ Kγ (ek, e j ). Combining this with the
equations just displayed gives N ( f ) − N (g) = 0 and so N ( f ) = N (g) as desired.

Proposition 5.4 The induced triangle-counting function d : π2(S2,−e1) → Z is
a group homomorphism. In particular, we have d

([c−e1 ]
) = 0 and d

([ f ]−1
) =

d
([ f −1]) = −d ([ f ]) for any [ f ] ∈ π2(S2,−e1).
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Fig. 10 The map
T : (I4,4, ∂ I4,4) → (S2, −e1)

Proof Let f , g : (Im,n, ∂ Im,n) → (S2,−e1) be two maps representing elements of
π2(S2,−e1). It is sufficient to show that d( f · g) = d( f ) + d(g).

Recall that f · g simply juxtaposes the grids defining f and g into a larger grid.
Since f and g each individually map their boundary rectangles to the base point,
there is no opportunity for the formation of new triangles involving e1, e2, e3 where
the grids of f and g meet. Thus, the total oriented count of 〈e1, e2, e3〉 triangles of
f · g will equal the sum of the oriented counts for each of f and g, which is to say
d( f · g) = d( f ) + d(g).

The last two assertions follow formally for any group homomorphism d : G → Z:
with G any group, we have d(e) = 0 and d(g−1) = −d(g) for any g ∈ G and
e ∈ G the identity element. The first of these is also easy to see directly: a constant
map c−e1 contains no triangles labeled 〈e1, e2, e3〉. The second is not so easy to see
directly, as passing from f to f −1 involves re-labeling the points of a rectangle while
preserving the triangulation—see the examples of T , T−1 : (I4,4, ∂ I4,4) → (S2,−e1)
given below.

We can now state the main result of this part of the paper:

Theorem 5.5 The induced triangle-counting function d : π2(S2,−e1) → Z is a group
isomorphism.

The proof of Theorem 5.5 occupies the remainder of the paper. We will prove
surjectivity immediately; the proof of injectivity requires some preparation.

First, we introduce a specific map that will end up playing a prominent role in our
calculation as a generator of π2(S2,−e1).

Definition 5.6 Let T : (I4,4, ∂ I4,4) → (S2,−e1) be the map given by the labeling of
points of I4,4 with values from S2 as in Fig. 10. In this diagram, we have used the style
of earlier sections and indicated a label of the basepoint −e1 with a dot. Furthermore,
we have indicated labels of the three standard basis vectors with their subscript, and
labels of −e2, respectively, −e3, by −2, respectively, −3. We will adopt this style of
diagram going forward.

Lemma 5.7 (Surjective part of Theorem 5.5) The map T : (I4,4, ∂ I4,4) → (S2,−e1)
given in Definition 5.6 satisfies d(T ) = 1. Hence, the triangle-counting function
d : π2(S2,−e1) → Z is surjective.
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Fig. 11 The map
T : (I4,4, ∂ I4,4) → (S2, −e1)
has d(T ) = 1

Proof Figure11 shows the map T with the triangulation we use to define the value
of d. In the figure, we see exactly one 〈e1, e2, e3〉 triangle, oriented in the positive
direction. Thus we have d([T ]) = 1. The consequence for surjectivity of d follows
immediately, since we already have shown that d is a homomorphism. Note that, per
Proposition 5.4, we have d([T−1]) = −1 and d

([c−e1]
) = 0.

We now break off from the proof of Theorem 5.5 to prepare for showing injectivity
of the induced triangle-counting function. The proof of Theorem 5.5 is completed at
the end of the next section.

6 Islands, Flooding, and Injectivity of d

We show several lemmas that will be used in showing injectivity of d. These lemmas
are summarized in Theorem 6.5 below. The first lemma is a simple application of
spider moves.

Lemma 6.1 Let f : (I4,4, ∂ I4,4) → (S2,−e1) be continuous with f (x) = e1 for
exactly one x ∈ I4,4. Then f is homotopic to a map of the form:

x

x

y y z

z

ww

1

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.. .

for x, y, z, w ∈ {±e2,±e3}.
Furthermore, if {x, y, z, w} 
= {±e2,±e3}, then f is homotopic to the constant

map with constant value −e1.
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Proof Because f maps the boundary of I4,4 to −e1, the only point which can map to
e1 is the center point (2, 2) ∈ I4,4. Thus our map f must take the following form:

f =
x1

x4

x6 x7 x8

x5

x3x2

1

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.. .

for some x1, . . . , x8 ∈ {±e2,±e3}. We may do several spider move homotopies as in
Lemma 2.6. For example the value of f (1, 3) = x1 may be changed to x4 because all
neighbors of (1, 3) have labels which are already adjacent to x4. Performing 4 similar
spider moves results in the following map homotopic to f :

f �
x4

x4

x7 x7 x5

x5

x2x2

1

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.. .

which has the desired format, proving the first statement of the lemma.
For the second statement, assume that there is some v ∈ {±e2,±e3} which is

different from all values of f . Then all interior values of f can be changed by spider
moves to −v, and then to −e1:

f �
-v

-v

-v

-v

-v

-v

-v

-v

-v

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.. .

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Now the map T introduced in Definition 5.6 has T (x) = e1 at exactly one point
x and satisfies d(T ) = 1. The next lemma shows that these properties effectively
characterize T up to extension homotopy.

Lemma 6.2 Let f : (I4,4, ∂ I4,4) → (S2,−e1) be continuous with f (x) = e1 for
exactly one x ∈ I4,4 and d( f ) = 1. Then, f ≈ T .
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Proof By Lemma 6.1 we may assume that f takes the form:

x

x

y y z

z

ww

1

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.. .

where the values x, y, z, w are taken from the set of possible values {±e2,±e3}. Since
we assume that d( f ) = 1, this means that f is not homotopic to a constant map, and
so {x, y, z, w} = {±e2,±e3} by the second part of Lemma 6.1.

Since (x, y, z, w) are all distinct, and we must have x ∼ y ∼ z ∼ w ∼ x ,
these values in order must be some cyclic permutation of (e2, e3,−e2,−e3) or of
(e2,−e3,−e2, e3). In fact, only cyclic permutations of the first type will result in
d( f ) = 1. The others will result in d( f ) = −1, and so we do not consider them.
Thus, f is homotopic to one of the following four maps:

2

2

3 3 −2

−2

−3−3

1

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.. .

−3

−3

2 2 3

3

−2−2

1

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.. .

−2

−2

−3 −3 2

2

33

1

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.. .

3

3

−2 −2 −3

−3

22

1

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.. .

(2)

The first of these maps is T , so it will suffice to show that any of these maps is
extension-homotopic to the others.

We do this by demonstrating a “rotation of values” by extension homotopies. Our
demonstration is pictorial. In the sequence of diagrams below, each step is either a
pair of consecutive spider moves or a row doubling:

x

x

y y z

z

ww

1

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.. .

≈
x

x

x

y y z

z

z

ww

1

1

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.

. .

�
w

x

x

y y y

z

z

ww

1

1

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.

. .

�
w

x

x

x y y

z

z

zw

1

1

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.

. .

�
w

w

x

x y y

y

z

zw

1

1

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.

. .

�
w

w

x

x x y

y

z

zz

1

1

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.

. .
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�
w

w

w

x x y

y

y

zz

1

1

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.

. .

≈
w

w

x x y

y

zz

1

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.. .

By repeatedly applying this rotation, we see that all four maps of (2) are extension-
homotopic. Since f is homotopic to one of these four maps, and the first one is T , we
have f ≈ T .

Let T−1 : (I4,4, ∂ I4,4) → (S2,−e1) be the inverse of T , as we defined inverses in
the proof of Theorem 4.3. In diagrammatic terms, this is given as follows:

T−1 =
−3

−2

−2 3 3

2

2−3

1

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.. .

The following result corresponds to Lemma 6.2 for maps with d( f ) = −1 proved
using the same arguments. We omit the details of its proof.

Lemma 6.3 Let f : (I4,4, ∂ I4,4) → (S2,−e1) be continuous with f (x) = e1 for
exactly one x ∈ I4,4 and d( f ) = −1. Then f ≈ T−1. �

We also consider such maps having d( f ) = 0.

Lemma 6.4 Let f : (I4,4, ∂ I4,4) → (S2,−e1) be continuous with f (x) = e1 for
exactly one x ∈ I4,4 and d( f ) = 0. Then, f is homotopic to a constant map.

Proof By Lemma 6.1 we may assume that f takes the form:

x

x

y y z

z

ww

1

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.. .

where the values x, y, z, w are taken from this set of 4 possible values: {±e2,±e3}.
By the second part of Lemma 6.1, if {x, y, z, w} 
= {±e2,±e3} then f is homotopic
to a constant map and we are done. So it remains only to consider the case when
{x, y, z, w} = {±e2,±e3}, and we will show that this case leads to a contradiction.

The proof of Lemma 6.2 shows how the values x, y, z, w can be “rotated” by
extension homotopy. Thus we may assume without loss of generality that x = e2.
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Since x appears adjacent to both y and w, neither y or w can be −e2, and so we must
have z = −e2. Thus, either y = e3 and w = −e3, or y = −e3 and w = e3.

If y = e3 and w = −e3, then f = T which contradicts our assumption that
d( f ) = 0, since d(T ) = 1. In the other case, we have w = −e3 and y = e3, and so
f is a rotation of T−1, which again contradicts our assumption that d( f ) = 0.

We summarize the three lemmas above as follows:

Theorem 6.5 Let f : (I4,4, ∂ I4,4) → (S2,−e1) be continuous with f (x) = e1 for
exactly one x ∈ I4,4, and let:

T =
2

2

3 3 −2

−2

−3−3

1

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.. .

, T−1 =
−3

−2

−2 3 3

2

2−3

1

.

.

. ..

.

. .

.

.

. .

.

.

. .

.

.. .

If d( f ) = 1, then f ≈ T . If d( f ) = −1, then f ≈ T−1. If d( f ) = 0, then f is
homotopic to a constant map.

Going forwards, we will refer to the 3× 3 blocks of values with a value of e1 in the
center as islands. We will eventually see that any map may be reduced, up to extension
homotopy, to one whose values are represented by a number of these islands isolated
from one another in a surrounding “sea" of values of −e1.

Next, we introduce twomore ingredients used to prove injectivity of d: a “flooding"
homotopy; and a pre-processing step that involves subdivision.

Given any map f : (Im,n, ∂ Im,n) → (S2,−e1) and some particular value b ∈ S2,
we define a map fb : (Im,n, ∂ Im,n) → (S2,−e1) which we call the flood of f with
b or the b-flood of f , and which is a map that agrees in values with f except that
its values away from the boundary have been changed whenever possible to equal b.
Specifically, we define:

fb(x) =
{
b if x /∈ ∂ Im,n and if f (z) 
= −b for all z ∼ x,

f (x) otherwise.

Figure12 shows an example of a map f with its flood by −e1.

Lemma 6.6 For f : (Im,n, ∂ Im,n) → (S2,−e1) and b ∈ S2, the flood of f with b,
fb : (Im,n, ∂ Im,n) → (S2,−e1) is continuous and homotopic to f by a homotopy
relative to the boundary.

Proof First we show that fb is continuous. Take x ∼ y ∈ Im,n , and we will show that
fb(x) ∼ fb(y). If f (x) = −b or f (y) = −b, then by the definition of fb wewill have
fb(x) = f (x) and fb(y) = f (y) and so fb(x) ∼ fb(y) as desired. In the case where
neither of f (x) and f (y) are−b, then fb(x) ∈ { f (x), b} and fb(y) ∈ { f (y), b}. Since
neither of f (x) or f (y) is −b, we have f (x) ∼ b and f (y) ∼ b, and fb(x) ∼ fb(y)
as desired.
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Fig. 12 An example of a map f : I8,8 → S2 and the map f−e1 , the −e1-flood of f

Now we show that fb is homotopic to f in a single step. Take x ∼ y ∈ Im,n .
Since each of f and fb are continuous, it is sufficient to show that fb(x) ∼ f (y), by
Lemma 2.4. We investigate the various cases appearing in the definition of fb(x).

If x ∈ ∂(Im,n) then fb(x) = −e1, and also f (x) = −e1 and so fb(x) = f (x) ∼
f (y) as desired.
If f (z) 
= −b for all z ∼ x , then in particular f (y) 
= −b, and fb(x) = b. Since

fb(x) = b and f (y) 
= −b, we have fb(x) ∼ f (y) as desired.
The final case is when x is outside the boundary and f (z) = −b for some z ∼ x .

In this case fb(x) = f (x) ∼ f (y) as in the first case.

Next, we show how any f : (Im,n, ∂ Im,n) → (S2,−e1) can be changed up to
extension homotopy into a map in which the value e1 occurs only at isolated points.

Lemma 6.7 Let f : (Im,n, ∂ Im,n) → (S2,−e1). Then there is a map g ≈ f having the
property that no two adjacent points of the domain both map to e1. Furthermore, we
may construct g so that any two points x, y in the domain of g with g(x) = g(y) = e1
will be arbitrarily far apart.

Proof Choose some k ≥ 5. We construct g in three steps, beginning with f̂ = f ◦ρk :
S(Im,n, k) → S2. This is the k-fold subdivision of f ; we view it as a continuous
function f̂ : (Ikm+k−1,kn+k−1, ∂ Ikm+k−1,kn+k−1) → (S2,−e1). By Theorem 3.7 we
have f̂ ≈ f .

For the second step we modify certain values of f̂ in specific ways based on the
specific locations of values with f̂ (x) = e1. Recalling that all values of f̂ occur in
constant k× k blocks, we make two adjustments described in Figs. 13 and 14. Making
these two adjustments produces a new map f̂ ′.

The first adjustment will change values of f̂ in a small region surrounding two
diagonally adjacent points x ∼ y with value f̂ (x) = f̂ (y) = e1, in which x and y
are mutually adjacent to a pair of diagonal points with value different from e1. We
adjust the values of f̂ by making all points adjacent to either x or y have value e1, as
in Fig. 13.

The second adjustment will change values of f̂ in a small region near two orthog-
onally adjacent points x ∼ y with value f̂ (x) = f̂ (y) = e1, in which x and y arise
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Fig. 13 Adjustment #1, in which all values adjacent to x and y become e1. In the picture, the shaded squares
are pixels with value e1 under f̂ , and the white squares have value different from e1 (but not equal to −e1).
In the picture, we use k = 5

Fig. 14 Adjustment #2, in which 2 values adjacent to x become e1. In the picture, the shaded squares are
pixels with value e1 under f̂ , and the white squares have value different from e1 (but not equal to −e1). In
the picture, we use k = 5

from different pixels of Im,n before the subdivision, and each is adjacent to points with
value different from e1. We adjust the values of f̂ to make 2 other points adjacent to
x have value e1, as in Fig. 14.

Applying these two adjustments in all applicable locations produces a map
f̂ ′ : (Ikm+k−1,kn+k−1, ∂ Ikm,kn) → (S2,−e1). Since each of these adjustments may
evidently be effected by a (short) sequence of spider moves, we have f̂ ′ � f̂ .

The third step of our construction is to consider g = f̂ ′
e2,e3,−e1 . This is the iterated

flood of f̂ ′ with e2 followed by e3 followed by −e1. By Lemma 6.6 we will have
f̂ ′ ≈ f̂ ′

e2,e3,−e1 , and thus g ≈ f as desired. It remains to show that the values x where
g(x) = e1 are separated from one another.

The set S of points x with f̂ ′(x) = e1 consists of a (possibly disconnected) union of
k × k blocks of points, together with some extra points added by the two adjustments.
This set looks something like Fig. 15, in which k = 5.

This set S includes two types of special points: the “exterior corner points,” lying
on corners of the k × k blocks which are not adjacent to other k × k blocks in S, and
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Fig. 15 Possible arrangement of points with f̂ ′(x) = e1. Points marked with � are “adjusted corner”
points, which may be adjacent to other points with two different labels. Points marked with � are “exterior
corner” points, which may be adjacent to other points with 3 different labels. All other points are adjacent
to 0 or 1 labels other than e1. In the picture we use k = 5

the “adjusted corner points", the points created by Adjustment #2 which are adjacent
to the neighboring k × k block. We label these points with � and �, respectively, in
Fig. 15. We will show that these exterior and adjusted corner points are the only points
which can be labeled e1 by g. To do this, we show that all other points x ∈ S have
g(x) 
= e1. Since the exterior and adjusted corner points are never adjacent, andwill be
separated from each other by at least k − 2 points in a horizontal or vertical direction,
this will complete the proof.

Let x ∈ S be some point which is not an exterior or adjusted corner of S. We
consider cases according to the number of different values which can occur for points
f̂ ′(y) with y ∼ x . By our construction, since x is not an exterior or adjusted corner,
it will be adjacent to at most 1 other label different from e1.

If all points y ∼ x have the same value f̂ ′(y) = e1, then f̂ ′
e2(x) = e2 by the

definition of the flood. Since no subsequent flood by e3 or −e1 can cause the label of
x to become e1, we see that g(x) = f̂ ′

e2,e3,−e1(x) 
= e1 as desired.
Our second case is when x is adjacent to only 1 label other than e1. That is, there is

some a ∈ S2 such that all points y ∼ x have either the value f̂ ′(y) = e1 or f̂ ′(y) = a.
If a 
= −e2, then f̂ ′

e2(x) = e2 and so as above we will have g(x) 
= e1 as desired. If

a = −e2, then the flood by e2 will not change the label on x , so f̂ ′
e2(x) = e1. But the

subsequent flood by e3 will change the value to e3, giving f̂ ′
e2,e3(x) = e3. Again as

above this means that g(x) 
= e1 as desired.

Finally, we are ready to complete the proof that d : π2(S2,−e1) → Z is an
isomorphism.
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Proof of Theorem 5.5 In Proposition 5.4 and Lemma 5.7, we have already shown that
d : π2(S2,−e1) → Z is a surjective homomorphism. Here, we show that ker d
is trivial. Let f : (Im,n, ∂ Im,n) → (S2,−e1) with d( f ) = 0; we will show that
f ∈ π2(S2,−e1) is the trivial element.
By Lemma 6.7, we may assume—up to extension homotopy—that f has only

isolated values of e1 occurring at the center of 3 × 3 blocks of points, and outside of
these 3×3 “islands,” f is constant with value−e1. (The last flood by−e1 in the proof
of Lemma 6.7 will achieve the latter.) Furthermore we may assume that these islands
are separated from each other by any distance we wish.

Using Lemma 3.6 to apply Theorem 6.5 to each island locally, we may replace each
island by the maps T , or T−1 according to their triangle-count, or replace the island
entirely by constant values −e1 if the triangle count for that island is zero.

Since these islands are separated by arbitrarily large regions of constant values of
−e1, by Remark 3.5 we may translate the remaining islands into any configuration
we wish. Since d( f ) = 0, the number of islands of type T must equal the number of
islands of type T−1. Say that there are k islands of each type. Then we may arrange
them all to be stacked diagonally as in Fig. 5 (extending the domain if necessary), so
that f ≈ kT · kT−1, and this is the trivial element because T and T−1 are inverses.

7 Future work

An obvious direction in which to continue is to define, for each n, a homotopy
group πn(X , x0) for X a digital image. We believe this should be a straightforward
generalization of the approach taken here, with the group consisting of (suitably
defined) extension-homotopy equivalence classes of maps (I , ∂ I ) → (X , x0) with
I = Im1 × · · · × Imn an n-fold product of intervals. We believe that most, if not
all, of the results through Sect. 4 should have direct generalizations. One main issue
in proceeding with this is simply an expositional one, dealing with the increasingly
burdensome notational complexity. It also seems reasonable to extend and generalize
the development here to include suitable relative homotopy groups and, if possible,
develop the long exact sequence in homotopy groups in this digital context.

In [16] it was shown that the fundamental group (as defined there) of a 2D digital
image is a free group. A reasonable question to ask here is: must π2(X , x0) for X
a 3D digital image be a free abelian group? On a related note, we may ask about
torsion in π2(X , x0). For instance, what is an example of a digital image X that has
π2(X , x0) with non-trivial torsion subgroup? Questions of this sort about π1(X , x0)
are effectively resolved in [16] by the identification of the digital fundamental group
with the ordinary fundamental group of the spatial realization of the clique complex
of the digital image considered as a graph. Here, then, we can ask whether π2(X , x0)
may be identified with the ordinary second homotopy group of the spatial realization
of the clique complex of X?

In a different direction, the calculation of π2(S2,−e1) given here suggests many
points of contact with classical topology. Although our maps Im,n → S2 are really
just graph homomorphisms, the line of argument is strongly suggestive of topological
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ingredients such as the degree of a map, the classical homotopy group(s) of a topolog-
ical space, triangulations, simplicial complexes, polyhedra and so-on. Is it possible to
somehow make these connections more precise?
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