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Abstract
Let I (G,w) be the edge ideal of an edge-weighted graph (G,w). We prove that
I (G,w) is sequentially Cohen–Macaulay for all weight functions w if and only if G
is a Woodroofe graph.
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1 Introduction

Let S = K [x1, . . . , xn] be a standard graded polynomial ring over an arbitrary field
K . Let G be a simple graph with vertex set V = {x1, . . . , xn} and edge set E(G).
By abuse of notation, we also use xi x j to denote an edge {xi , x j } of G. Assume
that w : E(G) → Z>0 is a weight function on edges of G. The edge ideal of the
edge-weighted graph (G,w) is defined by

I (G,w) =
(
(xi x j )

w(xi x j ) | {i, j} ∈ E(G)
)

⊆ S.
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In particular, if every edge of G has weight one then I (G,w) becomes the usual edge
ideal I (G).

Paulsen and Sather-Wagstaff introduced edge ideals of edge-weighted graphs in
[13]. In this work, the authors described a primary decomposition of I (G,w) and
studied the Cohen–Macaulay property of I (G,w) when the underlying graph G is
a cycle, a tree, or a complete graph. A graph G (resp. (G,w)) is said to be Cohen–
Macaulay if I (G) (resp. I (G,w)) is. In particular, they proved that I (G,w) is Cohen–
Macaulay for all weight functions w when G is a complete graph. In our first main
result, we prove the converse of this result.

Theorem 1.1 Let G be a simple graph. The following statements are equivalent:

(1) I (G,w) is Cohen–Macaulay for all weight functions w;
(2) I (G,w) is Cohen–Macaulay for all weight functions w such that w(xi x j ) ∈ {1, 2}

for all edges xi x j ∈ E(G);
(3) G is a disjoint union of finitely many complete graphs.

A Cohen–Macaulay ideal is unmixed, but the converse is not true in general even
when I is the edge ideal of a simple graph. Fakhari, Shibata, Terai and Yassemi [3]
proved that the unmixed property and the Cohen–Macaulay property of I (G,w) are
equivalent when G is a very well-covered graph and characterize all weight functions
w for which I (G,w) are unmixed. In this context, Terai [16] proposed the following
conjecture

Conjecter (Terai) Let G be a Cohen–Macaulay very well-covered graph. Then
I (G,w) is sequentially Cohen–Macaulay for all weight functions w.

We first recall the definition of sequentially Cohen–Macaulay modules over S.

Definition 1 Let M be a graded module over S. We say that M is sequentially Cohen–
Macaulay if there exists a filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M

of M bygraded S-modules such that dim(Mi/Mi−1) < dim(Mi+1/Mi ) for all i , where
dim denotes Krull dimension, and Mi/Mi−1 is Cohen–Macaulay for all i . An ideal J
is said to be sequentially Cohen–Macaulay if S/J is a sequentially Cohen–Macaulay
S-module. A graph G (resp. (G,w)) is said to be sequentially Cohen–Macaulay if
I (G) (resp. I (G,w)) is.

The notion of sequentially Cohen–Macaulay was introduced by Stanley [14] as a
generalization of theCohen–Macaulay property in connectionwith theworkofBjörner
and Wachs on nonpure shellability [1, 2]. When J is a sequentially Cohen–Macaulay
ideal, it is well known that J is Cohen–Macaulay if and only if J is unmixed.

In motivation to study the conjecture of Terai, we classify graphs for which (G,w)
are sequentially Cohen–Macaulay for all weight functions w. To introduce our result,
we first define a special class of simple graphs that contain 5 cycles and chordal
graphs. A chordless cycle Ct of length t is a cycle with no chord {i, j} for j �= i + 1.
Equivalently, the induced graph of G on {1, . . . , t} is the cycle on t vertices.
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Definition 2 A simple graph G is said to be a Woodroofe graph if G has no chordless
cycles of length other than 3 or 5.

Woodroofe [19] proved that a Woodroofe graph is vertex-decomposable. So, it
is sequentially Cohen–Macaulay. Our second main result of this paper states that
Woodroofe graphs are precisely graphs for which (G,w) are sequentially Cohen–
Macaulay for all weight functions w.

Theorem 1.2 Let G be a simple graph. The following statements are equivalent:

(1) I (G,w) is sequentially Cohen–Macaulay for all weight functions w;
(2) I (G,w) is sequentially Cohen–Macaulay for all weight functions w such that

w(xi x j ) ∈ {1, 2} for all edges xi x j ∈ E(G);
(3) G is a Woodroofe graph.

To prove Theorem 1.2, we use the result of Jafari and Sabzrou [11] stating that
a monomial ideal I is sequentially Cohen–Macaulay if and only if the associated
radicals

√
I : u are sequentially Cohen–Macaulay for all monomials u /∈ I . We then

deduce Theorem 1.1.
Now, we explain the organization of the paper. In Sect. 2, we prove Theorem 1.2 and

provide counterexamples to Terai’s conjecture. In Sect. 3, we give some applications
of Theorem 1.2; in particular, we prove Theorem 1.1.

2 Sequentially Cohen–Macaulay edge-weighted graphs

Throughout the paper, we denote S = K [x1, . . . , xn] a standard graded polynomial
ring over a field K . Let m = (x1, . . . , xn) be the maximal homogeneous ideal of S.
We first recall some notation and results.

For a finitely generated graded S-module L , the depth of L is defined to be

depth(L) = min{i | Hi
m(L) �= 0},

where Hi
m(L) denotes the i th local cohomology module of L with respect to m.

Hochster [9] proved that for a monomial ideal I , one has

depth(S/I ) = min{depth(S/√I : u) | u is a monomial in S, u /∈ I }. (1)

An ideal of the form
√

I : u is called an associated radical of I . The associated radicals
of amonomial ideal I also play an important role in studying the (sequentially) Cohen–
Macaulay property and the regularity of I [11, 12]. First, we compute the associated
radicals of edge ideals of edge-weighted graphs.

Let G denote a finite simple graph over the vertex set V (G) = {x1, x2, . . . , xn} and
the edge set E(G). A subgraph H = G[W ] is called an induced subgraph of G on
W ⊂ V (G) if for any vertices u, v ∈ W then uv ∈ E(H) if and only if uv ∈ E(G).
For a vertex x ∈ V (G), let the neighbourhood of x be the subset NG(x) = {y ∈
V (G) | {x, y} ∈ E(G)}. For a subset U ⊂ V (G), the neighbourhood of U in G are
defined by NG(U ) = ⋃

(NG(x) | x ∈ U ).

123



592 Journal of Algebraic Combinatorics (2024) 60:589–597

Let w : E(G) → Z>0 be a weight function on the edges of G. For an exponent
a ∈ N

n , we denote by xa the monomial xa1
1 · · · xan

n in S.

Lemma 2.1 Let G be a simple graph and w : E(G) → Z+ a weight function. For any
exponent a ∈ N

n, let

U = {i | there exists j such that {xi , x j } ∈ E(G) and ai < w(xi x j ) ≤ a j }.

Then √
I (G,w) : xa = I (G\U ) + (xi | i ∈ U ),

where I (G\U ) is the edge ideal of the induced subgraph of G on V (G)\U.

Proof Let J = √
I (G,w) : xa. By [12, Lemma 2.24], generators of J are xi x j with

xi x j ∈ I and xi for some i ∈ {1, . . . , n}. Now xi ∈ J if and only if there exists an
index j such that

xi =
√
(xi x j )

w(xi x j )/ gcd((xi x j )
w(xi x j ), xa)

In particular, we must have ai < w(xi x j ) ≤ a j . The conclusion follows. 	

We now prove that the property that I (G,w) are sequentially Cohen–Macaulay for

all weight functions w is equivalent to the property that all induced subgraphs of G
are sequentially Cohen–Macaulay.

Lemma 2.2 Let G be a simple graph. The following statements are equivalent.

(1) I (G,w) is sequentially Cohen–Macaulay for all weight functions w;
(2) I (G,w) is sequentially Cohen–Macaulay for all weight functions w such that

w(xi x j ) ∈ {1, 2} for all edges xi x j ∈ E(G);
(3) G[W ] is sequentially Cohen–Macaulay for all subsets W ⊆ V (G).

Proof It is obvious that (1) ⇒ (2). Now, we prove (2) ⇒ (3). Let W be any subset of
V (G). If G[W ] has no edges, there is nothing to prove. Thus, we assume that G[W ]
has at least one edge. Let w be the weight function defined as follows:

w(e) =
{
2 if e ∈ G[W ],
1 otherwise.

Let xa = ∏
x j ∈W x j and U = N (W ) \ W . By Lemma 2.1, we have

√
I (G,w) : xa = I (G\U ) + (xi | xi ∈ U ). (2)

By [11, Proposition 2.23],
√

I (G,w) : xa is sequentiallyCohen–Macaulay. SinceU =
N (W )\W , G\U is the disjoint union of G[W ] and G[W ′]where W ′ = V (G)\N (W ).
By [19, Lemma 20], we deduce that I (G[W ]) is sequentially Cohen–Macaulay.
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(3) ⇒ (1). By Lemma 2.1, for any weight functions w and any exponents a ∈ N
n

such that xa /∈ I (G,w),
√

I (G,w) : xa is of the form I (G[W ]) + (some variables)
for some subset W of V (G). By assumption, they are sequentially Cohen–Macaulay.
By [11, Proposition 2.23], I (G,w) is sequentially Cohen–Macaulay. 	


We are now ready for the proof of Theorem 1.2.

Proof of Theorem 1.2 By the definition of Woodroofe graphs, we have the following
facts.

(1) Woodroofe graphs are sequentially Cohen–Macaulay [19, Theorem 1].
(2) Induced subgraphs of a Woodroofe graph are Woodroofe graphs.
(3) The cycles Ct are not sequentially Cohen–Macaulay for t �= 3, 5 (see [4,

Proposition 4.1] and [19, Theorem 10]).

The conclusion then follows from Lemma 2.2. 	

By Theorem 1.2, any Cohen–Macaulay very well-covered graph that is not

Woodroofe is a counterexample toTerai’s conjecture.Weprovide some concrete exam-
ples below. Recall that a simple graph is called very well covered if the size of every
minimal vertex cover is half the number of vertices. In particular, it is unmixed.

Example 2.3 Let H be a suspension of a cycle Ct for t �= 3, 5, i.e. the set of edges and
the set of vertices are

E(H) = {x1x2, x2x3, . . . , xt−1xt , xt x1, x1y1, . . . , xt yt } and V (H) = {x1, y1, . . . , xt , yt }.
Letw be aweight function on E(H) taking valuew ≥ 2 for the edges xi xi+1 and value
1 otherwise. Then, H is a Cohen–Macaulay very well-covered graph, but (H ,w) is
not sequentially Cohen–Macaulay.

Proof The graph H is Cohen–Macaulay by [15, Theorem 2.1] (also see [17]). By
definition, H is very well covered. Since

√√√√I (H ,w) :
t∏

i=1

xw−1
i = I (Ct ) + (y1, . . . , yt )

and I (Ct ) is not sequentially Cohen–Macaulay by [4, Proposition 4.1]. By [11,
Proposition 2.23], I (H ,w) is not sequentially Cohen–Macaulay.

3 Cohen–Macaulay edge-weighted graphs

In this section,we give some applications of Theorem1.2. First, we recall the definition
of Cohen–Macaulay modules.

A finitely generated graded S-module L is called Cohen–Macaulay if depth(L) =
dim(L). A homogeneous ideal I ⊆ S is said to be Cohen–Macaulay if S/I is Cohen–
Macaulay. The ideal I is called unmixed if the associated primes of S/I have the same
height. It is well known that I is unmixed if S/I is a Cohen–Macaulay ring.

First, we have
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Corollary 3.1 Let G be a Woodroofe graph and w : E(G) → Z>0 a weight function.
Then I (G,w) is Cohen–Macaulay if and only if I (G,w) is unmixed.

Proof The conclusion follows from Theorem 1.2 and the fact that a sequentially
Cohen–Macaulay ideal is Cohen–Macaulay if and only if it is unmixed.

The following result is well known, see, for example, [6]. We include an argument
here for completeness.

Lemma 3.2 Let I be a monomial ideal. Assume that I is Cohen–Macaulay. Then√
I : u is Cohen–Macaulay for all monomials u such that u /∈ I .

Proof Since I is Cohen–Macaulay, it is unmixed. Hence, dim(S/
√

I : u) = dim(S/I )
for all monomials u /∈ I . By Hochster’s formula (1), we have

depth(S/I ) ≤ depth(S/
√

I : u) ≤ dim(S/
√

I : u) = dim(S/I ).

The conclusion follows. 	

We are now ready for the proof of Theorem 1.1.

Proof of Theorem 1.1 It is obvious that (1) ⇒ (2). Now, we prove (2) ⇒ (3). By
Lemma 3.2 and the proof of the implication (2) ⇒ (3) in Lemma 2.2, we deduce that
G[W ] is Cohen–Macaulay for all W ⊆ V (G). The conclusion then follows from the
following facts

(1) P3 a path of length 2 is not Cohen–Macaulay.
(2) If P3 is not an induced subgraph of G then G is a disjoint union of complete graphs.
(3) ⇒ (1). Assume that G is the disjoint union of finitely many complete graphs.

By [13, Proposition 4.6] and [5, Theorem 2.5], I (G,w) is unmixed for all weight
functions w. By Theorem 1.2, the conclusion follows.

	

Remark 3.3 We have overlooked the unmixedness condition in the previous version
and stated that theCohen–Macaulayness of I is equivalent to theCohen–Macaulayness
of all associated radicals of I . As pointed out by an anonymous referee, the Cohen–
Macaulayness of all associated radicals of I is not enough to guarantee the Cohen–
Macaulayness of I . One has to establish the unmixed property of I as well. We thank
the anonymous referee for pointing out this gap in our earlier proof of the theorem.

When G is a Cohen–Macaulay graph, a weight function w on edges of G is called
Cohen–Macaulay if (G,w) is Cohen–Macaulay. Before giving our next application,
we recall the result of Paulsen and Sather-Wagstaff [13, Theorem 4.4] on an edge-
weighted graph (C5,w). They proved that w is Cohen–Macaulay if and only if there
exists a vertex v so that the weights on edges of C5 starting from v in clockwise order
are of the form v = a, b, c, d, a = v and that a ≤ b ≥ c ≤ d ≥ a. We call such a
vertex v a balancing vertex of w.

Let H be a graph formed by connecting two 5 cycles by a path. By [10, The-
orem 2.4], H is Cohen–Macaulay if and only if this path is of length 1. We
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may assume that the vertices of H are {x1, . . . , x5, y1, . . . , y5} and edges of H
are {x1x2, . . . , x4x5, x1x5, y1y2, . . . , y4y5, y1y5, x1y1}. Note that I (H) + (xi ) and
I (H) + (yi ) are not Cohen–Macaulay for i ∈ {2, 5}. With this assumption, we have

Proposition 3.4 The edge-weighted graph (H ,w) is Cohen–Macaulay if and only if
w satisfies the following conditions:

(1) w(x1y1) ≤ min{w(x1x2),w(x1x5),w(y1y2),w(y1y5)},
(2) The induced edge-weighted graphs of (H ,w) on {x1, . . . , x5} and {y1, . . . , y5}

are Cohen–Macaulay.
(3) Balancing vertices of w on {x1, . . . , x5} and {y1, . . . , y5} can be chosen among

{x1, x3, x4} and {y1, y3, y4} respectively.

Proof For simplicity of notation, we set I = I (H ,w). Let (H1,w1) and (H2,w2)

be the induced edge-weighted graphs of (H ,w) on {x1, . . . , x5} and {y1, . . . , y5}
respectively.

First, assume that (H ,w) is Cohen–Macaulay. We prove that w must satisfy the
above conditions. For (1), assume by contradiction thatw(x1y1) = a > w(y1y2) = b.
Let c = max{w(y3y4),w(y4y5)}. Then

√
I : ya−1

1 yc
4 = I (H [x1, . . . , x5, y1]) + (y2, y3, y5).

In particular, it is not Cohen–Macaulay. By Lemma 3.2, I (H ,w) is not Cohen–
Macaulay, a contradiction. By symmetry, w must satisfy condition (1).

We now prove that (H2,w2) must be Cohen–Macaulay. Assume by contradiction
that (H2,w2) is not Cohen–Macaulay. By Corollary 3.1, I (H2,w2) has an embedded
primep. By [7,Corollary 1.3.10], there exists an exponent yb such thatp = I (H2,w2) :
yb. Then we have

I (H ,w) : xa2
2 xa4

4 yb = p + (x1, x3, x5),

where a2 = max(w(x2x1),w(x3x2)) and a4 = max(w(x3x4),w(x4x5)). In particular,
it is an embedded prime of I (H ,w), a contradiction. By symmetry, w must satisfy
condition (2).

Nownote that ifw(x2x3) < w(x3x4) then
√

I : xb
3 = I +(x2)where b = w(x3x4)−

1. Since I + (x2) is not Cohen–Macaulay, by Lemma 3.2, this implies a contradiction.
Hence, w(x2x3) ≥ w(x3x4). By symmetry, we deduce that w(x4x5) ≥ w(x3x4).
By [13, Theorem 4.4] and the previous claim that (H1,w1) is Cohen–Macaulay, we
deduce that a balancing vertex ofw on {x1, . . . , x5} can be chosen among {x1, x3, x4}.
By symmetry, w must satisfy condition (3).

It remains to prove that if w satisfies conditions (1), (2), (3), then I = I (H ,w)
is Cohen–Macaulay. By Corollary 3.1, it suffices to prove that I (H ,w) is unmixed.
Let p = I : xayb be an associated prime of I (H ,w). We need to prove that p
is an associated prime of I (H). By symmetry, we may assume that a1 ≥ b1. Since
xayb /∈ I (H ,w), wemust have b1 < w(x1y1) ≤ min(w(y1y2),w(y1y5)). By Lemma
2.1, we may assume that b1 = 0. There are two cases as follows.
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Case 1. a1 ≥ w(x1y1). By Lemma 2.1, we have

p = I : xayb =
√

I : xayb = (y1) + √
I (H1,w1) : xa +

√
I (H2,w2) : yb. (3)

Assume by contradiction that p is an embedded associated prime of I (H ,w). Since
(H1,w1) and (H2,w2) are Cohen–Macaulay by [13, Theorem 4.4], we must have√

I (H2,w2) : yb = (y2, y4, y5) or (y2, y3, y5). Since b1 = 0, by Lemma 2.1, wemust
have b2 < w(y2y3) ≤ b3 and b5 < w(y4y5) ≤ b4. Hence, y3, y4 cannot be balancing
vertex of w on {y1, . . . , y5}. By condition (3), we deduce that y1 is the balancing
vertex. In particular, w(y3y4) ≤ w(y2y3) ≤ b3 and w(y3y4) ≤ w(y4y5) ≤ b4. In
other words, yb ∈ I , which is a contradiction.

Case 2. a1 < w(x1y1). By Lemma 2.1, we have

p = √
I (H1,w1) : xa +

√
I (H2,w2) : yb + (x1y1). (4)

Hence, either x1 ∈ √
I (H1,w1) : xa or y1 ∈ √

I (H2,w2) : yb and

p = √
I (H1,w1) : xa +

√
I (H2,w2) : yb.

Since (H1,w1) and (H2,w2) are Cohen–Macaulay, we deduce that p is an associated
prime of I (H).

The conclusion follows. 	

Remark 3.5 This result has been generalized to all Cohen–Macaulay graphs of large
girth by Hien [8]. We keep our argument here to illustrate our technique.
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