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Abstract
Recently, H. Dao andR.Nair gave a combinatorial description of simplicial complexes
� such that the squarefree reduction of the Stanley–Reisner ideal of � has the WLP
in degree 1 and characteristic zero. In this paper, we apply the connections between
analytic spread of equigenerated monomial ideals, mixed multiplicities and birational
monomial maps to give a sufficient and necessary condition for the squarefree reduc-
tion A(�) to satisfy the WLP in degree i and characteristic zero in terms of mixed
multiplicities of monomial ideals that contain combinatorial information of �, we
call them incidence ideals. As a consequence, we give an upper bound to the possible
failures of the WLP of A(�) in degree i in positive characteristics in terms of mixed
multiplicities. Moreover, we extend Dao and Nair’s criterion to arbitrary monomial
ideals in positive odd characteristics.

Keywords Lefschetz properties · Graded Artinian rings · Mixed multiplicities ·
Monomial ideals

1 Introduction

AnArtinian graded k-algebra A, where k is a field, is said to satisfy the weak Lefschetz
property (WLP) if the multiplication maps by a general linear form L , ×L : Ai →
Ai+1 have full rank for all i . Moreover, A is said to satisfy the strong Lefschetz
property (SLP) if the multiplication maps by powers of a general linear form L ,
×Ld : Ai → Ai+d have full rank for all i and all d. Over the last few decades,
Lefschetz properties and its connections to other areas of mathematics have been
extensively studied. Areas where the connections to the WLP and SLP have been
studied include algebraic and differential geometry, topology and combinatorics (see,
for example, [8, 20, 23, 29]).
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One of the consequences of an algebra A having theWLP is that its h-vector, which
keeps track of the coefficients of theHilbert series, is unimodal (see, for example, [17]).
In view of this, studying the WLP of algebras where the h-vector is known to be equal
to a sequence associated with a combinatorial object, is of interest. A particular class
of algebras where the WLP has been recently studied is

A(�) = k[x1, . . . , xn]/((x21 , . . . , x2n ) + I�)

where I� is a squarefreemonomial ideal, the Stanley–Reisner ideal of�. The h-vector
of such algebras was shown to be equal to the f -vector of � in [11, 23].

In [11], the authors completely described the simplicial complexes � such that
A(�) that have the WLP in degree 1, when the base field has characteristic 0.

In this paper, we introduce incidence ideals of a simplicial complex �, which can
be seen as generalizations of facet ideals. We show that the analytic spread of such
ideals determines the WLP of A(�) in characteristic zero.

Theorem 1 (Theorem 24) Let � be a simplicial complex and assume the base field is
of characteristic 0. Then,

(1) A(�) has the WLP in degree i if and only if

�(I�(i)) = min( fi−1, fi ),

where �(I�(i)) is the analytic spread of the i-th incidence ideal of �.
(2) If A(�) is a level algebra, then it has the SLP in degree 1 if and only if

�(F(�(d))) = min( f0, fd) for every d

where �(F(�(d))) is the analytic spread of the facet ideal of the d-skeleton of �.

An open question in this area is to describe the positive characteristics where a given
class of algebras defined by monomial ideals fails the WLP (see [21, Question 7.3]).
We answer this question for the algebras A(�) in terms of the mixed multiplicities
of ideals contained in the incidence ideals of �. In particular, we prove the following
bound:

Corollary 2 (Corollary 49) Assume A(�) has the WLP in degree i and character-
istic zero. Assume also that fi−1 ≤ fi . Then, A(�) has the WLP in degree i and
characteristic p for every p such that

p > e(0, fi−1−1)(m�,i |I�(i)) and p does not divide i + 1.

As a consequence of the two results above, we also generalize the criterion given in
[11, Theorem 3.3] for algebras A(�) to have the WLP in degree 1 and characteristic
zero, to odd characteristics and arbitrary algebras A defined by monomial ideals.

123



Journal of Algebraic Combinatorics (2024) 60:295–317 297

Theorem 3 (Theorem 58) Let I ⊂ R = k[x1, . . . , xn] be a monomial ideal such that
A = R/I is Artinian. Assume dim A1 ≤ dim A2. Set

E = {xi x j |xi x j �= 0 in A}, where i may be equal to j .

then A has the WLP in characteristic 0 and degree 1 if and only if it has the WLP in
degree 1 in every odd characteristic.

Moreover, A has the WLP in degree 1 and characteristic 0 if and only if the mono-
mials in E are the edges of a graph (possibly with loops) such that every connected
component contains a (not necessarily induced) subgraph with either one loop or an
odd cycle.

2 Preliminaries

Let k be an infinite field and R = k[x1, . . . , xn] the polynomial ring over k. Let I be
a homogeneous ideal such that A = R/I is an Artinian graded algebra.

Definition 4 Let L be ageneral linear form. If themultiplicationmap×L : Ai → Ai+1
has full rank for every i , we say A has the weak Lefschetz property (WLP).

If moreover the multiplication maps by powers of L: ×Ld : Ai → Ai+d also have
full rank for every i and d, we say A has the strong Lefschetz property (SLP).

Proposition 5 ([22], Proposition 2.2) Let I be a monomial ideal of R such that A =
R/I is Artinian and L = x1 + · · · + xn. Then, A has the WLP (resp. SLP) if and only
if the multiplication map by L (resp. powers of L) has full rank.

We are particularly interested in the case where I is the sum of a squarefree mono-
mial ideal and the squares of the variables of R.

Definition 6 A simplicial complex � with vertex set V = {1, . . . , n} is a collection
of subsets � of V such that σ ∈ � and τ ⊂ σ implies τ ∈ �. Elements in � are
called faces of �, maximal faces are called facets. The dimension of � is dim� =
max(|F | : F a facet of �) − 1. If every facet of � has the same dimension, we say �

is pure. A 0-dimensional face is called a vertex of �, similarly, a 1-dimensional face
is called an edge of �. The number of i-dimensional faces of � is denoted by fi (�),
or simply fi if the simplicial complex is clear from the context. By deleting every face
of � with dimension higher than i , we get a new simplicial complex �(i) which is
called the i-skeleton of �.

Given a simplicial complex �, the ideal

I� = (xi1 . . . xim |{i1, . . . , im} /∈ �)

is called the Stanley–Reisner ideal of �. When we take the quotient of R by I� and
the squares of the variables, we get an Artinian algebra:

A(�) := R/(I� + (x21 , . . . , x
2
n )).
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Example 7 Let � be the complex with facets {{a, b, c}, {a, c, d}, {b, c, d}}.

a

d

b

c

Then, A(�) = k[a, b, c, d]/(abd, a2, b2, c2, d2).

The algebra A(�) contains all the combinatorial information of �:

Proposition 8 ([11], Proposition 2.2) Let � be a simplicial complex. Then,

(1) The monomials in A := A(�) are in one-one correspondence with the faces of �.
For i > 0, Ai is a k-vector space with a basis given by

{xF |F is an (i − 1)-face of �}.

(2) The Hilbert series of A(�), HilbA(�)(t) = ∑
i≥0 fi−1t i . That is, the h-vector of

A(�) is equal to the f -vector of �.
(3) A(�(i)) = ⊕ j≤i+1(A(�)) j .

Definition 9 The ideal (0 : A j≥1) is called the socle of A. The highest number d such
that Ad �= 0 is called the socle degree and is denoted by socdeg(A). The algebra A(�)

is said to be level of type t if (0 : A j≥1) = Asocdeg(A) and its socle is generated by t
elements.

Proposition 10 ([4]) The algebra A(�) is level if and only if � is a pure simplicial
complex.

In [11], the authors completely described when A(�) has the WLP in degree 1 and
characteristic 0 in terms of the 1-skeleton of �.

Theorem 11 ([11], Theorem 3.3) Let � be a simplicial complex, R = k[x1, . . . , xn]
where k is a field of characteristic zero and

A(�) = R/((x21 , . . . , x
2
n ) + I�).

Then

(1) If f1 ≥ f0, then A(�) has the WLP in degree 1 if and only if�(1) has no bipartite
connected components.

(2) If f1 < f0, then A(�) has the WLP in degree 1 if and only if each bipartite
component of�(1) (if it exists) is a tree and each non-bipartite component satisfies
the property that the number of edges in the component is equal to the number of
vertices in the component.
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The proof of the theorem above uses the following well known result from graph
theory ([14, Theorem 8.2.1]). We recall the incidence matrix of a simple loopless
graph is the |E | × |V | matrix where the (i, j)th-entry is 1 if the vertex v j is incident
to the edge ei , and 0 otherwise.

Proposition 12 Given a graph G with n vertices and bG bipartite connected compo-
nents, the rank of the incidence matrix of G over a field of characteristic zero is given
by n − bG.

Remark 13 One particular case of Theorem 11 is when � has no isolated vertices and
the same number of vertices and edges. Then A(�) has the WLP in degree 1 if and
only if every connected component of �(1) is a tree with a single odd cycle. As we
will see, this version of the theorem has been proven from different perspectives to
answer different questions.

3 Incidencematrices and analytic spread

Let I be an ideal of R. The algebra R[I t] := ⊕i∈N I i t i ⊂ R[t] is called the Rees
algebra of I . Let m be the maximal homogeneous ideal of R. The quotient F(I ) =
R[I t]/mR[I t] is called the (special) fiber ring of I . The dimension of the fiber ring
of I is called the analytic spread of I and is denoted by �(I ).

When I is a monomial ideal, the fiber ringF(I ) is the monomial algebra generated
by the generators of I . We now list some of the connections between the fiber ring of
a monomial ideal I and convex geometry that will be useful.

Definition 14 Let M be a set of lattice points in Zn . The rank of M is the rank of the
subgroup of Zn generated by M and is denoted by rank ZM .

Theorem 15 ([19]) Let I be an equigenerated monomial ideal and M the set of expo-
nents of the generators of I . Then,

�(I ) = rank ZM .

In order to use Theorem 15 as a tool to detect theWLP, we first define the following
polynomial ring:

Definition 16 Let I be an Artinian monomial ideal in a polynomial ring R =
k[x1, . . . , xn]. We call the polynomial ring

RI = C[tm |m is a monomial in R, m /∈ I ]

the incidence ring of I .When I = I�+(x21 , . . . , x
2
n )wewrite R� for the incidence

ring of I . By Proposition 8, there is a bijection between variables of R� and the faces
of�, so we write tτ for the variable that corresponds to the face τ under this bijection.

We will denote by RI ,i (or R�,i , in the squarefree case) the quotient

RI ,i := RI /(tm | degm �= i).
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Moreover, we write mI ,i (m�,i , in the squarefree case) for the maximal graded
ideal of RI ,i (resp. R�,i ). Note that dim R�,i = fi−1.

Next we define the incidence matrices of a simplicial complex. As we will see,
these are exactly the matrices that need to have full rank for the algebra A(�) to have
the WLP.

Definition 17 Let � be a simplicial complex and Fi the set of all i-dimensional faces
of �. The matrix M(�, i) is the fi by fi−1 matrix such that the rows are labeled by
i-faces, the columns are labeled by i − 1-faces and:

M(�, i) jk =
{
1 if the j-th element of Fi contains the k-th element of Fi−1

0 otherwise

we call this matrix the i-th incidence matrix of �.

Taking the rows of a matrix to be the exponents of monomials, we can define the
ideals associated with incidence matrices:

Definition 18 Let � be a simplicial complex and M(�, i) its i-th incidence matrix.
The ideal

I�(i) =
⎛

⎝
∏

τ⊂σ1,|τ |=i

tτ , . . . ,
∏

τ⊂σ fi ,|τ |=i

tτ

⎞

⎠ ⊂ R�,i ,

where σi are the i-dimensional faces of � is called the i-th incidence ideal of �.

Example 19 Let � be the simplicial complex from Example 7. Then, we have:

M(�, 1) =

a b c d
⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

ab 1 1 0 0
ac 1 0 1 0
ad 1 0 0 1
bc 0 1 1 0
bd 0 1 0 1
cd 0 0 1 1

M(�, 2) =
ab ac ad bc bd cd

( )abc 1 1 0 1 0 0
acd 0 1 1 0 0 1
bcd 0 0 0 1 1 1

From the matrices, we see that the first incidence ideal of � is

I�(1) = ( tatb︸︷︷︸
ab

, tatc︸︷︷︸
ac

, tatd︸︷︷︸
ad

, tbtc︸︷︷︸
bc

, tbtd︸︷︷︸
bd

, tctd︸︷︷︸
cd

) ⊂ R�,1,
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that is, the edge ideal of the 1-skeleton of�. Moreover, we know the second incidence
ideal of � is:

I�(2) = (tabtactbc︸ ︷︷ ︸
abc

, tactad tcd︸ ︷︷ ︸
acd

, tbctbd tcd︸ ︷︷ ︸
bcd

) ⊂ R�,2.

Proposition 20 Let � be a simplicial complex and I�(i) the i-th incidence ideal of �.
Then,

(1) I�(i) is an equigenerated squarefree monomial ideal generated in degree i + 1.
(2) For any two distinct monomials m1,m2 in a minimal generating set of I�(i) we

have deg gcd(m1,m2) ≤ 1.

Proof (1) The number of i − 1-dimensional faces inside an i-dimensional face is
always equal to i + 1, therefore the generators of I�(i) are monomial, squarefree
and all have degree i + 1.

(1) Given two distinct i −1-faces, their union has at least i +1 elements, in particular,
if the intersection of two i-faces σ, τ contains two i − 1-faces, then σ = τ . In
terms of the generators of the ideal, this means if two generators of I�(i) share
two variables, then they must be equal.

	

Example 21 Let J = (x1x2x3, x3x4x5, x5x6x7, x1x7x8) ⊂ k[x1, . . . , xn], n ≥ 8. Is
there a simplicial complex � such that J = I�(2)?We can try to answer this question
as follows:
If such a � exists, then x1 corresponds to the variable t{a,b}, where {a, b} is an edge
of �. This implies the generator x1x2x3 corresponds to the monomial t{a,b}t{a,c}t{b,c},
which in turn corresponds to the triangle {a, b, c}, and more specifically we can say x2
corresponds to the variable t{a,c} and x3 to the variable t{b,c}. Similarly we conclude the
generator x3x4x5 corresponds to themonomial t{b,c}t{b,d}t{c,d} and thus x5 corresponds
to the variable t{�,d} where either � = b or � = c. Notice that if a is a vertex of
one of the edges of the triangle associated with the monomial x5x6x7, then it would
imply either {a, b} or {a, c} is an edge of this triangle, which then would imply either
x2 or x3 divides x5x6x7 (a contradiction). In particular, this triangle must contain a
vertex e that is not in the previous triangles and so the vertices of the triangle that
corresponds to x5x6x7 are {�, d, e}. Applying the same argument to x7 we conclude
x1x7x8 corresponds to the triangle {a, b, e} and thus x7 corresponds to the edge {b, e}
and in particular � = b. Therefore, a simplicial complex � such that J is its second
incidence ideal has facets: {{a, b, c}, {b, c, d}, {b, d, e}, {a, b, e}}.

Proposition 20 gives us necessary conditions for an ideal to be the incidence ideal
of some simplicial complex �. One natural question that arises is whether these con-
ditions are also sufficient. Example 22 tells us that the conditions are not sufficient.

Example 22 Let

IF = (x1x2x3, x3x4x5, x1x5x6, x1x4x7, x2x5x7, x3x6x7, x2x4x6) ⊂ k[x1, . . . , xn],
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with n ≥ 7. Then,

(1) Without loss of generality we may assume x1x2x3 corresponds to the triangle
{a, b, c} where x1 is the edge {a, b}, x2 is the edge {a, c} and x3 is the edge {b, c}

(2) x3x4x5 corresponds to the triangle {b, c, d} where x4 is the edge {�, d} and x5 is
the edge {�, d}, where b = � and c = �, or the opposite

(3) x1x5x6 corresponds to the triangle {a, b,�, d}, in particular � = b
(4) x1x4x7 corresponds to the triangle {a, b,�, d}, in particular � = b. This is a

contradiction since it implies x4 = x5.

In particular, IF satisfies the properties in Proposition 20, but it is not the incidence
ideal of any simplicial complex.

Lemma 23 Let � be a simplicial complex, A = A(�) and L = x1 + · · · + xn. The
matrix that represents the multiplication map ×L : Ai → Ai+1 is M(�, i), where
the entries of M(�, i) are taken to be in k, the base field of A.

Proof We know the monomials of Ai are in bijection with the i −1-dimensional faces
of �. For a i − 1-dimensional face τ ,

×L(xτ ) = Lxτ =
∑

τ∪{ j}∈�

xτ x j

thus the column corresponding to τ will have 1 for each i-dimensional face σ such
that τ ⊂ σ , which is the definition of the incidence matrix M(�, i). 	

Theorem 24 (WLP from incidence matrices) Let � be a simplicial complex and
assume the base field is of characteristic 0. Then, A(�) has the WLP in degree i if
and only if

�(I�(i)) = min( fi−1, fi ).

Proof Let M = {α1, . . . , α fi } be the set of rows of M(�, i). The rank of the matrix
M(�, i) is by definition the dimension of the space spanned by its rows. Since the field
is of characteristic zero, this dimension is exactly rank ZM , therefore by Theorem 15

�(I�(i)) = rank ZM = rank M(�, i).

In particular, M(�, i) has full rank if and only if

�(I�(i)) = min( fi−1, fi ).

	

Remark 25 Connections between the bipartite property for graphs and algebraic invari-
ants of edge ideals that are related to analytic spread can be found throughout the
literature, see, for example, [2] and [25]. The first incidence ideal of a simplicial
complex � is the edge ideal of �(1); therefore, one can think of Theorem 11 as a
generalization of these results in the language of the WLP.
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Remark 26 All of the results and definitions above can be generalized to arbitrary
monomial ideals I such that R/I is Artinian. The only difference is that when there
is a nonzero non-squarefree monomial in R/I , then one defines the incidence ideal to
be generated by powers of the monomials in Definition 18, forcing the incidence ideal
to be equigenerated.

Example 27 Let � be the simplicial complex in Example 7 and assume the base field
has characteristic zero. Using Macaulay2 [16] we can easily check that for I�(1) =
(tatb, tatc, tatd , tbtc, tbtd , tctd) ⊂ R�,1 and I�(2) = (tabtactbc, tactad tcd , tbctbd tcd) ⊂
R�,2 we have:

(1) �(I�(1)) = 4 = f0
(2) �(I�(2)) = 3 = f2

By Theorem 24, � has the WLP in all degrees.

Next we give a criterion for the Artinian algebra A(�) to satisfy the SLP in degree
1 in terms of facet ideals.

Definition 28 Let � be a simplicial complex on vertex set {1, . . . , n} with facets
{Q1, . . . , Qs} and k a field. The ideal

F(�) = (
∏

j∈Q1

t j , . . . ,
∏

j∈Qs

t j ) ⊂ R�,1

is called the facet ideal of�. More generally, we writeF(�, i) for the ideal generated
by the i-dimensional facets of �. Note that when � is pure, F(�, i) is the facet ideal
of the i-skeleton �(i).

Theorem 29 (SLP in degree one in terms of skeletons)Let�bea simplicial complex.
Then, � has the SLP in degree 1 and characteristic zero if and only if the following
holds for all d:

�(F(�(d), d)) = min( f0, fd).

In particular, if � is pure, then A(�) has the SLP in degree 1 and characteristic
zero if and only if the following holds for all d:

�(F(�(d))) = min( f0, fd).

Proof To prove that A(�) has the SLP in degree 1, we need to check that the maps
×Ld : A1 → Ad+1 have full rank for all d. Note that for every x j we have

Ldx j = d!x j
∑

{i1,...,id }∈�

xi1 . . . xid = d!
∑

{ j}∪{i1,...,id }∈�

x j xi1 . . . xid .

That is, the matrix that represents the linear transformation ×Ld is:

[ × Ld ] jk =
{
d! if the j-th d-face of � contains the k-th vertex of �

0 otherwise.
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Note that the rows of [×Ld ] are in bijection with the facets of �(d) that have
dimension d. Moreover, since the rows of [×Ld ] are exactly the exponent vectors
(after rescaling, which does not affect the rank in characteristic zero) of the monomials∏

j∈τ x j , where τ is a facet of �(d) of dimension d, we conclude by Theorem 15 that

[×Ld ] has full rank if and only if

�(F(�(d), d)) = min( f0, fd).

If � is pure, then �(d) is pure for every d, which means F(�(d), d) = F(�(d)),
so the particular case follows. 	

Example 30 The simplicial complex � from Example 7 is clearly a pure complex.
Using Macaulay2 [16] we can easily compute

�(F(�)) = �(F(�(2))) = 3

and

�(F(�(1))) = �(I�(1)) = 4,

so by Theorem 29 � has the SLP in degree 1 and characteristic zero.

4 Birational Combinatorics

Next we focus on rational maps from projective spaces defined by monomials. In
[25], Simis and Villarreal used the expression birational combinatorics to describe
the study of such maps. Most of their work was focused on mapsPn ��� Pn . Here we
state some of their results and mention their connections to the WLP. In later sections,
we will apply these results to the study of the WLP in positive characteristics.

Definition 31 The incidence matrix of a graph G = (V , E) with loops is the follow-
ing:

M(G)i j =

⎧
⎪⎨

⎪⎩

1 if the edge i is incident to the vertex j and is not a loop

2 if the edge i is a loop incident to j

0 otherwise

Definition 32 Given a set of monomials M in k[x1, . . . , xn] the log-matrix of M is
the matrix log(M) such that its rows are the exponent vectors of the monomials in M .
If the sum of every row of a matrix N is equal to some fixed number d, we say N is a
d-stochastic matrix. In particular, if the monomials in M have the same degree d, the
log-matrix of M is d-stochastic.

If M is a set of monomials of degree 2, then log(M) is the incidence matrix of a
graph G (possibly with loops), the graph G is called the underlying graph of M .
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Definition 33 Given an ideal I ⊂ k[x1, . . . , xn], there exists a surjective map ψ :
S(I ) → R[I t], where S(I ) is the symmetric algebra of I . If ψ is an isomorphism, the
ideal I is said to be of linear type.

Definition 34 A finite set of monomials M = {m1, . . . ,ms} ⊂ k[x1, . . . , xn] of the
same degree d defines the following rational map:

ϕM : Pn−1 ��� Ps−1, ϕM (x1 : · · · : xn) = (m1 : · · · : ms)

If n = s and ϕM has an inverse rational map ϕ′, we say ϕM is a Cremona trans-
formation of Pn−1.

One of the main applications given in [25] is the following description of birational
monomial maps of degree 2.

Theorem 35 ([25], Proposition 5.1)Let M ⊂ k[x1, . . . , xn] be a finite set of n monomi-
als of degree two with no non-trivial common factors such that the underlying graph
G is connected. Let N denote the n × n incidence matrix of G. The following are
equivalent:

(1) det N �= 0
(2) ϕM is a Cremona transformation of Pn−1

(3) Either

(a) G has no loops and has a unique cycle of odd length
(b) G is a tree with exactly one loop

(4) The ideal (M) ⊂ k[x1, . . . , xn] is of linear type.
Remark 36 Theorem 35 and Theorem 11 use very similar techniques to answer dif-
ferent questions from different fields, each with their natural restrictions. On the one
hand, Theorem 11 gives a criterion for the incidence matrix of any graph (without
loops) to have full rank, regardless of whether the graph has more vertices or edges.

On the other hand, the underlying graphs associated with rational maps Pn−1 ���
Pn−1 defined by degree 2 monomials may have loops, but have the restriction that
they must have the same number of vertices and edges.

It is clear that in the case where the restrictions of the two areas intersect (connected
graphs without loops and the same number of vertices and edges), then conditions 1.
and 3. of Theorem 35 and Theorem 11 coincide.

Example 37 Let G be the graph with vertex set {a, b, c, d} and edges

{{a, c}, {a, d}, {b, c}, {c, d}}.

Assume the base field has characteristic 0. Then, G is a connected graph that
contains only one odd cycle. By Theorem 35, the map P3 ��� P3 defined by [a : b :
c : d] �→ [ac : ad : bc : cd] is birational.

Let � be the simplicial complex from Example 7. Note that �(1) contains G as a
subcomplex. This implies the incidence matrix of G is a maximal square submatrix
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of M(�, 1). In particular, the determinant of the incidence matrix of G is a maximal
minor of M(�, 1). Again by Theorem 35 we know this determinant is not zero, and
thus M(�, 1) has full rank. We have proven that � has the WLP in degree 1 by
finding a subcomplex �′ ⊂ � such that f0(�) = f0(�′) = f1(�′) that has the WLP
in degree 1.

Example 38 Consider the simplicial complex 	 below:

1

2

3

4

5

6 7

The results in [1] imply the facet ideal of 	 is of linear type. Taking the vertices of
	 to be the edges of another simplicial complex � (i.e., we want the facet ideal of 	

to be the second incidence ideal of �), we get the following:

1 ↔ {a, b}, 2 ↔ {a, c}, 3 ↔ {b, c}, 4 ↔ {b, d}, 5 ↔ {c, d}, 6 ↔ {b, e},
7 ↔ {c, e}
In particular, the facet ideal of 	 is the second incidence ideal of

� = {{a, b, c}, {b, c, d}, {b, c, e}}.

Moreover, we can verify that the algebra A(�) has the WLP in degree 2 in every
characteristic (at least one of the maximal minors of M(�, 2) is ±1).

The following result from [25] sheds some light into the failure of the WLP in
positive characteristics. This will be our focus in future sections.

Theorem 39 ([24], Proposition 2.1) Let M be a finite set of monomials of the same
degree d ≥ 1. Then, ϕM is a Cremona transformation if and only if

det(log(M)) = ±d.

The next example shows how the failure of the WLP in positive characteristics is
connected to a rational map not being birational.

Example 40 Let I = (x3x4, x4x6, x1x7, x4x7, x5x7) ⊂ R = k[x1, . . . , x7] and A =
R/((x21 , . . . , x

2
7 ) + I ). The multiplication map ×L : A2 → A3, where L = x1 +

· · ·+ x7 is a 16×16 square matrix with constant row sum 3 and nonzero determinant,
but the rational map defined by this matrix is not birational since the determinant is
−192, instead of ±3. In particular, the first equivalence in Theorem 35 only works for
monomial rational maps of degree 2. Moreover, since 192 = 263, we see that A fails
the WLP in characteristics 2 and 3.
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Theorem 39 is a criterion for a map to be birational in terms of a determinant. It is
useful to note that the determinant of a d-stochastic matrix is always divisible by d.

Theorem 35 together with Theorem 39 describes every possible value of the deter-
minant of a 2-stochastic square matrix with only 0, 1 and 2 as entries. Lemma 23
describes the matrices that represent the multiplication maps that determine the WLP
for Artinian algebras that are quotients of monomial ideals. The last result of this sec-
tion is an application of Theorem 35 to the maximal minors of 2-stochastic matrices
that have more rows than columns. This result will then be used to describe the failure
of the WLP in positive characteristics in degree 1 in later sections.

Corollary 41 Let M be amatrix with more rows than columns such that all of its entries
are either 0, 1 or 2 and assume the sum of the entries in every row is 2. Then every
maximal minor of M is either 0 or its absolute value is a power of 2.

Proof Since M has more rows than columns, maximal minors of M are determinants
of submatrices ofM after deleting rows. Deleting rows does not change the row sum of
other rows, so every maximal submatrix of M also has constant row sum. In particular,
every maximal submatrix can be seen as the log-matrix of a rational monomial map
Pn ��� Pn , where n + 1 is the number of columns of M . Note that if the gcd of
all the monomials defining this rational map is not 1, then either there are repeated
monomials, in which case the value of the minor is 0, or the underlying graph is a star
with a loop, in which case the determinant of the log-matrix is 2, so we may assume
the gcd of all the monomials is 1. We have two cases:

(1) Assume first that the underlying graph of this rational map is connected. By The-
orem 39 and Theorem 35, either this maximal minor is 0 (in case the map is not
birational), or the map is birational and thus the maximal minor is ±2.

(2) If the underlying graph is not connected, it is possible to rearrange the rows and
columns so that the only nonzero entries of the matrix are square diagonal blocks
(not necessarily of the same size) eachblock corresponds to a connected component
of the underlying graph. We can then apply the argument above to each square
diagonal block, and since the determinant of this submatrix is the product of the
determinants of the diagonal blocks, it is either 0 or a product of numbers which
have absolute value 2, so the result holds.

	


5 MixedMultiplicities and the failure of theWLP in positive
characteristics

We now briefly introduce mixed multiplicities of ideals. For more details, see [31] and
[30].

Let S = k[x1, . . . , xn] be a polynomial ring over a field k, m = (x1, . . . , xn) the
maximal homogeneous ideal and J1, . . . , Js an arbitrary sequence of proper ideals of
S. The following is an Ns+1-graded standard k-algebra:

R(I |J1, . . . , Js) :=
⊕

(u0,...,us )∈Ns+1

I u0 Ju11 . . . Juss /I u0+1 Ju11 . . . Juss
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denoting the length of the graded components of R(I |J1, . . . , Js) as

�(I u0 Ju11 . . . Juss /I u0+1 Ju11 . . . Juss )

we get a numerical function that for large values of u0, . . . , us is a polynomial of the
form:

P(u) =
∑

α∈Ns+1,|α|=n−1

1

α!eαu
α + {terms of total degree < r},

where uα = uα0
0 . . . uαs

s , |α| = α0 + · · · + αs and α! = α0! . . . αs !. The num-
bers eα are called the mixed multiplicities of m, J1, . . . , Js and will be denoted
as eα(m|J1, . . . , Js) := eα .

Given a sequence of rational polytopes Q1, . . . , Qr in Rn with dim(Q1 + · · · +
Qr ) ≤ r we define the mixed volume of Q1, . . . , Qr as

MVr (Q1, . . . , Qr ) :=
r∑

h=1

∑

1≤i1≤···≤ih≤r

(−1)r−hVr (Qi1 + . . . Qih ),

where Vr (Q) denotes the r -dimensional Euclidean volume.
In [31], Trung and Verma showed that mixed multiplicities of equigenerated mono-

mial ideals can be understood as mixed volumes of sequences of rational polytopes.

Theorem 42 ([31], Theorem 2.4) Let J1, . . . , Js be equigenerated monomial ideals of
k[x0, . . . , xn] of degree di and Qi denote the convex hull of exponents of the dehomog-
enized generators of Ji in k[x1, . . . , xn] and Q0 the standard simplex in Rn. Denote
by (i0Q0, . . . , is Qs) the sequence

(Q0, . . . , Q0, Q1, . . . , Q1, . . . , Qs, . . . , Qs)

where each polytope Q j appears i j times and i0 + · · · + is = n, then

MVn(i0Q0, . . . , is Qs) = e(i0,...,is )(m|J1, . . . , Js).

In the particular case of Theorem 42 where the index of the mixed multiplicity
eα(m|I1, . . . , Is) is a vector with only one nonzero entry. Then, the mixed volume
computation reduces to a volume computation.

Lemma 43 Let Q be a polytope in Rn. Then

MVn(Q, . . . , Q
︸ ︷︷ ︸

n times

) = n!Vn(Q)

If we further assume that Q is a polytope inRn with exactly n vertices, the volume
computation reduces to the computation of a determinant:
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Lemma 44 Let P ⊂ Rn+1 be the convex hull of the points

x0 = (x0,0, . . . , x0,n), . . . , xn = (xn,0, . . . , xn,n).

and assume |x0| = · · · = |xn| = d. Then

n!Vn(Q) = det

⎛

⎜
⎝

1 . . . x0,n
...

. . .
...

1 . . . xn,n

⎞

⎟
⎠ = 1

d
det

⎛

⎜
⎝

x0,0 . . . x0,n
...

. . .
...

xn,0 . . . xn,n

⎞

⎟
⎠

where Q is the projection of P to the hyperplane z0 = 0.

Remark 45 Note that given a set of monomialsm1, . . . ,ms ∈ k[x1, . . . , xs] that define
a rational map ϕ : Ps−1 ��� Ps−1, the map ϕ is birational if and only if the last mixed
multiplicity of m = (x1, . . . , xs) and I = (m1, . . . ,ms) is 1.

From these two observations, we can determine for which characteristics the WLP
fails for a simplicial complex that has the WLP in characteristic 0.

Theorem 46 (WLP in positive characteristics and mixed multiplicities) Let � be
a simplicial complex such that A(�) has the WLP in characteristic zero and degree
i . Assume moreover that fi−1 ≤ fi . Let m1, . . . ,m fi be the generators of the i-th
incidence ideal of �, I�(i). Denote by IS the ideal generated by a subset S of the
generators of I�(i). Then, � has the WLP in degree i and characteristic p if and only
if p does not divide

(i + 1) gcd
(
e(0, fi−1−1)(m�,i |IS) S ⊂ {m1, . . . ,m fi }, |S| = fi−1

)

Proof We know A(�) has the WLP in degree i when the base field has characteristic
zero, so we know at least one fi−1 × fi−1 minor of M(�, i) is nonzero.

By Theorem 42, we know e(0, fi−1−1)(m�,i |IS) = MVfi−1−1(Q, . . . , Q) where Q
is the simplex such that the vertices of Q are the projections of the exponents of the
monomials in S. Lemma 43 implies

e(0, fi−1−1)(m�,i |IS) = ( fi−1 − 1)!V fi−1−1(Q).

By Lemma 44 and since the generators of IS all have the same degree i + 1, we
conclude

(i + 1)e(0, fi−1−1)(m�,i |IS) = det log(S).

Since det log(S) is amaximalminor ofM(�, i), we see thatM(�, i) has amaximal
nonzero minor modulo p if and only if there exists an S such that p does not divide
(i + 1)e(0, fi−1−1)(m�,i |IS), which is equivalent to saying p does not divide the gcd
of (i + 1)e(0, fi−1−1)(m�,i |IS) where S ranges over every subset of {m1, . . . ,m fi } of
size fi−1. 	
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Example 47 In Example 27, we verified that the A(�) has the WLP in characteristic
zero and all degrees where� is the simplicial complex from Example 7. The maximal
minors of M(�, 1) are in bijection with subgraphs of the 1-skeleton of � that have 4
edges. For each minor, there are only two possible cases:

(1) Either the minor is the determinant of the incidence matrix of a 4-cycle, in which
case it is zero

(2) or it is the determinant of the incidence matrix of a triangle with an extra edge. In
this case the underlying graph satisfies the hypothesis of Theorem 35 and defines
a birational map. Then, by Theorem 39 we conclude that it is ±2.

In particular, the gcd of all the minors is 2, so A(�) has the WLP in degree 1 in
every characteristic �= 2.

From Theorem 46, we can give a lower bound so that if A(�) has the WLP in
degree i and characteristic zero, then A(�) has theWLP in degree i and characteristic
p for every p above the lower bound.

Lemma 48 ([18], Lemma 32) Let I , J ⊂ k[x1, . . . , xn] be monomial ideals generated
in the same degree such that J ⊂ I . Then,

eα(m|J ) ≤ eα(m|I )

for every α ∈ N2 such that |α| = n − 1, where m = (x1, . . . , xn).

Corollary 49 Assume A(�) has the WLP in degree i and characteristic zero. Assume
also that fi−1 ≤ fi . Then, A(�) has the WLP in degree i and characteristic p for
every p such that

p > e(0, fi−1−1)(m�,i |I�(i)) and p does not divide i + 1.

Proof By Lemma 48, since any ideal generated by a subset of the generators of I�(i)
is contained in I�(i), we have:

e(0, fi−1−1)(m�,i |IS) ≤ e(0, fi−1−1)(m�,i |I�(i)) < p

for every subset S of generators of I�(i). The result holds by Corollary 49 since p
does not divide (i + 1)e(0, fi−1−1)(m�,i |IS) for any subset S. 	


So far we assumed A(�) has the WLP in characteristic zero and used mixed mul-
tiplicities to study the failure of the WLP in positive characteristics. Our next goal is
to understand the failure of the WLP in characteristic zero in terms of mixed multi-
plicities.

One of the main questions in the theory of mixed multiplicities of ideals was on
their positivity, that is, when can we guarantee eα(m|J ) > 0 for some ideal J in a
standard N-graded k-algebra? In [30], Trung answered the question by relating the
positivity of mixed multiplicities of an ideal J and the analytic spread of J . The result
was recently generalized to sequences of ideals by F. Castillo, Y. Cid-Ruiz, B. Li, J.
Montaño and N. Zhang in [6].
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Theorem 50 ([6], Theorem4.4)Let J1, . . . , Js be a sequence of ideals of k[x1, . . . , xn]
where each Ji is generated in degree i , m the maximal homogeneous ideal and α ∈
Ns+1 such that |α| = n−1. Then eα(m|J1, . . . , Js) > 0 if and only if for every subset
{i1, . . . , im} ⊂ {1, . . . , s} the following inequality holds:

αi1 + · · · + αim ≤ �(Ji1 . . . Jim ) − 1.

When s = 1, there is the result by Trung in [30]:

Theorem 51 ([30], Corollary 3.7) Let J be an arbitrary ideal of k[x1, . . . , xn] and
m = (x1, . . . , xn). Then e(n−1−i,i)(m|J ) > 0 if and only if 0 ≤ i ≤ �(J ) − 1.

As a consequence, we have the following characterization of the WLP in charac-
teristic zero in terms of mixed multiplicities.

Theorem 52 (WLP in characteristic zero and mixed multiplicities) The squarefree
reduction A(�) of the Stanley–Reisner ideal of a simplicial complex � has the WLP
in characteristic zero and degree i if and only if one of the following two conditions
hold:

(1) fi−1 ≤ fi and e(0, fi−1−1)(m�,i |I�(i)) > 0
(2) fi ≤ fi−1 and e( fi−1− fi , fi−1)(m�,i |I�(i)) > 0

Proof ByTheorem51,weknow e(a,b)(m�,i |I�(i)) > 0 if andonly ifb ≤ �(I�(i))−1,
where a + b = fi−1 − 1. By Theorem 24, A(�) has the WLP in degree i and
characteristic zero if and only if �(I�(i)) = min( fi−1, fi ). We have two cases:

(1) If fi−1 ≤ fi , then e(0, fi−1−1)(m�,i |I�(i)) > 0 if and only if

fi−1 − 1 ≤ �(I�(i)) − 1 ≤ fi−1 − 1

(2) If fi ≤ fi−1, then e( fi−1− fi , fi−1)(m�,i |I�(i)) > 0 if and only if

fi − 1 ≤ �(I�(i)) − 1 ≤ fi − 1.

	

By applying the results from [25], we extend the characterization of the WLP in

characteristic zero and degree 1 of [11] to positive characteristics. In order to extend
their result, we need the following lemma.

Lemma 53 Let G be a graph such that |V (G)| ≤ |E(G)|. If G has a connected
component with less edges than vertices, the incidence matrix M of G does not have
full rank.

Proof The incidence matrix of G is a block diagonal matrix where the blocks are the
incidence matrices of the connected components G1, . . . ,Gs of G. The rank of M is
equal to the sum of the ranks of each block. We have the following inequalities:

rank M ≤
s∑

i=0

min(|V (Gi )|, |E(Gi )|) <

s∑

i=0

|V (Gi )| = |V (G)|.
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Theorem 54 (WLP in degree 1 for squarefree monomial ideals) Let � be a simpli-
cial complex such that f0 ≤ f1. Then, one of the two following statements holds:

(1) A(�) fails the WLP in degree 1 in every characteristic.
(2) A(�) has the WLP in degree 1 in every characteristic except characteristic 2.

Proof The matrix M(�, 1) that represents the multiplication map

×L : A(�)1 → A(�)2

has constant row sum 2. By Corollary 41, the gcd of its maximal minors is either 0, or a
power of 2. If it is 0, then M(�, 1) does not have full rank and so A(�) fails the WLP
in degree 1 in every characteristic. If it is a power of 2, then the multiplication map
×L : A(�)1 → A(�)2 has full rank whenever the characteristic of the base field is
not 2.Moreover, themultiplicationmap does not have full rankwhen the characteristic
of the base field is 2, so the result holds. 	


6 TheWLP in degree 1 of arbitrary monomial ideals

Theorem 54 tells us in which characteristics the WLP in degree 1 of a squarefree
Artinian reduction A satisfying dim A1 ≤ dim A2 can fail. In this section, we prove
that the same result holds for arbitrary Artinian algebras R/I where I is a monomial
ideal.

Definition 55 Let I ⊂ k[x1, . . . , xn] = R be a monomial ideal such that A = R/I
is Artinian. The underlying graph GA of A has vertex set {xi |xi /∈ I } and {xi , x j }
(possibly with i = j) is an edge of GA if and only if xi x j /∈ I .

Example 56 Let R = k[x1, x2, x3, x4] and I = (x1x3, x1x2x4, x31 , x
2
2 , x

5
3 , x

2
4 ). Then,

the underlying graph of A = R/I is the following:

x1 x2

x3x4
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The incidence matrix of GA is:

x1 x2 x3 x4
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

x21 2 0 0 0
x23 0 0 2 0
x1x2 1 1 0 0
x1x4 1 0 0 1
x2x3 0 1 1 0
x2x4 0 1 0 1
x3x4 0 0 1 1

Moreover, the multiplication map ×L : A1 → A2, where L is the sum of the
variables, is represented by the following matrix:

x1 x2 x3 x4
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

x21 1 0 0 0
x23 0 0 1 0
x1x2 1 1 0 0
x1x4 1 0 0 1
x2x3 0 1 1 0
x2x4 0 1 0 1
x3x4 0 0 1 1

The example above leads us to the following result:

Proposition 57 Let I be a monomial ideal of R = k[x1, . . . , xn] and A = R/I an
Artinian algebra. Assume that the characteristic of k is not 2. Then, the multiplication
map ×L : A1 → A2 has the same rank as the incidence matrix of GA.

Proof The multiplication map ×L : A1 → A2 is represented by the matrix:

Mi j =
{
1 if the i-th monomial of A2 is divisible by the j-th monomial of A1

0 otherwise

In particular, if we multiply the rows associated with monomials that are pure
powers of variables by 2, we get the incidence matrix of GA. Since the characteristic
of k is not 2, multiplying a row of a matrix by a nonzero element does not change the
rank, so the result follows. 	


We can then generalize the main result of [11] to arbitrary monomial ideals in any
characteristic different from 2:

Theorem 58 (Main Theorem) Let R = k[x1, . . . , xn] and I a monomial ideal.
Assume A = R/I is Artinian and dim A1 ≤ dim A2. Then, either A has the WLP
in degree 1 in every characteristic �= 2, or A fails the WLP in degree 1 in every
characteristic �= 2.
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Moreover, A has the WLP in characteristic zero if and only if every connected
component of GA contains a subgraph that is either:

(1) A tree with one loop
(2) A graph that has only one cycle of odd length

Proof Assume GA is not a star with a loop at the center vertex. By Proposition 57, the
rank of the matrix that represents the multiplication map ×L : A1 → A2 is equal to
the rank of the incidence matrix of GA in every characteristic �= 2. By Lemma 53, we
may assume every connected component of GA has more vertices than edges. Since
the combinatorial conditions of the graph are the same as the ones in Theorem 35, the
result follows by Corollary 41 and noticing that a maximal minor is nonzero if and
only if the associated maximal submatrix is the incidence matrix of a graph where
every connected component defines a birational map.

IfGA is a starwith a loop, thenwe claim thematrix that represents themultiplication
map ×L : A1 → A2 has determinant 1. To compute this determinant, subtract every
column from the column associated with the vertex that is the center of the star. The
resulting matrix is the identity matrix, so the result follows. 	

Example 59 Let A = k[x1, x2, x3, x4, x5]/(x1x3, x1x2x4, x31 , x22 , x53 , x24 ). Then A has
theWLP in degree 1 in characteristic zero and every odd characteristic by Theorem 58.
In characteristic 2,we can check A also has theWLP in degree 1 since at least one of the
maximal minors of the matrix that represents the multiplication map ×L : A1 → A2
is 1.

Remark 60 (Another perspective: Hyperplane arrangements and matroids)Through-
out this paper, we took the rows of the incidence matrices of a simplicial complex �,
to be exponents of monomials in the incidence ring of �. For an arbitrary monomial
ideal I ⊂ R over a field of characteristic zero, we could also take the entries in each
column of an incidence matrix of I (i.e., a matrix that represent the multiplication map
×L : Ai → Ai+1, where A = R/I for some i) to be coefficients of a linear form
in the incidence ring of I . For example taking � to be the simplicial complex from
Example 7, we have:

a b c d
⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

ab 1 1 0 0
ac 1 0 1 0
ad 1 0 0 1
bc 0 1 1 0
bd 0 1 0 1
cd 0 0 1 1

defines the product of linear forms:

h = (tab + tac + tad︸ ︷︷ ︸
a

)(tab + tbc + tbd︸ ︷︷ ︸
b

)(tac + tbc + tcd︸ ︷︷ ︸
c

)(tad + tbd + tcd︸ ︷︷ ︸
d

) ∈ RI .
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Combining the results on positivity of mixed multiplicities in [30] and the results
on mixed multiplicities of Jacobian ideals of products of linear forms in [18], one
concludes that the rank of these incidence matrices is equal to the analytic spread of
Jacobian ideals, for example:

rank (M(�, 1)) = 4 = �(Jh)

where Jh ⊂ RI is the Jacobian ideal of h.
From this perspective, one natural question to ask is which matroids can be repre-

sented by incidence matrices. As an example, let � be the simplex on 5-vertices, so
that A(�) = k[a, b, c, d, e]/(a2, b2, c2, d2, e2). Then, the matrix

M(�, 3) =

abc abd abe acd ace ade bcd bce bde cde
⎛

⎜
⎜
⎝

⎞

⎟
⎟
⎠

abcd 1 1 0 1 0 0 1 0 0 0
abce 1 0 1 0 1 0 0 1 0 0
abde 0 1 1 0 0 1 0 0 1 0
acde 0 0 0 1 1 1 0 0 0 1
bcde 0 0 0 0 0 0 1 1 1 1

which corresponds to the triangle-tetrahedra incidence in �, is a representation of the
matroid R10.

7 Closing remarks

In this paper, we introduced incidence ideals of a simplicial complex � in order to
study Lefschetz properties of the algebra A(�). In Proposition 20, we showed some
necessary conditions for a squarefree monomial ideal to be the incidence ideal of
some simplicial complex. Example 22 gives us an example that these conditions are
not sufficient, a natural question is:

Question 61 What are necessary and sufficient conditions for a squarefree monomial
ideal to be the incidence ideal of some simplicial complex?

For a birational map ϕ satisfying the hypothesis of Theorem 35, the ideal generated
by each entry ofϕ is of linear type. In [32], Villarreal characterized edge ideals of linear
type as edge ideals of graphs that are trees or have one unique cycle of odd length. In [1],
the authors generalized this result to all squarefree monomial ideals by introducing the
concept of an even walk in a simplicial complex. In view of Theorem 35, Theorem 46
and the fact that the last mixed multiplicity of an ideal that defines a birational map is
1, we ask the following question:

Question 62 Can we find classes of simplicial complexes where the algebra A(�)

has the WLP in degree i in every characteristic that does not divide i + 1 by finding
incidence ideals of linear type?
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