
Journal of Algebraic Combinatorics (2024) 59:661–696
https://doi.org/10.1007/s10801-024-01303-4

Anti-dendriform algebras, new splitting of operations
and Novikov-type algebras

Dongfang Gao1 · Guilai Liu1 · Chengming Bai1

Received: 30 November 2022 / Accepted: 16 January 2024 / Published online: 26 February 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
We introduce the notion of an anti-dendriform algebra as a new approach of splitting
the associativity. It is characterized as the algebra with twomultiplications giving their
left and right multiplication operators, respectively, such that the opposites of these
operators define a bimodule structure on the sum of these two multiplications, which
is associative. This justifies the terminology due to a closely analogous characteriza-
tion of a dendriform algebra. The notions of anti-O-operators and anti-Rota–Baxter
operators on associative algebras are introduced to interpret anti-dendriform algebras.
In particular, there are compatible anti-dendriform algebra structures on associative
algebras with nondegenerate commutative Connes cocycles. There is an important
observation that there are correspondences between certain subclasses of dendriform
and anti-dendriform algebras in terms of q-algebras. As a direct consequence, we give
the notion of Novikov-type dendriform algebras as an analogue of Novikov algebras
for dendriform algebras, whose relationship with Novikov algebras is consistent with
the one between dendriform and pre-Lie algebras. Finally, we extend to provide a gen-
eral framework of introducing the notions of analogues of anti-dendriform algebras,
which interprets a new splitting of operations.
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1 Introduction

The aim of this paper is to introduce the notion of anti-dendriform algebras illustrat-
ing a new splitting of operations and study the relationships between them and the
related structures such as anti-O-operators, commutative Connes cocycles on associa-
tive algebras, dendriform algebras and Novikov algebras.

Recall that a dendriform algebra is a vector space A over a field F with two binary
operations �,≺ satisfying

x � (y � z) = (x · y) � z, (x ≺ y) ≺ z = x ≺ (y · z),
(x � y) ≺ z = x � (y ≺ z), (1)

where

x · y = x � y + x ≺ y, (2)

for all x, y, z ∈ A. The notion of dendriform algebras was introduced by Loday in
the study of algebraic K-theory [28]. They appear in a lot of fields in mathematics
and physics, such as arithmetic [29], combinatorics [32], Hopf algebras [13, 23, 24,
31, 34], homology [18, 19], operads [30], Lie and Leibniz algebras [19] and quantum
field theory [17]. The fact that the sum of the two binary operations in a dendriform
algebra (A,�,≺) gives an associative algebra (A, ·) expresses a kind of “splitting the
associativity.” Moreover, dendriform algebras are closely related to pre-Lie algebras
which are a class of Lie-admissible algebras whose commutators are Lie algebras, also
appearing in many fields in mathematics and physics (see [3, 11] and the references
therein), in the sense that for a dendriform algebra (A,�,≺), the binary operation

x ∗ y = x � y − y ≺ x, ∀x, y ∈ A, (3)

defines a pre-Lie algebra (A, ∗), which is called the associated pre-Lie algebra of
(A,�,≺). Therefore, there is the following relationship among Lie algebras, associa-
tive algebras, pre-Lie algebras and dendriform algebras in the sense of commutative
diagram of categories [12]:
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dendriform algebras −→ pre-Lie algebras
↓ ↓

associative algebras −→ Lie algebras
(4)

On the other hand, there is an “anti-structure” for pre-Lie algebras, namely anti-pre-
Lie algebras, introduced in [27],which are characterized as theLie-admissible algebras
whose negative left multiplication operators give representations of the commutator
Lie algebras, justifying the terminology since pre-Lie algebras are the Lie-admissible
algebras whose left multiplication operators give representations of the commutator
Lie algebras.

We give a new approach of splitting operations, motivated by the study of anti-pre-
Lie algebras. We introduce the notion of anti-dendriform algebras, still keeping the
property of having two multiplications splitting the associativity, but it is the oppo-
sites of the left and right multiplication operators defined by the two multiplications,
respectively, that compose the bimodules over the sum associative algebras, instead of
the left and right multiplication operators for dendriform algebras. Such a character-
ization justifies the terminology, and moreover, the following commutative diagram
holds, which is the diagram (4) with replacing dendriform and pre-Lie algebras by
anti-dendriform and anti-pre-Lie algebras, respectively.

anti-dendriform algebras −→ anti-pre-Lie algebras
↓ ↓

associative algebras −→ Lie algebras
(5)

As O-operators and Rota–Baxter operators on associative algebras interpreting
dendriform algebras [6], we introduce the notions of anti-O-operators and anti-Rota–
Baxter operators on associative algebras to interpret anti-dendriform algebras. In
particular, there are compatible anti-dendriform algebra structures on associative alge-
bras with nondegenerate commutative Connes cocycles.

In [27], there is an important observation that there is a correspondence between
Novikov algebras as a subclass of pre-Lie algebras and admissible Novikov algebras
as a subclass of anti-pre-Lie algebras in terms of q-algebras (q is in the base field
F, see [15]). That is, the 2-algebra over a Novikov algebra is an admissible Novikov
algebra, whereas the −2-algebra over an admissible Novikov algebra is a Novikov
algebra. We also find that there is a similar correspondence between some subclasses
of dendriform algebras and anti-dendriform algebras in terms of q-algebras. Note that
such a correspondence is available for any q 	= 0,±1, not for only a special value
of q in [27], which in fact corresponds to q = −2 in this paper. We also extend the
correspondence between the subclasses of pre-Lie algebras and anti-pre-Lie algebras
for these qs and in particular, for a fixed q 	= 0,±1, the relationship between the
corresponding subclasses of dendriform algebras and pre-Lie algebras as well as anti-
dendriform algebras and anti-pre-Lie algebras is still kept as the one given by Eq. (3).

Moreover, there is an interesting by-product. As a subclass of pre-Lie algebras,
Novikov algebras were introduced in connection with Hamiltonian operators in the
formal variational calculus [20] and Poisson brackets of hydrodynamic type [8]. On the
other hand, the notion of successors was introduced to interpret the splitting of oper-
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ations in terms of operads in [4]. In this sense, both pre-Lie algebras and dendriform
algebras are examples of splitting operations and their operads are the successors
of the operads of Lie and associative algebras, respectively. So it is natural to ask
whether and how one can give a reasonable notion of analogues of Novikov alge-
bras for the successors’ algebras, in particular, for dendriform algebras? In fact, the
above approach answers this problem. Due to the introduction of the notion of anti-
dendriform algebras and the above correspondence, one might introduce the notion
of Novikov-type dendriform algebras as the aforementioned subclass of dendriform
algebras for q = −2. The speciality of q = −2 also can be seen from the identity
involving q (Proposition 3.4). Moreover, it is consistent with the diagram (4) in the
following sense:

Novikov-type dendriform algebras −→ Novikov algebras
↓ ↓

associative algebras −→ Lie algebras
(6)

We would like to point out that this “rule” of constructing analogues of Novikov
algebras for dendriform algebras is due to the introduction of the notion of anti-
dendriform algebras and hence it is regarded as an application of the latter.

The paper is organized as follows. In Section 2, we introduce the notion of anti-
dendriform algebras as a new approach of splitting the associativity. The notions
of anti-O-operators and anti-Rota–Baxter operators on associative algebras are
introduced to interpret anti-dendriform algebras. The relationships between anti-
dendriform algebras and commutative Connes cocycles on associative algebras are
given. In Section 3, we investigate the correspondences of some subclasses of dendri-
formalgebras and anti-dendriformalgebras aswell as pre-Lie algebras and anti-pre-Lie
algebras in terms of q-algebras. The relationships among these subclasses are given.
In particular, in the case that q = −2, we introduce the notions of Novikov-type
dendriform algebras and admissible Novikov-type dendriform algebras with their cor-
respondences. In Section 4, we provide a general framework of introducing the notions
of analogues of anti-dendriform algebras to interpret a new splitting of operations.
They are characterized in terms of double spaces, where a double space of an algebra
A refers to the direct sum A ⊕ A of the underlying vector spaces of A.

Throughout this paper, all vector spaces are assumed to be finite-dimensional over
a field F of characteristic 0, although many results are still available in the infinite-
dimensional case. All operations are assumed to be binary.

2 Anti-dendriform algebras

We introduce the notion of anti-dendriform algebras as a new approach of splitting the
associativity, characterized as the associative admissible algebras in which the oppo-
sites of the left and right multiplication operators defined, respectively, by the two
operations compose the bimodules over the associated associative algebras. We intro-
duce the notions of anti-O-operators and anti-Rota–Baxter operators on associative
algebras to interpret anti-dendriform algebras. There is a compatible anti-dendriform
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algebra structure on an associative algebra if and only if there exists an invert-
ible anti-O-operator of the associative algebra. In particular, there are compatible
anti-dendriform algebra structures on associative algebras with nondegenerate com-
mutative Connes cocycles.

2.1 Anti-dendriform algebras

Definition 2.1 Let A be a vector space with two binary operations

�: A ⊗ A → A, �: A ⊗ A → A.

Define a binary operation · as

x · y = x � y + x � y, ∀x, y ∈ A. (7)

The triple (A,�,�) is called an associative admissible algebra if (A, ·) is an asso-
ciative algebra. In this case, (A, ·) is called the associated associative algebra of
(A,�,�).

Remark 2.2 The triple (A,�,�) is an associative admissible algebra if and only if the
following equation holds:

(x � y) � z + (x � y) � z + (x � y) � z + (x � y) � z

= x � (y � z) + x � (y � z) + x � (y � z) + x � (y � z), ∀x, y, z ∈ A. (8)

It is known [28] that dendriform algebras are associative admissible algebras.

Let (A, ·) be an associative algebra. Recall that a bimodule over (A, ·) is a triple
(V , l, r) consisting of a vector space V and linear maps l, r : A → EndF(V) such
that

l(x · y)v = l(x)(l(y)v), r(x · y)v = r(y)(r(x)v), l(x)(r(y)v) = r(y)(l(x)v),

∀x, y ∈ A, v ∈ V .

In particular, (A, L ·, R·) is a bimodule over (A, ·), where L ·, R· : A → EndF(A) are
two linear maps defined by L ·(x)(y) = R·(y)(x) = x · y for all x, y ∈ A, respectively.

Let (A,�,�) be an associative admissible algebra. Define two linear maps
L�, R� : A → EndF(A), respectively, by

L�(x)(y) = x � y, R�(x)(y) = y � x, ∀x, y ∈ A.

Proposition 2.3 Let A be a vector space with two binary operations � and �. Define
a binary operation · by Eq. (7). Then for any nonzero λ ∈ F, the following conditions
are equivalent.

(1) (A, ·) is an associative algebra and (A, λL�, λR�) is a bimodule over (A, ·).

123



666 Journal of Algebraic Combinatorics (2024) 59:661–696

(2) (A, ·) is an associative algebra and for all x, y, z ∈ A, the following equations
hold:

λx � (y � z) = (x · y) � z, λ(x � y) � z = x � (y · z),
(x � y) � z = x � (y � z). (9)

(3) Eq. (9) and the following equation hold:

(λ − 1)x � (y � z) = (λ − 1)(x � y) � z, ∀x, y, z ∈ A. (10)

Proof (1) ⇐⇒ (2). Let x, y, z ∈ A. Then, we have

λL�(x)(λL�(y)z) = (λL�)(x · y)(z) ⇐⇒ λx � (y � z) = (x · y) � z,

λR�(y)(λR�(x)z) = (λR�)(x · y)(z) ⇐⇒ λ(z � x) � y = z � (x · y),
(λL�)(x)(λR�(y)z) = (λR�(y))(λL�(x)z) ⇐⇒ x � (z � y) = (x � z) � y.

Hence, Item (1) holds if and only if Item (2) holds.
(2) ⇐⇒ (3). Suppose that Eq. (9) holds. Then, it is straightforward to show that

Eq. (8) holds if and only if Eq. (10) holds. Hence, Item (2) holds if and only if Item (3)
holds. ��

Note that in the case that λ = 1, it is particular that Eq. (10) holds automatically
and at this time, (A,�,�) is exactly a dendriform algebra. On the other hand, for the
case that λ = −1, we give the following notion.

Definition 2.4 Let A be a vector space with two binary operations� and�. The triple
(A,�,�) is called an anti-dendriform algebra if the following equations hold:

x � (y � z) = −(x · y) � z = −x � (y · z) = (x � y) � z, (11)

(x � y) � z = x � (y � z), ∀x, y, z ∈ A, (12)

where the binary operation · is defined by Eq. (7).

Corollary 2.5 Let A be a vector space with two binary operations � and �. Define a
binary operation · by Eq. (7). Then, the following conditions are equivalent.

(1) (A,�,�) is an anti-dendriform algebra.
(2) (A, ·) is an associative algebra and for all x, y, z ∈ A, the following equations

hold:

x � (y � z) = −(x · y) � z, (x � y) � z = −x � (y · z),
(x � y) � z = x � (y � z). (13)

(3) (A, ·) is an associative algebra and (A,−L�,−R�) is a bimodule over (A, ·).
Proof It follows from Proposition 2.3 in the case that λ = −1. Note that in this case,
Eq. (11) holds if and only if Eq. (10) and the first two equations in Eq. (13) hold. ��
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Remark 2.6 As Proposition 2.3 shows, a dendriform algebra (A,�,≺) corresponding
to the case that λ = 1 is an associative admissible algebra such that (A, L�, R≺) is a
bimodule over the associated associative algebra (A, ·) (also see [2]). Therefore, the
notion of anti-dendriform algebras is justified due to the equivalent characterization (3)
above. Note that Proposition 2.3 also explainswhy the case that λ = −1 corresponding
to an anti-dendriform algebra needs an extra equality.

Definition 2.7 Let (A,�,�) be an anti-dendriform algebra. Define a binary operation
· by Eq. (7). Then, the resulting associative algebra (A, ·) is called the associated
associative algebra of (A,�,�). On the other hand, (A,�,�) is called a compatible
anti-dendriform algebra structure on (A, ·).

Suppose that (A, ·) is an associative algebra. Let V be a vector space and l, r :
A → EndF(V ) be linear maps. Then, (V , l, r) is a bimodule over (A, ·) if and only
if there is an associative algebra structure on the direct sum A ⊕ V of vector spaces
with the following binary operation, still denoted by ·:

(x, u) · (y, v) = (x · y, l(x)v + r(y)u), ∀x, y ∈ A, u, v ∈ V .

We denote this associative algebra by A �l,r V .

Corollary 2.8 Let A be a vector space with two binary operations �,�: A⊗ A → A.
Then, on the direct sum Â := A⊕ A of vector spaces, the following binary operation

(x, a) · (y, b) = (x � y + x � y,−x � b − a � y), ∀x, y, a, b ∈ A, (14)

makes an associative algebra ( Â, ·) if and only if (A,�,�) is an anti-dendriform
algebra.

Proof It is clear that ( Â, ·) is an associative algebra if and only if (A,�,�) is an
associative admissible algebra, and (A,−L�,−R�) is a bimodule over the associated
associative algebra, which is equivalent to the fact that (A,�,�) is an anti-dendriform
algebra by Corollary 2.5. ��
Example 2.9 Let (A,�,�) be a 1-dimensional anti-dendriform algebra with a basis
{e}. Assume that

e � e = αe, e � e = βe,

where α, β ∈ F. Then by Eq. (11), we have

α2e = (−α2 − αβ)e = (−β2 − αβ)e = β2e.

Hence, α = β = 0; that is, any 1-dimensional anti-dendriform algebra is trivial.

Let A be a vector space with a binary operation ◦ : A ⊗ A → A. Then, (A, ◦) is
called a Lie-admissible algebra, if the binary operation [, ] : A ⊗ A → A defined
by

[x, y] = x ◦ y − y ◦ x, ∀x, y ∈ A, (15)
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makes (A, [, ]) a Lie algebra. In this case, (A, [, ]) is called the sub-adjacent Lie
algebra of (A, ◦) and denoted by (g(A), [, ]). Obviously, an associative algebra is a
Lie-admissible algebra.

Ananti-pre-Lie algebra [27] is a vector space Awith abinaryoperation◦ satisfying

x ◦ (y ◦ z) − y ◦ (x ◦ z) = [y, x] ◦ z, (16)

[x, y] ◦ z + [y, z] ◦ x + [z, x] ◦ y = 0, ∀x, y, z ∈ A, (17)

where the binary operation [, ] is defined by Eq. (15). Equivalently, an anti-pre-Lie
algebra (A, ◦) is a Lie-admissible algebra satisfying Eq. (16).

Proposition 2.10 Let (A,�,�) be an anti-dendriform algebra.

(1) The binary operation ◦ : A ⊗ A → A given by

x ◦ y = x � y − y � x, ∀x, y ∈ A, (18)

defines an anti-pre-Lie algebra, called the associated anti-pre-Lie algebra of
(A,�,�).

(2) Let (A, ·) be the associated associative algebra of (A,�,�), where the binary
operation · is defined by Eq. (7). Then, both (A, ·) and (A, ◦) have the same
sub-adjacent Lie algebra (g(A), [, ]) defined by

[x, y] = x � y + x � y − y � x − y � x, ∀x, y ∈ A. (19)

Proof (1). Let x, y, z ∈ A. Then, we have

x ◦ (y ◦ z) = x � (y � z − z � y) − (y � z − z � y) � x

= x � (y � z) − x � (z � y) − (y � z) � x + (z � y) � x,

(y ◦ x) ◦ z = (y � x − x � y) � z − z � (y � x − x � y)

= (y � x) � z − (x � y) � z − z � (y � x) + z � (x � y).

By swapping x and y, we have

y ◦ (x ◦ z) = y � (x � z) − y � (z � x) − (x � z) � y + (z � x) � y,

(x ◦ y) ◦ z = (x � y) � z − (y � x) � z − z � (x � y) + z � (y � x).

Using Eqs. (11) and (12), we obtain

x ◦ (y ◦ z) − y ◦ (x ◦ z) =x � (y � z) + (z � y) � x − y � (x � z) − (z � x) � y

=(y � x + y � x) � z − (x � y + x � y) � z

− z � (y � x + y � x) + z � (x � y + x � y)

=(y ◦ x) ◦ z − (x ◦ y) ◦ z = [y, x] ◦ z.
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Moreover, we have

x ◦ y − y ◦ x = x � y − y � x − y � x + x � y = x · y − y · x, ∀x, y ∈ A.

Thus, (A, ◦) is a Lie-admissible algebra and hence an anti-pre-Lie algebra.
(2). It is straightforward. Note that it also appears in the proof of Item (1). ��
As a direct consequence, we have the following conclusion.

Corollary 2.11 The commutative diagram (5) holds.

Recall that an associative algebra (A, ·) is 2-nilpotent if (x · y) · z = x · (y · z) = 0
for all x, y, z ∈ A. Furthermore, two binary operations �,� on a vector space A are
called colinear if there exists λ ∈ F such that �= λ � or �= λ �. Obviously, any
binary operation and the zero operation are colinear.

Proposition 2.12 Let A be a vector space with two binary operations�,�: A⊗ A →
A. Define a binary operation · by Eq. (7). Suppose �,� are colinear and �	= − �.
Then, (A,�,�) is an anti-dendriform algebra if and only if (A, ·) is a 2-nilpotent
associative algebra. In particular, if (A, ·) is a 2-nilpotent associative algebra, then
(A,�,�) with �= ·,�= 0 or �= 0,�= · is a compatible anti-dendriform algebra.
And conversely, if (A,�,�) with �= 0 or �= 0 is an anti-dendriform algebra, then
the associated associative algebra (A, ·) is 2-nilpotent.
Proof By the assumption without loss of generality, we suppose that �= λ �, where
λ ∈ F and λ 	= −1. Then, · = (λ + 1) �. If (A,�,�) is an anti-dendriform algebra
and assume that (A, ·) is not a 2-nilpotent associative algebra, then by Eq. (11), we
get

λ2 = −λ(λ + 1) = −(λ + 1) = 1.

However, obviously there does not exist a λ ∈ F satisfying the above equations, which
is a contradiction. So (A, ·) is a 2-nilpotent associative algebra. Conversely, suppose
that (A, ·) is a 2-nilpotent associative algebra. Since �= 1

λ+1 · and �= λ �= λ
λ+1 ·,

all products for � and � involving three elements such as (x � y) � z and x �
(y � z) are zero. Hence, (A,�,�) is an anti-dendriform algebra. The remaining
conclusions follow immediately from the special case that any binary operation and
the zero operation are colinear. ��
Remark 2.13 Suppose that�= − �. Then, (A, ·) is trivial in the sense that all products
are zero, which is a 2-nilpotent associative algebra automatically. On the other hand, in
this case, (A,�,�) is an anti-dendriform algebra if and only if (A,�) is a 2-nilpotent
associative algebra.

Proposition 2.14 Let (A, ·) be an associative algebra with a nonzero idempotent e,
that is, e · e = e. Then, there does not exist a compatible anti-dendriform algebra
structure on (A, ·).
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Proof Assume that (A,�,�) is a compatible anti-dendriform algebra structure on
(A, ·). Then by Eq. (11) for e, e, e, we have

e � e = (e · e) � e = e � (e · e) = e � e.

On the other hand, note that e = e · e = e � e + e � e. Hence, e � e = e � e = 1
2e.

Then by Eq. (11) for e, e, e again, we have

1

4
e = e � (e � e) = −(e · e) � e = −1

2
e, (20)

which is a contradiction. Hence, the conclusion holds. ��
It is known that any finite-dimensional associative algebra without a nonzero idem-

potent element is nilpotent. Therefore, we have the following conclusion.

Corollary 2.15 The associated associative algebra of any finite-dimensional anti-
dendriform algebra is nilpotent.

Suppose that (A, ·) is a 2-dimensional nilpotent associative algebra over the field
C of complex numbers with a basis {e1, e2}. Then, it is known (for example, see [7]
or [10]) that (A, ·) is isomorphic to one of the following two cases (only nonzero
products are given):

(A1) (A, ·) is trivial, that is, all products are zero;
(A2) e1 · e1 = e2.

Obviously, both of them are 2-nilpotent associative algebras.

Proposition 2.16 Let (A, ·) be a 2-dimensional nilpotent associative algebra over C

with a basis {e1, e2}.
(I) If (A, ·) is (A1), then any compatible anti-dendriform algebra (A,�,�) on (A, ·)

is one of the following two cases up to isomorphism (only nonzero products are
given):

(A1)1 (A,�,�) is trivial;
(A1)2 e1 � e1 = e2, e1 � e1 = −e2.

(II) If (A, ·) is (A2), then any compatible anti-dendriform algebra (A,�,�) on (A, ·)
is one of the following two cases up to isomorphism (only nonzero products are
given):

(A2)1 e1 � e1 = e2;
(A2)2,λ e1 � e1 = e2, e1 � e1 = λe2, where λ ∈ C with λ 	= −1.

Consequently, any 2-dimensional complex anti-dendriform algebra (A,�,�) is iso-
morphic to one of the followingmutually non-isomorphic cases (only nonzero products
are given):

(B1) (A,�,�) is trivial;
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(B2) e1 � e1 = e2;
(B3)λ e1 � e1 = e2, e1 � e1 = λe2, where λ ∈ C.

Obviously, these anti-dendriform algebras are “2-nilpotent” in the sense that all prod-
ucts involving three elements such as (x � y) � z and x � (y � z) are zero.
Moreover, for any 2-dimensional complex anti-dendriform algebra (A,�,�), the two
binary operations � and � are colinear.

Proof Assume that (A,�,�) is a compatible anti-dendriform algebra structure on
(A, ·). Set

ei � e j = αi j e1 + βi j e2, αi j , βi j ∈ C, 1 ≤ i, j ≤ 2.

(I) If (A, ·) is (A1), then it is clear that

ei � e j = −αi j e1 − βi j e2, 1 ≤ i, j ≤ 2.

Next, we consider the following three cases.

Case (1) α22 = 0. Then, Ce2 is an 1-dimensional subalgebra of (A,�,�). By
Example 2.9, we have β22 = 0. By Eq. (11) for e1, e2, e2 and e2, e2, e1,
respectively, we have

α2
12e1 + α12β12e2 = α2

21e1 + α21β21e2 = 0.

Thus, α12 = α21 = 0. By Eq. (11) for e1, e1, e2 and e2, e1, e1, respectively,
we have β12 = β21 = 0. By Eq. (11) for e1, e1, e1, we have α11 = 0.

Case (2) β11 = 0. Then by the linear transformation e1 → e2, e2 → e1, we get Case
(1).

Case (3) β11 	= 0, α22 	= 0. By Eq. (12) for e1, e1, e2, we have

α11α12 + β11α22 = α11α12 + β12α12, α11β12 + β11β22 = α12β11 + β2
12.

Hence, α12 	= 0, β12 	= 0. By Eq. (11) for e1, e1, e1 and e2, e2, e2, respec-
tively, we have

α2
11 + β11α12 = α2

11 + β11α21 = β11(α11 + β12) = β11(α11 + β21) = 0,

(α21 + β22)α22 = (α12 + β22)α22 = β21α22 + β2
22 = α22β12 + β2

22 = 0.

Therefore, we have

α12 = α21 = −β22 = −α2
11

β11
	= 0, β12 = β21 = −α11, α22 = α3

11

β2
11

.

Hence by a straightforward computation, we have

(
α11

β11
e1 + e2) � (

α11

β11
e1 + e2) = (

α11

β11
e1 + e2) � (

α11

β11
e1 + e2) = 0.
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Thus by the linear transformation e1 → e1, e2 → α11
β11

e1 + e2, we get Case
(1).

Obviously, (A,�,�) with the nonzero products given by

e1 � e1 = γ e2, e1 � e1 = −γ e2, γ ∈ C,

is an anti-dendriform algebra, corresponding to the above Case (1) with β11 = γ .
Furthermore, it is straightforward to show that if γ = 0, then (A,�,�) is isomorphic
to (A1)1; otherwise, (A,�,�) is isomorphic to (A1)2.

(II) If (A, ·) is (A2), then we have

e1 � e1 = −α11e1 − (β11 − 1)e2, e1 � e2 = −α12e1 − β12e2,

e2 � e1 = −α21e1 − β21e2, e2 � e2 = −α22e1 − β22e2.

Next, we consider the following two cases.

Case (1) α22 = 0. Then by a similar discussion as for Case (1) of (I), we have

α11 = α12 = α21 = β12 = β21 = β22 = 0.

Case (2) α22 	= 0. By Eq. (11) for e2, e2, e2, we have

β2
22 + α22β21 = β2

22 + β12α22 = α22(α21 + β22) = α22(α12 + β22) = 0.

Thus, we have

β2
22 + α22β21 = 0, α12 = α21 = −β22, β12 = β21.

By Eq. (11) for e1, e1, e1, we have

α21 = −α12, β21 = −β12.

Therefore, we have

α12 = α21 = β12 = β21 = β22 = 0. (21)

Hence by Eq. (11) for e1, e1, e2, we have

−e1 � (e1 � e2) = (e1 � e1 + e1 � e1) � e2 = α22e1 + β22e2 = 0.

Thus, α22 = 0, which is a contradiction.

Obviously, (A,�,�) with the nonzero products given by

e1 � e1 = γ e2, e1 � e1 = (1 − γ )e2, γ ∈ C,
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is an anti-dendriform algebra, corresponding to the above Case (1) with β11 = γ .
Furthermore, it is straightforward to show that these anti-dendriform algebras are
classified up to isomorphism into the cases (A2)1 and (A2)2,λ. More explicitly, if
γ = 0, then (A,�,�) is isomorphic to (A2)1; otherwise, (A,�,�) is isomorphic to
(A2)2, 1−γ

γ
.

The rest of the proof follows straightforwardly. ��
Example 2.17 Let (A, ·) be the 3-dimensional associative algebra with a basis
{e1, e2, e3} whose nonzero products are given by

e1 · e1 = e2, e1 · e2 = e2 · e1 = e3.

By a straightforward computation, (A,�,�) is a compatible anti-dendriform algebra
structure on (A, ·) with the following nonzero products:

e1 � e1 = 1

2
e2 + γ e3, e1 � e1 = 1

2
e2 − γ e3,

e1 � e2 = e2 � e1 = 2e3, e2 � e1 = e1 � e2 = −e3.

for any γ ∈ F. Note that (A,�,�) is not “2-nilpotent” since (e1 � e1) � e1 = e3.

2.2 Anti-O-operators and anti-Rota–Baxter operators

Definition 2.18 Let (A, ·) be an associative algebra and (V , l, r) be a bimodule. A
linear map T : V → A is called an anti-O-operator of (A, ·) associated with (V , l, r)
if the following equation holds:

T (u) · T (v) = −T
(
l(T (u))v + r(T (v))u

)
, ∀u, v ∈ V . (22)

Furthermore, T is called strong if

l(T (u) · T (v))w = r(T (v) · T (w))u, ∀u, v, w ∈ V . (23)

In particular, an anti-O-operator T of (A, ·) associated with the bimodule (A, L ·, R·)
is called an anti-Rota–Baxter operator; that is, T : A → A is a linear map satisfying

T (x) · T (y) = −T
(
T (x) · y + x · T (y)

)
, ∀x, y ∈ A. (24)

An anti-Rota–Baxter operator T is called strong if T satisfies

T (x) · T (y) · z = x · T (y) · T (z), ∀x, y, z ∈ A. (25)

In these cases, we also call (A, T ) an anti-Rota–Baxter algebra and a strong anti-
Rota–Baxter algebra, respectively.
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Remark 2.19 Let (A, ·) be an associative algebra and (V , l, r) be a bimodule. Recall
that a linear map T : V → A is called an O-operator of (A, ·) associated with the
bimodule (V , l, r) if T satisfies

T (u) · T (v) = T
(
l(T (u))v + r(T (v))u

)
, ∀u, v ∈ V .

In particular, an O-operator T of (A, ·) associated with the bimodule (A, L ·, R·) is
called a Rota–Baxter operator (of weight zero); that is, T : A → A is a linear map
satisfying

T (x) · T (y) = T
(
T (x) · y + x · T (y)

)
, ∀x, y ∈ A.

Rota–Baxter operators were introduced by G. Baxter to solve an analytic formula
in probability [9] and then appeared in many areas in mathematics and physics [22,
35]. The notion of O-operators was introduced in [5] (also appeared independently
in [36] as a natural generalization of Rota–Baxter operators, which correspond to the
solutions of associative Yang–Baxter equations in (A, ·) under certain conditions. The
notion of anti-O-operators as well as anti-Rota–Baxter operators is justified due to the
comparison between them. Furthermore, it will be interesting to study the relationships
between certain algebraic equations and anti-dendriform algebras as well as anti-O-
operators, inspired by the relationships between the associative Yang–Baxter equation
and dendriform algebras as well as O-operators.

Proposition 2.20 Let (A, ·) be an associative algebra and (V , l, r) be a bimodule.
Suppose that T : V → A is an anti-O-operator of (A, ·) associated with (V , l, r).
Define two binary operations �,� on V , respectively, as

u � v = −l(T (u))v, u � v = −r(T (v))u, ∀u, v ∈ V . (26)

Then, the following conclusions hold.

(1) For all u, v, w ∈ V , the following equations hold:

u � (v � w) = −(u · v) � w, (u � v) � w = −u � (v · w),

(u � v) � w = u � (v � w), (27)

where u · v = u � v + u � v.
(2) (V ,�,�) is an anti-dendriform algebra if and only if T is strong. In this case,

T is a homomorphism of associative algebras from the associated associative
algebra (V , ·) to (A, ·). Furthermore, there is an induced anti-dendriform algebra
structure on T (V ) = {T (u) | u ∈ V } ⊆ A given by

T (u) � T (v) = T (u � v), T (u) � T (v) = T (u � v), ∀u, v ∈ V , (28)

and T is a homomorphism of anti-dendriform algebras.
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Proof (1). Let u, v, w ∈ V . Then, we have

−u � (v · w) = −u � (v � w + v � w)

= −r

(
T

(
l(T (v))w

))
u − r

(
T

(
r(T (w))v

))
u

= r
(
T (v) · T (w)

)
u = r(T (w))(r(T (v))u) = (u � v) � w.

Similarly, we have

u � (v � w) = −(u · v) � w, (u � v) � w = u � (v � w).

Thus, Eq. (27) holds.
(2). From Item (1) and Definition 2.4, (V ,�,�) is an anti-dendriform algebra if

and only if the following equation holds:

l
(
T (u) · T (v)

)
w = u � (v � w) = (u � v) � w

= r
(
T (v) · T (w)

)
u, ∀u, v, w ∈ V ;

that is, T is a strong anti-O-operator. The other results follow immediately. ��
Corollary 2.21 Let (A, ·)be anassociative algebra and P bea stronganti-Rota–Baxter
operator. Then, the triple (A,�,�) is an anti-dendriform algebra, where

x � y = −P(x) · y, x � y = −x · P(y), ∀x, y ∈ A. (29)

Conversely, if P : A → A is a linear transformation on an associative algebra (A, ·)
such that Eq. (29) defines an anti-dendriform algebra, then P satisfies

P(x) · P(y) · z = −P
(
P(x) · y + x · P(y)

) · z = −x · P(
P(y) · z + y · P(z)

)

= x · P(y) · P(z), (30)

for all x, y, z ∈ A. In particular, if

AnnLA(A) = {x ∈ A | x · y = 0,∀y ∈ A} = 0, or

AnnRA(A) = {x ∈ A | y · x = 0,∀y ∈ A} = 0,

then P is a strong anti-Rota–Baxter operator.

Proof The first part follows from Proposition 2.20 by letting (V , l, r) = (A, L ·, R·).
The second part follows from Definition 2.4. ��
Example 2.22 Let (A, ·) be a complex associative algebra with a basis {e1, e2} whose
nonzero products are given by

e1 · e1 = e1, e1 · e2 = e2.
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Suppose that P : A → A is a linear map whose corresponding matrix is given

by

(
α11 α12
α21 α22

)
under the basis {e1, e2}. Then by Eq. (24), P is an anti-Rota–Baxter

operator on (A, ·) if and only if

α11 = α12 = α22 = 0.

Therefore, the set of all anti-Rota–Baxter operators on (A, ·) is {P =
(
0 0
γ 0

)
|γ ∈ C}.

Moreover, any anti-Rota–Baxter operator on (A, ·) is strong. Hence by Eq. (29), we
obtain the following anti-dendriform algebras whose nonzero products are given by

e1 � e1 = −γ e2, γ ∈ C.

It is straightforward to show that if γ = 0, then it is isomorphic to (B1) and if γ 	= 0,
then it is isomorphic to (B2), where the notations are given in Proposition 2.16.

Lemma 2.23 An invertible anti-O-operator of an associative algebra is automatically
strong.

Proof Let T : V → A be an invertible anti-O-operator of an associative algebra
(A, ·A) associated with a bimodule (V , l, r). Define two binary operations �,� on
V , respectively, by Eq. (26). Define a binary operation ·V on V by

u ·V v = u � v + u � v, ∀u, v ∈ V .

Let u, v, w ∈ V . Then, we have

(
T (u) ·A T (v)

) ·A T (w)

= −T
(
l(T (u))v + r(T (v))u

) ·A T (w)

= T

(
l
(
T (l(T (u))v + r(T (v))u)

)
w + r(T (w))(l(T (u))v + r(T (v))u)

)

= −T
(
(l(T (u))v + r(T (v))u) � w + (l(T (u))v + r(T (v))u) � w

)

= T

(
(u ·V v) � w + (u � v) � w + (u � v) � w

)
.

Similarly, we have

T (u) ·A
(
T (v) ·A T (w)

) = T

(
u � (v � w) + u � (v � w) + u � (v ·V w)

)
.

Since (A, ·A) is an associative algebra and T is invertible, we have

(u ·V v) � w + (u � v) � w + (u � v) � w

= u � (v � w) + u � (v � w) + u � (v ·V w).
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By Proposition 2.20, Eq. (27) holds and hence u � (v � w) = (u � v) � w.
Therefore, (V ,�,�) is an anti-dendriform algebra and thus by Proposition 2.20 again,
T is strong. ��
Theorem 2.24 Let (A, ·) be an associative algebra. Then, there is a compatible anti-
dendriform algebra structure on (A, ·) if and only if there exists an invertible anti-O-
operator of (A, ·).
Proof Suppose that (A,�,�) is a compatible anti-dendriform algebra structure on
(A, ·). Then,

x · y = x � y + x � y = −(−L�(x)y − R�(y)x), ∀x, y ∈ A.

Hence, the identity map Id : A → A is an invertible anti-O-operator of (A, ·) associ-
ated with the bimodule (A,−L�,−R�).

Conversely, suppose that T : V → A is an invertible anti-O-operator of (A, ·)
associated with a bimodule (V , l, r) over (A, ·). Then by Lemma 2.23 and Proposition
2.20, there exist anti-dendriform algebra structures on V and T (V ) = A defined by
Eqs. (26) and (28), respectively. Let x, y ∈ A. Then, there exist u, v ∈ V such that
x = T (u), y = T (v). Hence, we have

x · y = T (u) · T (v) = −T (l(T (u))v + r(T (v))u) = T (u � v + u � v)

= T (u) � T (v) + T (u) � T (v) = x � y + x � y.

So (A,�,�) is a compatible anti-dendriform algebra structure on (A, ·). ��
Proposition 2.25 Let (A, ·) be an associative algebra and (V , l, r) be a bimodule.
Suppose that T : V −→ A is a linear map. Then, T is an anti-O-operator of (A, ·)
associated with (V , l, r) if and only if the linear map

T̂ : A �l,r V −→ A �l,r V , (x, u) �−→ (T (u), 0),

is an anti-Rota–Baxter operator on the associative algebra A �l,r V .

Proof Let x, y ∈ A, u, v ∈ V . Then, we have

T̂ ((x, u)) · T̂ ((y, v)) = (T (u), 0) · (T (v), 0) = (T (u) · T (v), 0),

T̂ ((x, u)) · (y, v) = (T (u), 0) · (y, v) = (T (u) · y, l(T (u))v),

(x, u) · T̂ ((y, v)) = (x, u) · (T (v), 0) = (x · T (v), r(T (v))u).

Hence, T̂ is an anti-Rota–Baxter operator on the associative algebra A �l,r V if and
only if

(T (u) · T (v), 0) = −
(
T

(
l(T (u))v + r(T (v))u

)
, 0

)
;

that is, T is an anti-O-operator of (A, ·) associated with (V , l, r). ��
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Corollary 2.26 Let (A,�,�) be an anti-dendriform algebra and (A, ·) be the associ-
ated associative algebra. Set Â = A ⊕ A as the direct sum of vector spaces. Define a
binary operation · on Â by Eq. (14) and a linear map Îd : Â → Â by

Îd((x, y)) = (y, 0), ∀x, y ∈ A.

Then, Îd is an anti-Rota–Baxter operator on the associative algebra ( Â, ·); that is,
( Â, Îd) is an anti-Rota–Baxter algebra.

Proof ByCorollary 2.8, ( Â, ·) is an associative algebra, which is exactly A�−L�,−R�
A. Since Id : A → A is an anti-O-operator of (A, ·) associated with the bimodule
(A,−L�,−R�), by Proposition 2.25, Îd is an anti-Rota–Baxter operator on the asso-
ciative algebra ( Â, ·). ��
Remark 2.27 In general, Îd is not a strong anti-Rota–Baxter operator on the associative
algebra ( Â, ·) and hence one shows that there is not an anti-dendriform algebra struc-
ture on Â defined by Eq. (29). On the other hand, we still define two binary operations
�,� on the vector subspace A′ = {(0, x)|x ∈ A} ⊂ Â by

(0, x) � (0, y) = −Îd((0, x)) · (0, y) = (0, x � y),

(0, x) � (0, y) = −(0, x) · Îd((0, y)) = (0, x � y),

for all x, y ∈ A. Then, it is straightforward to show that (A′,�,�) is an anti-
dendriform algebra. That is, there is still an anti-dendriform algebra structure on the
subspace A′ of Â defined by the anti-Rota–Baxter operator Îd through Eq. (29). Let
F : A → A′ be a linear map defined by

F(x) = (0, x), ∀x ∈ A.

Then, F is an isomorphism of anti-dendriform algebras from (A,�,�) to (A′,�,�).
Hence in the sense above, the anti-dendriform algebra (A,�,�) is “embedded” into
the anti-Rota–Baxter algebra ( Â, Îd). Note that it is a little different from the case of
dendriform algebras and Rota–Baxter algebras given in [21], where there is a den-
driform algebra structure on the whole space Â defined by the Rota–Baxter operator
Îd.

2.3 Commutative Connes cocycles

A Connes cocycle on an associative algebra (A, ·) is an antisymmetric bilinear
form B satisfying

B(x · y, z) + B(y · z, x) + B(z · x, y) = 0, ∀x, y, z ∈ A. (31)

It corresponds to the original definition of cyclic cohomology by Connes [14]. Recall
[2] that for a nondegenerate Connes cocycle B on an associative algebra (A, ·), there
exists a dendriform algebra structure (A, �, ≺) on (A, ·) defined by

123



Journal of Algebraic Combinatorics (2024) 59:661–696 679

B(x � y, z) = B(y, z · x), B(x ≺ y, z) = B(x, y · z), ∀x, y, z ∈ A, (32)

such that the associated associative algebra of (A, �, ≺) is (A, ·).
Next we consider the “symmetric” version of a Connes cocycle.

Definition 2.28 Let (A, ·) be an associative algebra and B be a bilinear form on (A, ·).
If B is symmetric and satisfies Eq. (31), then B is called a commutative Connes
cocycle.

Let (V , l, r) be a bimodule over an associative algebra (A, ·). Then, (V ∗, r∗, l∗)
is also a bimodule over (A, ·), where V ∗ is the dual space of V and the linear maps
r∗, l∗ : A → EndF(V ∗) are defined, respectively, by

〈r∗(x)u∗, v〉 = 〈u∗, r(x)v〉, 〈l∗(x)u∗, v〉 = 〈u∗, l(x)v〉, ∀x ∈ A, u∗ ∈ V ∗, v ∈ V .

In particular, (A∗, R.∗, L.∗) is a bimodule over (A, ·).
Theorem 2.29 Let (A, ·) be a finite-dimensional associative algebra and B be a non-
degenerate commutative Connes cocycle on (A, ·). Then, there exists a compatible
anti-dendriform algebra structure (A, �, �) on (A, ·) defined by

B(x � y, z) = −B(y, z · x), B(x � y, z) = −B(x, y · z), ∀x, y, z ∈ A. (33)

Proof Define a linear map T : A → A∗ by

〈T (x), y〉 = B(x, y), ∀x, y ∈ A.

Then, T is invertible since B is nondegenerate. For all a∗, b∗ ∈ A∗, z ∈ A, we have

B(−T−1(R.∗(T−1(a∗))(b∗) + L.∗(T−1(b∗))(a∗)
)
, z)

= − 〈R.∗(T−1(a∗))(b∗) + L.∗(T−1(b∗))(a∗), z〉
= − 〈b∗, z · T−1(a∗)〉 − 〈a∗, T−1(b∗) · z〉
= − B(T−1(b∗), z · T−1(a∗)) − B(T−1(a∗), T−1(b∗) · z)
=B(T−1(a∗) · T−1(b∗), z),

which implies that T−1 : A∗ → A is an anti-O-operator of (A, ·) associated with
(A∗, R.∗, L.∗).

Note that for any x, y ∈ A, there exist a∗, b∗ ∈ A∗ such that x = T−1(a∗), y =
T−1(b∗). By Theorem 2.24, there is a compatible anti-dendriform algebra structure
on (A, ·) defined by

x � y : = T−1(a∗ � b∗) = −T−1(R.∗(T−1(a∗))b∗) = −T−1(R.∗(x)T (y)
)
,

x � y : = T−1(a∗ � b∗) = −T−1(L.∗(T−1(b∗))a∗) = −T−1(L.∗(y)T (x)
)
.
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Therefore, for all x, y, z ∈ A, we have

B(x � y, z) = −〈R.∗(x)T (y), z〉 = −〈T (y), z · x〉 = −B(y, z · x),
B(x � y, z) = −〈L.∗(y)T (x), z〉 = −〈T (x), y · z〉 = −B(x, y · z).

Thus, the conclusion holds. ��
Corollary 2.30 Let (A,�,�) be an anti-dendriform algebra and (A, ·) be the associ-
ated associative algebra. Define a bilinear form B on A ⊕ A∗ by

B(x + a∗, y + b∗) = 〈x, b∗〉 + 〈a∗, y〉, ∀x, y ∈ A, a∗, b∗ ∈ A∗. (34)

Then, B is a nondegenerate commutative Connes cocycle on the associative algebra
A �−R∗�,−L∗� A∗. Conversely, let (A, ·) be an associative algebra and (A∗, l, r) be a
bimodule over (A, ·). Suppose that the bilinear form given by Eq. (34) is a commutative
Connes cocycle on A �l,r A∗. Then, there is a compatible anti-dendriform algebra
structure (A,�,�) on (A, ·) such that l = −R∗

�, r = −L∗
�.

Proof It is straightforward to show that B is a nondegenerate commutative Connes
cocycle on A �−R∗�,−L∗� A∗. Conversely, by Theorem 2.29, there is a compatible
anti-dendriform algebra structure �,� given by Eq. (33) on A �l,r A∗. In particular,
we have

B(x � y, z) = −B(y, z · x) = 0, B(x � y, z) = −B(x, y · z) = 0, ∀x, y, z ∈ A.

Thus, x � y, x � y ∈ A for all x, y ∈ A and hence (A,�,�) is an anti-dendriform
algebra. Furthermore, for all x, y ∈ A, a∗ ∈ A∗, we have

〈−R∗
�(x)a∗, y〉 = −〈a∗, y � x〉 = −B(y � x, a∗) = B(y, l(x)a∗) = 〈l(x)a∗, y〉,

〈−L∗
�(x)a∗, y〉 = −〈a∗, x � y〉 = −B(x � y, a∗) = B(y, r(x)a∗) = 〈r(x)a∗, y〉.

So l = −R∗
�, r = −L∗

�. ��
Definition 2.31 Let (A,�,�) be an anti-dendriform algebra. A bilinear form B on
(A,�,�) is called invariant if

B(x � y, z) = −B(y, z · x), B(x � y, z) = −B(x, y · z), ∀x, y, z ∈ A,

where the binary operation · is defined by Eq. (7).

The following conclusion is obvious.

Lemma 2.32 Let B be an invariant bilinear form on an anti-dendriform algebra (A,
�, �). Then, B satisfies

B(x � y, z) = B(z � x, y), ∀x, y, z ∈ A.
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Proposition 2.33 Let (A,�,�) be an anti-dendriform algebra and B be a symmetric
invariant bilinear form on (A,�,�). Then,B is a commutative Connes cocycle on the
associated associative algebra (A, ·). Conversely, suppose that (A, ·) is an associative
algebra and B is a nondegenerate commutative Connes cocycle on (A, ·). Then, B is
invariant on the compatible anti-dendriform algebra (A,�,�) defined by Eq. (33).

Proof For the first part, we have

B(x · y, z) + B(y · z, x) + B(z · x, y)
= B(x · y, z) − B(x � y, z) − B(x � y, z) = 0,

for all x, y, z ∈ A. So B is a commutative Connes cocycle on (A, ·). The second part
follows from Theorem 2.29 immediately. ��

Recall that two bimodules (V1, l1, r1) and (V2, l2, r2) over an associative algebra
(A, ·) are called equivalent if there is a linear isomorphism ϕ : V1 → V2 such that

ϕ(l1(x)v1) = l2(x)ϕ(v1), ϕ(r1(x)v1) = r2(x)ϕ(v1), ∀x ∈ A, v1 ∈ V1.

Proposition 2.34 Let (A,�,�) be an anti-dendriform algebra. Then, there is a non-
degenerate invariant bilinear form on (A,�,�) if and only if (A,−L�,−R�) and
(A∗, R.∗, L.∗) are equivalent as bimodules over the associated associative algebra
(A, ·).
Proof Suppose that (A,−L�,−R�) and (A∗, R.∗, L.∗) are equivalent as bimodules
over (A, ·). Then, there exists a linear isomorphism ψ : A → A∗ such that

ψ(−L�(x)y) = R.∗(x)ψ(y), ψ(−R�(x)y) = L.∗(x)ψ(y), ∀x, y ∈ A.

Define a nondegenerate bilinear form B on A as

B(x, y) = 〈ψ(x), y〉, ∀x, y ∈ A. (35)

For all x, y, z ∈ A, we have

B(x � y, z) = −〈ψ(−L�(x)y), z〉 = −〈R.∗(x)ψ(y), z〉 = −B(y, z · x),
B(x � y, z) = −〈ψ(−R�(y)x), z〉 = −〈L.∗(y)ψ(x), z〉 = −B(x, y · z).

So B is invariant.
Conversely, suppose thatB is a nondegenerate invariant bilinear form on (A,�,�).

Define a linearmapψ : A → A∗ byEq. (35). By a similar proof as above,we show that
ψ gives an equivalence between (A,−L�,−R�) and (A∗, R.∗, L.∗) as bimodules
over (A, ·).

This completes the proof. ��
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Recall that a symmetric bilinear form B on a Lie algebra (A, [, ]) is called a com-
mutative 2-cocycle (see [16]) if the following equation holds:

B([x, y], z) + B([y, z], x) + B([z, x], y) = 0, ∀x, y, z ∈ A.

By [27], there is a compatible anti-pre-Lie algebra structure (A, ◦) on a Lie algebra
(A, [, ]) with a nondegenerate commutative 2-cocycle B defined by

B(x ◦ y, z) = B(y, [x, z]), ∀x, y, z ∈ A. (36)

A bilinear form B on an anti-pre-Lie algebra (A, ◦) is called invariant if Eq. (36)
holds.

Lemma 2.35 [27] Any symmetric invariant bilinear form on an anti-pre-Lie algebra
(A, ◦) is a commutative 2-cocycle on the sub-adjacent Lie algebra (g(A), [, ]). Con-
versely, a nondegenerate commutative 2-cocycle on a Lie algebra (A, [, ]) is invariant
on the compatible anti-pre-Lie algebra (A, ◦) defined by Eq. (36).

Lemma 2.36 (1) Let (A,�,�) be an anti-dendriform algebra with a symmetric
invariant bilinear form B. Then, B is invariant on the associated anti-pre-Lie
algebra (A, ◦).

(2) Let (A, ·) be an associative algebra with a commutative Connes cocycle B. Then,
B is a commutative 2-cocycle on the sub-adjacent Lie algebra (g(A), [ , ]).

Proof It is straightforward. ��
Proposition 2.37 Let (A,�,�) be an anti-dendriform algebra with a symmetric
invariant bilinear form B. Then, the following conclusions hold:

(1) B is a commutative Connes cocycle on the associated associative algebra (A, ·);
(2) B is invariant on the associated anti-pre-Lie algebra (A, ◦);
(3) B is a commutative 2-cocycle on the sub-adjacent Lie algebra (g(A), [, ]) of both

(A, ·) and (A, ◦).

That is, the following diagram by “putting” the symmetric bilinear forms into the
diagram (5) is commutative.

anti-dendriform algebra (A, �, �) with
a symmetric invariant bilinear formB

anti-pre-Lie algebra (A, ◦) with
a symmetric invariant bilinear formB

associative algebra (A, ·) with
a commutative Connes cocycleB

Lie algebra (g(A), [ , ]) with
a commutative 2-cocycleB

(37)

Conversely, let (A, ·) be an associative algebra with a nondegenerate commutative
Connes cocycle B. On the one hand, B is a nondegenerate commutative 2-cocycle
on the sub-adjacent Lie algebra (g(A), [ , ]) and hence there is a compatible anti-
pre-Lie algebra (A, ◦) defined by Eq. (36) and B is invariant on (A, ◦). On the other
hand, there is a compatible anti-dendriform algebra (A,�,�) defined by Eq. (33)
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and B is invariant on (A,�,�). Hence, B is invariant on the associated anti-pre-Lie
algebra (A, ◦′) defined by Eq. (18). Moreover, (A, ◦) and (A, ◦′) coincide; that is, the
following diagram is commutative.

anti-dendriform algebra (A, �, �) with a
nondegenerate symmetric invariant bilinear formB

anti-pre-Lie algebra (A, ◦) with a
nondegenerate symmetric invariant bilinear formB

associative algebra (A, ·) with a
nondegenerate commutative Connes cocycleB

Lie algebra (g(A), [ , ]) with a
nondegenerate commutative 2-cocycleB

(38)

Proof By the first parts of Proposition 2.33 and Lemma 2.35, respectively, and
Lemma 2.36, the first part follows. For the second part, note that for all x, y, z ∈ A,
we have

B(x ◦ y, z) = B(y, [x, z])
= B(y, x · z − z · x) = B(x � y, z) − B(y � x, z) = B(x ◦′ y, z).

Hence, x ◦ y = x ◦′ y. Then, the conclusion follows immediately from the second
parts of Proposition 2.33 and Lemma 2.35, respectively, and Lemma 2.36. ��

3 Correspondences between some subclasses of dendriform and
anti-dendriform algebras

We give the correspondence between some subclasses of dendriform algebras and
anti-dendriform algebras in terms of q-algebras. We also generalize the correspon-
dence between some subclasses of pre-Lie algebras and anti-pre-Lie algebras from
q = −2 in [27] to any q 	= 0,±1, and hence, the relationships between dendriform
algebras and the associated pre-Lie algebras as well as anti-dendriform algebras and
the associated anti-pre-Lie algebras are still kept on these subclasses for a fixed q.
Therefore in the case that q = −2, the notions of Novikov-type dendriform alge-
bras and admissible Novikov-type dendriform algebras are introduced as analogues
of Novikov algebras and admissible Novikov algebras for dendriform algebras and
anti-dendriform algebras, respectively.

Throughout this section, q ∈ F satisfies q 	= 0,±1.

3.1 Correspondences between some subclasses of dendriform and
anti-dendriform algebras

Definition 3.1 Let A be a vector space with two binary operations �,≺ . Define two
binary operations �,�: A ⊗ A → A, respectively, by

x � y = x � y + qx ≺ y, x � y = x ≺ y + qx � y, ∀x, y ∈ A. (39)

Then, the triple (A,�,�) is called the q-algebra over (A,�,≺).
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Remark 3.2 There is an alternative choice of q-algebras for the triple (A,�,≺). Let
A be a vector space with two binary operations �,≺ . Define two binary operations
�′,�′: A ⊗ A → A, respectively, by

x �′ y = x � y + qy � x, x �′ y = x ≺ y + qy ≺ x, ∀x, y ∈ A. (40)

However, such an approach is not “naturally available” for associative admissible
algebras such as dendriform as well as anti-dendriform algebras. In fact, suppose that
(A,�,≺) is an associative admissible algebra. Then, we have the following conclu-
sions.

(1) By Eq. (39), (A,�,�) is always an associative admissible algebra.
(2) If q 	= 0, then fromEq. (40), (A,�′,�′) is an associative admissible algebra if and

only if the q-algebra (see Definition 3.14) over the associated associative algebra
(A, ·) of (A,�,≺), where · is defined by Eq. (2), is still an associative algebra.
Note that the latter holds if and only if the sub-adjacent Lie algebra (g(A), [, ])
of (A, ·) is two-step nilpotent, that is, [[x, y], z] = 0 for all x, y, z ∈ A.

Hence in the sense of keeping the property of splitting the associativity for both an
associative admissible algebra (A,�,≺) and its q-algebra, it is natural to use Eq. (39)
(not Eq. (40)) to define theq-algebra over the associative admissible algebra (A,�,≺).

Remark 3.3 When q = 0, the 0-algebra over (A,�,≺) is itself. Moreover, note that

x � y − qx � y = (1 − q2)x � y, x � y − qx � y = (1 − q2)x ≺ y, ∀x, y ∈ A.

Hence, we have the following conclusions.

(1) Whenq 	= ±1, the binary operations�,≺ can be presented by�,�. Furthermore,
the (−q)-algebra over (A,�,�) has the same algebra structure as (A,�,≺).

(2) When q = ±1, the binary operations �,≺ cannot be presented by �,�. Further-
more, the (−q)-algebra over (A,�,�) is trivial.

So in the sense that the triple (A,�,≺) and its q-algebra can be non-trivially presented
by each other, the cases that q = 0,±1 are excluded.

Proposition 3.4 Let (A,�,≺) be a dendriform algebra. Denote by (A,�,�) the q-
algebra over (A,�,≺). Then, (A,�,�) is an anti-dendriform algebra if and only if
(A,�,≺) satisfies the following equations:

x � (y � z) = (x ≺ y) ≺ z, (41)

(x ≺ y) � z = x ≺ (y � z), (42)

(q + 1)(q + 2)(x ≺ y) ≺ z + q(q + 2)x � (y ≺ z) + q(q − 1)x ≺ (y ≺ z) = 0,

(43)

for all x, y, z ∈ A.
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Proof Let x, y, z ∈ A. By Eq. (39) and the definition of dendriform algebras, we have

x � (y � z) + (x � y) � z + (x � y) � z

= 2x � (y � z) + q
(
2(x � y) ≺ z + x ≺ (y � z) + (x ≺ y) � z

+(x � y) � z + (x ≺ y) ≺ z
)

+q2
(
x ≺ (y ≺ z) + (x ≺ y) ≺ z + (x � y) ≺ z

)
, (44)

(x � y) � z + x � (y � z) + x � (y � z)

= 2(x ≺ y) ≺ z + q
(
2x � (y ≺ z) + (x ≺ y) � z + x ≺ (y ≺ z)

+x � (y � z) + x ≺ (y � z)
)

+q2
(
(x � y) � z + x � (y ≺ z) + x � (y � z)

)
, (45)

x � (y � z) − (x � y) � z

= x � (y � z) − (x ≺ y) ≺ z + q
(
x ≺ (y � z) − (x ≺ y) � z

)

+q2
(
x ≺ (y ≺ z) − (x � y) � z

)
, (46)

(x � y) � z − x � (y � z)

= q
(
(x ≺ y) ≺ z + (x � y) � z − x � (y � z) − x ≺ (y ≺ z)

)

+q2
(
(x ≺ y) � z − x ≺ (y � z)

)
. (47)

Therefore, (A,�,�) is an anti-dendriform algebra if and only if the right-hand sides
of Eqs. (44–47) are zero. Next we assume that the right-hand sides of Eqs. (44–47)
are zero and we still denote them by Eqs. (44–47), respectively. Thus, we have the
following interpretation.

(1) The difference between Eqs. (44) and (45) is

2x � (y � z) − 2(x ≺ y) ≺ z + q
(
(x � y) � z

+(x ≺ y) ≺ z − x ≺ (y ≺ z) − x � (y � z)
)

+q2
(
x ≺ (y ≺ z) + (x ≺ y) ≺ z − (x � y) � z − x � (y � z)

)

= (2 − q − q2)
(
x � (y � z) − (x ≺ y) ≺ z

)

+(q − q2)
(
(x � y) � z − x ≺ (y ≺ z)

) = 0. (48)

(2) The difference between Eqs. (48) and (47) is

(−2q2 + 2)
(
x � (y � z) − (x ≺ y) ≺ z

) = 0. (49)

By the assumption of q, Eq. (49) holds if and only if Eq. (41) holds.
(3) Suppose that Eqs. (48) and (41) hold. Then, Eq. (46) holds if and only if the

following equation holds:

x ≺ (y � z) − (x ≺ y) � z = 0;

that is, Eq. (42) holds.
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(4) Suppose that Eqs. (41) and (42) hold. Then by the definition of dendriform alge-
bras, we have

(a) Eq. (48) holds;
(b) Eq. (45) holds if and only if the following equation holds:

(q + 1)(q + 2)(x ≺ y) ≺ z + q(q + 2)x � (y ≺ z) + q(q − 1)x ≺ (y ≺ z)

= 0;

that is, Eq. (43) holds.

Therefore, (A,�,�) is an anti-dendriform algebra if and only if the following equiv-
alences hold:

Eqs. (44), (45), (46) and (47) hold. ⇐⇒ Eqs. (41), (45), (46) and (48) hold.

⇐⇒ Eqs. (41), (42) and (43) hold.

Therefore, the conclusion holds. ��
Proposition 3.5 Suppose that (A,�,�) is an anti-dendriform algebra. Denote by
(A,�,≺) the (−q)-algebra over (A,�,�). Then, (A,�,≺) is a dendriform algebra
if and only if (A,�,�) satisfies the following equations:

(x � y) � z = x � (y � z), (50)

−(q − 2)(q + 1)(x � y) � z − q2(x � y) � z + q(q + 1)x � (y � z) = 0,

(51)

for all x, y, z ∈ A.

Proof Let x, y, z ∈ A. By the definitions of q-algebras and anti-dendriform algebras,
we have

x � (y � z) − (x � y) � z − (x ≺ y) � z

= 2x � (y � z) + q
(
x � (y � z) + (x � y) �

z + (x � y) � z − (x � y) � z
)

+q2
(
x � (y � z) − (x � y) � z − (x � y) � z

)
, (52)

(x ≺ y) ≺ z − x ≺ (y ≺ z) − x ≺ (y � z)

= 2(x � y) � z + q
(
x � (y � z) + x � (y � z) + x � (y � z) − (x � y) � z

)

+q2
(
(x � y) � z − x � (y � z) − x � (y � z)

)
, (53)

(x � y) ≺ z − x � (y ≺ z) = (q2 + q)
(
(x � y) � z − x � (y � z)

)
. (54)

So (A,�,≺) is a dendriform algebra if and only if the right-hand sides of Eqs. (52–54)
are zero. Now, we assume that the right-hand sides of Eqs. (52–54) are zero andwe still
denote them by Eqs. (52–54), respectively. Thus, we have the following interpretation.
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(1) By the assumption of q, Eq. (54) holds if and only if Eq. (50) holds.
(2) By the definition of anti-dendriform algebras, the difference between Eqs. (52)

and (53) is Eq. (54). Therefore after supposing that Eq. (50) holds, we show that
Eq. (52) holds if and only if Eq. (53) holds.

(3) Suppose that Eq. (50) holds. By the definition of anti-dendriform algebras again,
Eq. (52) holds if and only if the following equation holds:

−(q − 2)(q + 1)(x � y) � z − q2(x � y) � z + q(q + 1)x � (y � z) = 0;

that is, Eq. (51) holds.

Hence, (A,�,≺) is a dendriform algebra if and only if the following equivalences
hold:

Eqs. (52), (53), and (54) hold. ⇐⇒ Eqs. (50) and (52) hold.

⇐⇒ Eqs. (50) and (51) hold.

This completes the proof. ��
Theorem 3.6 Let A be a vector space with two binary operations �,≺. Then,
(A,�,≺) is a dendriform algebra satisfying Eqs. (41–43) if and only if its q-algebra
(A,�,�) is an anti-dendriform algebra satisfying Eqs. (50–51).

Proof Suppose that (A,�,≺) is a dendriform algebra satisfying Eqs. (41–43). Then, it
is clear that (A,�,�) is an anti-dendriform algebra by Proposition 3.4. Furthermore,
note that (−q)-algebra over (A,�,�) is a dendriform algebra, thus Eqs. (50–51)
hold by Proposition 3.5; that is, (A,�,�) is an anti-dendriform algebra satisfying
Eqs. (50–51). The converse is similar. ��
Remark 3.7 Theorem 3.6 is equivalent to the following statement. The triple (A,�,�)

is an anti-dendriform algebra satisfying Eqs. (50–51) if and only if its (−q)-algebra
(A,�,≺) is a dendriform algebra satisfying Eqs. (41–43).

Recall that apre-Lie algebra is a vector space Awith a binary operation∗ satisfying

(x ∗ y) ∗ z − x ∗ (y ∗ z) = (y ∗ x) ∗ z − y ∗ (x ∗ z), ∀x, y, z ∈ A. (55)

A Novikov algebra [8, 20]) is a pre-Lie algebra (A, ∗) such that

(x ∗ y) ∗ z = (x ∗ z) ∗ y, ∀x, y, z ∈ A. (56)

An admissible Novikov algebra is a vector space with a binary operation ◦ satis-
fying Eq. (16) and the following equation:

2x ◦ [y, z] = (x ◦ y) ◦ z − (x ◦ z) ◦ y, ∀x, y, z ∈ A. (57)

It is known that an admissible Novikov algebra is an anti-pre-Lie algebra [27].
On the other hand, for Eq. (43), q = −2 is a little “special” in the sense that only

one monomial in x, y, z is left, giving the following notion.
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Definition 3.8 Let (A,�,≺) be a dendriform algebra. Then, (A,�,≺) is called a
Novikov-type dendriform algebra if Eqs. (41–42) and the following equation hold:

x ≺ (y ≺ z) = 0, ∀x, y, z ∈ A. (58)

Proposition 3.9 Let A be a vector space with two binary operations �,≺. Then,
(A,�,≺) is a Novikov-type dendriform algebra if and only if the following equations
hold:

x � (y � z) = (x ≺ y) ≺ z = x ≺ (y � z) = (x ≺ y) � z, (59)

x � (y ≺ z) = (x � y) ≺ z, (60)

(x � y) � z = x ≺ (y ≺ z) = 0, (61)

for all x, y, z ∈ A.

Proof Let x, y, z ∈ A. Then, we set all products involving x, y, z as variables; that is,
there are the following 8 variables

(x � y) � z, x � (y � z), (x ≺ y) ≺ z, x ≺ (y ≺ z), (x � y) ≺ z, x � (y ≺ z), (x ≺ y) � z, x ≺ (y � z).

Therefore, Eqs. (1), (41), (42) and (58) compose a set of linear equations in these
variables. It is straightforward to show that the solution of these linear equations is
given by Eqs. (59–61) with the two free variables (x ≺ y) � z and (x � y) ≺ z; that
is, the other variables are the linear combinations of (x ≺ y) � z and (x � y) ≺ z,
respectively. Thus, the conclusion holds. ��

For the corresponding case of anti-dendriform algebras, we give the following
notion.

Definition 3.10 Let (A,�,�)be an anti-dendriformalgebra.Then, (A,�,�) is called
an admissible Novikov-type dendriform algebra if Eq. (50) and the following equa-
tion hold:

x � (y � z) = 2(x · y) � z, ∀x, y, z ∈ A, (62)

where the binary operation · is defined by Eq. (7), that is, x · y = x � y + x � y for
all x, y ∈ A.

Proposition 3.11 Let A be a vector space with two binary operations �,�. Then,
(A,�,�) is anadmissibleNovikov-type dendriformalgebra if andonly if the following
equations hold:

(x � y) � z = x � (y � z) = 2

3
(x � y) � z − 2

3
(x � y) � z, (63)

x � (y � z) = (x � y) � z = −2

3
(x � y) � z − 1

3
(x � y) � z, (64)

x � (y � z) = (x � y) � z, (65)

x � (y � z) = (x � y) � z, (66)
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for all x, y, z ∈ A.

Proof It is similar to the proof of Proposition 3.9. ��
Corollary 3.12 Let A be a vector space with two binary operations �,≺. The triple
(A,�,≺) is aNovikov-type dendriformalgebra if and only if its−2-algebra (A,�,�)

is an admissible Novikov-type dendriform algebra.

Proof Note that when q = −2, Eq. (58) holds if and only if Eq. (43) holds, and Eq. (62)
holds if and only if Eq. (51) holds. Hence, the conclusion follows from Theorem 3.6.

��
Example 3.13 It is obvious that all “2-nilpotent” dendriform algebras in the sense that
all products involving three elements are zero (see Proposition 2.16) are Novikov-
type dendriform algebras. In particular, any 2-nilpotent associative algebra (A, ·)
gives a Novikov-type dendriform algebra (A,�,≺) by letting �= λ·,≺= μ·, where
λ,μ ∈ F. Accordingly, all “2-nilpotent” anti-dendriform algebras are admissible
Novikov-type dendriform algebras. In particular, all complex anti-dendriform alge-
bras in dimensions 1 and 2 which are classified in Examples 2.9 and Proposition
2.16, respectively, are admissible Novikov-type dendriform algebras. Note that the
3-dimensional anti-dendriform algebras given in Example 2.17 are not admissible
Novikov-type dendriform algebras.

3.2 More correspondences and their relationships

Definition 3.14 Let A be a vector space with a binary operation •. Define a binary
operation � as

x � y = x • y + qy • x, ∀x, y ∈ A. (67)

Then, (A,�) is called the q-algebra over (A, •).

Proposition 3.15 Let (A, ∗) be a pre-Lie algebra. Denote by (A, ◦) the (−q)-algebra
over (A, ∗).Then, (A, ◦) is an anti-pre-Lie algebra if and only if the following equation
holds:

(q + 2)[x, y] ∗ z − q(q + 2)z ∗ [x, y] + q(q − 1)((z ∗ y) ∗ x − (z ∗ x) ∗ y) = 0,

∀x, y, z ∈ A, (68)

where [x, y] = x ∗ y − y ∗ x.

Proof Let x, y, z ∈ A and [ ]◦ be the commutator of ◦ defined by Eq. (15). By Eq. (67),
we have

[x, y]◦ = x ◦ y − y ◦ x = x ∗ y − qy ∗ x − y ∗ x + qx ∗ y = (q + 1)[x, y].
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So (A, ◦) is a Lie-admissible algebra. Furthermore, by Eq. (67) and the definition of
pre-Lie algebras, we have

x ◦ (y ◦ z) − y ◦ (x ◦ z) − [y, x]◦ ◦ z

= (q + 2)[x, y] ∗ z − q(q + 2)z ∗ [x, y] + q(q − 1)
(
(z ∗ y) ∗ x − (z ∗ x) ∗ y

)
.

(69)

Therefore, (A, ◦) is an anti-pre-Lie algebra if and only if the right-hand side of Eq. (69)
is zero. Hence, the conclusion follows. ��
Remark 3.16 Note that when q = −2, Eq. (68) holds if and only if Eq. (56) holds;
that is, in this case, a pre-Lie algebra satisfying Eq. (68) is exactly a Novikov algebra.

Proposition 3.17 Let (A, ◦)beananti-pre-Lie algebra.Denote by (A, ∗) theq-algebra
over (A, ◦). Then, (A, ∗) is a pre-Lie algebra if and only if the following equation
holds:

(q + 2)[x, y]◦ ◦ z − q2z ◦ [x, y]◦ + q(q + 1)
(
(z ◦ x) ◦ y − (z ◦ y) ◦ x

) = 0,

∀x, y, z ∈ A, (70)

where [x, y]◦ = x ◦ y − y ◦ x.

Proof Let x, y, z ∈ A. By Eq. (67) and the definition of anti-pre-Lie algebras, we
have

(x ∗ y) ∗ z − x ∗ (y ∗ z) − (y ∗ x) ∗ z + y ∗ (x ∗ z)

= (q + 2)[x, y]◦ ◦ z − q2z ◦ [x, y]◦ + q(q + 1)((z ◦ x) ◦ y − (z ◦ y) ◦ x).(71)

Therefore, (A, ∗) is a pre-Lie algebra if and only if the right-hand side of Eq. (71) is
zero. This completes the proof. ��
Remark 3.18 Note that when q = −2, Eq. (70) holds if and only if Eq. (57) holds;
that is, in this case, an anti-pre-Lie algebra satisfying Eq. (70) is exactly an admissible
Novikov algebra.

Theorem 3.19 Let A be a vector space with a binary operation ∗. Then, (A, ∗) is a pre-
Lie algebra satisfying Eq. (68) if and only if its (−q)-algebra (A, ◦) is an anti-pre-Lie
algebra satisfying Eq. (70).

Proof It is similar to the proof of Theorem 3.6. ��
In particular, when q = −2, the following conclusion has already been given in

[27].

Corollary 3.20 Let A be a vector space with a binary operation ∗. Then, (A, ∗) is a
Novikov algebra if and only if its 2-algebra (A, ◦) is an admissible Novikov algebra.
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Corollary 3.21 (1) Suppose that (A,�,≺) is a dendriformalgebra satisfyingEqs. (41–
43). Then, its associated pre-Lie algebra (A, ∗)definedbyEq. (3) satisfiesEq. (68).
In particular, when q = −2, the associated pre-Lie algebra of a Novikov-type den-
driform algebra is a Novikov algebra.

(2) Suppose that (A,�,�) is an anti-dendriform algebra satisfying Eqs. (50–51).
Then, its associated anti-pre-Lie algebra (A, ◦) satisfies Eq. (70). In particular,
when q = −2, the associated anti-pre-Lie algebra of an admissible Novikov-type
dendriform algebra is an admissible Novikov algebra.

Proof (1). Note that the q-algebra over (A,�,≺) is an anti-dendriform algebra (A,�
,�) by Proposition 3.4. Let (A, ◦) be the associated anti-pre-Lie algebra of (A,�,�).
Then, we have

x ◦ y = x � y − y � x = x � y + qx ≺ y − y ≺ x − qy � x

= x ∗ y − qy ∗ x, ∀x, y ∈ A,

that is, (A, ◦) is the (−q)-algebra over (A, ∗). By Proposition 3.15, (A, ∗) satisfies
Eq. (68). The conclusion for the special case that q = −2 follows straightforwardly.

(2). It is similar to the proof of Item (1). ��
Combining Theorems 3.6, 3.19 and Corollary 3.21 together, we have the following

commutative diagram which is consistent with both the diagrams (4) and (5).

dendriform algebra
(A, �, ≺)

x∗y=x�y−y≺x
pre-Lie algebra

(A, ∗)

dendriform algebra
(A, �, ≺)+Eqs. (41–43)

q-algebra

x∗y=x�y−y≺x
pre-Lie algebra

(A, ∗)+Eq. (68)

(−q)-algebra

anti-dendriform algebra
(A, �, �)+Eqs. (50–51)

(−q)-algebra

x◦y=x�y−y�x
anti-pre-Lie algebra

(A, ◦)+Eq. (70)

q-algebra

anti-dendriform algebra
(A, �, �)

x◦y=x�y−y�x
anti-pre-Lie algebra

(A, ◦)

(72)
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In particular, when q = −2, we have the following commutative diagram:

dendriform algebra
(A, �, ≺)

x∗y=x�y−y≺x
pre-Lie algebra

(A, ∗)

Novikov-type dendriform algebra
(A, �, ≺)

−2-algebra

x∗y=x�y−y≺x
Novikov algebra

(A, ∗)

2-algebra

admissible Novikov-type dendriform algebra
(A, �, �)

2-algebra

x◦y=x�y−y�x
admissible Novikov algebra

(A, ◦)

−2-algebra

anti-dendriform algebra
(A, �, �)

x◦y=x�y−y�x
anti-pre-Lie algebra

(A, ◦)

(73)

The above commutative diagram illustrates that it is reasonable to regard Novikov-
type dendriform and admissible Novikov-type dendriform algebras as “analogues”
of Novikov and admissible Novikov algebras for dendriform and anti-dendriform
algebras, respectively, justifying the notions of the former.

4 General framework: analogues of anti-dendriform algebras and a
new splitting of operations

Moving further along the study of anti-dendriform algebras in the previous sections,
we provide a general framework of introducing the notions of analogues of anti-
dendriform algebras to interpret a new approach of splitting operations. We also
characterize such a construction in terms of double spaces.

We commence by using associative algebras as an example to exhibit the new
approach of splitting operations, which is interpreted by a general framework of intro-
ducing the notions of analogues of anti-dendriform algebras. At first, we consider
“splitting the associativity,” that is, expressing the multiplication of an associative
algebra as the sum of a string of binary operations. Explicitly, let (A, ·) be an asso-
ciative algebra and (·i )1≤i≤N : A ⊗ A → A be a family of binary operations on A.
Then, the operation · splits into the N operations ·1, · · · , ·N if

x · y =
N∑

i=1

x ·i y, ∀x, y ∈ A. (74)

Example 4.1 The ordinary operations splitting the associativity give the following so-
called Loday algebras.

(1) N = 2: dendriform algebra [28];
(2) N = 3: tridendriform algebra [33];
(3) N = 4: quadri-algebra [1];
(4) N = 8: octo-algebra [26];
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(5) N = 9: ennea-algebra [25].

For the case that N = 2n , n = 0, 1, 2, · · · , there is the following “rule” of con-
structing Loday algebras: by induction, for the algebra (A, ·i )1≤i≤2n , besides the
natural (regular) bimodule over A on the underlying vector space of A itself given
by the left and right multiplication operators, one can introduce the 2n+1 operations
{·i1, ·i2}1≤i≤2n such that

x ·i y = x ·i1 y + x ·i2 y, ∀x, y ∈ A, 1 ≤ i ≤ 2n, (75)

and the left and rightmultiplication operators in a certainway give a bimodule structure
over (A, ·i )1≤i≤2n by acting on the underlying vector space of A itself. In the sense
of [4], these Loday algebras are the successors’ algebras starting from the associative
algebras.

Now, we consider to construct analogues of anti-dendriform algebras by the
following “rule” as another approach of splitting the associativity. Let N = 2n ,
n = 0, 1, 2, · · · . By induction, for the algebra (A, ·i )1≤i≤2n , one can introduce the
2n+1 operations {·i1, ·i2}1≤i≤2n such that

x ·i y = x ·i1 y + x ·i2 y, ∀x, y ∈ A, 1 ≤ i ≤ 2n, (76)

and the opposites of the left and right multiplication operators in the aforementioned
way give a bimodule structure over (A, ·i )1≤i≤2n by acting on the underlying vector
space of A itself. Hence, these algebras can be regarded as the “anti-structures” for
the successors’ algebras starting from the associative algebras.

Example 4.2 When N = 2, that is, n = 1, the corresponding algebra (A, ·i )1≤i≤2 =
(A, ·1, ·2) is an anti-dendriform algebra.

Similarly, we consider the following approach of splitting the Lie bracket of a Lie
algebra in which anti-pre-Lie algebras are included.

Let (X , [ ]) be a Lie algebra and (·i )1≤i≤N : X ⊗ X → X be a family of binary
operations on X . Then, the Lie bracket [ ] splits into the commutator of N binary
operations ·1, · · · , ·N if

[x, y] =
N∑

i=1

(x ·i y − y ·i x), ∀x, y ∈ X . (77)

For the case that N = 2n , n = 0, 1, 2, · · · , there is a “rule” of constructing the
binary operations ·i as follows. By induction, for the algebra (X , ·i )1≤i≤2n , one can
introduce the 2n+1 binary operations {·i1, ·i2}1≤i≤2n such that

x ·i y = x ·i1 y − y ·i2 x, ∀x, y ∈ A, 1 ≤ i ≤ 2n, (78)

and the opposites of the left or right multiplication operators which are in the way
defining the successors’ algebras starting from the Lie algebras, give a representation
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of (X , ·i )1≤i≤2n by acting on the underlying vector space of A itself. These algebras
can be regarded as the “anti-structures” for the successors’ algebras starting from the
Lie algebras.

Example 4.3 When N = 1, that is, n = 0, the corresponding algebra (X , ·1) is an
anti-pre-Lie algebra.

In a summary, such “anti-structures” as the “counterparts” of the successors’ alge-
bras, which are put into the above general framework as analogues of anti-dendriform
algebras as well as anti-pre-Lie algebras, provide a new splitting of operations. The
studyon these structures such as the relationshipswith anti-O-operators and anti-Rota–
Baxter operators, the correspondences between the subclasses of successors’ algebras
and their anti-counterparts in terms of q-algebras, and the operadic interpretation is
expected in the future works.

At the end of this section, we give the following characterization of these “anti-
structures” in terms of double spaces, motivated by Corollary 2.8.

Let C denote the category of all algebras (A, ·) which satisfy a given set of multi-
linear relations R1 = 0, · · · ,Rk = 0.

Definition 4.4 An algebra (A,�,�) is called a C-anti-dendriform algebra if (A ⊕
A, ·) ∈ C, where · is defined by Eq. (14).

Similarly, one can characterize the anti-structures for the algebras (A, ·i )1≤i≤N

with N = 2n , n = 0, 1, 2, · · · as follows. By induction, for the algebra (A, ·i )1≤i≤2n

giving the category C2n , one can introduce the 2n+1 operations {·i1, ·i2}1≤i≤2n such
that (A ⊕ A, ·1, · · · , ·2n ) ∈ C2n , where ·i (1 ≤ i ≤ 2n) is defined by

(x, a) ·i (y, b) = (x ·i1 y + x ·i2 y,−x ·i1 b − a ·i2 y), ∀x, y, a, b ∈ A. (79)
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