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Abstract
Denote by ρ(G) and κ(G) the spectral radius and the signless Laplacian spectral
radius of a graph G, respectively. Let k ≥ 0 be a fixed integer and G be a graph of
size m which is large enough. We show that if ρ(G) ≥ √

m − k, then C4 ⊆ G or
K1,m−k ⊆ G. Moreover, we prove that if κ(G) ≥ m − k + 1, then K1,m−k ⊆ G. Both
these results extend some known results.
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1 Introduction

Graphs considered in the paper are simple and undirected. For a graph G, let ρ(G) be
the spectral radius of its adjacency matrix A(G), and κ(G) be the spectral radius of its
signless Laplacian matrix κ(G). From the Perron–Frobenius theorem, for a connected
graphG, the adjacency (resp., signless Laplacian) spectral radius ofG is themaximum
modulus of its adjacency (resp., signless Laplacian) eigenvalues. In general, we call
ρ(G) the spectral radius of G, and κ(G) the signless Laplacian spectral radius of G.

It is well known that the structural properties and parameters of graphs have a
close relationship with the eigenvalues of graphs. During the recent 30 years, the
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(signless Laplacian) spectral radius among graphs with described structures properties
has attracted considerable attention.

For a graph G, we call H a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G);
in addition, H is an induced subgraph of G if an edge uv ∈ E(H) if and only if
uv ∈ E(G). A graph G is defined to be H -free if G does not contain H as a subgraph
(not necessarily induced). As a spectral version of Turán type problem, the spectral
Turán type problem received much attention from many scholars. In 2010, Nikiforov
[12] posed the associated problem that what is the maximal spectral radius ρ(G)

among H -free graphs G of order n? This problem is also known as the Brualdi–
Solheid–Turán type problem and has been investigated in much literature for some
special graphs H , for which one can refer to clique [10], book [22], friendship [2],
and the references therein.

Replacing the order n by the size m, many scholars recently paid their attention to
a perspective of spectral Turán type problem in terms of the size: what is the maximal
spectral radius ρ(G) among H -free graphs G of size m?To the best of our knowledge,
the history of studying this problem may be dated back at least to Nosal’s theorem
[15] in 1970. Up to now, there are few graphs H such that the maximal spectral radius
ρ(G) among H -free graphs of size m has been studied and bounded by a fixed value.
Some relevant conclusions have been obtained in the past two decades. Nikiforov in
[9] extended Nosal’s theorem from triangle to clique and in [14] answered a conjecture
by Zhai, Lin, and Shu [23] about books. For more detailed results, we refer to [7, 23].

Here, we pay our main attention to the spectral Turán type problems on quadri-
laterals and stars in terms of the size. Let K1,n−1 and Cn be a star and a cycle on n
vertices, respectively. Denote by K1,n−1 + e the graph by inserting an edge to the
independent set of K1,n−1, and denote by Ke

1,n−1 the graph by attaching a pendent
vertex to a pendent vertex of K1,n−1.

In [11], Nikiforov provided an upper bound of the maximum spectral radius among
all C4-free graphs of size m.

Theorem 1 [11] Let G be a graph of size m ≥ 9. If ρ(G) >
√
m, then C4 ⊆ G.

Zhai and Shu [24] improved the result in Theorem 1 for a non-bipartite connected
graph by showing the following theorem.

Theorem 2 [24] Let G be a non-bipartite and connected graph of size m ≥ 26. If
ρ(G) ≥ ρ(K1,m−1 + e), then C4 ⊆ G unless G is K1,m−1 + e.

Recently, Wang [19] provided a generalization of Theorems 1 and 2.

Theorem 3 [19] Let G be a graph of size m ≥ 27. If ρ(G) ≥ √
m − 1, then C4 ⊆ G

unless G is one of these graphs (with possibly isolated vertices): K1,m, K1,m−1 + e,
K e
1,m−1, or K1,m−1 ∪ P2.

It is easy to check that ρ(H) < ρ(K1,m) if H ∈ {K1,m−1+e, Ke
1,m−1, K1,m−1∪P2}

and m ≥ 27. This, together with Theorems 1 and 3, indicates that if ρ(G) ≥ √
m for

a graph G of size m ≥ 27, then C4 ⊆ G unless G is K1,m . Indeed, from Theorems 1
and 3, if m ≥ 27 and ρ(G) ≥ √

m − k for k = 0 or 1, then C4 ⊆ G unless
K1,m−k ⊆ G. Motivated by this, we hope to give a general result in terms of the value
of k.
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Theorem 4 Let k ≥ 0 be an integer and G be a graph of size m ≥ max{(k2 + 2k +
2)2 + k + 1, (2k + 3)2 + k + 1}. If ρ(G) ≥ √

m − k, then K1,m−k ⊆ G or C4 ⊆ G.

Next, we turn our attention to the study of a relationship between the maximum
degree and the signless Laplacian spectral radius of a graph. The signless Laplacian
matrix Q(G) is a linear combination of adjacency matrix and diagonal matrix of a
graph G, so it may significantly reveal the structural properties of the graph G. As
expressed in [18], among matrices (generalized adjacency matrices) associated with
a graph, the signless Laplacian matrix seems to be the most convenient for using in
studying graph properties. For the related researches on the signless Laplacian matrix,
the readers may refer to [8, 16, 20], and a series of surveys by Cvetković and Simić
[3–5].

A signless spectral Turán type version of extremal graph theory has been extensively
studied by researchers. In terms of the order of a graph, much literature investigated
the maximal signless Laplacian spectral radius κ(G) among H -free graphs for various
graphs H , including triangles [27], cycles [13, 21], and linear forests [1]. However,
there are few investigations on signless spectral Turán type problems in terms of the
size.

The topic we focus on is inspired by a theorem by Zhai, Xue, and Lou [26], which
can be viewed as a signless Laplacian spectral Turán type problem for stars in terms
of the size.

Theorem 5 [26] Let G be a graph of size m ≥ 4. If G is a graph without isolated
vertices, then κ(G) ≤ m + 1 with equality if and only if G = K1,m.

Theorem 5 infers that if κ(G) ≥ m + 1 for a graph of size m, then K1,m ⊆ G (in
fact, G = K1,m when G has no isolated vertex). We show the following result, which
extends Theorem 5.

Theorem 6 Let k ≥ 0 be an integer and G be a graph of size m ≥ max{ 12k2 + 6k +
3, 7k + 25}. If κ(G) ≥ m − k + 1, then K1,m−k ⊆ G.

Remark 1.1 Let G1 (resp. G2) be the graph from K1,m−k−1 (resp. K1,m−k) by
embedding k + 1 (resp. k) independent edges. We may check ρ(G1) <

√
m − k,

κ(G1) < m − k + 1, ρ(G2) >
√
m − k and κ(G2) > m − k + 1. Moreover, we know

G1 does not contain neither K1,m−k nor C4 as a subgraph, and G2 contains K1,m−k

as a subgraph. Thus, G1 and G2 illustrate Theorems 4 and 6.

Remark 1.2 Letm = (s
2

)+t (0 ≤ t ≤ s−1) andG be the graph from Ks by attaching k
pendant edges at a vertex of Ks . We have ρ(G) >

√
m − k ifm satisfies the condition

in Theorem 4. However, G contains C4 as a subgraph but not an induced subgraph.
So we always consider an F-free graph as a graph does not contain F as a subgraph.

The rest of this paper is organized as follows. Notations are introduced in Sect. 2.
Proofs of Theorems 4 and 6 are presented in Sects. 2 and 3, respectively. In Sect. 4, we
propose a conjecture on the relation between the maximum degree and spectral radius
of adjacency matrix in terms of order.
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2 Proof of theorem 4

We shall introduce terminology and notation. For a graph G, let u be a vertex of G,
and S, T be two subsets of V (G). Then, let NS(u) denote the set of neighbors of
u in S, and dS(u) be the cardinality of NS(u), i.e., dS(u) = |NS(u)|. Specially, if
S = V (G) then we omit the subscript S. The minimum degree of G is defined to be
δ(G) = min{d(u) : u ∈ V (G)}. Let G[S] be the subgraph of G induced by S, and
denote by E(S) the set of edges in G[S] and e(S) the cardinality of E(S). Suppose
that S ∩ T = ∅. Then, we denote by e(S, T ) the number of edges with one vertex in
S and the other vertex in T .

Now we prove Theorem 4 by way of contradiction. Assume that there are graphs
H of sizem ≥ max{(k2+2k+2)2 +k+1, (2k+3)2 +k+1}with ρ(H) ≥ √

m − k,
such that K1,m−k � H and C4 � H . Let G be a graph with the maximum spectral
radius among graphs satisfying the above conditions. Since adding/deleting isolated
vertices to/from G not changes the value of ρ(G), we can let G contain no isolated
vertices. For simplification, we write ρ by ρ(G).

Let x be a nonnegative eigenvector of A(G) corresponding to ρ with coordinate
xi corresponding to the vertex vi of G. Let u∗ be a vertex of G with xu∗ = max{xi :
vi ∈ V (G)}, then we have a partition {u∗} ∪ A ∪ B of V (G) where A = N (u∗) and
B = V (G)\N [u∗]. Thus,

ρ2xu∗ =
∑

u∈N (u∗)
ρxu =

∑

u∈N (u∗)

∑

v∈N (u)

xv

= |A|xu∗ +
∑

uv∈E(A)

(xu + xv) +
∑

u∈B
dA(u)xu . (1)

Next, we establish two necessary claims.

Claim 1 For a vertex u in B, dA(u) ≤ 1.

Proof This claim follows from the fact that C4 � G. 
�
Following the partition of V (G), we give a refinement of B. Let B = B1 ∪ B2 be

a partition of B, such that B1 = {u ∈ B : dB(u) = 0} and B2 = B\B1. For a vertex
u ∈ B1, we have dA(u) = 1 from Claim 1, and so d(u) = 1.

Claim 2 For a vertex u in B1, xu ≤ 1
ρ
xu∗ .

Proof Let u ∈ B1, then we have ρxu = ∑
v∈N (u) xv ≤ xu∗ . The claim follows. 
�

Thus, from Claim 2, by (1) we have

ρ2xu∗ ≤ |A|xu∗ +
∑

uv∈E(A)

(xu + xv) +
∑

u∈B1

1

ρ
xu∗ +

∑

u∈B2
dA(u)xu . (2)

Note that

e(A, B2) ≤ 2e(B2) = 2e(B). (3)
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Note that V (G) has the partition {u∗} ∪ A ∪ B1 ∪ B2. Clearly P3 � G[A] since
C4 � G. Then, from Claim 2, by (3) we obtain

ρ
∑

uv∈E(A)

(xu + xv) = 2e(A)xu∗ +
∑

uv∈E(A)

(xu + xv) +
∑

u∈B1
dA(u)xu +

∑

u∈B2
dA(u)xu

≤ 2e(A)xu∗ +
∑

uv∈E(A)

(xu + xv) + e(A, B1)

ρ
xu∗ + e(A, B2)xu∗

≤ 2e(A)xu∗ +
∑

uv∈E(A)

(xu + xv) + e(A, B1)

ρ
xu∗ + 2e(B)xu∗ .

It follows that

∑

uv∈E(A)

(xu + xv) ≤
(
2e(A) + 2e(B)

ρ − 1
+ e(A, B1)

ρ(ρ − 1)

)
xu∗ .

This, together with (2), indicates

ρ2xu∗≤|A|xu∗+
(
2e(A)+2e(B)

ρ − 1
+ e(A, B1)

ρ(ρ − 1)

)
xu∗+e(A, B1)

ρ
xu∗+

∑

u∈B2
dA(u)xu

≤|A|xu∗+
(
2e(A) + 2e(B)

ρ − 1
+ e(A, B1)

ρ(ρ − 1)

)
xu∗+e(A, B1)

ρ
xu∗+e(A, B2)xu∗

=
(

|A| + 2e(A) + 2e(B)

ρ − 1
+ e(A, B1)

ρ − 1
+ e(A, B2)

)
xu∗ .

That is, ρ2 ≤ |A| + 2e(A)+2e(B)
ρ−1 + e(A,B1)

ρ−1 + e(A, B2).

On the other hand, we know that ρ2 ≥ m − k. Note that m = |A| + e(A) + e(B) +
e(A, B) = |A| + e(A) + e(B) + e(A, B1) + e(A, B2). We have

ρ2 ≥ |A| + e(A) + e(B) + e(A, B1) + e(A, B2) − k. (4)

Hence,

|A| + e(A) + e(B) + e(A, B1) + e(A, B2) − k

≤ |A| + 2e(A) + 2e(B)

ρ − 1
+ e(A, B1)

ρ − 1
+ e(A, B2),

which implies

(ρ − 3)e(A) + (ρ − 3)e(B) + (ρ − 2)e(A, B1) ≤ k(ρ − 1).

Sincem ≥ (2k+3)2 + k+1, we have ρ ≥ √
m − k > 2k+3. Thus, e(B) ≤ ρ−1

ρ−3k <

k + 1, and so e(B) ≤ k.
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Therefore, for a vertex u ∈ B2, we have d(u) ≤ k + 1, and

ρxu =
∑

v∈N (u)

xv ≤ d(u)xu∗ ≤ (k + 1)xu∗ ,

which follows that xu ≤ k+1
ρ

xu∗ . Furthermore, we obtain

ρ
∑

uv∈E(A)

(xu + xv) ≤ 2e(A)xu∗ +
∑

uv∈E(A)

(xu + xv) +
∑

u∈B1
dA(u)xu +

∑

u∈B2
dA(u)xu

≤ 2e(A)xu∗ +
∑

uv∈E(A)

(xu + xv) + e(A, B1)

ρ
xu∗ + (k + 1)e(A, B2)

ρ
xu∗ .

That is,

∑

uv∈E(A)

(xu + xv) ≤ 1

ρ − 1

(
2e(A) + e(A, B1)

ρ
+ (k + 1)e(A, B2)

ρ

)
xu∗ .

By (2), we have

ρ2xu∗ ≤ |A|xu∗ + 1

ρ − 1

(
2e(A) + e(A, B1)

ρ
+ (k + 1)e(A, B2)

ρ

)
xu∗ + e(A, B1)

ρ
xu∗

+
∑

u∈B2
dA(u)xu

≤ |A|xu∗ + 1

ρ − 1

(
2e(A) + e(A, B1)

ρ
+ (k + 1)e(A, B2)

ρ

)
xu∗ + e(A, B1)

ρ
xu∗

+ (k + 1)e(A, B2)

ρ
xu∗

=
(

|A| + 2e(A)

ρ − 1
+ e(A, B1)

ρ − 1
+ (k + 1)e(A, B2)

ρ − 1

)
xu∗ .

Combining this inequality with (4), we obtain

|A| + e(A) + e(B) + e(A, B1) + e(A, B2) − k

≤ |A| + 2e(A)

ρ − 1
+ e(A, B1)

ρ − 1
+ (k + 1)e(A, B2)

ρ − 1
,

which implies

(ρ − 3)e(A) + (ρ − 1)e(B) + (ρ − 2)e(A, B1) + (ρ − k − 2)e(A, B2) ≤ k(ρ − 1).
(5)

By K1,m−k � G, we have e(A)+ e(B)+ e(A, B1)+ e(A, B2) = m−|A| ≥ k+1.
If k = 0, then (ρ − 3)e(A) + (ρ − 1)e(B) + (ρ − 2)e(A, B1) + (ρ − 2)e(A, B2) ≤ 0
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by (5). So ρ ≤ 3. Hence, 3 ≥ ρ ≥ √
m − k ≥ √

(2k + 3)2 + k + 1 − k = √
10, a

contradiction.
If k ≥ 1, then by (5) we have

e(A) + e(B) + e(A, B1) + e(A, B2) ≤ ρ − 1

ρ − k − 2
k < k + 1

since ρ ≥ √
m − k ≥ √

(k2 + 2k + 2)2 + k + 1 − k > k2 + 2k + 2. This is a
contradiction.

This completes the proof of Theorem 4.

3 Proof of theorem 6

We resume the notation from the previous section. For a graph G, if x is a unit
eigenvector of Q(G) corresponding to κ(G) with coordinate xi corresponding to the
vertex vi of G, by the well-known Courant–Fischer theorem (see eg., [6, Theorem
4.2.6]), then we have

κ(G) = max‖y‖2=1
yT Q(G)y =

∑

viv j∈E(G)

(xi + x j )
2. (6)

Note that the formulate Q(G)x = κ(G)x implies that
(
κ(G)I − D(G)

)
x = A(G)x.

Then for a vertex u ∈ V (G), we have

(
κ(G) − d(u)

)
xu =

∑

v∈N (u)

xv. (7)

Now we prove Theorem 6 by way of contradiction. Suppose that G is the extremal
graph with the maximum signless Laplacian spectral radius among graphs H of size
m ≥ max{ 12k2 + 6k + 3, 7k + 25} and K1,m−k � H . Then, κ(G) ≥ m − k + 1. Let x
be a nonnegative unit eigenvector of Q(G) corresponding to κ(G), and u∗ be a vertex
of G with xu∗ = max{xi : vi ∈ V (G)}. For simplification, write κ by κ(G).

Denote by

W =
{
u ∈ V (G) : xu ≥ 1

2
xu∗

}
.

Note that u∗ ∈ W , and |W | ≥ 1. We prove the following claim.

Claim 3 |W | = 1.

Proof For a vertex u ∈ W , we know xu ≥ 1
2 xu∗ . Then, by (7),

(
κ − d(u)

)1
2
xu∗ ≤ (

κ − d(u)
)
xu =

∑

v∈N (u)

xv ≤ d(u)xu∗ ,
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which follows that d(u) ≥ 1
3q.

Since κ ≥ m − k + 1 and m ≥ 7k + 24, we have

2m ≥
∑

u∈W
d(u) ≥ 1

3
κ|W | ≥ 1

3
(m − k + 1)|W |,

that is, |W | ≤ 6m
m−k+1 < 7. Thus, |W | ≤ 6.

Nowwe can improve the lower bound that d(u) ≥ 1
3κ for u ∈ W . By (7), we obtain

(
κ − d(u∗)

)
xu∗ =

∑

v∈N (u∗)
xv =

∑

v∈N (u∗)∩W
xv +

∑

v∈N (u∗)\W
xv

≤ (|W | − 1)xu∗ + (d(u∗) − |W | + 1)
1

2
xu∗

= 1

2
(d(u∗) + |W | − 1)xu∗ ,

which yields

d(u∗) ≥ 2

3
κ − 1

3
|W | + 1

3
≥ 2

3
κ − 5

3
. (8)

Assume that |W | ≥ 2. For a vertex u ∈ W\{u∗}, we obtain
(
κ − d(u)

)
xu =

∑

v∈N (u)

xv =
∑

v∈N (u)∩W
xv +

∑

v∈N (u)\W
xv

≤ (|W | − 1)xu∗ + (d(u) − |W | + 1)
1

2
xu∗

= 1

2
(d(u) + |W | − 1)xu∗ .

On the other hand, we have (κ − d(u))xu ≥ 1
2 (κ − d(u))xu∗ . Hence, 12 (d(u)+ |W | −

1) ≥ 1
2 (κ − d(u)), that is,

d(u) ≥ κ

2
− 5

2
. (9)

Combining (8) and (9), we have

m + 1 ≥ d(u∗) + d(u) ≥ 2

3
κ − 5

3
+ κ

2
− 5

2
= 7

6
κ − 25

6
≥ 7

6
(m − k + 1) − 25

6
.

Hence, m ≤ 7k + 24, which contradicts the fact that m ≥ 7k + 25. Thus, |W | ≤ 1,
and so |W | = 1 since |W | ≥ 1. 
�

From Claim 3, we haveW = {u∗}. Thus, for two vertices u, v ∈ V (G)\{u∗}, it has
xu + xv < xu∗ .
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We assert that d(u∗) = m−k−1. On the contrary, suppose that d(u∗) ≤ m−k−2.
Then, there is an edge, says u1u2 ∈ E(G), such that u∗ /∈ {u1, u2}. Let G ′ be the
graph obtained from G by deleting the edge u1u2 and attaching a pendent vertex u0
to u∗, and x′ be a vector with

x ′
w =

{
xw, if w ∈ V (G);
0, if w = u0.

Note that ‖x′‖2 = 1. By (6), we have

κ(G ′) − κ(G) ≥
∑

uv∈E(G ′)
(x ′

u + x ′
v)

2 −
∑

uv∈E(G)

(xu + xv)
2

= (xu∗ + 0)2 − (xu1 + xu2)
2 > 0.

Since K1,m−k � G ′. This deduces a contradiction to the maximality of G. Thus, we
have d(u∗) = m − k − 1.

For a vertex u ∈ V (G)\{u∗}, we have d(u) ≤ k + 2. Then, from (7), we have

(
κ − d(u)

)
xu =

∑

v∈N (u)

xv ≤ xu∗ + (d(u) − 1)
1

2
xu∗ ,

which follows

xu ≤ d(u) + 1

2(q − d(u))
xu∗ ≤ k + 3

2(κ − k − 2)
xu∗ . (10)

We can further improve the lower bound in (10). Similarly, by (10) we have

(
κ − d(u)

)
xu =

∑

v∈N (u)

xv ≤ xu∗ + (d(u) − 1)
k + 3

2(κ − k − 2)
xu∗ ,

which implies

xu ≤
(

1

κ − d(u)
+ d(u) − 1

κ − d(u)

k + 3

2(κ − k − 2)

)

xu∗ ≤
(

1

κ − k − 2
+ (k + 1)(k + 3)

2(κ − k − 2)2

)
xu∗ . (11)

Recall that κ ≥ m − k + 1 and d(u∗) = m − k − 1. By (7), we obtain

2xu∗ ≤ (
κ − d(u∗)

)
xu∗ =

∑

u∈N (u∗)

xu ≤ d(u∗)
(

1

κ − k − 2
+ (k + 1)(k + 3)

2(κ − k − 2)2

)
xu∗ .
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So

(m − k − 1)

(
1

κ − k − 2
+ (k + 1)(k + 3)

2(κ − k − 2)2

)
≥ 2.

On the other hand, we may check

(m − k − 1)

(
1

κ − k − 2
+ (k + 1)(k + 3)

2(κ − k − 2)2

)
≤ (m − k − 1)

(
1

m − 2k − 1
+ (k + 1)(k + 3)

2(m − 2k − 1)2

)

= (m − 2k − 1 + k)

(
1

m − 2k − 1
+ (k + 1)(k + 3)

2(m − 2k − 1)2

)

= 1 + (k2 + 6k + 3)m − (k3 + 9k2 + 9k + 3)

2(m − 2k − 1)2

< 2,

where the last inequality holds due to the fact that m ≥ 1
2k

2 + 6k + 3. This deduces
a contradiction.

This completes the proof of Theorem 6.

4 Concluding remarks

For an odd integer n, let Fn be the friendship graph of order n, i.e., the graph obtained
from K1,n−1 by embedding n−1

2 independent edges. Nikiforov [10] showed that if G
does not contain C4 then ρ(G) ≤ ρ(Fn), with equality if and only if G = Fn . In the
same paper (also see [11]), Nikiforov posed a conjecture that for even n, if G does
not contain C4 as a subgraph then ρ(G) ≤ ρ(F ′

n), where F ′
n is obtained from Fn−1

by attaching a new vertex to the unique vertex of maximum degree, with equality if
and only if G = F ′

n . The conjecture was confirmed by Zhai and Wang in [25].
It is easy to check

ρ(Fn) = 1 + √
4(n − 1) + 1

2
.

Due to a well-known fact that ρ(G) ≥ 2m
n for a graph G of order n and size m, if G

does not contain C4, then we have

2m

n
≤ ρ(G) ≤ ρ(Fn) = 1 + √

4(n − 1) + 1

2
.

That is,

m ≤ n
(
1 + √

4(n − 1) + 1
)

4
,

which is a classical upper bound of the Turán number forC4 obtained by Reiman [17].
One can see that from Nikiforov’s result on odd n (resp., Zhai-Wang’s result on

even n), if ρ(G) ≥ ρ(Fn) (resp., ρ(G) ≥ ρ(F ′
n)), then C4 ⊆ G or K1,n−1 ⊆ G.
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Motivated by this property, we provide a natural conjecture in terms of the maximum
degree as follows.

Conjecture 4.1 Let s ≥ 1 be an integer and n ≥ f (s), where f (s) is a function on s.
If G is a graph of order n and

ρ(G) ≥ 1 + √
4(n − s) + 1

2
,

then K1,n−s ⊆ G or C4 ⊆ G.

Nikiforov’s theorem confirmed Conjecture 4.1 for s = 1. Indeed, Conjecture 4.1
provides a spectral method to pursue the Turán number for C4.
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4. Cvetković, D., Simić, S.K.: Towards a spectral theory of graphs based on the signless Laplacian II.
Linear Algebra Appl. 432, 2257–2272 (2010)
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