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Abstract
Asimple undirected graph is said to be semisymmetric if it is regular and edge-transitive
but not vertex-transitive. Folkman (J Combin Theory Ser B 3, 215–232, 1967) proved
that a graph of order 2p or 2p2 is not semisymmetric for any prime p. Wang and
Guo (J Algebra Comb 54, 49–73, 2021) proved that there is only one semisymmetric
graph of order 2p3 with valency p. In this paper, we give a necessary condition
for semisymmetric graphs of order 2pn with valency p, where p is an odd prime,
and construct an infinite family of such graphs. As an application, a classification of
semisymmetric graphs of order 2p4 with valency p is given.
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1 Introduction

Throughout this paper, all graphs are finite, simple, connected and undirected. Let
X = (V (X), E(X)) be a graph with vertex set V (X) and edge set E(X). For any
vertex v ∈ V (X), denote by X1(v) the set of vertices which are adjacent to v. The
valency of v is the size of the set X1(v). A graph X is said to be regular if all the vertices
have the same valency. A graph X is a bipartite graph if V (X) can be partitioned into
two subsets U (X) and W (X), called partite sets, such that every edge of X joins a
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vertex ofU (X) and a vertex of W (X). Denote, by Km,n , the complete bipartite graph
with partite sets of size m and n, respectively.

Let X1 and X2 be graphs with vertex sets V (X1) and V (X2), respectively. An
isomorphism σ from X1 to X2 is a bijection from V (X1) to V (X2) such that for
any u, v ∈ V (X1), u and v are adjacent in X1 if and only if uσ and vσ are adjacent
in X2. Two graphs X1 and X2 are said to be isomorphic, denoted by X1 ∼= X2, if
there is an isomorphism from X1 to X2. Let X be a graph, an automorphism of X
is an isomorphism from X to itself. All automorphisms of X form a group under
the composition of maps. This group is denoted by Aut(X) and is called the full
automorphismgroupof X . The graph X is said to be vertex-transitiveor edge-transitive
if Aut(X) acts transitively on V (X) or on E(X), respectively. It is well known that
a connected graph, which is edge-transitive but not vertex-transitive, is bipartite (see
[9]). The complete bipartite graph Km,n , where m �= n, is a simple example of such
graphs. But it is interesting to find such regular graphs. A graph X is said to be
semisymmetric if it is regular and edge-transitive but not vertex-transitive.

Let X be a bipartite graph with the bipartition V (X) = U (X) ∪ W (X) and A =
Aut(X). Suppose that A+ is the subgroup of A preserving bothU (X) andW (X). The
connectedness of the graph X implies that either |A : A+| = 2 or A = A+, depending
on whether or not there exists an automorphism, which interchangesU (X) andW (X).
For G ≤ A+, X is said to be G-semitransitive if G acts transitively on both U (X)

and W (X), while an A+-semitransitive graph is simply called semitransitive. It can
be checked easily that every semisymmetric graph is a semitransitive bipartite graph
with two partite sets having the same size. Thus, the order of a semisymmetric graph
must be even.

Semisymmetric graphs were first investigated by Folkman [9] in 1967. He gave
some characterizations of semisymmetric graphs and constructed several infinite fam-
ilies of such graphs.Meanwhile, Folkman put forward 8 open problems, which spurred
the interest in this topic. Whereafter, many semisymmetric graphs were constructed
which nearly solved all Folkman’s open problems (see [2, 3, 8, 14, 15]).More recently,
some new results on semisymmetric graphs have appeared by some group-theoretical
methods, graph coverings and computer searching (see [4, 6, 10, 12, 18, 19, 25]).

One of Folkman’s problems is “for which pairs of integers v and d is there a
connected semisymmetric graph with v vertices and d valency?” In response to this
problem, Parker [20] studied semisymmetric cubic graphs of twice odd order. Li andLu
[16] classified pentavalent semisymmetric graphs of square-free order. But there are a
few known semisymmetric graphs with twice prime powers vertices. Let p be a prime,
Folkman [9] proved that there is no semisymmetric graph of order 2p or 2p2. Malnič,
et al. [17] showed that cubic semisymmetric graph of order 2p3 is the Gray graph. Du
and Wang et al. [7, 21–24] gave a partial classification of semisymmetric graphs of
order 2p3. Especially, semisymmetric graphs of order 2p3 with prime valency have
been completely classified [24]. As a natural process, for any pair of positive integer n
andprime p,whether there are semisymmetric graphs of order 2pn with valency p is an
interesting problem. In this paper, we give a necessary condition for semisymmetric
graphs of order 2pn with valency p. Applying this condition, an infinite family of
such graphs is constructed and semisymmetric graphs of order 2p4 with valency p are
classified. Note that when p = 2, the graph of order 2pn with valency p is the cycle
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graph and vertex-transitive. It is also known that there is no semisymmetric graph of
order 2p or 2p2. Throughout this paper, let p be an odd prime and n ≥ 3. The main
results in this paper are listed in the following three theorems.

Theorem 1.1 Let p be an odd prime, n ≥ 3 and X be a semisymmetric graph of
order 2pn with valency p. Let P be a Sylow p-subgroup of Aut(X). If Aut(X) acts
primitively on one partite set at least, then p

∣
∣ n or P contains an elementary abelian

group as a maximal subgroup.

Theorem 1.2 Let p be an odd prime, n ≥ 3 and X be a semisymmetric graph of
order 2pn with valency p. Let P be a Sylow p-subgroup of Aut(X). If P contains an
elementary abelian group as a maximal subgroup, then n ≤ p and X is isomorphic
to the graph X p,n, which is described in Construction 2.6.

It was shown that there is only one semisymmetric graph of order 2p3 with valency
p. The graph X p,3 is just such the graph [24]. Moreover, X3,3 is the Gray graph and
Aut(X3,3) acts primitively on one partite set and imprimitively on the other. If p ≥ 5,
Aut(X p,3) acts imprimitively on both partite sets.

Theorem 1.3 Let p ≥ 5 be a prime and X be a semisymmetric graph of order 2p4

with valency p. Then, X is isomorphic to the graph X p,4 or X̃ p,4, which are described
in Constructions 2.6 and 2.7, respectively.

2 Preliminaries

Denote by Zn the cyclic group of order n, and by An and Sn the alternating group
and the symmetric group of degree n, respectively. An elementary abelian p-group
is a direct product of several cyclic groups of order p, where p is a prime. For a
transitive group G on � and a subset �1 of �, denote by G�1 and G(�1) the setwise
stabilizer and the pointwise stabilizer of G relative to �1, respectively. For a group G
and a subgroup H of G, we use Z(G), CG(H) and NG(H) to denote the center of
G, the centralizer and the normalizer of H in G, respectively. Denote by [G : H ] and
|G : H | the set of right cosets and the index of H in G, respectively. The action of G
on [G : H ] is always assumed to be the right multiplication action. For a group G,

denote by G ′ the derived group of G.A semidirect product of a group N by a group H
is denoted by N � H ,where N is normal in N � H . For any two sets A and B, denote
by A\B = {a | a ∈ A, a /∈ B} the difference set of A and B. For group-theoretical
concepts and notations not defined here, the reader is refereed to [5, 13].

Let G be a group with subgroups L and R and D = ⋃

i Rgi L be a union of double
cosets of R and L in G, where gi ∈ G. Define the bipartite graph X = B(G, L, R; D)

with bipartition V (X) = [G : L] ∪ [G : R] and edge set E(X) = {{Lg1, Rg2}
∣
∣

g1, g2 ∈ G, g2g
−1
1 ∈ D}. This graph is called the bi-coset graph of G with respect to

L , R and D.Clearly, the graph X = B(G, L, R; D) is well-defined, i.e., the adjacency
relation is independent of the choice of representatives of right cosets. Under the right
multiplication action of G on V (X), the graph X is G-semitransitive.
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Proposition 2.1 [8] Let X = B(G, L, R; D) be the bi-coset graph of G with respect
to L, R and D. Then,

(i) X is G-edge-transitive if and only if D is a single double coset of R and L in G,

i.e., D = RgL for some g ∈ G;
(ii) the valency of any vertex in [G : L] (resp. [G : R]) is equal to the number of right

cosets of R (resp. L) in D (resp. D−1), so X is regular if and only if |L| = |R|;
(iii) X is connected if and only if G is generated by D−1D;
(iv) X ∼= B(G, La, Rb; D′), where D′ = ⋃

i R
b(b−1dia)La, for any a, b ∈ G, and

di ∈ D;
(v) X ∼= B(G̃, Lσ , Rσ ; Dσ ), where G̃ is a group and σ is an isomorphism from G to

G̃.

Proposition 2.2 [8] Suppose that X is a G-semitransitive graph with V (X) = U (X)∪
W (X). Take u in U (X), w in W (X) and set D = {g ∈ G | wg ∈ X1(u)}. Then D is a
union of double cosets of Gu and Gw in G, and X ∼= B(G,Gu,Gw; D). Especially,
any semisymmetric graph is a bi-coset graph.

In the following, a sufficient condition for judging the vertex transitivity of an
edge-transitive bi-coset graph is given.

Lemma 2.3 Let X = B(G, L, R; D) be a bi-coset graph, where D = RgL for some
g ∈ G. If there exists σ ∈ Aut(G) such that Lσ = R, Rσ = L and (D−1)σ = D,

then X is vertex-transitive.

Proof Set [G : L] = {Lgl | gl ∈ G} and [G : R] = {Rgr | gr ∈ G}. By definition of
a bi-coset graph, V (X) = [G : L] ∪ [G : R]. Let σ induced by σ be a mapping on
V (X) as follows:

(Lgl)
σ = Rgσ

l and (Rgr )
σ = Lgσ

r ,

where gl , gr ∈ G. We claim that σ ∈ Aut(X).

Firstly, we prove that σ is a permutation on V (X). It is clear that σ is a surjection.
For any gl , gr ∈ G,

Rgσ
l1

= Rgσ
l2

⇔ (gl1 )
σ (gσ

l2
)−1 ∈ R ⇔ (gl1g

−1
l2

)σ ∈ R ⇔ gl1g
−1
l2

∈ Rσ−1 = L ⇔ Lgl1 = Lgl2 .

Secondly, we prove that σ preserves edge set. Since (D−1)σ = D, it follows that
gσ
l (gσ

r )−1 = (glg−1
r )σ = ((gr g

−1
l )−1)σ ∈ D, for any gr g

−1
l ∈ D. Therefore, for

any {Lgl , Rgr } ∈ E(X), {Lgl , Rgr }σ = {Rgσ
l , Lgσ

r } = {Lgσ
r , Rgσ

l } ∈ E(X). Thus
σ ∈ Aut(X).

Since G acts transitively on both [G : L] and [G : R], respectively, 〈G, σ 〉 acts
transitively on V (X). Thus, X is vertex-transitive. �


The following lemma gives some sufficient conditions for a regular bipartite edge-
transitive graph to be semisymmetric.
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Lemma 2.4 Let X be a regular edge-transitive bipartite graph with V (X) = U (X) ∪
W (X), and P be a Sylow subgroup of Aut(X). Then, the graph X is semisymmetric
if P satisfies one of the following conditions:

(i) Pu � Pw, for any u ∈ U (X) and w ∈ W (X);
(ii) NP (Pu) � NP (Pw), especially, |NP (Pu)| �= |NP (Pw)|, for any u ∈ U (X) and

w ∈ W (X);
(iii) CP (Pu) � CP (Pw), especially, |CP (Pu)| �= |CP(Pw)|, for any u ∈ U (X) and

w ∈ W (X).

Proof In the following,we prove the result by a contradiction. Suppose that the graph is
vertex-transitive. Then, there exists σ ∈ Aut(X) such that Aσ

u = Aw,where u ∈ U (X)

and w ∈ W (X). Now Pu = P ∩ Au and Pw = P ∩ Aw are Sylow subgroups of
Au and Aw, respectively. Then, Pσ

u ≤ Aw and so Pσ
u = Pη

w for some η ∈ Aw.

Therefore, τ = ση−1 ∈ Aut(X) satisfies Pτ
u = Pw. Thus, NA(Pu)τ = NA(Pw)

and CA(Pu)τ = CA(Pw). Note that P ∩ NA(Pu) = NP (Pu) and P ∩ NA(Pw) =
NP (Pw) are Sylow subgroups of NA(Pu) and NA(Pw), respectively. Then, NP (Pu)
and NP (Pw) are conjugate in Aut(X). Similarly, CP (Pu) and CP (Pw) are conjugate
in Aut(X). Especially, |NP (Pu)| = |NP (Pw)| and |CP (Pu)| = |CP (Pw)|. Therefore,
if P satisfies one of the conditions (i), (ii) or (iii), the graph X is not vertex-transitive.
This implies that X is a semisymmetric graph. �


Since any semisymmetric graph is a bi-coset graph, in order to study semisymmetric
graphs of twice prime powers order, groups with subgroups of prime powers index are
needed. The following proposition is the classification of nonabelian simple groups
with a subgroup of prime powers index.

Proposition 2.5 [11] Let S be a nonabelian simple group with a subgroup H < S
satisfying |S : H | = pa, for p a prime. Then one of the following holds:

(i) S = An and H = An−1 with n = pa;
(ii) S = PSL(n, q), H is the stabilizer of a projective point or a hyperplane in PG(n−

1, q) and |S : H | = (qn − 1)/(q − 1) = pa;
(iii) S = PSL(2, 11) and H = A5;
(iv) S = M11 and H = M10;
(v) S = M23 and H = M22;
(vi) S = PSU(4, 2) and H is a subgroup of index 27.

At the end of this section, we construct two families of bi-coset graphs.

Construction 2.6 Let p ≥ 5 be a prime and n be a positive integer with n ≤ p. Define
the group P by

P = 〈x1, x2, · · · , xn , y
∣
∣ x p1 = · · · = x pn = y p = 1, [xi , y] = xi+1, [xn , y] = [x j , xi ] = 1〉,

i = 1, · · · , n − 1, j = 1, 2, · · · , n. Then, the order of P is pn+1. Define the bi-coset
Graph X p,n = B(P, 〈y〉, 〈x1〉; 〈x1〉〈y〉).
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Construction 2.7 Let p ≥ 5 be a prime. Define the group Q by

Q = 〈a, b, c, d, e|a p = bp = cp = d p = ep = 1, [b, a] = c, [c, a] = d, [d, a] = [c, b] = e,
[d, b] = [d, c] = [e, a] = [e, b] = [e, c] = [e, d] = 1〉.

Define the bi-coset Graph X̃ p,4 = B(Q, 〈a〉, 〈b〉; 〈b〉〈a〉).

3 Some results on p-groups

Lemma 3.1 Let p be a prime, n be a positive integer, and let P be a nonabelian group
of order pn+1, which is generated by two elements of order p. If P contains a maximal
subgroup H which is an elementary abelian p-group, then

(i) n ≤ p, and

P = 〈x1, x2, · · · , xn , y
∣
∣ x p1 = · · · = x pn = y p = 1, [xi , y] = xi+1, [xn , y] = [x j , xi ] = 1〉

where i = 1, · · · , n − 1 and j = 1, · · · , n;
(ii) CP (y) = Z(P) × 〈y〉 ∼= Z

2
p and CP (h) = H ∼= Z

n
p, for any h ∈ H\Z(P);

(iii) For any g = xi11 · · · xinn yin+1 ∈ P with 0 ≤ i1, · · · , in, in+1 ≤ p − 1, o(g) = p2

if and only if n = p and i1in+1 �= 0.

Proof (i) Let P = 〈x, y〉 with o(x) = o(y) = p. Since H is a maximal subgroup of
P, it follows that H�P, and at least one of x, y is not in H .Without loss of generality,
we assume that y /∈ H . Then, P = H � 〈y〉. Since x ∈ P and x �= y, there exists
h ∈ H such that x = hyi for some i ∈ {0, 1 · · · , p−1}. Since P = 〈hyi , y〉 = 〈h, y〉
and o(h) = p, without loss of generality, let x = h ∈ H . Note that P is a nonabelian
group, then [x, y] �= 1, that is x y �= x . Thus, 〈xH〈y〉〉 = 〈x 〈y〉〉 ≤ H .

For any g ∈ P = 〈x, y〉, we have g = xi1 y j1xi2 y j2 · · · xis y js , where
i1, i2, · · · , is, j1, j2, · · · , js ∈ {0, 1, · · · , p − 1}. Then there exist integers
k1, k2, · · · , ks+1 such that

g = yk1(xi1)y
k2 · · · (xis )yks+1 ∈ 〈y〉〈x 〈y〉〉.

Therefore, P = 〈y〉〈x 〈y〉〉 = 〈y〉H . It is clear that 〈y〉 ∩ H = 1 and 〈y〉 ∩ 〈x 〈y〉〉 = 1.
Thus, |〈x 〈y〉〉| = |H |. Since 〈x 〈y〉〉 ≤ H , it follows that H = 〈x 〈y〉〉. Since |〈y〉| = p,
we have |〈x 〈y〉〉| ≤ pp. But |〈x 〈y〉〉| = |H | = pn, which implies that n ≤ p.

For any g ∈ P, we have g = xi0(x y)i1 · · · (x y p−1
)i p−1 yi p . From

gy = (xi0(x y)i1 · · · (x y p−1
)i p−1 yi p )y = xi p−1(x y)i0(x y

2
)i1 · · · (x y p−1

)i p−2 yi p ,

we know that g ∈ CP (y) if and only if i0 = i1 = · · · = i p−1. Hence, CP (y) =
〈xx y · · · x y p−1〉 × 〈y〉 ∼= Zp × Zp and Z(P) = 〈xx y · · · x y p−1〉 ∼= Zp. It is clear that
CP (CP (y)) = CP (y). Thus, P is a p-group of maximal class. Since |P| = pn+1, the
nilpotent class of P is n.
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Suppose that x1 = x, xi+1 = [xi , y]with i = 1, · · · , n−1.Since the nilpotent class
of the group P is n, one has [xn, y] = 1. Clearly, xi ∈ H , for any i ∈ {1, 2, · · · , n}.
Then, 〈x1, x2, · · · , xn, y〉 ≤ P. It is clear that |〈x1, x2, · · · , xn, y〉| = pn+1 = |P|.
Thus,

P = 〈x1, · · · , xn , y
∣
∣ x p1 = · · · = x pn = y p = 1, [xi , y] = xi+1, [xn , y] = [x j , xi ] = 1〉,

where i = 1, · · · , n − 1, j = 1, · · · , n.

(ii) We have already shown CP (y) = Z
2
p in (i). Since H is an elementary abelian

p-group, it is clear that H ⊆ CP (h) for any h ∈ H \ Z(P). From [h, y] �= 1 and H
is a maximal subgroup of P, we have CP (h) = H .

(iii) For j ∈ {1, 2, · · · , p − 1}, we show first that x y
j

1 = ∏ j+1
k=1 x

Ck−1
j

k , where
Ck−1

j is the binomial coefficient, by induction on j . It is clear that x y1 = x1x2, so the
statement is true when j = 1. Suppose that it is true for j = m. Now let j = m + 1,
we have

x y
m+1

1 = (x y
m

1 )y =
(
m+1
∏

k=1

x
Ck−1
m

k

)y

=
m+1
∏

k=1

(x yk )C
k−1
m =

m+1
∏

k=1

(xkxk+1)
Ck−1
m

= x1xm+2

m+1
∏

k=2

x
Ck−2
m +Ck−1

m
k = x1xm+2

m+1
∏

k=1

x
Ck−1
m+1

k

=
m+2
∏

k=1

x
Ck−1
m+1

k ,

so the statement is true for j = m + 1. By induction principle, we have x y
j

1 =
∏ j+1

k=1 x
Ck−1

j
k for j ∈ {1, 2, · · · , p − 1}.

It can be checked easily that the derived group P ′ of P is 〈x2〉 × · · · × 〈xn〉. If
n ≤ p − 1, then |P| ≤ pp. Consequently, P is a regular p-group. For any g =
xi11 xi22 · · · xinn yin+1 ∈ P, one get that

gp = (xi11 xi22 · · · xinn yin+1)p = x pi1
1 x pi2

2 · · · x pin
n y pin+1d p

1 d
p
2 · · · d p

s ,

for some di ∈ P ′, i = 1, 2, · · · , s. Since P ′ is an elementary abelian p-subgroup, we
have gp = 1 which follows o(g) = p for any 1 �= g ∈ P.

Now suppose that n = p. Note that P ′ � P, it follows that P ′〈y〉 ≤ P and
|P ′〈y〉| = pn = pp. Thus, P ′〈y〉 is a regular p-group. Similarly, we have gp

1 = 1

for any g1 ∈ P ′〈y〉. For any g = x j1
1 x j2

2 · · · x jp
p y jp+1 ∈ P, where j1 jp+1 �= 0, let

g1 = x j2
2 · · · x jp

p y jp+1 , then g1 ∈ P ′〈y〉. Therefore,

1 = gp
1 = (x j2

2 · · · x jp
p y jp+1)p = (x j2

2 · · · x jp
p )1+y jp+1+y2 jp+1+···+y(p−1) jp+1

= (x j2
2 · · · x jp

p )
∑p−1

l=0 (y jp+1 )l .
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Thus,

gp = (x j1
1 x j2

2 · · · x jp
p y jp+1)p = (x j1

1 x j2
2 · · · x jp

p )
∑p−1

l=0 (y jp+1 )l

= (x j1
1 )

∑p−1
l=0 (y jp+1 )l (x j2

2 · · · x jp
p )

∑p−1
l=0 (y jp+1 )l

= (x j1
1 )

∑p−1
l=0 (y jp+1 )l

=
p−1
∏

k=0

(
k+1
∏

i=1

x
Ci−1
k

i

)

=
p

∏

i=1

x
i1

∑p−i+1
j=1 Ci−1

j
i

= x j1
p

p−1
∏

i=1

x
j1

∑p−i+1
k=1 Ci−1

k
i

.

Note that o

⎛

⎝xp

p−1
∏

i=1

x
∑p−i+1

j=1 Ci−1
k

i

⎞

⎠ = p and j1 �= 0, it follows that o(gp) = p.

Therefore, o(g) = p2. �

Lemma 3.2 Let 3 ≤ n ≤ p and

P = 〈x1, x2, · · · , xn , y
∣
∣ x p1 = · · · = x pn = y p = 1, [xi , y] = xi+1, [xn , y] = [x j , xi ] = 1〉,

(i) If n = p, then every automorphism of P is of the form

ϕ : x1 �→ xi11 xi22 · · · xi pp , y �→ x j2
2 · · · x jp

p y jp+1 ,

where 0 ≤ il , jk ≤ p − 1, 1 ≤ l ≤ p, 2 ≤ k ≤ p + 1, and i1, jp+1 �= 0. Hence,
|Aut(P)| = p2p−2(p − 1)2.

(ii) If n < p, then every automorphism of P is of the form

φ : x1 �→ xi11 xi22 · · · xinn , y �→ x j1
1 x j2

2 · · · x jn
n y jn+1 ,

where 0 ≤ il , jk ≤ p − 1, 1 ≤ l ≤ n, 1 ≤ k ≤ n + 1, and i1, jn+1 �= 0. Hence,
|Aut(P)| = p2n−3(p − 1)2.

Proof It is clear that P can be generated by x1 and y, so it is only need to give the
images of x1 and y for any automorphism of P. Define the following maps on P via
the generators x1 and y and preserving multiplications by

σi : x1 �→ x1xi , y �→ y; ρi : x1 �→ x1, y �→ xi y;
μ : x1 �→ x21 , y �→ y; τ : x1 �→ x1, y �→ y2;

where i = 2, · · · , n. It can be checked easily that all of them are automorphisms of
the group P .

(i) Suppose that n = p. In the follows, we will show that Aut(P) = 〈σi , ρi , μ, τ 〉.
If i1i p+1 �= 0, then from Lemma 3.1 we know that o(xi11 xi22 · · · xi pp yi p+1) =

p2. Thus, there is no ϕ in Aut(P) such that xϕ
1 = xi11 xi22 · · · xi pp yi p+1 or yϕ =
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xi11 xi22 · · · xi pp yi p+1 , for any xi11 xi22 · · · xi pp yi p+1 ∈ P and i1i p+1 �= 0. SinceCP (h) = H
for any h ∈ H\Z(P), and CP (y) = Z

2
p, there is no ϕ in Aut(P) such that

yϕ ∈ H . Thus, under the automorphisms of P , y might map to an element of the

form x j2
2 · · · x jp

p y jp+1 . By ρi , τ ∈ Aut(G), it follows

y〈ρi ,τ 〉 = {x j2
2 · · · x jp

p y jp+1
∣
∣ 0 ≤ jk ≤ p − 1, k = 2, · · · , p + 1, jp+1 �= 0} = yAut(P).

Note that P ′ = 〈x2, x3, · · · , xp〉 and P ′〈y〉 < P, we have xϕ
1 �= xi22 · · · xi pp for

any ϕ ∈ Aut(P), since otherwise, 〈xϕ
1 , yϕ〉 < P. There is no ϕ in Aut(P) such that

xϕ
1 = y, because of |CP (x1)| �= |CP (y)| from Lemma 3.1. Under the automorphism

of P , x1 might map to an element of the form xi11 xi22 · · · xi pp with i1 �= 0. Note that
σi , μ ∈ Aut(P), it follows

x 〈σi ,μ〉
1 = {xi11 xi22 · · · xi pp

∣
∣ 0 ≤ il ≤ p − 1, l = 1, 2, · · · , p, i1 �= 0} = xAut(P)

1 .

Therefore, Aut(P) = 〈σi , ρi , μ, τ 〉, and hence |Aut(P)| = p2p−2(p − 1)2.
(ii) Suppose that n < p. Similarly, the map π on P defined via the generators x1

and y and preserving multiplications by

π : x1 �→ x1, y �→ x1y,

is an automorphism of the group P . In the follows, we will show Aut(P) =
〈σi , ρi , μ, τ, π〉.Note thatCP (y) = Zp×Zp andCP (h) = H , for any h ∈ H\Z(P).

Since n ≥ 3, it follows that |H | ≥ p3 and p2 = |CP (y)| �= |H |. Thus, yφ /∈ H for
any φ ∈ Aut(P). Therefore, under the automorphism of P , y might map to an element
of the form xi11 xi22 · · · xinn y jn+1 with jn+1 �= 0. By ρ j , τ, π ∈ Aut(P), we have

y〈ρ j ,τ,π〉 = {x j1
1 x

j2
2 · · · x jn

n y jn+1
∣
∣ 0 ≤ jk ≤ p − 1, k = 1, · · · , n + 1, jn+1 �= 0} = yAut(P).

Note that yφ /∈ H , for any φ ∈ Aut(P). Since there exists φ in Aut(P) such that
yφ = xi11 xi22 · · · xinn yin+1 where 0 ≤ ik ≤ p − 1, k = 1, 2, · · · , n + 1 and in+1 �= 0, it

follows that xφ
1 �= xi11 xi22 · · · xinn yin+1 for anyφ ∈ Aut(P).Since P ′ is the characteristic

subgroup of P and x1 /∈ P ′, it follows that xφ
1 /∈ P ′ for any φ ∈ Aut(P). Thus, under

the automorphisms of P , x1 might map to an element of the form xi11 xi22 · · · xinn with
i1 �= 0. Note that σi , μ ∈ Aut(P), then

x 〈σi ,μ〉
1 = {xi11 xi22 · · · xinn

∣
∣ ik = 0, 1, · · · , p − 1, k = 1, 2, · · · n, i1 �= 0} = xAut(P)

1 .

Therefore, Aut(P) = 〈σi , ρi , μ, τ, π〉, and hence |Aut(P)| = p2n−3(p − 1)2. �
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4 Semisymmetric graphs of order 2pn with valency p

In this section, let X be a p-valent semisymmetric graph with bipartitions V (X) =
U (X) ∪W (X) of order 2pn , A = Aut(X), and P be a Sylow p-subgroup of Aut(X).

Lemma 4.1 Let X be a semisymmetric graph with prime valency. Then Aut(X) is
faithful on both partite sets of X.

Proof We will prove the result by contradiction. Assume that Aut(X) is unfaithful
on at least one partite set of X . Without loss of generality, suppose that Aut(X) is
unfaithful on U (X). Let K be the kernel of A on U (X). In this case, K �= 1 and K
is not transitive on W (X), since otherwise the graph is the complete bipartite graph.
Now let BW = {B1, B2, · · · , Bm} be the complete imprimitive block system induced
by K ,wherem

∣
∣ |W (X)|. For any u ∈ U (X), ifw ∈ X1(u), thenwK ⊆ X1(u). Since

|X1(u) ∩ Bj |
∣
∣ |X1(u)| and |X1(u)| is a prime, we have |X1(u) ∩ Bj | = |X1(u)| or

1. If |X1(u) ∩ Bj | = |X1(u)|, then X1(u) ⊆ Bj and the graph is unconnected. Thus,
|X1(u)∩ Bj | = 1. Since Bj is an orbit of K onW (X), it follows thatwK = w,where
w ∈ X1(u). According to the arbitrariness of u, this implies that K fixes any vertex
in W (X). Thus, K fixes any vertex in V (X). This contradicts with the faithfulness of
A on V (X). The result then follows. �

Lemma 4.2 Let X be a semisymmetric graph of order 2pn with valency p and P be a
Sylow p-subgroup of A, where n ≥ 3, and p is an odd prime. Then, |P| = pn+1.

Proof Since A is transitive on both U (X) and W (X), A = Au P = AwP for any
u ∈ U (X) and w ∈ W (X). By Frattini’s argument, P is transitive on both U (X) and
W (X), and it needs only to show that |Pu | = p for some u ∈ U (X). Since the bipartite
graph X is edge-transitive, one has that Pu is transitive on X1(u). In other words, we
need only to prove that Pu is regular on X1(u). For w ∈ X1(u), if g ∈ Pu ∩ Pw,
then g fixes every vertex in X1(u) because of |X1(u)| = p. Since |X1(w)| = p and
(u, w) ∈ E(X), g fixes every vertex in X1(u) ∪ X1(w). By the connectivity of X , we
can get that g fixes every vertex in V (X). This forces g = 1. Consequently, |Pu | = p
and |P| = pn+1. �

Proof of Theorem 1.1 Let X be a semisymmetric graph of order 2pn with valency p.
Set V (X) = U (X)∪W (X). In [21], the conclusion has been proved to be correct when
n = 3. Next, let n ≥ 4. Without loss of generality, suppose that A acts primitively on
U (X). From O’Nan-Scott Theorem [5], A is of almost simple type, product type or
affine group type.

(1) We claim that A cannot be of almost simple type. Conversely, suppose that
A is of almost simple type, i.e., the socal S of A is a nonabelian simple group. By
Proposition 2.5, S is Apn or PSL(m, q), where qm−1

q−1 = pn and q = pl1 for some
prime p1 and positive integer l. We distinguish the following two cases.

(a) A is primitive on W (X).

Assume that two representations of S on both partite sets are equivalent. Consider
the action of Su on [S : Sw],where u ∈ U (X) andw ∈ W (X). Then, the lengths of the
orbits are 1 and pn −1, respectively. It is impossible as pn −1 �= p.NowAssume that
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two representations of S on the partite sets are not equivalent. Then, S = PSL(m, q)

and qm−1
q−1 = pn . Consider the action of Su on [S : Sw], there are two orbits with

different lengths qm−1−1
q−1 and qm−1, respectively. If qm−1−1

q−1 = p, then

qm−1 = qm − 1

q − 1
− qm−1 − 1

q − 1
= pn − p = p(pn−1 − 1).

And so p
∣
∣ q. This forces p1 = p and q = pl . Since p � pn−1 − 1, it follows that

qm−1 = pl(m−1) �= pn − p, which is a contradiction. If qm−1 = p, then q = p and
m = 2. In this case, qm−1

q−1 = p + 1 �= pn . This contradicts the conditions.
(b) A is imprimitive on W (X).

Let BW be a maximal imprimitive block system of A on W (X) and |BW | = pk,
where k < n. Let K be the kernel of A on BW . Since S � A, it follows that S is
transitive on BW or S ≤ K . Note that S is a simple group, it is impossible since S has
no faithful permutation representation of degree pt , where t < n.

(2) A is of product type.
In this case, there is a nonabelian simple group R of degree ps such that A =

Rk
� M, where M is a transitive permutation group of degree k and sk = n. Let

P and Q be Sylow p-subgroups of A and R, respectively. Since Qk is a Sylow p-
subgroup of Rk and Rk is transitive on U (X), we have Qk is transitive on U (X), and
thus, pn

∣
∣ |Qk |. By the action of Rk onU (X) and |P| = pn+1, we get |Qk | = pn and

|Q| = ps . Thus, every Sylow p-subgroup of M is Zp. If s = 1, then Q ∼= Zp and
P = Z

k
p � Zp. So P contains an elementary abelian group as a maximal subgroup. If

s > 1, then |Z(Q)| > p. Let P1 be a subgroup of order p of Z(Q). By the structure
of A, Pk

1 � Zp = Z
k
p � Zp is a subgroup of A. From Lemma 3.2 (1), we can get that

k ≤ p. Since M ≤ Sk, it follows that p ≤ k. This forces p = k and then p
∣
∣ n.

(3) A is of affine group type.
In this case, the socal of A is Z

n
p and is regular on U (X). Note that |P| = pn+1.

Thus, Z
n
p ≤ P and Z

n
p is a maximal subgroup of P , i.e., P contains an elementary

abelian group as a maximal subgroup. �

Next, we will classify semisymmetric graphs X whose one Sylow p-subgroup of

Aut(X) contains an elementary abelian p-subgroup as a maximal subgroup.

Proof of Theorem 1.2 Every semisymmetric graph is a semitransitive bipartite graph,
and every semitransitive bipartite graph is a bi-coset graph. In the follows, we study
semisymmetric graphs by means of bi-coset graphs. Since P is transitive on both
partite sets U (X) and W (X), from Proposition 2.2, let X = B(P, Pu, Pw; D), where
u ∈ U (X), w ∈ W (X) and D = PwdPu for some d ∈ P. From Proposition 2.1(iv),
B(P, Pu, Pw; PwdPu) ∼= B(P, Pu, Pd

w; Pd
wPu).Soweneed only to consider the graph

X = B(P, Pu, Pw; PwPu) and its vertex transitivity.
Since the graph X is connected, we can get P = 〈Pu, Pw〉, which implies that P is

generated by two elements of order p. Thus,

P = 〈x1, x2, · · · , xn , y
∣
∣ x p1 = · · · = x pn = y p = 1, [xi , y] = xi+1, [xn , y] = [x j , xi ] = 1〉,

123



1296 Journal of Algebraic Combinatorics (2023) 57:1285–1301

where i = 1, · · · , n − 1 and j = 1, · · · , n, from Lemma 3.1(i). Let Pu = 〈x j1
1 · · ·

x jn
n y jn+1〉 and Pw = 〈xi11 · · · xinn yin+1〉, where 0 ≤ ik, jl ≤ p − 1, 1 ≤ k, l ≤ n + 1.
Now, (in+1, jn+1) �= (0, 0), since otherwise 〈Pu, Pw〉 < P. Similarly, (i1, j1) �=
(0, 0). Since xi22 · · · xinn ∈ P ′ and P ′ ≤ 
(P), where 
(P) is the Frattini subgroup
of P , i1 and in+1 cannot be equal to 0. Similarly, j1 = 0 and jn+1 = 0 cannot
simultaneously occur.

Case 1: n = p.
Note that |Pw| = |Pu | = p, then i1i p+1 = 0 and j1 jp+1 = 0, by Lemma 3.1(iii).

Without loss of generality, let i1 �= 0, jp+1 �= 0 and j1 = i p+1 = 0. For any

xi11 xi22 · · · xi pp ∈ P, there exists ϕ ∈ Aut(P) such that xϕ
1 = xi11 xi22 · · · xi pp and yϕ1 =

x j2
2 · · · x jp

p y jp+1 . Thus, under the automorphism of P , one can set Pu = 〈y〉 and
Pw = 〈x1〉. From Proposition 2.1, we can get

X = B(P, Pu, Pw; PwPu) ∼= B(P, 〈y〉, 〈x1〉; 〈x1〉〈y〉).

From Lemma 3.1(ii), CP (Pu) = Z
2
p and CP (Pw) = Z

p
p. Note that p is an odd prime,

the graph X is not vertex transitive by Lemma 2.4 and so X is semisymmetric.
Case 2: n < p.
Without loss of generality, let jn+1 �= 0. Then, there exists φ in Aut(P) such that

yφ = x j1
1 · · · x jn

n y jn+1 and (xi11 · · · xinn yin+1)φ = xi11 xl22 · · · xlnn yln+1 , where ln+1 �= 0.
In this case, i1 �= 0, since otherwise X is disconnected. If in+1 = 0, there exists φ1 in
〈σi 〉, where i = 2, · · · , n, such that xφ1

1 = xi11 xl22 · · · xlnn and yφ1 = y. Without loss
of generality, let Pu = 〈y〉 and Pw = 〈x1〉. If in+1 �= 0, there exists φ2 in 〈σi , τ 〉 such
that (x1y)φ2 = xi11 xl22 · · · xlnn yln+1 and 〈y〉φ2 = 〈y〉. In this case, we can set Pu = 〈y〉
and Pw = 〈x1y〉. By Proposition 2.1, the connected edge-transitive regular graph
B(P, Pu, Pw; PwPu) is isomorphic to one of the following two bi-coset graphs

X = B(P, 〈y〉, 〈x1〉; 〈x1〉〈y〉) and X1 = B(P, 〈y〉, 〈x1y〉; 〈x1y〉y).

Similar to the case 1, we have CP (Pu) = Z
2
p and CP (Pw) = Z

n
p, where n ≥ 3.

Then, the graph X is semisymmetric by Lemma 2.4.
For the graph X1, take σ ∈ Aut(P) such that

σ : y �→ x1y, x1 �→ x p−1
1 .

Then Pσ
w = Pu, Pσ

u = Pw and Dσ = (PwPu)σ = Pu Pw = D−1. By Proposition 2.3,
the graph X1 is vertex transitive, and thus, X1 is not a semisymmetric graph. �


5 A classification of semisymmetric graphs of order 2p4 with valency
p

In this section, wewill classify semisymmetric graphs of order 2p4 with valency p.For
p = 3, there is no cubic semisymmetric graph of order 162 (see [4]). In the follows,
we assume that p ≥ 5. Let P be a Sylow p-subgroup of Aut(X). By Lemma 4.2 and
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the proof of Theorem 1.2, we need only to consider the graph B(P, Pu, Pw; PwPu)
where P = 〈Pu, Pw〉 and |P| = p5. In [1, 26], groups of order p5 which generated
by two elements of order p are as follows:

P1 = 〈a, b, c, d, e|a p = bp = cp = d p = ep = 1, [b, a] = c, [c, a] =
d, [d, a] = e, [c, b] = [d, b] = [d, c] = [e, a] = [e, b] = [e, c] = [e, d] = 1〉;

P2 = 〈a, b, c, d, e|a p = bp = cp = d p = ep = 1, [b, a] = c, [c, a] =
d, [c, b] = e, [d, a] = [d, b] = [d, c] = [e, a] = [e, b] = [e, c] = [e, d] = 1〉;

P3 = 〈a, b, c, d, e|a p = bp = cp = d p = ep = 1, [b, a] = c, [c, a] =
d, [d, a] = [c, b] = e, [d, b] = [d, c] = [e, a] = [e, b] = [e, c] = [e, d] = 1〉.

It is clear that the group P1 is just the group in Lemma 3.1 for n = 4 and its auto-
morphism group has already been given in Lemma 3.2. In the follows, we determine
the automorphic groups of P2 and P3.

Lemma 5.1 Every element in Aut(P2) is of the form

ϕ : a �→ ai1bi2ci3di4ei5 , b �→ a j1b j2c j3d j4e j5 ,

where 0 ≤ il , jk ≤ p − 1, 1 ≤ l, k ≤ 5 and i1 j2 − i2 j1 �≡ 0(modp). Especially,
|Aut(P2)| = p7(p − 1)2(p + 1).

Proof It is clear that P2 can be generated by a and b, and the derived group of P2 is
P ′
2 = 〈c〉×〈d〉×〈e〉.Note that |P2| = p5 ≤ pp because of p ≥ 5.So P2 is a regular p-

group. For any ai1bi2ci3di4ei5 ∈ P2, (ai1bi2ci3di4ei5)p = a pi1bpi2d p
1 d

p
2 · · · d p

s = 1,
where d1, d2, · · · , ds ∈ P ′

2. It follows that exp(P2) = p. Let σ1, σ2, σ3, σ4,

σ5, σ6, σi1i2 j1 j2 be the following maps on P2 defined via generators a and b and
preserving multiplications by

σ1 : a �→ ac, b �→ b; σ2 : a �→ ad, b �→ b; σ3 : a �→ ae, b �→ b;
σ4 : a �→ a, b �→ bc; σ5 : a �→ a, b �→ bd; σ6 : a �→ a, b �→ be;
σi1i2 j1 j2 : a �→ ai1b j1 , b �→ ai2b j2 .

It is easy to prove that σ1, σ2, σ3, σ4, σ5, σ6 ∈ Aut(P2). Then, every element σ in
〈σ1, σ2, σ3, σ4, σ5, σ6〉 is of the form:

σ : a �→ aci3di4ei5 , b �→ bc j3d j4e j5 ,

where 1 ≤ il , jk ≤ p − 1, 3 ≤ l, k ≤ 5. Consider the induced action of Aut(P2) on
P2/P ′

2
∼= Zp × Zp, the kernel of this action is K = 〈σ1, σ2, σ3, σ4, σ5, σ6〉. Hence

Aut(P2)/K � GL(2, p).
In the follows, we consider the maps σi1i2 j1 j2 . If σi1i2 j1 j2 ∈ Aut(P2), then

cσi1i2 j1 j2 = [bσi1i2 j1 j2 , aσi1i2 j1 j2 ] = [ai2b j2 , ai1b j1 ]
= ci1 j2−i2 j1d

j2C2
i1

− j1C2
i2 e

i1C2
j2+1+i2C2

p− j1+1+ j1(i1 j2− j1i2−i2 j2),

dσi1i2 j1 j2 = [cσi1i2 j1 j2 , aσi1i2 j1 j2 ] = [ci1 j2−i2 j1 , ai1b j1 ] = di1(i1 j2−i2 j1)e j1(i1 j2−i2 j1),
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and

eσi1i2 j1 j2 = [cσi1i2 j1 j2 , bσi1i2 j1 j2 ] = [ci1 j2−i2 j1 , ai2b j2 ] = di2(i1 j2−i2 j1)e j2(i1 j2−i2 j1).

Since Z(P2) = 〈d, e〉 and c /∈ Z(P2), it follows that c
σi1i2 j1 j2 /∈ Z(P2). This forces

that i1 j2− i2 j1 �≡ 0(modp). It is clear that σi1i2 j1 j2 /∈ K , so K ∩〈σi1i2 j1 j2〉 = 1. Thus

|〈σ1, σ2, σ3, σ4, σ5, σ6, σi1i2 j1 j2〉| = |K ||GL(2, p)|.

Note that |Aut(P2)| ≤ |K ||GL(2, p)|. Therefore, Aut(P2) = 〈σ1, σ2, σ3, σ4, σ5,
σ6, σi1i2 j1 j2〉, where i1 j2 − i2 j1 �≡ 0(modp). Hence |Aut(P2)| = p7(p− 1)2(p+ 1).

�

Lemma 5.2 Every element in Aut(P3) is of the form

φ : a �→ ai1bi2ci3di4ei5 , b �→ bi
2
1 c j3d j4e j5 ,

where 0 ≤ il , jk ≤ p − 1, 1 ≤ l ≤ 5, 3 ≤ k ≤ 5 and i1 �= 0. Especially, |Aut(P3)| =
p7(p − 1).

Proof By the same argument as in Lemma 5.1, P3 is a regular p-group and exp(P3) =
p. Let σ1, σ2, σ3, σ4, σ5, σ6, σ7, σi j be the follows maps on P3 defined via generators
a and b and preserving multiplications by

σ1 : a �→ ac, b �→ b; σ2 : a �→ ad, b �→ b; σ3 : a �→ ae, b �→ b;
σ4 : a �→ a, b �→ bc; σ5 : a �→ a, b �→ bd; σ6 : a �→ a, b �→ be
σ7 : a �→ ab, b �→ b; σi j : a �→ ai , b �→ b j ;

where 1 ≤ i, j ≤ p − 1. It can be checked easily that σ1, σ2, σ3, σ4, σ5, σ6, σ7 ∈
Aut(P3). Note that P ′

3 = 〈c, d, e〉 � P3. Consider the induced action of Aut(P3) on
P3/P ′

3
∼= Zp × Zp. The kernel of this action is K = 〈σ1, σ2, σ3, σ4, σ5, σ6〉. Thus,

Aut(P3)/K � GL(2, p).
Now consider the maps σi j , we have

cσi j = [bσi j , aσi j ] = [b j , ai ] = ci j d jC2
i eiC

2
j+ j� j−1

k=1C
2
k ,

dσi j = [cσi j , aσi j ] = [ci j d jC2
i eiC

2
j+ j� j−1

k=1C
2
k , ai ] = [ci j d jC2

i , ai ] = di
2 j e2i jC

2
i ,

eσi j = [cσi j , bσi j ] = [ci j d jC2
i eiC

2
j+ j� j−1

k=1C
2
k , b j ] = [ci j , b j ] = ei j

2
,

and

eσi j = [dσi j , aσi j ] = [di2 j e2i jC2
i , ai ] = [di2 j , ai ] = ei

3 j .

Thus if σi j ∈ Aut(P3), then ei j
2 = ei

3 j . It follows that i j( j − i2) ≡ 0(modp). Since
i, j �= 0, one has j ≡ i2(modp). That is, σi i2 ∈ Aut(P3).
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Note that CP3(a) = 〈a〉 × 〈e〉 and CP3(b) = 〈b〉 × 〈d〉 × 〈e〉. Thus, a and b are not
conjugate inAut(P3).By the above argument, for anyai1bi2ci3di4ei5 ∈ P3, there exists
σ ∈ Aut(P3) such that aσ = ai1bi2ci3di4ei5 , where 0 ≤ ik ≤ p − 1, k = 1, · · · , 5,
and i1 �= 0. Thus, there is no φ in Aut(P3) such that bφ = ai1bi2ci3di4ei5 , where
i1 �= 0. Since b /∈ P ′

3, it follows that b
φ �= ci3di4ei5 , for any φ ∈ Aut(P3). Therefore,

under the automorphisms of P3, b might map to an element of the form b j2c j3d j4e j5 ,
where j2 �= 0. From the above discussions on σi j , we have

b
〈σ4,σ5,σ6,σi1i21 〉 = {bi21 c j3d j4e j5 | 0 ≤ i1, j3, j4, j5 ≤ p − 1, i1 �= 0} = bAut(P3).

ThereforeAut(P3) = 〈σ1, σ2, σ3, σ4, σ5, σ6, σ7, σi i2〉.Hence, |Aut(P3)| = p7(p−1).
�


Proof of Theorem 1.3 It is clear that P1 has a subgroup 〈b〉 × 〈c〉 × 〈d〉 × 〈e〉 which
is an elementary abelian p-group of order p4. It has already been proved that the
semisymmetric graph of order 2p4 with valency p which is a bi-coset graph of P1
is X p,4 in Theorem 1.2. Now we consider two groups P2 and P3. By the proof of
Theorem 1.2, we need only to consider the bi-coset graphB(P, Pu, Pw; PwPu),where
P = P2 or P3.

Case 1: P = P2.
Firstly, we determine the structures of Pu and Pw. From |Pu | = |Pw| = p, let

Pu = 〈ai1bi2ci3di4ei5〉 and Pw = 〈a j1b j2c j3d j4e j5〉, where 0 ≤ ik, jl ≤ p − 1,
k, l = 1, · · · , 5. Note that P ′ = 〈c, d, e〉 � P, then (i1, j1) �= (0, 0), since
otherwise 〈Pu, Pw〉 < P. Without loss of generality, we assume that i1 �= 0.
By Lemma 5.1, for any ai1bi2ci3di4ei5 ∈ P2 with i1 �= 0, there exists φ in
Aut(P2) such that aφ = ai1bi2ci3di4ei5 . By Proposition 2.1, set Pu = 〈a〉. Since
P = 〈Pu, Pw〉 = 〈a, a j1b j2c j3d j4e j5〉, it follows that j2 �= 0. Note that there exists
ϕ in 〈σ4, σ5, σ6, σ11 j1 j2〉 such that aϕ = a and bϕ = a j1b j2c j3d j4e j5 , where j2 �= 0.
From Proposition 2.1, we have

B(P, Pu, Pw; PwPu) ∼= B(P, 〈a〉, 〈b〉; 〈b〉〈a〉).

Secondly, we can show that the graph B(P, 〈a〉, 〈b〉; 〈b〉〈a〉) is vertex-transitive.
Take σ ∈ Aut(P2) such that

σ : a �→ b, b �→ a.

Then it is clear that Pσ
u = 〈a〉σ = 〈b〉 = Pw, Pσ

w = 〈b〉σ = 〈a〉 = Pu and
(D−1)σ = (PwPu)−1)σ = (Pu Pw)σ = PwPu = D. From Lemma 2.3, the graph
B(P2, 〈a〉, 〈b〉; 〈b〉〈a〉) is vertex-transitive and thus the graph B(P2, 〈a〉, 〈b〉; 〈b〉〈a〉)
is not semisymmetric.

Case 2: P = P3.
Similarly, we first determine the structures of Pu and Pw.Let Pu = 〈ai1bi2ci3di4ei5〉

and Pw = 〈a j1b j2c j3d j4e j5〉, where 0 ≤ ik, jl ≤ p − 1 with k, l = 1, · · · , 5.
By the same argument as in Case 1, let i1 �= 0. By Lemma 5.2, there exists ψ in
Aut(P3) such that aψ = ai1bi2ci3di4ei5 , where i1 �= 0. Without loss of generality, let
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Pu = 〈a〉. Since P = 〈Pw, Pu〉, one has j2 �= 0. If j1 = 0, for any b j2c j3d j4e j5 ∈
P3, there exists ω ∈ 〈σ4, σ5, σ6〉 such that aω = a and (b j2)ω = b j2c j3d j4e j5 ∈
P3. Thus P = 〈a, b〉. If j1 �= 0, for any a j1b j2c j3d j4e j5 ∈ P3, there exists ν in
〈σ4, σ5, σ6, σi i2〉 such that 〈a〉ν = 〈a〉 and (abk)ν = a j1b j2c j3d j4e j5 , where k j21 ≡
j2(modp).Therefore P = 〈a, abk〉.By Proposition 2.1, the connected edge-transitive
regular graphB(P3, Pu, Pw; PwPu) is isomorphic to one of the following two bi-coset
graphs

X = B(P3, 〈a〉, 〈b〉; 〈b〉〈a〉), and Xk = B(P3, 〈a〉, 〈abk〉; 〈abk〉〈a〉).

We claim that the graph Xk is vertex-transitive. Take σk ∈ Aut(P3) such that

σk : a �→ (abk)−1, b �→ bc−1de j ,

where j ≡ (k − 1)(modp). Then,

(abk)σk = b−ka−1(bc−1d−1e j )k

= b−ka−1bkc−kdke−C2
k+ jk

= a−1ckd−ke−C2
k c−kdke−C2

k+ jk

= a−1e jk−k(k−1)

= a−1.

Hence, we have

Pσk
u = 〈a〉σk = 〈(abk)−1〉 = 〈abk〉 = Pw,

Pσk
w = 〈abk〉σk = 〈a−1〉 = 〈a〉 = Pu .

Thus, (D−1)σk = ((PwPu)−1)σk = (Pu Pw)σk = PwPu = D. By Lemma 2.3, the
graph Xk is vertex-transitive.

Now consider the graph X . Note thatCP3(a) = Zp ×Zp andCP3(b) = Zp ×Zp ×
Zp. By Lemma 2.4, the graph X is not vertex-transitive and so it is semisymmetric.

Therefore, from Theorem 1.2 and the above argument, the semisymmetric graph
of order 2p4 with valency p is isomorphic to X p,4 or X̃ p,4, which are described in
Constructions 2.6 and 2.7. Furthermore, Aut(X̃ p,4) is imprimitive on both partite sets
by Theorem 1.1. �
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