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Abstract
We consider deformations of sequences of cluster mutations in finite type cluster
algebras, which destroy the Laurent property but preserve the presymplectic structure
defined by the exchange matrix. The simplest example is the Lyness 5-cycle, arising
from the cluster algebra of type A2: this deforms to the Lyness family of integrable
symplectic maps in the plane. For types A3 and A4, we find suitable conditions such
that the deformation produces a two-parameter family of Liouville integrable maps
(in dimensions two and four, respectively). We also perform Laurentification for these
maps, by lifting them to a higher-dimensional space of tau functions with a clus-
ter algebra structure, where the Laurent property is restored. More general types of
deformed mutations associated with affine Dynkin quivers are shown to correspond to
four-dimensional symplectic maps arising as reductions in the discrete sine-Gordon
equation.

Keywords Cluster algebra · Quiver · Presymplectic form · Laurent property ·
Integrable map

1 Lyness maps and Zamolodchikov periodicity

It was observed by Lyness in 1942 [26] that the recurrence

xn+2xn = xn+1 + 1 (1.1)
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generates the sequence

x0, x1,
x1 + 1

x0
,
x0 + x1 + 1

x0x1
,
x0 + 1

x1
, x0, x1, . . . , (1.2)

which repeats with period five. The Lyness 5-cycle also arises in Coxeter’s frieze pat-
terns [3], or as a simple example of Zamolodchikov periodicity in integrable quantum
field theories [36], which can be understood in terms of the associahedron K4 and the
cluster algebra defined by the A2 Dynkin quiver [10], and this leads to a connection
with Abel’s pentagon identity for the dilogarithm [27]. The birational map of the plane
corresponding to the recurrence (1.1), that is

(x, y) �→
(
y,

y + 1

x

)
, (1.3)

also appears in the theory of the Cremona group: as conjectured by Usnich and proved
by Blanc [1], the birational transformations of the plane that preserve the symplectic
form

ω = 1

xy
dx ∧ dy, (1.4)

are generated by SL(2,Z), the torus and transformation (1.3).
More generally, the birational map

ϕ : (x, y) �→
(
y,

ay + b

x

)
, (1.5)

with two parameters a, b is also referred to as the Lyness map. By rescaling (x, y) →
(ax, ay), the parameter a �= 0 can be removed, so that this is really a one-parameter
family, which is described in [6] as “the simplest singular map of the plane.” There
are also analogous recurrences in higher dimensions, given by the family

xn+N xn =
N−1∑
j=1

xn+ j + b,

which have been shown to admit
⌊ N
2

⌋
independent first integrals for each order N

[32].
Unlike the special case b = a2, which can be rescaled to (1.3), in general the

orbits of (1.5) do not all have the same period, and generic orbits are not periodic
over an infinite field (e.g.Q,R orC). Moreover, while the iterates in (1.2) are Laurent
polynomials in the initial values x0, x1 with integer coefficients, which is one of the
characteristic features of the cluster variables in a cluster algebra, the iterates of (1.5)
are not Laurent polynomials unless b = a2. However, the general map does preserve
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the same symplectic form (1.4), and there is a conserved quantity K = K (x, y) given
by

K = xy(x + y) + a(x2 + y2) + (a2 + b)(x + y) + ab

xy
. (1.6)

Thus, the Lynessmap (1.5) is integrable in the Liouville sense and can be considered
as a deformation of the periodic map (1.3) which arises from mutations in a finite type
cluster algebra. The purpose of this work is to consider how other integrable maps can
be obtained from deformations of cluster mutations. The Zamolodchikov periodicity
of Y-systems or T-systems associated with finite type root systems has been extended
and generalized in various ways (see [14, 24, 28] and references), but as far as we are
aware the deformations we consider are new.

Following the framework of cluster algebras, we start from a quiver Q (without 1- or
2-cycles) associated with a skew-symmetric exchange matrix B = (bi j ) ∈ MatN (Z)

and an N -tuple of cluster variables x = (x1, x2, . . . , xN ). Here, we consider the
cluster variables xi taking values in a field F; the main cases of interest are F = R or
C, but for some of our later analysis, it will be convenient to consider xi ∈ Q ⊂ Qp.
The initial seed is denoted as (B, x). Now, for each integer k ∈ [1, N ], we define a
mutation μk which produces a new seed (B ′, x′) = μk(B, x), where B ′ = (b′

i j ) with

b′
i j =

{
−bi j if i = k or j = k,

bi j + sgn(bik)[bikbk j ]+ otherwise,
(1.7)

and x′ = (x ′
j ) with

x ′
j =

{
x−1
k fk(M

+
k , M−

k ) for j = k

x j for j �= k.
(1.8)

Here, [a]+ = max(a, 0), fk : F × F → F is a differentiable function and

M+
k :=

N∏
i=1

x [bki ]+
i , M−

k :=
N∏
i=1

x [−bki ]+
i .

For fk(M
+
k , M−

k ) = M+
k +M−

k , the first relation in (1.8) becomes the usual exchange
relation x ′

k xk = M+
k + M−

k for cluster mutations in a coefficient-free cluster algebra.
In this case, we know that there is a log-canonical presymplectic form compatible with
cluster mutations [9, 15, 21]. We extend this result to include more general types of
mutations.
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Lemma 1.1 Let Q be a quiver associated with the exchange matrix B = (bi j ) and
(B ′, x′) = μk(B, x), as defined by (1.7) and (1.8). Then,

∑
i< j

b′
i j

x ′
i x

′
j
dx ′

i ∧ dx ′
j =

∑
i< j

bi j
xi x j

dxi ∧ dx j (1.9)

if and only if

fk(M
+
k , M−

k ) = M+
k gk

(
M−

k

M+
k

)
, (1.10)

for an arbitrary differentiable function gk : F → F.

Remark 1.2 Equivalently, the function fk can be written in the form

fk(M
+
k , M−

k ) = M−
k g̃k

(
M+

k

M−
k

)
,

for g̃k arbitrary.

Proof Using
∑′ to denote a sum over indices with index k omitted, we have

ω =
∑
i< j

bi j
xi x j

dxi ∧ dx j

= 1
2

(
�′
i, j bi jd log xi ∧ d log x j + �′

i bikd log xi ∧ d log xk

+ �′
j bk jd log xk ∧ d log x j

)

= 1
2�

′
i, j bi jd log xi ∧ d log x j + �′

i bikd log xi ∧ d log xk,

and similarly,

ω′ =
∑
i< j

b′
i j

x ′
i x

′
j
dx ′

i ∧ dx ′
j

= 1
2�

′
i, j b

′
i jd log x

′
i ∧ d log x ′

j + �′
i b

′
ikd log x

′
i ∧ d log x ′

k

= 1
2 �′

i, j (bi j + sgn(bik)[bikbk j ]+)d log xi ∧ d log x j

− �′
i bikd log xi ∧ (−d log xk + d log fk).

Hence, if we consider the sets

β+
k = {i ∈ {1, . . . N } : bki > 0}, β−

k = {i ∈ {1, . . . N } : bki < 0},
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then noting that [bikbk j ]+ = 0 unless either i ∈ β+
k , j ∈ β−

k or vice versa, and
defining

dS±
k := ±d logM±

k =
∑
i∈β±

k

bkid log xi ,

we have

ω′ − ω = 1
2 �′

i, j sgn(bik)[bikbk j ]+d log xi ∧ d log x j − �′
i bikd log xi ∧ d log fk

= 1
2

⎛
⎜⎜⎜⎜⎝

∑
i∈β−

k
j∈β+

k

bikbk jd log xi ∧ d log x j −
∑
i∈β+

k
j∈β−

k

bikbk jd log xi ∧ d log x j

⎞
⎟⎟⎟⎟⎠

+ �′
i bkid log xi ∧

(
M+

k

fk

∂ fk
∂M+

k

d logM+
k + M−

k

fk

∂ fk
∂M−

k

d logM−
k

)

= −
∑
i∈β−

k
j∈β+

k

bki bk jd log xi ∧ d log x j

+ (dS+
k + dS−

k ) ∧
(
M+

k

fk

∂ fk
∂M+

k

dS+
k − M−

k

fk

∂ fk
∂M−

k

dS−
k

)

=
(
M+

k

fk

∂ fk
∂M+

k

+ M−
k

fk

∂ fk
∂M−

k

− 1

)
dS−

k ∧ dS+
k .

Hence, ω′ = ω if fk = fk(M
+
k , M−

k ) satisfies the linear partial differential equation

M+
k

∂ fk
∂M+

k

+ M−
k

∂ fk
∂M−

k

= fk,

of which the general solution is given by (1.10) with gk arbitrary.

According to Lemma 1.1, if the exchange matrix B remains invariant under a
sequence of mutations of the form (1.10), then the map that is generated by the same
sequence of cluster mutations will preserve a presymplectic form, i.e. the following
theorem holds.

Theorem 1.3 Let μi1 , μi2 , . . . , μi� , for i j ∈ {1, . . . , N }, j ∈ N, be a sequence of
mutations defined from (1.7) and (1.8), with each function fi j being of the form (1.10),
such that

μi� . . . μi2μi1(B, x) = (B, x̃).
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Then, the map ϕ : x �→ x̃ preserves the two-form

ω =
N∑
i< j

bi j
xi x j

dxi ∧ dx j . (1.11)

Remark 1.4 The preceding result admits a slight generalization to the case of clus-
ter algebras (or quivers Q) with periodicity under mutations. In the most general
setting, as described by Nakanishi [27], these are defined by an exchange matrix
with the property that μi� . . . μi2μi1(B) = ρ̂(B), where ρ̂ is some permutation
of (1, 2, . . . , N ) acting on the indices (equivalently, on the nodes of the quiver
Q). The particular case μm . . . μ2μ1(B) = ρm(B), for the cyclic permutation
ρ : (1, 2, . . . , N ) �→ (N , 1, 2, . . . , N − 1) was called cluster mutation-periodicity
with period m by Fordy and Marsh [13], who gave a complete classification of the
case m = 1. A straightforward adaptation of the above argument shows that if B is
periodic, then the map ϕ = ρ̂−1μi� . . . μi2μi1 leaves B invariant and preserves the
corresponding log-canonical presymplectic form (1.11), in the sense that ϕ∗(ω) = ω.
Lemma 2.3 in [12] covers the special case of this result for ordinary cluster mutations
when B is cluster mutation-periodic with period 1, so ϕ = ρ−1μ1 and the map can
be written as a single recurrence relation. We shall consider an example of this with a
generalized mutation in Sect. 3. The slightly different (but closely related) problem of
when an ordinary difference equation preserves a log-canonical Poisson bracket was
considered in [7].

In the next section, our aim is to generalize the example of the Lyness map (1.5),
corresponding to the root system A2, to other finite type root systems of type A, by
takingmutations defined by affine functions fk with additional parameters that destroy
the Laurent property but preserve the two-form (1.11). Section 3 containsmore general
choices of mutations, starting from affine Dynkin diagrams, where the factors gk in
(1.10) involve Möbius transformations, which lead to travelling wave reductions in
the discrete sine-Gordon equation. We end with a few final remarks.

2 Deformations of type A periodic maps

In this section, extra parameters are included in the regular exchange relation by taking
gk(x) = bkx + ak , since

fk(M
+
k , M−

k ) = M+
k gk

(
M−

k

M+
k

)
= akM

+
k + bkM

−
k . (2.1)

Hence, according to Theorem 1.3, quivers which are periodic under a particular
sequence of mutations (or more generally, are periodic up to a permutation) give
rise to parametric cluster maps that preserve the presymplectic form (1.11). If the
corresponding exchange matrix is non-singular, the parametric cluster maps are sym-
plectic. We begin by examining the case of A2 in more detail, and then apply this
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approach to study the integrability of parametric cluster maps associated with the A3
and A4 quivers.

2.1 Deformedmutations for A2 quiver

The exchange matrix of type A2 is

B =
(
0 1
−1 0

)
.

In this case, B corresponds to a cluster mutation-periodic quiver with period 1 and
M+

1 = x2, M
−
1 = 1. So, by the modification of Theorem 1.3 as in Remark 1.4, taking

ρ : (1, 2) �→ (2, 1), for any differentiable function g̃ : F → F, the map ϕ = ρ−1μ1
given by

ϕ : (x1, x2) �→
(
x2,

1

x1
g̃(x2)

)
(2.2)

is symplectic with respect to ω = 1
x1x2

dx1 ∧ dx2. (Compared with (1.10), we have
f1(x, 1) = xg1(1/x) = g̃(x): in general, replacing gk(x) → xgk(1/x) corresponds
to sending B → −B, which is equivalent to replacing the corresponding quiver
Q → Qopp, the same quiver with all arrows reversed; see also Remark 1.2.)

With (x, y) = (x1, x2) and g̃(x) = ax + b, we reproduce the Lyness map (1.5).
Starting from the periodic map (1.3), and relabelling the initial data as (x0, x1), any
cyclic symmetric function of the iterates x0, x1, x2, x3, x4 in the periodic orbit (1.2)
gives a first integral. So in the periodic case, there are two independent integrals,
namely

K1 =
4∑
j=0

x j = −3 +
4∏
j=0

x j = x20 x1 + x0x21 + x20 + x21 + 2(x0 + x1) + 1

x0x1
,

K2 =
4∑
j=0

x j x j+1

= x0x1(x20 x
2
1 + x30 + x31 + x20 + x21 + x0 + x1 + 2) + x30 + x31 + 2(x20 + x21 ) + x0 + x1

x20 x
2
1

.

Both of the latter are sums of Laurent monomials, so in the case of the map with
parameters, first integrals can be sought by taking arbitrary linear combinations of the
same monomials and solving the resulting conditions on the coefficients. Thus, in the
case of (1.5), the first integral (1.6) can be considered as a deformation of K1 above;
but a first integral composed of the Laurent monomials in K2 only exists when b = a2

and the map is periodic, corresponding to the undeformed situation.
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Although the Laurent phenomenon does not persist for the iterates of the Lyness
recurrence

xn+2xn = axn+1 + b (2.3)

when b �= a2, it was pointed out in [12] that there is a connection to a cluster algebra
via a lift to a space of higher dimension, defined by the substitution

xn = τn+5τn

τn+3τn+2
,

which leads to the Somos-7 recurrence

τn+7τn = a τn+6τn+1 + b τn+4τn+3. (2.4)

As explained in [13], Somos-type recurrences such as the above, with a sum of two
monomials on the right-hand side, can be generated by mutations in a cluster algebra.
In the case of (2.4), it is a cluster algebra of rank 7, extended by the addition of the
parameters a, b as frozen variables.

The rest of this section is devoted to the analogous constructions for A3 and A4.

2.2 A3 quiver with parameters

For the A3 quiver with exchange matrix

B =
⎛
⎝ 0 1 0

−1 0 1
0 −1 0

⎞
⎠ ,

as in Fig. 1, we take fk(M
+
k , M−

k ) = akM
+
k + bkM

−
k . In this case,

ϕ(B, x) := μ3μ2μ1(B, x) = (
B, ϕ(x)

)
,

where the composition ϕ = μ3μ2μ1 acts on the cluster variables x = (x1, x2, x3)
according to

μ1 : (x1, x2, x3) �→ (x ′
1, x2, x3), x ′

1x1 = b1 + a1x2,
μ2 : (x ′

1, x2, x3) �→ (x ′
1, x

′
2, x3), x ′

2x2 = b2 + a2x ′
1x3,

μ3 : (x ′
1, x

′
2, x3) �→ (x ′

1, x
′
2, x

′
3), x ′

3x3 = b3 + a3x ′
2.

(2.5)

Since ϕ(B) = B, so the exchange matrix B remains invariant under this sequence
of mutations, by Theorem 1.3, the map ϕ preserves the corresponding log-canonical
two-form, that is

ϕ∗(ω) = ω,
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Fig. 1 The A3 quiver

where

ω = 1

x1x2
dx1 ∧ dx2 + 1

x2x3
dx2 ∧ dx3 .

The original coefficient-free cluster algebra is given by setting ai = 1 = bi for
i = 1, 2, 3, and in that case, the map ϕ is periodic with period 6, that is ϕ6(x) = x.
Moreover, one can write down three independent first integrals for the periodic map,
by taking appropriate symmetric functions along each orbit, such as

∑5
i=0(ϕ

∗)i (x j )
and

∏5
i=0(ϕ

∗)i (x j ).
However, before considering the deformed case (2.5), there are twoways to simplify

the calculations. First of all, assuming the case of generic parameter values aibi �= 0
for all i , we apply the scaling action of the three-dimensional algebraic torus (F∗)3,
given by xi → λi xi , λi �= 0, and use this to remove three parameters, so that we
obtain

a1 → 1, b1 → 1, a2 → d, b2 → c, a3 → 1, b3 → e,

where c, d, e are arbitrary. Having simplified the space of parameters, the map ϕ is
equivalent to iteration of the system of recurrences

x1,n+1x1,n = x2,n + 1,
x2,n+1x2,n = dx1,n+1x3,n + c,
x3,n+1x3,n = x2,n+1 + e.

(2.6)

Secondly, because we are in an odd-dimensional situation where B necessarily has
determinant zero, so that ω is degenerate, so following [12] (cf. Theorem 2.6 therein),
we can use

ker B =< (1, 0, 1)T >, im B = (ker B)⊥ =< (0, 1, 0)T , (−1, 0, 1)T >

to generate the one-parameter scaling group (x1, x2, x3) → (λx1, x2, λx3) and the
projection π onto its monomial invariants,

π : y = x2, w = x3
x1

.

On the y, w-plane, ϕ induces the reduced map

ϕ̂ :
(
y
w

)
�→

( (
d(y + 1)w + c

)
/y

(dw + c)/(yw) + (e − c)/
(
w(y + 1)

))
, (2.7)

which is symplectic, preserving the nondegenerate two-form

ω̂ = d log y ∧ d logw, π∗ω̂ = ω. (2.8)
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In the original case where all parameters are 1, the reduced map (2.7) with c = d =
e = 1 has period 3, because x2,n+3 = x2,n and x3,n+3/x1,n+3 = x3,n/x1,n for all n.
Thus, in that case, there are two functionally independent first integrals in the plane,
which can be taken as

K1 = ∏2
i=0(ϕ̂

∗)i (y) = (yw+w+1)(y+w+1)
yw = −2 + ∑2

i=0(ϕ̂
∗)i (y),

K2 = ∑2
i=0(ϕ̂

∗)i (w) = yw3+yw2+y2w+w2+2w+1
yw(w+1)

(2.9)

(while the product
∏2

i=0(ϕ̂
∗)i (w) = 1, so does not give a nontrivial integral).

Next, we modify K1 and K2 by inserting constant coefficients in front of each of
their terms, which are all Laurent monomials in K1, while for K2, we can replace the
term w + 1 in the denominator by an arbitrary linear function of w. If we require that
(at least) one of these modified integrals should be preserved by the map ϕ̂, then this
puts a finite number of constraints on the coefficients and parameters c, d, e, which are
necessary and sufficient for the deformed symplectic map to be Liouville integrable.
Thus, we obtain the following result.

Theorem 2.1 The condition

c = e

is necessary and sufficient for the symplectic map (2.7) to admit a deformation of the
first integral K1, given by

K1 = (yw + w + d)(y + dw + c)

yw
, (2.10)

hence, ϕ̂ is integrable whenever this condition holds. Requiring that a deformation of
K2 should be preserved imposes the stronger conditions

c = d2 = e,

in which case both

K2 = w3y + d(y + 1)w2 + (y2 + 2d2)w + d3

yw(w + d)
(2.11)

and K1 given by (2.10) with c = d2 are preserved, and all the orbits of ϕ̂ are periodic
with period 3.

Proof Starting from a general sum of monomials

K1 = y + α w + β
w

y
+ γ

y
+ δ

w
+ ε

yw
+ const

(where we have fixed the scale by assuming that the first term has coefficient 1, and
there is the freedom to add an arbitrary constant), we apply the map (2.7) and require
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that ϕ̂∗(K1) = K1. Comparing the rational functions one each side of the latter
equation imposes the requirement c = e and fixes α = β = d, γ = c + d2, δ = d,
ε = cd; then, choosing to add the constant c + 1 means that K1 can be factored as in
(2.10). Applying the same approach to K2 requires the additional constraint c = d2,
restricting to the one-parameter family of period 3 maps

ϕ̂ :
(
y
w

)
�→

((
d(y + 1)w + d2

)
/y

d(w + d)/(yw)
)

)
,

which have two independent first integrals given by (2.10) with c = d2 and (2.11).

Remark 2.2 When c = e, the integrable symplectic map

ϕ̂ :
(
y
w

)
�→

((
d(y + 1)w + c

)
/y

(dw + c)/(yw)

)
, (2.12)

preserves the pencil of biquadratic curves defined by (2.10), which means that there
is a map of QRT type [5, 29] preserving the same pencil, given by the composition of
the horizontal and vertical switch on each curve in the pencil, namely

ψ̂ :
(
y
w

)
�→

(
ȳ
w̄

)
, ȳ y = (dw + c)(w + d)

w
, w̄w = ȳ + c

ȳ + 1
. (2.13)

From general considerations about automorphisms of elliptic curves, since they each
correspond to translation by a point, these twomaps should commutewith one another,
and indeed, it is straightforward to verify that

ψ̂ ◦ ϕ̂ = ϕ̂ ◦ ψ̂.

However, it appears that generically the two maps correspond to translation by two
independent points of infinite order, so (over Q, say) this should generate a family of
curves withMordell-Weil group of rank at least 2. (As a special case, when c = d = 1,
the map ψ̂ has period 2 for any initial data, corresponding to translation by a 2-torsion
point, whereas the period 3 map ϕ̂ corresponds to addition of a 3-torsion point; so the
points are independent, albeit not of infinite order in this case.)

We now treat the singularity pattern of the iterates of (2.12), in order to obtain its
Laurentification in the sense of [17], i.e. a lift to a map with the Laurent property in a
space of higher dimension, inwhich the new variables can be regarded as tau functions.
Rather than a standard singularity confinement analysis, we study orbits defined over
Q, and consider a p-adic analogue of confinement, as in [22]. The possible singularity
patterns can then be obtained using the empirical approach introduced in [19], simply
by inspecting the prime factorization of a few terms along a particular orbit.

Thus, we choose some particular values for the coefficients and initial data: taking
c = 2, d = 3 and (y0, w0) = (1, 1), we find the first few iterates are

(8, 5),
( 137

8 , 17
40

)
,
( 1607
1096 ,

1048
2329

)
,
( 800200
220159 ,

1068874
210517

)
,
(
3210496223
160740175 , 728705399

780395050

)
,
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(
7129742296469
2344013756975 ,

2735651842025
10626437852503

)
,

so that the values of yn for n = 1, 2, 3, . . . factorize as

23, 137
23

, 1607
23·137 ,

23·52·4001
137·1607 , 11·17·113·137·1109

52·1607·4001 , 13·19·43·1607·417727
52·11·17·113·1109·4001 , . . . ,

while the factorizations of the corresponding values of wn are

5, 17
23·5 ,

23·131
17·137 ,

2·47·83·137
131·1607 , 467·971·1607

2·52·47·83·4001 ,
52·4001·27349681

11·17·113·467·971·1109 , . . . ,

and so on. For the primes p = 113, 137, 1607, 4001, the values of the p-adic norm
|yn|p follow the pattern 1, p−1, p, p, p−1, 1, with the corresponding values of |wn|p
being 1, 1, p, p−1, 1, 1, while for the primes p = 2 and 5, there are instances of the
same patterns but with p → p3 and p → p2, respectively. (For some of these primes,
the whole pattern is not visible above, but it can easily be verified by computing the
next few terms, which are omitted here.) In wn , there are also other primes that do not
appear in yn , e.g. p = 17, 47, 83, 131, 467, 971, and for these, the pattern of |wn|p is
1, p−1, p, 1. This immediately suggests that yn, wn can be written using two different
tau functions σn, τn , as

π̃ : yn = τn−2τn+1

τn−1τn
, wn = σn+1τn−1

σnτn
, (2.14)

so that the first type of p-adic singularity corresponds to τn ≡ 0 mod p for some n,
and the second occurs when σn ≡ 0 mod p.

Our next goal is to show that the tau functions in (2.14) satisfy a system of bilinear
equations, namely

σn+2τn−2 = d σn+1τn−1 + c σnτn,

σnτn+2 = σn+2τn + d σn+1τn+1
(2.15)

(we expect that these could be viewed as a reduction in coupled discrete Hirota equa-
tions [4, 35]), and to prove that this system has the Laurent property. The first equation
in (2.15) is straightforward to obtain, as it arises directly from substituting the tau
function expressions (2.14) into the second component of (2.12), rewritten in the form
of a recurrence, but the second bilinear equation requires more work. If we look at the
singularity pattern in the original three-dimensional system (2.6) with e = c, then we
see that

x1,n = ρn
σn+1

τn
, x3,n = ρn

σn

τn−1
,
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with a new prefactor ρn appearing, while x2,n = yn is already accounted for. Substi-
tuting in these formulae to rewrite the system (2.6) in terms of ρn, σn, τn yields

ρnρn+1 σn+1σn = τn+1τn−2 + τnτn−1,

τn+2τn−2 = ρnρn+1 d σ 2
n+1 + c τ 2n ,

ρnρn+1 σn+2σn+1 = τn+2τn−1 + c τn+1τn .

(2.16)

For the above system, the initial values areρ0, σ0, σ1, τ−2, τ−1, τ0, τ1, and in principle,
one could use this to give a direct proof that the sequences (σn) and (τn) are Laurent
polynomials in the initial data, although the sequence ρn is not. However, note that, the
product ρnρn+1 can be eliminated from any two of the equations in (2.16), so doing
this for each pair gives a set of three equations of degree 3, and then eliminating τn+2
from any two of the latter results in the first equation in (2.15), while eliminating τn+2
instead produces the relation

σnτn+2τn−2 = d σn+1(τn+1τn−2 + τnτn−1) + c σnτ
2
n .

Finally, the second relation in (2.15) follows by combining the first relation with the
above to eliminate τn−2.

Immediate evidence for the Laurent property can be seen by iterating the system
(2.15) for c = 2, d = 3 with all initial values τ−2 = τ−1 = τ0 = τ1 = σ0 = σ1 = 1,
corresponding to the initial values y0 = w0 = 1 in the orbit considered above. The
first few terms are the integers

(τn)n≥1 : 1, 8, 137, 1607, 100025, 23434279, 4436678467, 1750170148834,
(σn)n≥1 : 1, 5, 17, 131, 7802, 453457, 27349681, 18332191183,

and so on. It is also easy to verify directly that the first few terms τ2, σ1, etc., obtained
by iteration of (2.15) are Laurent polynomials in the initial data with coefficients
belonging to Z[c, d].

To make further progress, it is helpful to consider the initial data for (2.15) as a set
of cluster variables (x̃1, x̃2, x̃3, x̃4, x̃5, x̃6) = (τ−2, τ−1, τ0, τ1, σ0, σ1) and calculate
the pullback of the symplectic form (2.8) by the map π̃ defined by the tau function
expressions (2.14), that is

ω̃ = π̃∗ω̂ =
∑
i< j

b∗
i jd log x̃i ∧ d log x̃ j , (2.17)

where B∗ = (b∗
i j ) is the skew-symmetric matrix

B∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 −1 0 −1 1
−1 0 2 −1 1 −1
1 −2 0 1 1 −1
0 1 −1 0 −1 1
1 −1 −1 1 0 0

−1 1 1 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.18)
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Fig. 2 The initial quiver Q associated with the exchange matrix (2.18)

Fig. 3 The effect of two mutations on the quiver corresponding to (2.18)

The quiver corresponding to this matrix is shown in Fig. 2. It is not hard to see that,
when c = 1 = d, the bilinear equations (2.15) for n = 0 are generated by applying a
mutation at node 1, denoted by μ̃1 (to distinguish it from mutations in the original A3
quiver), followed by mutation μ̃5: see Fig. 3. To prove the Laurent property for the
case of arbitrary coefficients, it is necessary to extend the quiver with two extra frozen
nodes.

Theorem 2.3 The sequences of tau functions (σn) and (τn) for the integrable map
(2.12) consist of elements of theLaurent polynomial ringZ>0[c, d, τ±1

−2 , τ±1
−1 , τ±1

0 , τ±1
1 ,

σ±1
0 , σ±1

1 ], being generated by a sequence of mutations in a cluster algebra defined
by the quiver in Fig. 2 with the addition of two frozen nodes.

Proof In order to include the coefficients, we define an extended cluster x̃ =
(x̃1, . . . , x̃8) = (τ−2, . . . , τ1, σ0, σ1, c, d), where x̃7 = c and x̃8 = d are frozen
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variables and take an extended exchange matrix

B̃∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 −1 0 −1 1
−1 0 2 −1 1 −1
1 −2 0 1 1 −1
0 1 −1 0 −1 1
1 −1 −1 1 0 0

−1 1 1 −1 0 0
1 0 0 0 0 −1

−1 −1 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.19)

where two more rows have been appended to (2.18). (The diagram of the quiver with
the additional arrows to/from the frozen nodes does not look quite so clear compared
with Fig. 2, so it has been omitted.) Applying the mutation μ̃1 gives the exchange
relation

σ2τ−2 = d σ1τ−1 + c σ0τ0,

and produces a new cluster (σ2, τ−1, τ0, τ1, σ0, σ1, c, d) and a new matrix μ̃1(B̃∗)
corresponding to the quiver in Fig. 3a with appropriate arrows to/from the frozen
nodes 7 and 8. Next, by applying the mutation μ̃5, the exchange relation is

τ2σ0 = d σ1τ1 + σ2τ0,

with the new cluster being (σ2, τ−1, τ0, τ1, τ2, σ1, c, d), and the new exchange matrix
μ̃5μ̃1(B̃∗) corresponding to the quiver in Fig. 3b with suitable extra arrows added to
take the coefficients into account. Continuing in a similar way, we find a sequence
of mutations to successively generate σ3, τ3, σ4, τ4, and so on, such that overall after
applying the composition of 12 mutations given by

μ̃463524136251 := μ̃4μ̃6μ̃3μ̃5μ̃2μ̃4μ̃1μ̃3μ̃6μ̃2μ̃5μ̃1 (2.20)

(in order from right to left), the quiver returns to its starting position; so we have

μ̃463524136251(B̃
∗) = B̃∗, μ̃463524136251(x̃) = (τ4, τ5, τ6, τ7, σ6, σ7, c, d),

with the index of each of the tau functions increased by 6. Hence, by induction,
both sequences (σn), (τn) are generated by repeatedly applying this composition of
mutations, and the Laurent property follows from the fact that the tau functions are all
elements of the cluster algebra, for which it is also known that the Laurent polynomials
in the initial data have positive integer coefficients [16, 25].

Remark 2.4 Preliminary calculations suggest that the iterates of the QRT map (2.13),
which commutes with ϕ̂, have a different singularity structure, corresponding to a tau
function substitution of the form

yn = ηn

σnτn−1
, wn = σn+1τn−1

σnτn
,
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where ηn has weight two. It would be interesting to see whether this has a cluster
algebra interpretation.

2.3 A4 quiver with parameters

For the exchange matrix

B =

⎛
⎜⎜⎝

0 1 0 0
−1 0 1 0
0 −1 0 1
0 0 −1 0

⎞
⎟⎟⎠ ,

corresponding to the quiver of type A4, once again we start from functions of the form
fk(M

+
k , M−

k ) = akM
+
k + bkM

−
k , with arbitrary coefficients such that akbk �= 0. By

rescaling x j → λ j x j with λ j ∈ F
∗, we can set four of the parameters to 1, so that it

is sufficient to consider a four-parameter family of mutations, given by

μ1 : (x1, x2, x3, x4) �→ (x ′
1, x2, x3, x4), x ′

1x1 = b1 + a1x2,
μ2 : (x ′

1, x2, x3, x4) �→ (x ′
1, x

′
2, x3, x4), x ′

2x2 = 1 + x ′
1x3,

μ3 : (x ′
1, x

′
2, x3, x4) �→ (x ′

1, x
′
2, x

′
3, x4), x ′

3x3 = 1 + x ′
2x4,

μ4 : (x ′
1, x

′
2, x

′
3, x4) �→ (x ′

1, x
′
2, x

′
3, x

′
4), x ′

4x4 = b4 + a4x ′
3.

(2.21)

Then, defining the action of ϕ = μ4μ3μ2μ1 on the cluster x = (x1, x2, x3, x4) as
above,

ϕ(B, x) := μ4μ3μ2μ1(B, x) = (
B, ϕ(x)

)
,

so the nondegenerate exchange matrix B remains invariant under this sequence of
mutations, and according to Theorem 1.3, the map

x �→ ϕ(x)

is symplectic with respect to

ω = 1

x1x2
dx1 ∧ dx2 + 1

x2x3
dx2 ∧ dx3 + 1

x3x4
dx3 ∧ dx4 . (2.22)

Equivalently, by computing the inverse matrix P = B−1 = (pi j ), the map ϕ preserves
the nondegeneratePoissonbracket givenby { xi , x j } = pi j xi x j ,whichhas the explicit
form

{ x2, x1 } = x2x1, { x4, x1 } = x4x1, { x4, x3 } = x4x3, (2.23)

with all other brackets being zero.
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In the original case of the undeformed quiver, corresponding to a1 = a4 = b1 =
b4 = 1 in (2.21), the map ϕ is completely periodic with period 7 and admits four
independent integrals in dimension four. Here, we focus on

I1 =
6∑
j=0

(ϕ∗) j (x1), I2 =
6∏
j=0

(ϕ∗) j (x1), (2.24)

since in the undeformed case these Poisson commutewith respect to the bracket (2.23),
that is

{ I1, I2 } = 0. (2.25)

Being a sum/product of cluster variables in the (finite) A4 cluster algebra, both of these
integrals are Laurent polynomials in terms of the initial cluster x, so to deform them,
we can just take arbitrary linear combinations of the Laurent monomials that appear.

Theorem 2.5 The conditions

b1 = 1 = b4 (2.26)

on the parameters ai , bi (for i = 1, 4) in (2.21) are necessary and sufficient for the
first integrals defined by (2.24) in the periodic case to deform to a pair of rational
conserved quantities for the symplectic map ϕ = μ4μ3μ2μ1 that are in involution,
i.e. they satisfy (2.25) with respect to the Poisson bracket (2.23). Hence, the resulting
two-parameter family of maps ϕ is Liouville integrable, with the two functionally
independent commuting integrals

I1 = 1

x1x2x3x4

(
a1a4x1x2 + a1a4

2x1x2x3 + a1x1x2x3 + a1a4x1x2x3
2 + a1a4x1x4

+ a1a4x1x2
2x4 + a1a4x3x4 + a1a4x1

2x3x4 + a4x2x3x4 + a1
2a4x2x3x4 + a4x1

2x2x3x4

+ a1a4x2
2x3x4 + a1a4x1x3

2x4 + a1a4x1x2x4
2 + a1x1x2x3x4

2
)
,

I2 = (a1 + x2)(x1 + x3) (a4 + x3) (x2 + x4) (x1x2 + a4x1x2x3 + x1x4 + x3x4 + a1x2x3x4)

x1x22x32x4
.

Proof The calculation of the conditions on the coefficients of themonomials appearing
in the deformed versions of the integrals (2.24) is direct and leads to the above forms
of I1, I2 together with the requirement that b1 and b4 should both equal 1. An explicit
calculation of their Poisson bracket then shows that the deformed integrals are also in
involution, as required for Liouville integrability.

To determine the singularity structure of the integrable map ϕ, we consider a
particular rational orbit with parameters a1 = 2, a4 = 3 and all initial x j equal
to 1 (see Table 1). Applying the empirical p-adic method from [19] once more,
we observe that in the numerators of x2 and x3, there are certain primes that do
not appear elsewhere, e.g. there are isolated values of n where |x2,n|p = p−1 for
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p = 29, 643, 5233, 61613, and similarly, there are isolated n where |x3,n|p = p−1

for p = 17, 71, 79, 89, 3529, 1431173. On the other hand, for p = 61, 151, 251, 571,
there are particular values of n where |x1,n|p = |x2,n|p = |x3,n|p = |x4,n|p = p
and also |x1,n−1|p = p−1, |x4,n+1|p = p−1. Also, for p = 137, 353, 7507, there
is a pattern where p first appears in the numerator of x4, then in its denominator at
the next step, then successively in the denominators of x3, x2, x1, before appearing
in the numerator of x1, then disappearing at the 7th step (some of the factorizations
required to see this are omitted from Table 1 for reasons of space); the product of
primes 19 · 23 exhibits the same pattern, although these primes also appear separately
elsewhere. These four singularity patterns in the iterates of ϕ suggest introducing four
tau functions ηn, θn, σn, τn , where the first two have weight two and the last two have
weight one, such that

π̃ : x1,n = σnτn+1

σn+1τn
, x2,n = ηn

σn+2τn
, x3,n = θn

σn+3τn
, x4,n = σn+5τn−1

σn+4τn
,

(2.27)

and direct substitution into the recurrence versions of (2.21) with b1 = 1 = b4,
replacing x j → x j,n , x ′

j → x j,n+1, gives the system

τn+2σn = τnσn+2 + a1 ηn,

ηn+1ηn = σn+1τn+2θn + σn+2σn+3τnτn+1,

θn+1θn = σn+5τn−1ηn+1 + σn+3σn+4τnτn+1,

σn+6τn−1 = σn+4τn+1 + a4 θn+1.

(2.28)

Initial evidence that this system has the Laurent property is provided by setting σ0 =
· · · = σ5 = η0 = θ0 = τ−1 = τ0 = τ1 = 1, corresponding to all initial x j,0 = 1,
j = 1, 2, 3, 4 as in Table 1, and iterating the above with a1 = 2, a4 = 3, which
produces integer-valued tau functions as in Table 2.

If the initial data for (2.28) is regarded as a cluster, that is

(x̃1, . . . , x̃11) = (σ0, . . . , σ5, η0, θ0, τ−1, τ0, τ1),

then the pullback of the symplectic form (2.22) under the map π̃ defined by (2.27) is

ω̃ = π̃∗ω =
∑
i< j

b∗
i j d log x̃i ∧ d log x̃ j ,

where B∗ = (b∗
i j ) is the exchange matrix
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Fig. 4 The initial quiver associated with the extended exchange matrix (2.30)

B∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0 0 0 1 0 0 −1 0
0 1 0 0 0 −1 0 0 1 0

0 1 0 0 0 −1 0 0 1
0 1 −1 1 0 −1 0 0

0 0 0 1 0 −1 0
0 0 −1 0 1 0

0 1 0 0 −1
* 0 1 0 0

0 1 0
0 1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.29)

(since the matrix is skew-symmetric, for brevity, we put an asterisk to represent the
terms below the diagonal). As in the A3 case, this is sufficient to generate a sequence
of mutations for the tau functions in the original undeformed system, but in order to
include the parameters a1, a4, it is necessary to add these as frozen variables.

Theorem 2.6 The sequences of tau functions (τn), (ηn), (θn), (σn) for the integrable
map ϕ = μ4μ3μ2μ1 defined by (2.21) with b1 = b4 = 1 consist of elements of the
Laurent polynomial ringZ>0[a1, a4, σ±1

0 , σ±1
1 , σ±1

2 , σ±1
3 , σ±1

4 , σ±1
5 , η±1

0 , θ±1
0 , τ±1

−1 ,

τ±1
0 , τ±1

1 ], being generated by a sequence of mutations in a cluster algebra defined by
the exchange matrix (2.29) with the addition of two frozen variables, corresponding
to the quiver shown in Fig. 4.
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Proof We take an extended cluster

x̃ = (x̃1, . . . , x̃13) = (σ0, . . . , σ5, η0, θ0, τ−1, τ0, τ1, a1, a4),

with the coefficients a1, a4 corresponding to additional frozen nodes in the quiver
associated with B̃∗ = (b∗

i j ), the extended exchange matrix given by

B̃∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0 0 0 1 0 0 −1 0
0 0 1 0 0 0 −1 0 0 1 0
1 −1 0 1 0 0 0 −1 0 0 1
0 0 −1 0 1 −1 1 0 −1 0 0
0 0 0 −1 0 0 0 1 0 −1 0
0 0 0 1 0 0 0 −1 0 1 0

−1 1 0 −1 0 0 0 1 0 0 −1
0 0 1 0 −1 1 −1 0 1 0 0
0 0 0 1 0 0 0 −1 0 1 0
1 −1 0 0 1 −1 0 0 −1 0 1
0 0 −1 0 0 0 1 0 0 −1 0

−1 −1 0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 0 0 −1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.30)

(here, we have shown the full matrix so that the exponents of all the exchange relations
are visible in each column). The initial quiver is shown in Fig. 4. Mutating at node 1
gives the exchange relation

μ̃1 : τ2σ0 = τ0σ2 + a1 η0,

producing the new cluster μ̃1(x̃) = (τ2, σ1, . . . , σ5, η0, θ0, τ−1, τ0, τ1, a1, a4), and
subsequently applying mutations μ̃7, μ̃8, μ̃9 successively generates exchange rela-
tions corresponding to the other three equations in (2.28) for n = 0, with the result
being the cluster μ̃9μ̃8μ̃7μ̃1(x̃) = (τ2, σ1, . . . , σ5, η1, θ1, σ6, τ0, τ1, a1, a4). To gen-
erate each new instance of the four equations in (2.28) with the index n increased by 1,
it is necessary to apply a similar block of four mutations. Let us define the following
composition of four mutations by

μ̂i j := μ̃i μ̃8μ̃7μ̃ j ,

and to index mutations, we use 10, 11 to distinguish nodes 10 and 11 from nodes with
single-digit labels. Then, if we take a particular composition of 36 mutations given by
9 of these blocks of four, namely

ˆ̂μ := μ̂611 μ̂510 μ̂49 μ̂36 μ̂25 μ̂14 μ̂113 μ̂102 μ̂91 = μ̃6871158710487938762875187411873108729871
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Fig. 5 Two orientations of the A(1)
3 Dynkin diagram

(where in the second expression the notation from (2.20) has been reused), then the
quiver returns to its starting position; so we have

ˆ̂μ(B̃∗) = B̃∗, ˆ̂μ(x̃) = (σ9, σ10, σ11, σ12, σ13, σ14, η9, θ9, τ8, τ9, τ10, a1, a4),

with the index of each of the tau functions increased by 9. Thus, by repeatedly applying
these 9 blocks of four mutations, all of the tau functions for the integrable map are
produced from clusters in the cluster algebra defined by (2.30).

3 Reductions in the discrete sine-Gordon equation

In this section, we consider two examples of four-dimensional maps that arise as
reductions in the lattice sine-Gordon equation introduced in [18], that is

a1(xn,mxn+1,m+1 − xn+1,mxn,m+1) + a2xn,mxn+1,mxn,m+1xn+1,m+1 = a3 , (3.1)

where a j , j = 1, 2, 3 are arbitrary parameters. Travelling waves of (3.1) are obtained
by imposing periodicity under shifts by N steps in one lattice direction together with
M steps in the other direction, so that

un+N ,m+M = un,m �⇒ un,m = xk, k = Mn − Nm;

this is called the (N , M) reduction.
The two examples we consider below each correspond to particular orientations of

the affine A(1)
3 Dynkin diagram, as in Fig. 5 (where the notation Ã p,q means there are

p clockwise arrows and q anticlockwise arrows).
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3.1 (2, 2) Periodic reduction in the lattice sine-Gordon equation

Let us consider the quiver with exchange matrix

B =

⎛
⎜⎜⎝

0 1 0 1
−1 0 −1 0
0 1 0 1

−1 0 −1 0

⎞
⎟⎟⎠ ;

this is mutation equivalent to Ã2,2 as in Fig. 5a, which corresponds to the exchange
matrix μ3(B). Then, for k = 1, 2, 3, 4, we take the function

gk(x) = a1x + a3
a2x + a1

,

for arbitrary parameters a1, a2, a3, so that the exchange relation (1.8) contains the
function

fk(M
+
k , M−

k ) = M+
k gk

(
M−

k

M+
k

)
= M+

k

a1M
−
k + a3M

+
k

a2M
−
k + a1M

+
k

.

Next, we consider a sequence of mutations which leaves matrix B invariant, specifi-
cally

ϕ(B, x) := μ3μ1μ4μ2(B, x) = (B, x̃), where x̃ = (x̃1, x̃2, x̃3, x̃4)

and

x̃2 = 1

x2

(
a1x1x3 + a3
a2x1x3 + a1

)
, x̃4 = 1

x4

(
a1x1x3 + a3
a2x1x3 + a1

)
,

x̃1 = 1

x1

(
a1 x̃2 x̃4 + a3
a2 x̃2 x̃4 + a1

)
, x̃3 = 1

x3

(
a1 x̃2 x̃4 + a3
a2 x̃2 x̃4 + a1

)
.

So, according to Theorem 1.3, the map ϕ : x �→ x̃ preserves the two form

ω = 1

x1x2
dx1 ∧ dx2 + 1

x1x4
dx1 ∧ dx4 − 1

x2x3
dx2 ∧ dx3 + 1

x3x4
dx3 ∧ dx4 .

In this case, the map ϕ corresponds to the (2, 2) periodic reduction in the lattice
sine-Gordon equation (3.1) (see Fig. 6).

The matrix B (and henceω) is degenerate, of rank two. To obtain a symplectic map,
we take a pair of monomials corresponding to an integer basis for

im B =< (1, 0, 1, 0)T , (0, 1, 0, 1)T >,
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x1

x2

x3

x4

x1

x2

x
′
2 x

′
4

x3

x
′
2

x
′
3 x

′
1

Fig. 6 The (2, 2) staircase periodic reduction in the quadrilateral equation (3.1)

namely

π : y1 = x1x3, y2 = x2x4.

Under the projection π defined above, ω is the pullback of the symplectic form

ω̂ = 1

y1y2
dy1 ∧ dy2,

which is preserved by the induced map

ϕ̂ :
(
y1
y2

)
�→

(
ỹ1
ỹ2

)
, ỹ2 = 1

y2

(
a1y1 + a3
a2y1 + a1

)2

, ỹ1 = 1

y1

(
a1 ỹ2 + a3
a2 ỹ2 + a1

)2

.(3.2)

The above map has the first integral

K = a22 y
2
1 y

2
2 + 2a1a2(y21 y2 + y1y22 ) + a21(y

2
1 + y22 ) + 2a1a3(y1 + y2) + a23

y1y2
,

so it is Liouville integrable. In fact it is of QRT type: the level sets K = const are
symmetric biquadratic curves, and ϕ̂ = ιh ◦ ιv = (ι ◦ ιv)

2 where the involutions ιh, ιv
correspond to the horizontal and vertical switches on each level set, and ι : y1 ↔ y2.
For Laurentification of symmetric QRT maps, see [17].

In four dimensions, the other degrees of freedom in the original map ϕ have essen-
tially trivial dynamics, since

x̃1
x̃3

=
(
x1
x3

)−1

,
x̃2
x̃4

=
(
x2
x4

)−1

.
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3.2 (3,−1) Periodic reduction in the lattice sine-Gordon equation

We consider the quiver with exchange matrix

B =

⎛
⎜⎜⎝

0 1 0 1
−1 0 1 0
0 −1 0 1

−1 0 −1 0

⎞
⎟⎟⎠ .

The matrix B is nondegenerate and satisfiesμ1(B) = ρ(B) for the cyclic permutation
ρ : (1, 2, 3, 4) �→ (4, 1, 2, 3), so it defines a cluster mutation-periodic quiver with
period 1 [13]. Following the example in Sect. 3.1, we consider

g1(x) = x

(
a1 + a3x

a2 + a1x

)
.

Here, M+
1 = x2x4, M

−
1 = 1 and

f1(M
+
1 , M−

1 ) = M+
1 g1

(
M−

1

M+
1

)
= a1x2x4 + a3

a2x2x4 + a1
.

Hence, the appropriate analogue of Theorem 1.3 (see Remark 1.4) implies that the
map ϕ = ρ−1μ1 given by

ϕ : (x1, x2, x3, x4) �→
(
x2, x3, x4,

1

x1

(a1x2x4 + a3
a2x2x4 + a1

))
(3.3)

preserves the symplectic form

ω = 1

x1x2
dx1 ∧ dx2 + 1

x1x4
dx1 ∧ dx4 + 1

x2x3
dx2 ∧ dx3 + 1

x3x4
dx3 ∧ dx4 .

The map (3.3) is associated with the (3,−1) periodic reduction of the lattice sine-
Gordon equation (3.1) and can be rewritten in recurrence form as

a1(xnxn+4 − xn+1xn+3) + a2xnxn+1xn+3xn+4 = a3 .

Closed-form expressions for integrals of periodic reductions in the sine-Gordon equa-
tion were presented in [34] and their involutivity was proved in [33].

4 Concluding remarks

We have considered autonomous recurrences or maps obtained by including addi-
tional constant parameters in sequences of cluster mutations that generate completely
periodic dynamics and have shown that it is possible to preserve the presymplectic
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structure defined by the exchange matrix, and also (by imposing suitable constraints
on the parameters) obtain Liouville integrable maps. Our starting point for showing
Liouville integrability has been the fact that the original periodic maps admit first
integrals defined by cyclic symmetric functions of variables along a period of the
orbit. Only the examples of A2, A3 and A4 have been dealt with here, but it would
be instructive to make a more systematic study of such functions from the viewpoint
of the associated Poisson algebra in order to extend these results to cluster algebras
defined by other finite type Dynkin diagrams. We have also treated more general types
of mutations, involving Möbius transformations, and shown that for some particular
affine type exchange matrices, these lead to reductions in the discrete sine-Gordon
equation.

The parameters ak, bk appearing in our deformed mutations have been assumed
constant, but Theorem 1.3 applies equally well to non-autonomous recurrences/maps.
In particular, taking

ak = yk
1 + yk

, bk = 1

1 + yk

in (2.1) leads to the expression for a mutation μk in a cluster algebra with coefficients
[11], which themselves mutate according to

y′
j =

⎧⎨
⎩
y−1
k if j = k,

y j
(
1 + y

−sgn(b jk )

k

)−b jk
otherwise.

The dynamics of the coefficients generates the associated Y-system [24]. In [20], it
is shown that non-autonomous dynamics also arises from autonomous Y-systems in
the case where the exchange matrix is degenerate: one of the simplest examples is
provided by the Y-system

yn+7yn = (1 + yn+6)(1 + yn+1)

(1 + y−1
n+4)(1 + y−1

n+3)

corresponding to the Somos-7 recurrence (2.4), solved in terms of the q-Painlevé V
equation

xn+2xn = xn+1 + αn q
n, αn+6 = αn, (4.1)

which is a non-autonomous version of the Lyness recurrence. The fact that the period
of αn is 6 is important, since if q = 1 and αn is periodic with a period that is not a
divisor of 6, then (4.1) appears to exhibit chaotic dynamics [2].

As another example based on the A2 exchange matrix, taking g1(x) = ax+b
cx+d and

letting the coefficientsa, b, c, d dependon the indexn gives the sequence of symplectic
maps

ϕn(x, y) =
(
y,

an y + bn
x(cn y + dn)

)
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that corresponds to the non-autonomous nonlinear recurrence

xn+2 = anxn+1 + bn
xn(cnxn+1 + dn)

.

Invariants of this recurrence when the coefficients are periodic were presented in
[8] and have also been studied in the framework of QRT (and non-QRT) maps with
periodic coefficients [30, 31].
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