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Abstract
The characterization of distance-regular Cayley graphs originates from the problem of
identifying strongly regular Cayley graphs, or equivalently, regular partial difference
sets. In this paper, a partial classification of distance-regular Cayley graphs on dicyclic
groups is obtained. More specifically, it is shown that every distance-regular Cayley
graph on a dicyclic group is a complete graph, a complete multipartite graph, or a non-
antipodal bipartite distance-regular graph with diameter 3 satisfying some additional
conditions.

Keywords Distance-regular graph · Cayley graph · Dicyclic group

Mathematics Subject Classification 05E30 · 05C25

1 Introduction

Let G be a finite group with identity 1, and let S be a subset of G \ {1} such that
S = S−1 := {s−1 | s ∈ S}. The Cayley graph Cay(G, S) is defined as the graph
with vertex set G, and with an edge joining two vertices g, h ∈ G if and only if
g−1h ∈ S. Here S is called the connection set ofCay(G, S). It is known that Cay(G, S)

is connected if and only if 〈S〉 = G and that G acts regularly on the vertex set of

B Kinkar Chandra Das
kinkardas2003@gmail.com

Xueyi Huang
huangxymath@163.com

Lu Lu
lulumath@csu.edu.cn

1 School of Mathematics, East China University of Science and Technology, Shanghai 200237,
People’s Republic of China

2 Department of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea

3 School of Mathematics and Statistics, Central South University, Changsha 410083, Hunan, People’s
Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10801-022-01199-y&domain=pdf
http://orcid.org/0000-0003-2576-160X


404 Journal of Algebraic Combinatorics (2023) 57:403–420

Cay(G, S) by left multiplicity. If G is a cyclic (resp. dihedral) group, then Cay(G, S)

is called a circulant (resp. dihedrant).
Let � be a connected graph with vertex set V (�). The distance ∂�(u, v) between

two vertices u, v of � is the length of a shortest path connecting them in �, and the
diameter d� of� is themaximumdistance in�. For v ∈ V (�), let N�

i (v) denote the set
of vertices at distance i from v in �. In particular, we denote N�(v) = N�

1 (v). When
� is clear from the context, we use ∂(u, v), d, Ni (v) and N (v) instead of ∂�(u, v), d� ,
N�
i (v) and N�(v), respectively. For u, v ∈ V (�) with ∂(u, v) = i (0 ≤ i ≤ d), let

ci (u, v) = |Ni−1(u) ∩ N (v)|, ai (u, v) = |Ni (u) ∩ N (v)|, bi (u, v) = |Ni+1(u) ∩ N (v)|.

Here c0(u, v) = bd(u, v) = 0. Then � is called distance-regular if ci (u, v), bi (u, v)

and ai (u, v) do not depend on the choice of u, v with ∂(u, v) = i , that is, depend only
on the distance i between u and v, for all 0 ≤ i ≤ d.

For a distance-regular graph � with diameter d, we denote ci = ci (u, v), ai =
ai (u, v) and bi = bi (u, v), where u, v ∈ V (�) with ∂(u, v) = i . By definition, � is
a regular graph with valency k = b0, and ai + bi + ci = k for 0 ≤ i ≤ d. The array
{b0, b1, . . . , bd−1; c1, c2, . . . , cd} is called the intersection array of �. In particular,
λ = a1 is the number of common neighbors between two adjacent vertices in �,
and μ = c2 is the number of common neighbors between two vertices at distance 2
in �. A distance-regular graph on n vertices with valency k and diameter 2 is also
called a strongly regular graph with parameters (n, k, λ = a1, μ = c2). A distance-
regular graph is called non-trivial if it does not belong to any of the following classes:
complete graphs, complete multipartite graphs, complete bipartite graphs without a
1-factor, and cycles.

After observing some beautiful combinatorial properties of distance-transitive
graphs, Biggs introduced the concept of distance-regular graphs (see the monograph
[2] from 1974). In the past several decades, distance-regular graphs played an impor-
tant role in the study of design theory and coding theory and were closely linked to
some other subjects such as finite group theory, representation theory, and associa-
tion schemes. For more detailed results on combinatorial or algebraic properties of
distance-regular graphs, we refer the reader to [4, 7], and references therein.

As an extension of the problem of characterizing strongly regular Cayley graphs
(or equivalently, regular partial difference sets [13]), Miklavič and Potočnik [16] (see
also [7, Problem 71]) proposed the following problem.

Problem 1.1 For a class of groups G, determine all distance-regular graphs, which
are Cayley graphs on a group in G.

For strongly regular Cayley graphs, a classic work is that all strongly regular cir-
culants were determined by Bridges and Mena [3], Ma [12], and partially by Marušič
[14]. Also, the strongly regular Cayley graphs on Zpn × Zpn were classified by Leif-
man and Muzychuck [11]. However, the strongly regular Cayley graphs on general
groups, even for abelian groups, are far from being completely characterized.

With regard to Problem 1.1, Miklavič and Potočnik [15, 16] (almost) classified the
distance-regular circulants or dihedrants. Miklavič and Šparl [17, 18] characterized
the distance-regular Cayley graphs on abelian groups or generalized dihedral groups
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under the condition that the connection set is minimal with respect to some element.
Abdollahi, van Dam, and Jazaeri [1] determined the distance-regular Cayley graphs of
diameter atmost threewith least eigenvalue−2. Very recently, vanDam and Jazaeri [5,
6] determined some distance-regular Cayley graphs with small valency and provided
some characterizations for bipartite distance-regular Cayley graphs with diameter 3
or 4.

Inspired by the work of Miklavič and Potočnik [15, 16], in this paper, we mainly
focus on the characterization of distance-regular Cayley graphs on dicyclic groups.
For a positive integer n, the dicyclic group Dicn is defined by

Dicn = 〈α, β | α2n = 1, β2 = αn, β−1αβ = α−1〉.

Clearly, Dicn = 〈α〉∪〈α〉β is a non-abelian group of order 4n if n > 1, and Dicn ∼= Z4
if n = 1. Also, αn is the unique element of order 2 in Dicn . For simplicity, Cayley
graphs on dicyclic groups are called dicirculants. For j ∈ Z2n and A ⊆ Z2n , we denote
j + A = { j + i | i ∈ A}, j A = { j · i | i ∈ A},−A = {−i | i ∈ A}, αA = {αi | i ∈ A}
and αAβ = {αiβ | i ∈ A}. Then every dicirculant on 4n vertices has the form
Cay(Dicn, αR ∪ αTβ), where R and T are subsets of Z2n such that 0 /∈ R, R = −R
and T = n + T . For convenience, we denote Dic(n, R, T ) := Cay(Dicn, αR ∪ αTβ).
The main result is as follows.

Theorem 1.1 Let � be a dicirculant on 4n vertices. Then � is distance-regular if and
only if it is isomorphic to one of the following graphs:

(i) the complete graph K4n;
(ii) the complete multipartite graph Kt×m with tm = 4n, which is the complement

of the disjoint union of t copies of the complete graph Km;
(iii) the graphDic(n, R, T ) for even n, where R = −R and T = n+T are non-empty

subsets of 1+ 2Z2n such that |R ∩ T | < n and |R ∩ (i + R)| + |T ∩ (i + T )| =
2|( j + R) ∩ T | for all i, j ∈ 2Z2n, i 
= 0.

In particular, the graph in (i i i) is a non-antipodal bipartite non-trivial distance-
regular graph with diameter 3.

A subset D of a group G is called a difference set if there is an integer μ such that
for every g ∈ G \ {1} the number of (g1, g2) ∈ D × D satisfying g2g

−1
1 = g is equal

toμ. If |D| /∈ {|G|, |G|−1, 1, 0}, then D is non-trivial. In review of [16, Lemma 2.8],
it is not difficult to verify that the statement in Theorem 1.1 (iii) is actually equivalent
to:

(iii’) the graph Dic(n, R, T ) for even n, where R = −R and T = n+ T are non-empty
subsets of 1 + 2Z2n such that α−1+R ∪ α−1+Tβ is a non-trivial difference set in
the dicyclic group 〈α2, β〉 of order 2n.
By Theorem 1.1, we obtain the following corollary immediately.

Corollary 1.1 Let � be a dicirculant on 4n vertices where n is odd. Then � is distance-
regular if and only if it is isomorphic to the complete graph K4n, or the complete
multipartite graph Kt×m, where tm = 4n.

123



406 Journal of Algebraic Combinatorics (2023) 57:403–420

2 Preliminaries

In this section, we review some notations and results about distance-regular graphs,
which are powerful in the proof of Theorem 1.1.

Let � be a graph, and let B = {B1, . . . , Br } be a partition of V (�). The quotient
graph of � with respect to B, denoted by �B, is the graph with vertex set B and with
Bi , Bj (i 
= j) adjacent if and only if there exists at least one edge between Bi and
Bj in �. Moreover, we say that B is an equitable partition of � if there are integers
bi j (1 ≤ i, j ≤ r ) such that every vertex in Bi has exactly bi j neighbors in Bj .

Suppose that � is a distance-regular graph with diameter d. For i ∈ {1, . . . , d}, the
i th distance graph �i is the graph with vertex set V (�) in which two distinct vertices
are adjacent if and only if they are at distance i in �. We say that � is primitive if
�i is connected for all i ∈ {1, . . . , d}, and imprimitive otherwise. Also, we say that
� is antipodal if the relation R on V (�) defined by uRv ⇔ ∂(u, v) ∈ {0, d} is
an equivalence relation. It is known that an imprimitive distance-regular graph with
valency at least 3 is either bipartite, antipodal, or both [4, Theorem 4.2.1].

If � is a bipartite distance-regular graph, then �2 has two connected components,
which are called the halved graphs of � and denoted by �+ and �−. For convenience,
we use 1

2� to represent any one of these two graphs. If � is an antipodal distance-
regular graph, then the relation R defined above leads to a partition B∗ of V (�) into
equivalence classes, called fibers. It is known that B∗ is actually an equitable partition
of �, and all fibers of � share the same size. The antipodal quotient of �, denoted by
�, is defined as the quotient graph �B∗ . Let r be the common size of fibers of �. Then
� is said to be an r -fold antipodal cover of �. Note that if d = 2 then � is a complete
multipartite graph, and that if d ≥ 3 then the edges between two distinct fibers of �

form an empty set or a 1-factor.

Lemma 2.1 ([4, Proposition 4.2.2]) Let � denote an imprimitive distance-regular
graph with diameter d and valency k ≥ 3. Then the following hold.

(i) If � is bipartite, then the halved graphs of � are non-bipartite distance-regular
graphs with diameter � d

2 �.
(ii) If � is antipodal, then � is a distance-regular graph with diameter � d

2 �.
(iii) If � is antipodal, then � is not antipodal, except when d ≤ 3 (in that case � is a

complete graph), or when � is bipartite with d = 4 (in that case � is a complete
bipartite graph).

(iv) If � is antipodal and has odd diameter or is not bipartite, then � is primitive.
(v) If � is bipartite and has odd diameter or is not antipodal, then the halved graphs

of � are primitive.
(vi) If � has even diameter and is both bipartite and antipodal, then � is bipartite.

Moreover, if 1
2� is a halved graph of �, then it is antipodal, and 1

2� is primitive
and isomorphic to 1

2�.

Lemma 2.2 ([9, Theorem 6.2]) Let � be an antipodal distance-regular graph with
diameter d ≥ 3, and let B be an equitable partition of � with each block contained
in a fiber of �. Assume that no block of B is a single vertex, or a fiber. Then all blocks
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of B have the same size, and the quotient graph �B is an antipodal distance-regular
graph with diameter d. Moreover, � and �B have isomorphic antipodal quotients.

Lemma 2.3 ([4, p.425, p.431]) Let � be an r-fold antipodal distance-regular graph
on n vertices with diameter d and valency k.

(i) If � is non-bipartite and d = 3, then n = r(k + 1), k = μ(r − 1) + λ +
1, and � has the intersection array {k, μ(r − 1), 1; 1, μ, k} and the spectrum
{k1, θm1

1 , θk2 , θ
m3
3 }, where

θ1 = λ − μ

2
+ δ, θ2 = −1, θ3 = λ − μ

2
− δ, δ =

√
k +

(
λ − μ

2

)2

,

and

m1 = − θ3

θ1 − θ3
(r − 1)(k + 1), m3 = θ1

θ1 − θ3
(r − 1)(k + 1).

(ii) If � is bipartite and d = 4, then n = 2r2μ, k = rμ, and � has the intersection
array {rμ, rμ − 1, (r − 1)μ, 1; 1, μ, rμ − 1, rμ}.

A conference graph is a strongly regular graph with parameters (n, k = n−1
2 , λ =

n−5
4 , μ = n−1

4 ), where n ≡ 1 (mod 4). Paley graphs, introduced by Sachs [21], and
independently by Erdös and Rényi [8], form an infinite family of conference graphs.
Let Fq denote the finite field of order q where q ≡ 1 (mod 4) is a prime power. The
Paley graph P(q) is defined as the graph with vertex set Fq in which two distinct
vertices u, v ∈ Fq are adjacent if and only if u − v is a square in the multiplicative
group of Fq .

Lemma 2.4 ([4, p. 180]) Let � be a conference graph (or particularly, Paley graph).
Then:

(i) � has no distance-regular r-fold antipodal covers for r > 1, except for the
pentagon C5 ∼= P(5), which is covered by the decagon C10;

(ii) � cannot be a halved graph of a bipartite distance-regular graph.

Recall that circulants are Cayley graphs on cyclic groups. In [15], Miklavič and
Potočnik determined all (primitive) distance-regular circulants.

Lemma 2.5 ([15, Theorem 1.2, Corollary 3.7]) Let � be a circulant on n vertices.
Then� is distance-regular if and only if it is isomorphic to one of the following graphs:

(i) the cycle Cn;
(ii) the complete graph Kn;
(iii) the complete multipartite graph Kt×m, where tm = n;
(iv) the complete bipartite graph without a 1-factor Km,m − mK2, where 2m = n,

m odd;
(v) the Paley graph P(n), where n ≡ 1 (mod 4) is prime.
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In particular, � is a primitive distance-regular graph if and only if � ∼= Kn, or n is
prime, and � ∼= Cn or P(n).

Also, Miklavič and Potočnik gave a characterization of primitive distance-regular
Cayley graphs in terms of distance module and Schur ring (see [15] for the definition).

Lemma 2.6 ([15, Proposition 3.6]) Let � = Cay(G, S) denote a distance-regular
Cayley graph and D = DZ(G, S) its distance module. Then:

(i) D is a primitive Schur ring over G if and only if � is a primitive distance-regular
graph;

(ii) D is the trivial Schur ring over G if and only if � is isomorphic to the complete
graph.

Recall that Dicn ∼= Z4 if n = 1. According to [22, Theorem 4] and [19, Theorem
3.4], we have the following result.

Lemma 2.7 For every n ≥ 1, there are no non-trivial primitive Schur rings over the
dicyclic group Dicn.

Recall that Cayley graphs on dicyclic groups are called dicirculants. If � is a
primitive distance-regular dicirculant on 4n vertices, then its distance module would
be a primitive Schur ring over Dicn by Lemma 2.6 (i) and hence can only be the trivial
Schur ring by Lemma 2.7. Therefore, Lemma 2.6 (ii) implies the following result.

Corollary 2.1 Let � be a primitive distance-regular dicirculant on 4n vertices. Then
� is isomorphic to the complete graph K4n.

Let G be a transitive permutation group acting on a set X . An imprimitivity system
for G is a partition B of X which is invariant under the action of G, i.e., for every
block B ∈ B and for every g ∈ G, we have Bg = B or Bg ∩ B = ∅.
Lemma 2.8 ([16, Lemma 2.2]) Let � = Cay(G, S) denote a Cayley graph with the
group G acting regularly on the vertex set of � by left multiplication. Suppose there
exists an imprimitivity system B for G. Then the block B ∈ B containing the identity
1 ∈ G is a subgroup in G. Moreover,

(i) if B is normal in G, then�B = Cay(G/B, S/B), where S/B = {sB | s ∈ S\B};
(ii) if there exists an abelian subgroup A in G such that G = AB, then �B is

isomorphic to a Cayley graph on the group A/(A ∩ B).

By Lemmas 2.1 and 2.8, we obtain the following corollary.

Corollary 2.2 Let � denote a distance-regular dicirculant.

(i) If � is antipodal, then the antipodal quotient � is a distance-regular circulant
or a distance-regular dicirculant.

(ii) If � is bipartite, then the halved graphs �+ and �− are distance-regular
circulants or distance-regular dicirculants.

123



Journal of Algebraic Combinatorics (2023) 57:403–420 409

Proof Let � be defined on Dicn = 〈α, β | α2n = 1, β2 = αn, β−1αβ = α−1〉. First
assume that � is antipodal. Since Dicn acts regularly on the vertex set of � by left
multiplication, the antipodal classes of � form an imprimitivity system B for Dicn .
Let B ∈ B denote the antipodal class of � containing the identity of Dicn . By Lemma
2.8, B is a subgroup of Dicn . If B is a subgroup of 〈α〉, then B is normal in Dicn , and it
follows fromLemma 2.8 (i) that� = �B = Cay(G/B, S/B), which is a dicirculant. If
B is not a subgroup of 〈α〉, thenDicn = 〈α〉B, and Lemma 2.8 (ii) implies that� = �B
is isomorphic to a Cayley graph on the group 〈α〉/(〈α〉 ∩ B). Hence, � is a circulant.
Now assume that� is bipartite. Let�+ denote the halved graph containing the identity
of Dicn . Since the bipartition sets of� form an imprimitivity system for Dicn , again by
Lemma 2.8, V (�+) is a subgroup of Dicn . It is easy to see that V (�+) acts regularly
on itself by left multiplication as a subgroup of Aut(�+). Since every subgroup of
Dicn is cyclic or dicyclic (cf. [20]), V (�+) is a circulant or a dicirculant. Moreover,
since � is vertex transitive, the two halved graphs �+ and �− are isomorphic. Hence,
�− is also a circulant or a dicirculant. Note that �, �+ and �− are distance-regular
by Lemma 2.1. The result follows. ��

Let n be a positive integer, and let ω be a primitive nth root of unity. Let F = Q(ω)

denote the nth cyclotomic field over the rationals. For a subset A ⊆ Zn , let
A : Zn →
F be the characteristic function of A, that is, 
A(z) = 1 if z ∈ A, and 
A(z) = 0
otherwise. In particular, if A = {a}, then we write 
a instead of 
{a}. Let FZn be the
F-vector space consisting of all functions f : Zn → F with the scalar multiplication
and addition defined point-wise. We denote by (FZn , ·) the F-algebra obtained from
F
Zn by defining the multiplication point-wise, and (FZn , ∗) the F-algebra obtained

from F
Zn by defining the multiplication as the convolution (see [16]):

( f ∗ g)(z) =
∑
i∈Zn

f (i)g(z − i), f , g ∈ F
Zn . (1)

The Fourier transformation F : (FZn , ∗) → (FZn , ·) is defined by

(F f )(z) =
∑
i∈Zn

f (i)ωi z, f ∈ F
Zn . (2)

It is easy to verify that F is an algebra isomorphism from (FZn , ∗) to (FZn , ·).
Let Z∗

n = {i ∈ Zn | gcd(i, n) = 1} denote the multiplicative group of units in the
ringZn . ThenZ∗

n acts onZn bymultiplication. It is known that each orbit of this action
consists of all elements of a given order in the additive group Zn . Consequently, each
orbit is of the form Or = {c · n

r ∈ Zn | c ∈ Z
∗
n}, where r is some positive divisor of n.

The following three lemmas present some basic facts about Fourier transformation.

Lemma 2.9 ([16, Corollary 3.2]) If A is a subset of Zn and Im(F
A) ⊆ Q, then A is
a union of some orbits of the action ofZ∗

n onZn by multiplication, and Im(F
A) ⊆ Z.
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Lemma 2.10 ([16, Lemma 3.3]) Let r be a positive divisor of n, and letω be a primitive
nth root of unity. If A is a subset of Zn, then

F
A

(n
r

)
= e0 + e1ξ + · · · + er−1ξ

r−1,

where ξ = ω
n
r and ei = |A ∩ (i + rZn)| for 0 ≤ i ≤ r − 1.

Let H be a subgroup of G. A transversal of H is a subset of G that contains exactly
one element from each of the right cosets of H in G.

Lemma 2.11 ([16, Lemma 3.4]) Let r be a positive divisor of n, and let A be a transver-
sal of the subgrouprZn inZn. If z = m n

r (m /∈ rZn) is anarbitrary element of
n
r Zn\{0},

then F
A(z) = 0.

Lemma 2.12 ([16, Lemma4.3]) Let p be a primedivisor of n, and let A be a transversal
of the subgroup n

pZn in Zn. If A is a union of some orbits of the action of Z∗
n on Zn

by multiplication, then p = 2 or A = pZn.

3 The classification of distance-regular dicirculants

The main goal of this section is to prove Theorem 1.1, which gives a classification of
distance-regular dicirculants. For simplicity, we keep the following notation.

Notation. Denote by Dicn = 〈α, β | α2n = 1, β2 = αn, β−1αβ = α−1〉 the dicyclic
group of order 4n. Suppose that � = Dic(n, R, T ) = Cay(Dicn, αR ∪ αTβ) is a
distance-regular dicirculant, where R, T are subsets of Z2n such that 0 /∈ R, R = −R
and T = n + T . Note that T 
= ∅ because � is connected. Denote by k, λ, μ

and d the valency, the number of common neighbors of two adjacent vertices, the
number of common neighbors of two vertices at distance 2, and the diameter of �,
respectively. For j ∈ {0, 1, . . . , d}, let N j = N j (1) denote the set of vertices at
distance j from the identity vertex 1 ∈ Dicn in �, and let R j = {i ∈ Z2n | αi ∈ N j }
and Tj = {i ∈ Z2n | αiβ ∈ N j }. Clearly, R0 = {0}, T0 = ∅, R1 = R and T1 = T .

Before giving the proof of Theorem 1.1, we first set down a sequence of lemmas.

Lemma 3.1 Let � = Dic(n, R, T ) be a dicirculant. Then N (αi ) = αi+R ∪ αi+Tβ

and N (αiβ) = αi−T ∪ αi+Rβ.

Proof By definition, we have N (αi ) = αi (αR∪αTβ) = αi+R∪αi+Tβ and N (αiβ) =
αiβ(αR ∪αTβ) = αi−Rβ ∪αi−Tβ2 = αi+Rβ ∪αi+n−T = αi+Rβ ∪αi+2n−(n+T ) =
αi−T ∪ αi+Rβ because R = −R and T = n + T . ��
Lemma 3.2 Let � = Dic(n, R, T ) be a dicirculant. Then |N (αi ) ∩ N (α j )| =
|N (αiβ)∩N (α jβ)| = |R∩( j− i+ R)|+|T ∩( j− i+T )|, and |N (αi )∩N (α jβ)| =
2|( j − i + R) ∩ T |.
Proof Recall that R = −R and T = n+T . ByLemma3.1,wehave |N (αi )∩N (α j )| =
|(αi+R∪αi+Tβ)∩(α j+R∪α j+Tβ)| = |(i+R)∩( j+R)|+|(i+T )∩( j+T )| = |R∩
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( j−i+R)|+|T ∩( j−i+T )| and |N (αiβ)∩N (α jβ)| = |(αi+Rβ∪αi−T )∩(α j+Rβ∪
α j−T )| = |(i+R)∩( j+R)|+|(i−T )∩( j−T )| = |R∩( j−i+R)|+|T∩( j−i+T )|.
Similarly, |N (αi ) ∩ N (α jβ)| = |(αi+R ∪ αi+Tβ) ∩ (α j+Rβ ∪ α j−T )| = |(i + R) ∩
( j − T )| + |( j + R) ∩ (i + T )| = 2|( j − i + R) ∩ T |, as desired. ��
Lemma 3.3 Let � = Dic(n, R, T ) be a distance-regular dicirculant. Then

|N (αiβ) ∩ αR | = |N (αiβ) ∩ αTβ| =
{

λ
2 , if i ∈ T ;
μ
2 , if i ∈ T2.

In particular, λ is even, and μ is even whenever T2 
= ∅.
Proof By Lemma 3.1, N (αiβ)∩ N (1) = N (αiβ)∩ (αR ∪αTβ) = (N (αiβ)∩αR)∪
(N (αiβ)∩αTβ) = (αi−T ∩αR)∪(αi−Rβ∩αTβ). Since |(i−T )∩R| = |(i−R)∩T |,
we deduce that

|N (αiβ) ∩ N (1)| = 2|N (αiβ) ∩ αR | = 2|N (αiβ) ∩ αTβ|.

Note that |N (αiβ) ∩ N (1)| = λ if i ∈ T and |N (αiβ) ∩ N (1)| = μ if i ∈ T2. The
result follows. ��
Lemma 3.4 Let � = Dic(n, R, T ) be a distance-regular dicirculant. Then |N (1) ∩
N (αn)| ≥ |T |. In particular, λ ≥ |T | if n ∈ R, and μ ≥ |T | if n /∈ R.

Proof By Lemma 3.2, |N (1)∩ N (αn)| = |R ∩ (n + R)| + |T ∩ (n + T )| = |R ∩ (n +
R)| + |T | ≥ |T |. Note that 1 and αn are adjacent if n ∈ R, and at distance 2 if n /∈ R.
The result follows. ��

Let ω = eπ i/n be the primitive 2nth root of unity, and let F = Q(ω). Suppose that
(FZ2n , ·) and (FZ2n , ∗) are F-algebras defined as in Sect. 2, and that F is the Fourier
transformation from (FZ2n , ∗) to (FZ2n , ·) defined as in (2). We denote

r j (z) = (F
R j )(z) =
∑
i∈R j

ωi z and t j (z) = (F
Tj )(z) =
∑
i∈Tj

ωi z, (3)

where 
R j and 
Tj are the characteristic functions of R j and Tj , respectively. In
particular, we denote r = r1 = F
R and t = t1 = F
T . Let ∗ be the convolution
of (FZ2n , ∗) defined as in (1). For A, B ⊆ Z2n , we can verify that

(
A ∗ 
B)(i) = |(i − A) ∩ B| = |(i − B) ∩ A|, i ∈ Z2n . (4)

Lemma 3.5 Let � = Dic(n, R, T ) be a distance-regular dicirculant. Then r2 +|t|2 =
k + λr + μr2 and 2rt = λt + μt2.

Proof By Lemma 3.1 and (4), for every i ∈ Z2n ,

(
R ∗ 
R)(i) + (
T ∗ 
−T )(i) = |R ∩ (i − R)| + |T ∩ (i + T )|
= (k
0 + λ
R + μ
R2)(i)

(5)
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and

2(
R ∗ 
T )(i) = |R ∩ (i − T )| + |T ∩ (i − R)|
= |R ∩ (i + n − T )| + |T ∩ (i − R)|
= (λ
T + μ
T2)(i).

(6)

Recall that the Fourier transformation F is an algebra isomorphism from (FZ2n , ∗) to
(FZ2n , ·). By applyingF on both sides of (5) and (6), we obtain r2+|t|2 = k+λr+μr2
and 2rt = λt + μt2, respectively. ��
Lemma 3.6 There is no distance-regular dicirculant isomorphic to a complete
bipartite graph without a 1-factor.

Proof Let � = Dic(n, R, T ) be a distance-regular dicirculant. By contradiction,
assume that � ∼= K2n,2n − 2nK2. Then the valency of � is equal to 2n − 1. However,
this is only possible when n ∈ R because αn is the unique element of order 2 in Dicn .
In this situation, it follows from Lemma 3.4 that λ ≥ |T |. As T 
= ∅, the graph �

contains a triangle, which is impossible. ��
Lemma 3.7 There are no antipodal non-bipartite distance-regular dicirculants with
diameter 3.

Proof By contradiction, assume that � = Dic(n, R, T ) is an antipodal non-bipartite
distance-regular dicirculant of diameter 3 with the minimum order. Let k and p (p ≥
2) denote the valency and the common size of antipodal classes (or fibers) of �,
respectively. If k = 2, then � ∼= C4n , which is impossible because � is non-bipartite.
If k = 3, since αn = β2 is the unique element of order 2 in Dicn , the connection set
of � must be of the form {αi , α−i , αn} or {αiβ, (αiβ)−1 = αi+nβ, αn = β2} with
i ∈ Z2n . As � is connected, the former case cannot occur, and the latter case occurs
only when n = 1. In this situation, we obtain � ∼= K4, which is also impossible.
Therefore, k ≥ 4. According to Lemma 2.3 (i), k+1 = 4n

p , and � has the intersection
array

{k, μ(p − 1), 1; 1, μ, k} (7)

and eigenvalues k, θ1, θ2 = −1, θ3, where

θ1 = λ − μ

2
+ δ, θ3 = λ − μ

2
− δ and δ =

√
k +

(
λ − μ

2

)2

. (8)

Let H = N3 ∪ {1}. Then H is an antipodal class of �, and |H | = p. Since
Dicn acts regularly on V (�) by left multiplication, the antipodal classes of � form an
imprimitivity system for Dicn . By Lemma 2.8, H is a subgroup of Dicn . If p is not
prime, then H has a non-trivial subgroup K contained in 〈α〉. LetB denote the partition
consisting of all orbits of K acting on V (�) by left multiplication. As K is normal
in Dicn , the partition B is also an imprimitivity system for Dicn , and it follows from
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Lemma 2.8 (i) that the quotient graph�B is a dicirculant. Observe thatB is an equitable
partition of �, and each block of B is contained in some fiber of � and is neither a
single vertex nor a fiber. By Lemma 2.2, �B is an antipodal distance-regular graph
with diameter 3. If �B is bipartite, then � is also bipartite, a contradiction. Hence, �B
is an antipodal non-bipartite distance-regular dicirculant of diameter 3 with smaller
order than �, contrary to our assumption. Therefore, p is a prime number. Moreover,
we assert thatN3 ⊆ 〈α〉. In fact, ifN3 ∩ 〈α〉β 
= ∅, the group H would contain some
element of order 4, and hence 4 | p, which is impossible. Since H = N3 ∪ {1} is the
subgroup of 〈α〉 with order p, we have p | 2n andN3 = {αi 2np | i = 1, 2, . . . , p− 1}.
Hence, R3 = 2n

p Z2n \{0} and T3 = ∅. Before going further, similarly as in [16, Lemma
4.4], we need the following claim. ��
Claim 1 The sets R ∪ {0} and T are transversals of the subgroup 2n

p Z2n in Z2n. In
particular, p 
= 2 and p | n.
Proof of Claim 1 First assume that |T ∩ (
 + 2n

p Z2n)| ≥ 2 for some 
 ∈ Z2n . Then

there exists some i ∈ {1, . . . , p − 1} such that i 2np ∈ T − T . Thus α
i 2np ∈ N1 ∪ N2,

contrary to α
i 2np ∈ N3. Hence, |T ∩ (
 + 2n

p Z2n)| ≤ 1 for all 
 ∈ Z2n . Similarly,

|(R ∪ {0})∩ (
+ 2n
p Z2n)| ≤ 1 for all 
 ∈ Z2n . Now assume that T ∩ (
+ 2n

p Z2n) = ∅
for some 
 ∈ Z2n . Then 
 + 2n

p Z2n ⊆ T2 due to T0 = T3 = ∅. Since each vertex of

N2 has a neighbor in N3, there exists some i ∈ {1, . . . , p − 1} such that α
i 2np ∈ N3

is adjacent to α

+ 2n

p β ∈ N2. This implies that 
 + (1 − i) 2np ∈ T , which contradicts

T ∩ (
+ 2n
p Z2n) = ∅. Hence, T has non-empty intersection with every coset of 2n

p Z2n

inZ2n . Similarly, R∪{0} has non-empty intersection with every coset of 2n
p Z2n inZ2n .

Therefore, we conclude that T and R ∪ {0} are transversals of the subgroup 2n
p Z2n in

Z2n . This proves the first part of the claim. For the second part, suppose to the contrary
that p = 2. Recall that T = n + T is non-empty. For any i ∈ T , there exists some

 ∈ Z2n such that i ∈ 
+ 2n

p Z2n = 
+nZ2n . Then n+ i ∈ n+
+nZ2n = 
+nZ2n .
As n + i ∈ n + T = T , we get |T ∩ (
 + nZ2n)| ≥ 2, which is impossible by above
arguments. Therefore, p 
= 2, and hence p | n. ��

By Claim 1, |R| = 2n
p − 1 and |T | = 2n

p . Since R2 = Z2n \ ( 2np Z2n ∪ R) and
T2 = Z2n \ T , we have |R2| = (p − 1)|R| and |T2| = (p − 1)|T |. Furthermore, from
(3) we obtain r2 = 2n
0 − p
pZ2n − r and t2 = 2n
0 − t. Thus, by Lemma 3.5,

{
r2 + |t|2 = k + (λ − μ)r − pμ
pZ2n + 2nμ
0,

2rt = (λ − μ)t + 2nμ
0.
(9)

Clearly, r(0) = |R| = 2n
p − 1. Moreover, by Lemma 2.11 and Claim 1, we have

r(z) = −1 for all z ∈ pZ2n \ {0}. Now suppose z /∈ pZ2n . By (9), if t(z) 
= 0
then r(z) = λ−μ

2 , and if t(z) = 0 then r(z) ∈ {θ1, θ3}, where θ1 = λ−μ
2 + δ and

θ3 = λ−μ
2 − δ are the two eigenvalues of � given in (8). Putting B = {z ∈ Z2n | z /∈
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pZ2n, t(z) = 0, r(z) = θ1}, C = {z ∈ Z2n | z /∈ pZ2n, t(z) = 0, r(z) = θ3}, and
D = Z2n \ (B ∪ C ∪ pZ2n). Then

r(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2n
p − 1, z = 0,

−1, z ∈ pZ2n \ {0},
θ1, z ∈ B,

θ3, z ∈ C,
λ−μ
2 , z ∈ D.

(10)

If δ ∈ Q, then (10) implies that Im(r) ⊆ Q. By Lemma 2.9, R is a union of some
orbits of Z∗

2n acting on Z2n , and so is R ∪ {0}. According to Claim 1 and Lemma
2.12, we conclude that R ∪ {0} = pZ2n , i.e., R = pZ2n \ {0}. Then, for each i ∈ R,
N (αi )∩αR2 = ∅, or equivalently, N (αi )∩N2 ⊆ αT2β. On the other hand, by Lemma
3.3, |N (αiβ) ∩ αR | = μ

2 for each i ∈ T2. By counting the edges between αR and
αT2β in two ways and by (7), we have |R|μ(p − 1) = |T2|μ

2 . Combining this with
|R| = 2n

p − 1 and |T2| = (p − 1)|T | = (p − 1) 2np , we obtain n = p, and hence
|R| = 1 and |T | = 2. Thus k = |R| + |T | = 3, contrary to k ≥ 4. If δ /∈ Q, the two
eigenvalues θ1, θ3 of � must have the same multiplicity, and hence λ = μ = k−1

p by

Lemma 2.3 (i). On the other hand, from Lemma 3.4 and k + 1 = 4n
p , we deduce that

λ = μ ≥ |T | = 2n
p = k+1

2 . Thus, we have p < 2, a contradiction.
Therefore, we conclude that there are no antipodal non-bipartite distance-regular

dicirculants with diameter 3. ��
Lemma 3.8 There are no antipodal bipartite distance-regular dicirculants with
diameter 4.

Proof By contradiction, assume that � = Dic(n, R, T ) is an antipodal bipartite
distance-regular dicirculant of diameter 4with theminimumorder. Let k and p (p ≥ 2)
denote the valency and the common size of antipodal classes of �, respectively. Note
that k ≥ 4. Also, by Lemma 2.3 (ii),

2n = p2μ and k = pμ. (11)

Similarly as in the proof of Lemma 3.7, we assert that p is prime and N4 = {αi 2np |
i = 1, 2, . . . , p − 1} = α

2n
p Z2n \ {1}. Since the bipartition set N0 ∪ N2 ∪ N4 is a

subgroup of Dicn with index 2, we have N0 ∪ N2 ∪ N4 = 〈α〉, or n is even and
N0 ∪ N2 ∪ N4 ∈ {α2Z2n ∪ α2Z2nβ, α2Z2n ∪ α1+2Z2nβ}. If N0 ∪ N2 ∪ N4 = 〈α〉,
then R = ∅, and by Lemma 3.4, μ ≥ |T | = |R| + |T | = k. Combining this with
(11) yields that p = 1, a contradiction. Therefore, n is even and N0 ∪ N2 ∪ N4 ∈
{α2Z2n ∪ α2Z2nβ, α2Z2n ∪ α1+2Z2nβ}.

Observe that Dic(n, R, T ) ∼= Dic(n, R, 1 + T ). We may assume that N0 ∪ N2 ∪
N4 = α2Z2n ∪ α2Z2nβ. Since N0 ∪ N4 = α

2n
p Z2n and T0 = ∅, we have T4 = ∅ and

T2 = 2Z2n , and hence μ is even by Lemma 3.3. Furthermore, R2 = 2Z2n \ 2n
p Z2n

and T ∪ T3 = R ∪ R3 = 1 + 2Z2n . Since every pair of vertices in N4 are at distance
4, the set αR3 partitions into subsets αi+R , i ∈ R4, and hence |R3| = (p − 1)|R|.
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Then from (11) and |R3| = n − |R| we deduce that |R| = pμ
2 . Similarly, the set αT3β

partitions into subsets αi+Tβ, i ∈ R4, and hence |T3| = (p − 1)|T |, which gives
that |T | = pμ

2 . As n /∈ R, by Lemma 3.4, μ ≥ |T |, and hence p = 2. Therefore,
|R| = |T | = μ = n

2 and k = |R|+ |T | = n. Since R2 = 2Z2n \nZ2n and T2 = 2Z2n ,
we have r2 = n
nZ2n − 2
2Z2n and t2 = n
nZ2n . By Lemma 3.5,

⎧⎪⎪⎨
⎪⎪⎩
r2 + |t|2 = n + n2

2

nZ2n − n
2Z2n ,

2rt = n2

2

nZ2n .

(12)

Clearly, r(0) = t(0) = n
2 and r(n) = −|t(n)| = − n

2 . By (12), r(z) = t(z) = 0
for all z ∈ 2Z2n \ {0, n}. Moreover, if z /∈ 2Z2n , then r(z) = 0 or t(z) = 0. For
the former case, |t(z)| = √

n, and for the later case, r(z) ∈ {√n,−√
n}. Putting

B = {z ∈ Z2n | z /∈ 2Z2n, t(z) = 0, r(z) = √
n}, C = {z ∈ Z2n | z /∈ 2Z2n, t(z) =

0, r(z) = −√
n}, and D = Z2n \ (2Z2n ∪ B ∪ C). Then we have

r(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n
2 , z = 0,

− n
2 , z = n,

0, z ∈ 2Z2n \ {0, n},√
n, z ∈ B,

−√
n, z ∈ C,

0, z ∈ D,

and |t(z)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n
2 , z = 0,
n
2 , z = n,

0, z ∈ 2Z2n \ {0, n},
0, z ∈ B,

0, z ∈ C,√
n, z ∈ D.

(13)

For E ∈ {R, T }, let e = F
E . Let t be a positive integer such that 2t | 2n. For
each i ∈ {0, 1, . . . , 2t − 1}, let Ei (t) = E ∩ (i + 2tZ2n), and ei (t) = |Ei (t)|. Since
E ⊆ 1 + 2Z2n , we see that

e0(t) = e2(t) = · · · = e2t−2(t) = 0. (14)

Similarly as in [16, Lemma 4.5], we need the following claim. ��
Claim 2 For any integer t ≥ 2, if e( 2n

2i
) = 0 for all i ∈ {2, . . . , t}, then e1(t) =

e3(t) = · · · = e2t−1(t).

Proof of Claim 2 Let ω = eπ i/n denote the primitive 2nth root of unity. First assume
that t = 2. If e( 2n4 ) = e( n2 ) = 0, by Lemma 2.10 and (14), we obtain e( n2 ) =
(e1(2) − e3(2))ω

n
2 = (e1(2)− e3(2))i. Hence, e1(2) = e3(2), and the results follows.

Now take t ≥ 3, and assume that the result holds for any t ′ with 2 ≤ t ′ ≤ t − 1.
Suppose that e( 2n

2i
) = 0 for all i ∈ {2, . . . , t}. Again by Lemma 2.10,

0 = e
(
2n

2t

)
=

2t−1−1∑
i=0

(ei (t) − ei+2t−1(t))ξ i , (15)
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where ξ = ω
2n
2t . Note that the degree of the minimal polynomial for ξ over Q is

ϕ(2t ) = 2t−1, where ϕ(·) denotes the Euler totient function. Then (15) implies that

ei (t) = ei+2t−1(t), for all i ∈ {0, 1, . . . , 2t−1 − 1}. (16)

On the other hand, by induction hypothesis, there exists some integer c such that

e1(t − 1) = e3(t − 1) = · · · = e2t−1−1(t − 1) = c. (17)

Since 2t−1
Z2n is the disjoint union of 2tZ2n and 2t−1+2tZ2n , Ei (t−1) is the disjoint

union of Ei (t) and Ei+2t−1(t), and hence ei (t − 1) = ei (t) + ei+2t−1(t). Combining
this with (16) and (17), we obtain

e1(t) = e3(t) = · · · = e2t−1(t) = c

2
,

and the result follows. ��
Recall that 4|E | = 4|R| = 4|T | = 4μ = 2n. By (14) and Claim 2, if e( 2n

2i
) = 0

for all i ∈ {2, . . . , t}, then 2t−1 would be a divisor of |E |, and hence 2t+1 | 2n. Let
s be the largest integer such that 2s | 2n. Since 2n = 4μ and μ is even, s ≥ 3. By
(13), r( 2n

2i
) = t( 2n

2i
) = 0 for all i ∈ {2, 3, . . . , s − 1}. Moreover, since 2n

2s /∈ {0, n},
r( 2n2s ) = 0 or t( 2n2s ) = 0. Thus we can choose suitable E ∈ {R, T } such that e( 2n

2i
) = 0

for all i ∈ {2, . . . , s}. However, this implies that 2s+1 | 2n, contrary to the maximality
of s.

Therefore, we conclude that there are no antipodal bipartite distance-regular
dicirculants with diameter 4.

Now we are in a position to give the proof of Theorem 1.1.

Proof of Theorem 1.1 First of all, we show that the graphs listed in (i)–(iii) are distance-
regular dicirculants. For (i): the complete graph K4n is distance-regular with diameter
1, and K4n ∼= Cay(Dicn,Dicn \ {1}). For (ii): the complete multipartite graph Kt×m

(tm = 4n) is distance-regularwith diameter 2. Sincem is a divisor of 4n, by elementary
group theory, there exists a subgroup H (m) of order m in Dicn (cf. [20]). Then it is
easy to see that Kt×m ∼= Cay(Dicn,Dicn \ H (m)). Now consider (iii). Suppose that
R = −R and T = n + T are non-empty subsets of 1 + 2Z2n (n is even) such that
|R ∩ T | < n and

|R ∩ (i + R)| + |T ∩ (i + T )| = 2|( j + R) ∩ T | (18)

for all i, j ∈ 2Z2n , i 
= 0. Let � = Dic(n, R, T ) = Cay(Dicn, αR ∪ αTβ) and
H = 〈α2, β〉 = α2Z2n ∪ α2Z2nβ. Clearly, � is a bipartite graph where the bipartition
is given by H ∪ αH . Let i1, i2 ∈ 2Z2n . Since i2 − i1 ∈ 2Z2n , from Lemma 3.2 we
obtain |N (αi1)∩ N (αi2)| = |N (αi1β)∩ N (αi2β)| = |R ∩ (i2 − i1 + R)| + |T ∩ (i2 −
i1 + T )| = 2|R ∩ T | whenever i1 
= i2 by setting i = i2 − i1 and j = 0 in (18).
Also, |N (αi1) ∩ N (αi2β)| = 2|(i2 − i1 + R) ∩ T | = 2|R ∩ T |. By the arbitrariness of
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i1, i2 ∈ 2Z2n , we assert that every pair of vertices in H have exactly 2|R∩T | common
neighbors in �. Similarly, one can check that every pair of vertices in αH have exactly
2|R ∩ T | common neighbors in �. Moreover, by setting i = n and j = 0 in (18), we
obtain |R ∩ T | = 1

2 (|R ∩ (n + R)| + |T |) > 0. Hence, every pair of vertices in H (or
αH ) are at distance 2 in �. On the other hand, � cannot be a complete bipartite graph
because |R ∩ T | < n and so must be of diameter 3. Therefore, we conclude that � is a
bipartite distance-regular graph with the intersection array {k, k − 1, k − μ; 1, μ, k},
where k = |R| + |T | and μ = 2|R ∩ T |. Moreover, we claim that � is non-antipodal
and non-trivial, since otherwise � would be isomorphic to K2n,2n − 2nK2, which is
impossible by Lemma 3.6.

Conversely, suppose that � = Dic(n, R, T ) is a distance-regular dicirculant not
isomorphic to K4n or Kt×m (tm = 4n). By Lemma 3.6, � is non-trivial. Furthermore,
by Corollary 2.1, � is imprimitive. Thus it suffices to consider the following three
cases.

Case A � is antipodal but not bipartite.
By Lemma 2.1 and Corollary 2.2, the antipodal quotient � of � is a primitive

distance-regular circulant or dicirculant. Then it follows from Lemma 2.5 and Corol-
lary 2.1 that � is a complete graph, a cycle of prime order, or a Paley graph of prime
order. If � is a cycle of prime order, then � would be a cycle of order at least 8, which
is impossible because Dicn cannot be generated by an inverse-closed subset of size
two when n > 1. If � is a Paley graph of prime order, by Lemma 2.4, we also deduce
a contradiction. Thus � is a complete graph, and so d = 2 or 3 according to Lemma
2.1. By Lemma 3.7, d 
= 3, whence d = 2. However, complete multipartite graphs
are the only antipodal distance-regular graphs with diameter 2. Therefore, there are
no non-trivial distance-regular dicirculants which are antipodal but not bipartite.

Case B � is antipodal and bipartite.
By Corollary 2.2, the antipodal quotient � and the halved graph 1

2� are distance-
regular circulants or dicirculants. If d is odd, by Lemma 2.1, � is primitive. As in
Case A, we assert that � is a complete graph. Hence, d = 3. Considering that � is
antipodal and bipartite, we obtain � ∼= K2n,2n − 2nK2, which is impossible because
� is non-trivial. Therefore, we may assume that d is even. Then, by Lemma 2.1, 1

2�

is an antipodal non-bipartite distance-regular circulant or dicirculant with diameter
d 1

2� = d
2 . Clearly, d 
= 2. Furthermore, by Lemma 3.8, d 
= 4. Therefore, we have

d 1
2� ≥ 3. According to the conclusion of Case A and Lemma 3.6, we assert that 1

2�

is a circulant. However, by Lemma 2.5, this is impossible because 1
2� is antipodal,

non-bipartite, and has diameter at least 3.

Case C � is bipartite but not antipodal.
By Lemma 2.1 and Corollary 2.2, 1

2� is a primitive distance-regular circulant or
dicirculant. As in Case A, 1

2� is a complete graph, a cycle of prime order, or a Paley
graph of prime order. We claim that the latter two cases cannot occur, since 1

2� has 2n
vertices. Thus 1

2�
∼= K2n , andd = 2or 3. Ifd = 2, then� is a complete bipartite graph,

contrary to our assumption. Hence, � is a non-antipodal bipartite non-trivial distance-
regular graph with diameter 3. Recall that � = Dic(n, R, T ) = Cay(Dicn, αR ∪αTβ)

123



418 Journal of Algebraic Combinatorics (2023) 57:403–420

where R = −R and T = n + T . Let H be the bipartition set of � containing the
identity 1 ∈ Dicn . Note that H = N0 ∪ N2. By Lemma 2.8, H is a subgroup of Dicn
with index 2. Observe that Dicn has a unique subgroup of index 2, namely 〈α〉, if n
is odd, and has two more subgroups of index 2, namely 〈α2, β〉 and 〈α2, αβ〉, if n is
even. Thus we only need to consider the following three situations.

Subcase C.1 H = 〈α〉.
In this situation, R = ∅, and N (1) = αTβ. By Lemma 3.2, |N (1) ∩ N (αi )| =

|T ∩ (i + T )| for all i ∈ Z2n . For every i ∈ Z2n \ {0}, since ∂(1, αi ) = 2, we have

|T ∩ (i + T )| = |N (1) ∩ N (αi )| = μ = |N (1) ∩ N (αn)| = |T ∩ (n + T )| = |T | = |N (1)|.

This implies that N (1) = N (αi ) for all i ∈ Z2n \ {0}. Thus, � is a complete bipartite
graph, contrary to our assumption.

Subcase C.2 n is even, and H = 〈α2, β〉.
In this situation, R and T are non-empty subsets of 1+ 2Z2n . Recall that each pair

of vertices in H are at distance 2 in �. Let i, j ∈ 2Z2n \ {0}. Consider the vertices 1,
αi , β and α jβ of H . By Lemma 3.2, we have

μ = |N (1) ∩ N (αi )| = |R ∩ (i + R)| + |T ∩ (i + T )|
= |N (1) ∩ N (α jβ)| = 2|( j + R) ∩ T |
= |N (1) ∩ N (β)| = 2|R ∩ T |.

Hence, we conclude that |R ∩ (i + R)| + |T ∩ (i + T )| = 2|( j + R) ∩ T | for all
i, j ∈ 2Z2n , i 
= 0. Also note that |R ∩ T | < n because � is not a complete bipartite
graph. The results follows.

Subcase C.3 n is even, and H = 〈α2, αβ〉.
In this situation, R and T are non-empty subsets of 1+2Z2n and 2Z2n , respectively.

Let T ′ = 1+T . We see that T ′ ⊆ 1+2Z2n and� = Dic(n, R, T ) ∼= Dic(n, R, T ′) =
�′, where the corresponding graph isomorphism f : V (�) → V (�′) is defined by
f (αi ) = αi and f (αiβ) = αi+1β. Let H ′ denote the bipartition set of �′ containing
the identity 1 ∈ Dicn . It is easy to see that H ′ = 〈α2, β〉. Using �′ instead of �, we
reduce the situation to Subcase C.2 immediately.

Therefore this completes the proof. ��

Remark 3.1 Let� = Dic(n, R, T ) denote a bipartite non-trivial distance-regular dicir-
culant with diameter 3, and let H denote the bipartition set of� containing the identity
1 ∈ Dicn . In [6, Proposition 5.3], van Dam and Jazaeri proved that if n is odd or H
is cyclic then � does not exist, which coincides with the conclusion of Theorem 1.1
according to the discussion in Case C. Moreover, when n is even and H is not cyclic,
they showed that the subgraph Cay(〈α〉, αR) is actually the incidence graph of a partial
geometric design with specific parameters (cf. [6, Proposition 5.4]).
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4 Further research

Let A be an abelian group of order 2n with exactly one element γ of order 2. The
generalized dicyclic group Dic(A, β) is defined as the group generated by A and β

where β2 = γ and β−1αβ = α−1 for all α ∈ A (see [13, p. 229] or [22, p. 392]).
In particular, if A is a cyclic group of order 2n, then the generalized dicyclic group
Dic(A, β) coincides with the dicyclic group Dicn . Naturally, we propose the following
problem.

Problem 4.1 Determine all distance-regular Cayley graphs on generalized dicyclic
groups.

In [10], the authors determined all distance-regular Cayley graphs on generalized
dicyclic groups under the condition that the connection set is minimal with respect to
some element and pointed out that complete graphs are the only primitive distance-
regular Cayley graphs on generalized dicyclic groups.
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