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Abstract
A notion of t-designs in the symmetric group on n letters was introduced by Godsil in
1988. In particular, t-transitive sets of permutations form a t-design. We derive upper
bounds on the covering radius of these designs, as a function of n and t and in terms
of the largest zeros of Charlier polynomials.
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1 Introduction

Packing codes in the symmetric group for the Hamming distance have been studied
since the 1970s [3]. See [4] for a recent survey. Note that transitive sets of permutations
are more abundant than t-transitive groups of permutations that only exist ( apart from
trivial examples) for t ≤ 6 [3, 4]. In [5] covering codes in the symmetric group are
considered. In particular, it is shown there that t-transitive groups in the symmetric
group Sn on n letters have covering radius for the Hamming distance at most n − t ,
and that this bound is tight.

In the present paper, we prove bounds of similar order for t-designs in Sn in the sense
of Godsil [6, 10, 11]. These objects are defined in the setting of polynomial spaces, a
generalization of association schemes [2, 7]. An alternative definition in the language
of distance degree regular spaces can be found in [14, 15]. It is known that t-transitive
groups are t-designs, but the converse is not generally true. To derive these bounds,
we extend the method of [16] from the Hamming space to the space of permutations.
This method is based on the polynomials orthogonal w.r.t. the weight distribution of
the cosets of the code considered. If the dual distance of the code is large enough,
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these polynomials coincide with the celebrated Krawtchouk polynomials [17], and
the zeros of these can be used to bound the extreme points of the distribution. In that
coding analogy, Charlier polynomials and their zeros play the role of Krawtchouk
polynomials. Charlier polynomials have already appeared implicitly in the study of
permutation groups, in the work of Frobenius, who proved that the first k power
moments of the statistics of fixed points coincide with that of a Poisson law up to order
k [9]. But we know that they are orthogonal w.r.t. that distribution on the real line [13].
An important difference between these two families of orthogonal polynomials is that
the integrality of the zeros of Charlier polynomials is easier to decide. This technical
point simplifies the proofs of the bounds in comparison with the coding situation.

The note is arranged as follows. The next section collects notions and definitions
needed for the other sections. Section 3 recalls the current results on t-designs of
permutations. Section 4 contains the main results.

2 Backgroundmaterial

2.1 Permutations groups

A permutation group G acting on a set X of n elements is transitive if there is only one
orbit on X . It is t-transitive if it is transitive in its action on Xt the set of distinct t-tuples
from X . It is sharply t-transitive if this action is regular, concretely if |G| = n!

(n−t)! .
We extend this terminology by relaxing the group hypothesis to a set of permutations
action on X . It is well-known amongst geometers and group theorists that a set of
sharply 2-transitive permutations on a set of size n is equivalent to the existence of a
projective plane PG(2, n), that is to say a 2 − (n2 + n + 1, n + 1, 1) design [4].

2.2 Permutation codes

Consider the symmetric group on n letters Sn with metric

dS(σ, θ) = n − F(σθ−1),

where F(ν) denotes the number of fixed points of ν. The space (Sn, dS) is a metric
space. Let wk denote the numbers of permutations on n letters with k fixed points. A
generating function for these numbers (sometimes called rencontres numbers) is

n∑

k=0

wku
k = n!

n∑

j=0

(u − 1) j

j ! ,

as per [19]. It is clear that dS is not a shortest path distance since dS(σ, θ) = 1 is
impossible. Codes in (Sn, dS) were studied in [18] by using the conjugacy scheme of
the group Sn . For next paragraph, define

Ei = {(x, y) ∈ S2n | dS(x, y) = i}
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for all i ∈ {0, 1, . . . , n}. In that range of i , write vi = |Ei |/n!. Note that vi = wn−i .
If Y ⊆ Sn is any set of permutations its covering radius ρ(Y ) is defined as

ρ(Y ) = max{min{dS(x, y) | y ∈ Y } | x ∈ Sn}.

2.3 Permutation designs

If D is any non-void subset of Sn , we define its frequencies as

∀i ∈ [0..n], fi = |D2 ∩ Ei |
|D|2 .

Thus, f0 = 1
|D| , and

∑n
i=0 fi = 1. Note also that if D = Sn , then fi = vi

n! .

Definition 1 The set D ⊆ X is a t-design for some integer t if

n∑

j=0

f j j
i =

n∑

j=0

v j

n! j
i .

for i = 1, . . . , t .

(Note that trivially
∑n

j=0 f j j0 = 1 so that we do not consider i = 0.) Thus,
distances in t-designs are very regularly distributed. For a 2-design, for instance, the
average and variance of the distance coincide with that of the whole space.

Remark: Our notion of design is a special case of designs in polynomial spaces of
[10].

2.4 Orthogonal polynomials

Definition 2 We define a scalar product on R[x] attached to D by the relation

〈 f , g〉D =
n∑

i=0

fi f (i)g(i).

Thus, in the special case of D = Sn we have

〈 f , g〉Sn = 1

n!
n∑

i=0

vi f (i)g(i).

We require the so-called Charlier polynomials.
Let

Ck(x) = (−1)k +
k∑

i=1

(−1)k−i
(
k

i

)
x(x − 1) · · · (x − i + 1).
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An exponential generating function is given in [13, (1.12.11)] as:

et (1 − t)x =
∞∑

n=0

Cn(x)
tn

n! .

Thus, for concreteness, C0(x) = 1, C1(x) = x − 1, C2(x) = x2 − 3x + 1.
The scalar product attached to the space (Sn, dS) is then

〈 f , g〉Sn = 1

n!
n∑

k=0

wn−k f (k)g(k).

It is remarkable that the following orthogonality relation is not found in the classical
treatises [13, 17] on orthogonal polynomials. See [15, Lemma 1] for a proof.

Lemma 1 For a given n ≥ 1, the reversed Charlier polynomials Ĉk(x) = Ck(n − x)
satisfy the orthogonality relation

〈Ĉr , Ĉs〉Sn = r !δrs,

for r , s ≤ n/2, where δ denotes the Kronecker symbol.

3 Structure theorems

The following result is derived in [6], and in a different language in [15].

Theorem 1 If D ⊆ Sn is a t-transitive permutation group, then it is a t-design in
(Sn, dS). If D ⊆ Sn is a t-design that is a subgroup of Sn, then it is a t-transitive
permutation group.

We require the following characterization of 1-designs from [15].

Lemma 2 A subset D ⊆ Sn is a 1-design in (Sn, dS) iff
∑n

j=0 j f j = n − 1. In
particular, this condition is satisfied if we have n permutations at pairwise distance n
when f1 = f2 = · · · = fn−1 = 0, and fn = n−1

n .

4 Main result

We begin with two lemmas on the zeros of Charlier polynomials.

Lemma 3 The polynomial Ck has exactly k real zeros in (0,∞).

Proof Direct application of Theorem 3.3.1 of [17] to the Charlier polynomials which
are orthogonal w.r.t. the probability measure of a Poisson law of parameter one [17,
p.34]. ��

123



Journal of Algebraic Combinatorics (2023) 57:305–311 309

In the following, we will denote by x(k) the largest zero of Ck . This definition
makes sense by Lemma 3.

Lemma 4 If z is a zero of Ck for k > 1, then z cannot be an integer.

Proof If z is an integral zero of Ck(x), then z divides Ck(0) = (−1)k ; hence, since z
is nonnegative, z = 1. But Ck(1) = (−1)k(1 − k) which is = 0 for k > 1. ��

Define the half-strength of a t-design as s = � t+1
2 �. The next result, which moti-

vates this note, derives an upper bound on the covering radius of a design of given
half-strength.

Theorem 2 If D is a design of Sn of half-strength s > 1, then

ρ(D) < n − x(s).

Proof Define Ps(x) = Ĉs(x)/(n− x − x(s)). Since Ps is a polynomial of degree < s,
we have, by orthogonality

〈Ĉs, Ps〉Sn = 〈1, Ĉs Ps〉Sn = 0.

The degree of Ĉs Ps is s + s − 1 ≤ t ; we have by definition of a t-design

〈1, Ĉs Ps〉D = 〈1, Ĉs Ps〉Sn = 0.

Since, for a given σ ∈ Sn , the translate σD is also a t-design, we can write

〈1, Ĉs Ps〉σD = 0 =
n∑

i=0

fi Ĉs Ps(i),

where the fi ’s are the frequencies of σD. Note that the sign of

Ĉs Ps =
(
Ĉs(x)

)2

(n − x − x(s))

is that of n−x−x(s). If we assume, looking for a contradiction, that ρ(D) ≥ n−x(s)
we see that all terms in the above sum being nonnegative, must be zero. Hence, all
distances of σ to D must be roots of Ĉs , which is impossible for s > 1, by Lemma 4.

��
Example 1 Computing the roots of Ck(x) using Wolfram online yields

• If t = 2, then s = 1 and ρ(D) < n − 1; hence, ρ(D) ≤ n − 2, since x(1) = 1.
• If t = 3 or t = 4, then s = 2 and ρ(D) ≤ n − 3, since x(2) ≈ 2.616.
• If t = 5 or t = 6, then s = 3 and ρ(D) ≤ n − 5, since x(3) ≈ 4.115.
• If t = 7 or t = 8, then s = 4 and ρ(D) ≤ n − 6, since x(4) ≈ 5.544.
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In the cases t = 3, 5 our bound coincides with that of [5]. For t = 2, 4, 6, 7 it is
weaker by one unit.

In general, it is known that x(k) ≤ k + 2
√
k + 1. See [12, Th. 4]. It can be shown

that x(k) = �(
√
k) by [1, Theorem 3.1], combined with estimates on the largest zero

of Hermite polynomials [8].
If the strength is small, a direct power moment method is often more effective.

Theorem 3 If D is a 1-design of Sn, then ρ(D) ≤ n − 1.

Proof By Lemma 2, we know that the average distance in the shifted design σD is
n − 1. Hence, d(σ, D) ≤ n − 1. Since σ is arbitrary in Sn , the result follows. ��

Thus, for t = 1 also, our bound coincides with that of [5].

5 Conclusion

In this note, we have studied the covering radius of permutation designs. We have
obtained a general upper bound (Theorem 1) on that quantity, dependent on the largest
zero x(t) of the Charlier polynomial of degree t . In order to compare Theorem 1 with
the bound of [5], we would need an asymptotic equivalent of x(t) when t → ∞. We
could not find any such result in the literature of orthogonal polynomials [1, 12, 13,
17]. This is the main open problem.
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