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Abstract

We introduce a generalization of parametrized Rota—Baxter algebras, named 2-Rota—
Baxter algebra, which includes family and matching Rota—Baxter algebras. We study
the structure needed on the set Q2 of parameters in order to obtain that free 2-Rota—
Baxter algebras are described in terms of typed and angularly decorated planar rooted
trees: we obtain the notion of A-extended diassociative semigroup, which includes
sets (for matching Rota—Baxter algebras) and semigroups (for family Rota—Baxter
algebras), and many other examples. We also describe free commutative $2-Rota—
Baxter algebras generated by a commutative algebra A in terms of typed words.
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1 Introduction

A Rota—Baxter algebra is an associative algebra A with a linear endomorphism P :
A —> A, such that forany a, b € A,

P(a)P (D) = P(aP (b)) + P(P(a)b) + 1P (ab),

where A is a scalar called the weight of the Rota—Baxter operator P. Firstly introduced
by Baxter [1] in a context of probability theory and popularized by Rota [8—10], they
now appear in numerous fields of mathematics and physics, see for example [3] for
examples and more details.

The first appearance of family Rota—Baxter algebras seems to be in [2], in the
context of Renormalization in Quantum Field Theories. This terminology, due to Li
Guo [6], refers to an associative algebra A with a family of linear endomorphism
Py, : A —> A indexed by the elements of a semigroup (€2, *), such that for any
a,be A, forany o, f € Q,

P (a)Pg(b) = Pusp(Py(a)b + aPg(b) + rab).

This notion of matching Rota—Baxter algebra is introduced in [11]. This time, the
Rota—Baxter operators are indexed by the elements of a set 2 with no structure, and
the weights are given by a family of scalars (Ay)qeq. For any a, b € A, for any
a, B €,

Py (a) Pg(b) = Pg(Py(a)b) + Py(aPpg (b)) + ApPy(ab).

These notions have been extended to other types of algebras (Lie, pre-Lie,
dendriform. . .), see for example [11-14].

Our aim here is a generalization of both family and matching Rota—Baxter algebras,
in the spirit of what is made in [5] for dendriform algebras. We here consider that the
set of parameters €2 is given five operations <—, —, <I, I> and -, and a family of scalars
A = (Aa,g)a,peq- An Q-Rota—Baxter algebra of weight A is an associative algebra A
with a family of linear endomorphisms indexed by €2 such that for any a, b € A, for
any o, f € 2,

Po(a)Pg(b) = Py— p(Porp(a)b) + Pyp(aPyqp(b)) + Aa,p Pa.plab).
Taking
a—>B=a<«B=a-B=axp, abP=a, a<lB=246,
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and A4, g being constant, we recover in this way family Rota—Baxter algebras. Taking
a—>pf=pa<pf=aa-f=a abf=a a<dp=4,

and Ay g depending only on 8, w recover matching Rota—Baxter algebras.

For any set €2 with five operations and any family of scalars A, we define an operad
and a category of Q2-Rota—Baxter algebras (Definition 2.8). This is far too general,
and we impose the extra constraint that the combinatorics of Rota—Baxter algebras is
somehow preserved. To be more precise, as free Rota—Baxter algebras are based on
planar rooted trees [ 14], we impose that free 2-Rota—Baxter algebras own a description
in terms of angularly decorated (by the set of generators) and typed (by €2) planar
rooted trees, that is to say in terms of planar rooted trees with angles decorated by the
generators and internal edges decorated by elements of €2, with an inductive description
of the associative product and the Rota—Baxter operators being given by the grafting on
a new root, the created internal edge begin of the required type. We show in Theorem
2.14 that this imposes strong constraints on 2: we obtain that this combinatorial
description holds if, and only if 2 is a A-ETS, as defined in Definition 2.3. In particular,
(2, <, =) has to be a diassociative semigroup: for any «, 8, y € €,

(@a<B)«<y=a<B<y)=a<(B—>vy),
(@a—=>pB)«<y=a— (B<vy),
@—>B)—>y=@<p) —>y=a—>(B—>v).

This notion firstly appeared in Loday’s work [7] under the name of (associative)
dimonoid; the free dimonoid is also constructed in Loday’s article. Moreover, (2, <
, —, <, I>) is an extended semigroup (see Definition 2.2 below), a notion used in [5]
for parametrization of dendriform algebras. Particular examples of A-ETS attached to
a set give matching Rota—Baxter algebras (see Example 2.4-(b), with . (¢ ® 8) = La)
and particular examples of A-ETS attached to a semigroup gives family Rota—Baxter
algebras (see Example 2.4-(c)). In the case of weight 0, we obtain the generalization
of the result [3] establishing that any Rota—Baxter of weight 0 is a dendriform algebra,
see Proposition 2.11. Moreover, generalizing the construction of free commutative
Rota—Baxter algebras, we obtain that free commutative 2-Rota—Baxter algebras can
be described in terms of Q2-typed words (Proposition 2.18 and Theorem 2.20).

This paper is organised as follows. The first section introduces the definitions of
EDS, A-ETS, ETS and of Q2-Rota—Baxter algebras. The main result on free Rota—
Baxter algebras and A-ETS is then proved (Theorem 2.14), with a description of free
2-Rota—Baxter algebras in terms of trees. The last subsection deals with commuta-
tive 2-Rota—Baxter algebras and their description in terms of typed words (Theorem
2.20). The second section gives more examples of A-ETS and ETS, and in particular
a classification of these objects of cardinality 2.

Notation. Throughout this paper, K is a unitary commutative ring which will be the
base ring of all modules, algebras, as well as linear maps.
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2 Q-Rota-Baxter algebras
2.1 Definitions

We first recall the definition of diassociative semigroups and extended diassociative
semigroups of [5], where these objects were used for parametrized versions of den-
driform algebras.

Definition 2.1 [5, 7] A diassociative semigroup is a family (2, <—, —), where Q is
asetand <, —: Q x Q —  are maps such that

(@a<B)«<y=a<B<y)=a<(B—>y),
(0= B)«<—y=a— (B<y),
(a—>pB)—y=@«p—>y=a—>(B—>y),

forall o, B, y € Q2.

Definition 2.2 [5, Definition 2] An extended diassociative semigroup (abbr. EDS) is
a family (2, <, —, <, >), where Q is a set and <—, —, <, > : Q x Q — Q such
that (€2, <—, —) is a diassociative semigroup and

al>(B«<y)=ar> B, (1)

(0 —>p)y<y =8y, 2
(@<p) < (@< B)<y)=a<(B < y), 3)
(x<ap) < (@< B)<y)=p<y, “4)
(@<dB) > (@< P Ay)=a<(B—>v), 5
(@<p)> (@< B)<y)=p>vy, (6)
(a>(B—=>y) < Bry)=@<pB>y, (7
(a>B—=>y)<IBry)=a<p, (3
(a>B—=>y)—>Bry)=@—>p)>Y, )
(a>B—=>yN>B>y)=a>p, (10)

foralla, 8,y € Q.

We shall use here the notion of A-extended triassociative semigroup, where a family
of scalars plays the role of weights.

Definition 2.3 An X-extended triassociative semigroup (abbr. A-ETS) is a family
(2, <, =, <, >, -, %, 1), where (2, <, —, <, >) isan EDS and A = (Aq,8)a,e0
is a family of elements in k indexed by £ such that

Aa—By = Ag,y (11
)\aQﬂ,(aeﬂK]y = )‘ﬂ,y (12)
)‘aeﬂ,y = }\a,ﬂ%y (13)
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A (B—y). oy = ra.p (14)
)\a,ﬁ = Aa,ﬂ(—y (15)
Ao, phaBy = Mpyhapy (16)
and, forall o, B, y € Q:
(@ IfAqg—py =Ap, #0,then
a>p=ar> (B y), (17)
(= pB)-y=a—> (B y). (18)
(b) If Ay, (@<p)<y = A,y # 0, then
(@<p)- (@« B)<dy)=a<d(B-y), (19)
(@« p)<—y=a<(B-y). (20)
(© If XQD(ﬁ_)y)’ﬁDY = )\.a’ﬁ # 0, then
a—>B->y)=(@ - p)—v, (21
(a>(B—=>y)-B>y)=(@-p)>y. (22)
@ If Aa< By = raposy #F 0, then
(@ <= p)-y=a-(B—>vy), (23)
adpB=8>y. (24)
(e) If Ay, = Ao,py # 0, then
(a-p)<y =By, (25)
(@-B)«<y=a-(B<y). (26)
) If Aa,pra-By = A yrapy # 0, then
(-B)-y=a-(B-7). (27)

Example2.4 (a) Let (22, <, —, <, >) bean EDS. If we put Ay g = O forany o, B €

2, then for any product -, (2, <, —, <, >, -, A) is a A-ETS.
(b) If forany «, B € €2,

o< f=f—-oa=F<a=ab f =q,

then (2, «—, —, <, >, -, A) is a A-ETS if, and only if, the following map defines

an associative product:

v kQ QkQ — kQ
o a® B — Agpa-p.
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Indeed, for any «, 8, y € €,

V.o (Y. ®id)(@® P QYY) = Ay prapyla-p)-y,
Y. o (d® Y)a@BRY) = )Vﬂ,y)‘oz,ﬁ-ya “(B-y),

which gives the missing condition (27).
(c) Let (2, %) be a semigroup and A € k. We put, for any «, 8 € Q:

o < p=axp, v ap=p,
o — B =axp, a>f=aqa,
Aa,f = A, o - f=axp.

Then (2, <, —, <, >, -, A) is a A-ETS.

(d) Let (€2, ») be an abelian group and let A € k. For any «, 8 € €2, we put:

@< pf=a, a— BB,
a<1p=axpl, a B =a" 1k,
Ao g = A, a-B=oa.

Then (2, <, —, <, >, -, A) is a A-ETS.
(e) Let 2 = (2, <, —, <, >, -, A) beaA-ETS. For any «, 8 € €2, we put

a<«PB=B—>aqa, a<?a=p>aq,

a—%B=8<«a, a>Pa=8<aqa,
op

aPB=4a, rls = hpa-

Then (R, <%, —% QP 0P .90 )°P) g also a A-ETS, called the opposite of
Q and denoted by Q2°P. We shall say that 2 is commutative if it is equal to its

opposite.

Definition 2.5 A extended triassociative semigroup (abbr. ETS) is a family (2, <

, —, <, >, -, %), where (2, <, —, <, I>) is an EDS and

(0= B)yxy =Bx*v,
(INa>p=ar> (B y),
(18) (@ = p)-y=a—>(B-y),

(<) *((@ < B)Qy) =By,
(1N@<p)- (@ <~ B)<y)=a<(B-y),
Q0)a <~ p) <y =a < (B-y),

(a>(B—=>y)x(B>y)=axp,
Cha—> B—->y)=(@-B) > v,
@)@ (B—>y)-Bry)=(a-p >y,

@ Springer
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(@<= B)xy =ax(f—vy),
@)@« p)-y=a-(B—>vy),
Réa<p=p1y, (31)
axB=ax(f <y,
@5)(a-By<y =8y,

20)(@-B) <y =a- (B <v), (32)

axf=ax(f-y), (33)
(@-p)xy =p*vy,

@ND(e-B)-y =a-(B-y). (34)

Example 2.6 (a) Let (2, *, -) be a set with two products such that forany «, 8, y € Q:

axf=ax(f-y), (35)
(@-p)yxy=p=v, (36)
(@-B)-y=a-(B-y). (37)
We put, for any «, 8 € Q:
a <~ B=a, a8 =4,
a— B=a, al> B =4

Then (2, <, —, <, >, -, %) is an ETS.
(b) Let (2, <, —, <, >, -, %) be an ETS. For any «, 8 € €2, we put

a<?B=4—a, a<?a=p80ra,
a—>PB=8<«aq, a>?a=p8<aq,
ax*x? B =Bx*a, a-PB=48-a.

Then (2, <P, =P <P P %P .9P) ig also an ETS, called the opposite of
2. We shall say that 2 is commutative if it is equal to its opposite.

Actually, each ETS induces a A-ETS, as the following result indicates:

Proposition 2.7 Let (2, <, —, <, >, -, %) be an ETS and let (o) acq be a family of
scalars. For any «, 8 € 2, we put:

)&a,ﬂ = MHaxB-
Then (2, <, —, <, >, -, A) is a A-ETS.
Proof Conditions (a)-(f) of Definition 2.3 are obviously satisfied by (17)-(27). (11) is

(28), (12)is (29), (13) is (31), (14) is (30), (15) is (32), and (16) comes from (33) and
(34). m]
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We now propose the concept of 2-Rota—Baxter algebras as follows:

Definition 2.8 Let 2 be a set with five products <—, —, <, >, - and A = (A, g)a, gen
be a family of elements in k indexed by ©22. An Q2-Rota—Baxter algebra of weight A
is a family (A, (P,)weq) Where A is an associative algebraand P, : AQ A — Ais
a linear map for each w € €2, such that

Py (a)Pﬂ(b) = Poc—>ﬂ(Pal>/5(a)b) + Paeﬂ(apomlﬂ(b)) + )‘a,ﬂ Poz-ﬂ (ab),
foralla,b € A and «, B € Q. If, further, A is commutative, then (A, (P,)weq) iS a

commutative (2-Rota—Baxter algebra.

Taking all elements of A equal to 0, we get the concept of 2-Rota—Baxter algebras
of weight 0:

Definition 2.9 Let Q be a set with four products <, —, <, >>. An Q-Rota-Baxter
algebra of weight 0 is a family (A, (P,)wen) Where A is an associative algebra and
P,: A® A — Ais alinear map for each w € €2, such that

Pa(a)Pﬁ(b) = Pa—>ﬂ(Pal>/3(a)b) + Pa(—ﬂ(apaﬂﬁ(b))v

foralla,be€ Aanda, 8 € Q.
Example 2.10 (a) If (€2, %) is a semigroup, we recover the definition of Rota—Baxter
family algebras [6, 13] by defining

o< f=a—>B=a-B=uaxp, al>p=aqa, a<1p =4,

and requiring all elements of X to be equal. Note that this is the A-ETS of Example
2.4 (c).
(b) For a set €2, define

oa—>pB=a<p =4, a>B=a<«B=a-B=a,

and Ay g = Ay, for a family (Ay)eeq of elements of k. Then we get the concept
of matching Rota—Baxter algebra [12], up to the change of the product of A into
its opposite.

As we know, Rota—Baxter algebras of weight 0 induce dendriform algebras [3].
Similarly, we can show that each 2-Rota—Baxter algebra of weight O has a structure
of an Q-dendriform algebra [5, definition 11]:

Proposition 2.11 Let Q2 be a set with four products <—, —, <1, > and (A, (P,)peq) an
Q-Rota—Baxter algebra of weight 0. Then (A, (<o) we9, (~w)weq) is an Q-dendriform
algebra, where

a <y, b:=aP,(b), a >4 b:=P,(a)b,

foralla,b € A and w € Q.
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Proof Fora,b,c € Aanda, B € L,

(a <q b) <gc= (aPa(b))Pﬂ(c)
= a(Py(b) Pg(c)) = a(Pysp(Pur>p(b)c) + Pop(bPyqp(c)))
= aPyp(Pyspb)c) +aPycp(bPyqp(c))
=a <a—p (b >app €)
+a <gep (b <qqpC)a>qy (b<pgc)=
Py(a)(bPg(c))
= (Py(a)b) Pg(c) = (a >4 b) <p c,
a>q (b =g c)= Py(a)(Pgb)c) = (Pu(a)Pg(b))c
= (Pu—p(Parp(a)b)
+ Pyp(aPaqp()))c = Posp(Papp(@)b)c + PycplaPyqp(b)c
=(a »app b) >asp ¢+ (a <qqp D) »q<p c.

2.2 Q-Rota-Baxter algebras on typed angularly decorated planar rooted trees

First, let us recall some notations on planar rooted trees (see [14] for more details).
For a planar rooted tree T, we shall consider the root and the leaves of 7T as edges
rather than vertices. Denote by I E(T') the set of internal edges of T, i.e. edges which
are neither leaves nor the root and denote by V (T') the set of vertices of T. For each
vertex v yields a (possibly empty) set of angles A(v), an angle being a pair (e, ¢’) of
adjacent incoming edges for v. Let A(T) = |_| A(v) be the set of angles of T'.

veV(T)
Then:

Definition 2.12 [14, Definition 2.2] Let X and 2 be two sets. An X-angularly deco-
rated 2 -typed (abbr. typed angularly decorated) planar rooted tree is a triple
T = (T,dec,type), where T is a planar rooted tree, dec : A(T) — X and
type : I E(T) — 2 are maps.

Forn > 0, let 7,,(X, 2) denote the set of X-angularly decorated Q-typed planar
rooted trees with n + 1 leaves and at least one internal vertex such that internal edges
are decorated by elements of 2. We put

TX. Q=] |T(X. @) and kT (X, Q):=EPkZL(X, Q).

n=>0 n>0
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For example,

To(X, Q) = * la, .

sty

’xEXOtﬂ Vs
X x|y
X, 9) = \% \i/\‘/ q

Graphically, an element T € 7 (X, #) is of the form:

T4, Withn >0, where xq,...,x, € X,

a; € Q if T; # | and otherwise

o; doesnotexistfor 1 <i <n+ 1.

For each w € Q, there is a grafting operator B} : kK7 (X, ) — k7 (X, Q) which
add a new root to a tree and an new internal edge typed by @ between the new root
and the root of the tree.

For example,

The depth dep(T') of a rooted tree T is the maximal length of linear chains from the
root to the leaves of the tree. For example,

()= (N )1 e s} ) () 2
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We also consider the trivial tree | and put by convention dep(]):=0. For each typed
angularly decorated planar rooted tree 7', define the number of branches of T to be
bra(T) = 0if T = |. Otherwise, dep(T) > 1 and T is of the form

Let X be a set, (2, <, —, <,>>,-) be a set with five products, and A =
(Aer,8) (0, )2 e a family of elements in k indexed by Q?. By analogy with the
construction of free Rota—Baxter algebras, we define a product © on kK7 (X, 2) as fol-
lows.For T, T’ € T(X, ), we define T ¢ T’ by induction on dep(T') +dep(T") > 2.
For the initial step dep(T) + dep(T’) = 2, we have dep(T) = dep(T’) =l and T, T’
are of the form

X1 Xm Y1 Yn

T = and T = , with m,n > 0.

Define

(38)

Ti # | orsome T} # |.

There are four cases to consider.
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Case 1: T),, ;| = | = T}. Define

Case 3: 7)1 = | # T/. Define

b)) T
o)

/
TOTZZT] X1 X
31

Case 4: T),, 1 # | # T|. Define
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)3 T

. . + + + +
=1h X1 Xm ¢ (Bam+1—>)51 (Botm+| > Bi (Tn+1) © Tl/) B (T'"+1 © By, ap (T{))

+hap i B;jm,ﬂ] (T4 © T{)) o 42)

Here the first ¢ is defined by Case 3, the second, third and fourth ¢ are defined by
induction and the last ¢ is defined by Case 2. This inductively define the multiplication
oon7 (X, Q). Wethen extend ¢ by linearity tok7 (X, €2). We then have the following
result:

Lemma 2.13 Let (2, <, —, <, >, -, A) be a A-ETS. Then (KT (X, Q), ©) is an asso-

ciative algebra with identity ¢ .

Proof By the construction of ¢, K7 (X, ) is closed under ¢ and + is the identity of
o.

Now we show the associativity of ¢, i.e.
(o) oT3 =T o (T o T3), 43)
for all 71, T, T3 € 7 (X, 2) We prove Eq. (43) by induction on the sum of depths

p:=dep(T7) + dep(T2) + dep(73). If p = 3, then dep(77) = dep(T2) = dep(T3) =1
and Ty, T, T3 are of the form

X1 X1 Y1 Ym Z] Zn

T = , Th = , and T3 = with [, m,n > 0.

Then (T} ¢ Tz) © T3 = T ¢ (T, ¢ T3) by a direct calculation.
For the induction step p > 4, we use induction on the sum of branches g:=bra(77)+
bra(73) + bra(73). If ¢ = 3 and one of T1, T>, T3 has depth 1, then this tree must be

of the form ¢ and the associativity of ¢ follows directly. Assume

Ty =Bl (T)), Th» = B;(Tz/), T; = B;L(Té) for somea, B, y € QandTy, Ty, T3
eT(X, Q),
then

(T1 0 Tr) o T3 = (B (T)) © B;(Tz’)) o B (T3)
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= By 4(By.4(T]) o T;) o B) (T3)
+ By _4(T{ o By _4(T5)) o B (T3)
+ Aa, /,Ba,ﬂ(T1 o Ty) o B+(T3’)
= Bipyoy (B oy Banp (T © T) © T5)
+ B(a—>ﬁ)<—y ((Byop(T) © T2) © By gy, (T9))
+ haspy Bl gy (Banp(T)) © T3) © T3)
+ By pyy (Bl pyoy (T1 0 Byap(T9) © T3)
+ B, g, ((T] 0 By 5 (T)) © BE, 4 1 (T3))
+ Aap, yB(%ﬁ) (T B} 25(T) o T3)
2o p By (Biapyoy (Ti 0 T) 0 T5)
+ Ay ﬂB(a ﬁ)w((Tl o Ty) o B(a ﬁ)qy(rg))
+ haphapy By gy, (T] © Ty) © T3)
= By (Bla oy (Banp (T © T) © T5)
+ B gy (Banp(TD 0 T3) © By o (T5))
+ Ao p, VB(a_)ﬁ) y((BaDﬂ(Tl) o Ty) o T3)
+ B pyy (Blacpy (110 Bigp(T) 0 T5)
+ B(WIS)W(T1 o (B 15(Ty) © B, _ g 4, (T3)))
+rapyB (a(—ﬂ) y((Tl © B(jqﬁ(Tz)) o T3)
+ 208 Bpyy (Biapysy (T 0 T 0 T5)
+ A, ﬂB(a ﬂ)w ((T{ o Ty) o B(a ﬂ)qy(Té))
+ A, pra-p.y BiE By ((T{ © T;) o T3) (by the induction hypothesis)
= Bl g, (Bl oy Ban, (TN 0 T3) o T3)
+ B(wﬂ)ey((Baw(Tl) 0 T3) 0 Bl pyay (T3)
+Ao—py B (oz%ﬂ) y((Ba>ﬁ(T1) o Ty) o Ty)
+ B' (B}, (T] o B‘jqﬁ(Tz/)) o Ty)

al>y

@ep—y Baepsy
+ By (T © Bapy (@ pyan Biaapyo (@epan (T2 © T3)
+ By (11 0 Bapy@epan T2 © Baap ai@epanT3)
+ haap@epay Bap oy (T 0 Baapepap (T30 1)

+ ha<p. )/B(Zeﬂ)-y ((T{ o By 14(Ty)) © T)

3B pysy (Bapyoy (T 0 TD) © T3)

+ ha B gy (T] 0 T3) © B, g (T))
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+ hapha-py By gy, (T] © T) © T3),
and

Ty o (T o T3) = B (T]) o (B+(T2/) o B (T3))
= Bl (T) ¢ Bﬁﬁy(Bﬂby(Tz) o T§) + B (T)) o Bﬁey(Tz o B;Q},(Tg))

+ gy BI(T)) Bﬁ_ (Ty o T4)

= By (g (Ban gy (T © By, (T) 0 T7))
+ By gy (T1 @ By By (T2) 0 T5))
+ Mg, ﬂ%yBa.(ﬁw)(Tl o (Bﬂby(g) o T3))
+ By (g (Baw (g (T1) © (T3 0 B (T3))
+ By gy (T © Bygpyy(T3 0 B, (1))
+ hapey By gy (T] © (T3 0 Bg (T5)))
+ 4.y By () (Bap g (T1) © (T3 0 T5))
+ /\ﬁ,yB;Hﬂ.y) (1] o B(j(_(ﬁ (T30 T3))
+Ap.yrapy By g (T1 © (T30 T5))

= B, (g ((Byn gy (TD © B, (T3) 0 T5)
+ By gy (T1 @ By By (1) © 1))
+ ha sy By (s (T] © (Bps, (T3) © T3))
+ By gy (Ban gy (T © (T3 0 B, (T5)))
+ By gy (T1 @ Bygpeyy(T3 0 B, (T3)
+ Ao,,ﬂeyBa,(ﬁw)(T1 o (Ty ¢ By, (T3)))
+ )"ﬂvVB(j—)(ﬂAy) (BJD(,B H(TD o (T30 T3))
+ Aﬁ,yB;e(ﬂ.y) (7] o B;Hﬁ (T30 T5)
+ Aﬁ,yka,ﬂin;(ﬂ.y) (Tl o (T2 o T3’)) (by the induction hypothesis)

_ p+t + + No TN o T!
= By, (o) (Blas (50— 859 Blars (s gy (T1) © T2) © T5)

+ By gy Bap sy g T © Blap gy apoyy (12) © T3)
b (5.7 B (5) B (3 o) (T1 © T) 0 T5)

+ Bm—(ﬂ—w)(Tl © By gy (Biny (1) 0 T3)

+ hapry By gy (T1 © (B (T3) 0 T3))

+ B, gy Baps gy (T1) © (T3 0 B (T5))

+
+ BOK—(/%—V)(Tl < Ba<](ﬂ<—y)(T2 < BﬂQV(T:i)))
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+ Ao, pey B;(m—y) (Tl/ o(Tyo BEQV(T?:)))
+ )‘ﬂa}’B;_e(ﬁ-y)(Bo—:_D(ﬂ'V)(Tl/) o (Ty 0 T3))
+ 28,y By g (T1 © By (5, (T5 0 T5))
+ A,g,yxa,ﬁ.yB;(ﬁ_y)(T{ o (T3 0 Ty)).
By the induction hypothesis and (2, <—, —, <, >, -, 1) being a A-ETS, we get
(TyoTh)o Tz =T ¢ (T ¢ T3).

If ¢ > 3, then at least one of T, T>, T3 have branches greater than or equal to 2. If
bra(7Ty) > 2, then there exist 77, 7" of the form

and

such that 71 = 7| o T|'. Hence

(Tho)oTz = ((Tll <o TIN) o) o Ts

= (T] o (T{' © T)) © T3 (by the induction hypothesis)
=T o (T{ o Tr) © T3) (by the form of77and the definition ofc)
=T, o (T o (Tr ¢ T3)) (by the induction hypothesis)
=T oT] o (Tr o T3) (by the form of77and the definition ofc)

=T ¢ (Th o T3).

If bra(77) > 2 or bra(7T3) > 2, the associativity can be proved similarly. m]
Leti: X — kT (X, Q), x — \;/ be the natural inclusion. Then

Theorem 2.14 Let Q be a set with five products <, —, <, >, - and A a family of

elements in Kk indexed by Q2. Then the following conditions are equivalent:

(a) (KT (X, Q), ¢, (B )weq) together with the map i is the free 2-Rota—Baxter alge-
bra generated by X.

(b) (KT (X, Q), ¢, (B} )weq) is an Q-Rota—Baxter algebra.

(c) (2, «,—,<q,>,-,A)isaAr-ETS.

Proof (a) —> (b) It is obvious. (b) = (c¢) For «, B, y € Q and \(/, \y/,
\/ e 7(X, ), we have

() (Y ) ()
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x y v
~i2y (5 () N ) (V)
+BM(\‘/ o Bl (\y/))ﬂi (V)
+ s y i y
+)‘thﬂBot-ﬂ o <& By
_ gt + ¥ v . Z
=Bapy—y (B(a—>ﬂ>>y (Bwf’ <\/> ° \/> ’ \/)
Bt B+ V o N\ o B, :
@>pyey \ | “axp o
X Y v
+haspy Bl gy ((B;ms (V) ° V) ¢ V)
+ + v .. . Z
Baepysy (Bmeﬁ)w (\/ * Basp <\/>> ’ \/>
+ ¢ + v
a5 ) ()
X
+)\a<—ﬁ.VB(4¢—x<*ﬁ)'}/ ((\/OBJQ,B <\/>> \/>
+)Lo[ /SB(a B)—y ( (a-B)>y <\/ \/> \/)
X y v
Frap B ((\/ o \/) o Bl gy (V))
Z
+ ko pha-py B, @By ¢
= B(aaﬂ)%y < (a—=>pB)>y (BO[DV <\/> ¢ \/) ° \/>
+ + v v o Z
+Bl g, <<Ba.>,s <\/) ° \/) Bl pyay <\/>>
¥ y z
By ((B;w (\/> . \/> . \/)
X y z
o <B(TX<_,3)|>V (\/ sy (\/)) . \/)
+ V + + y Z
Bacpyey <\/ ®Baap)—@pray (B(“qﬁ)b((“‘_ﬁ)qy) <\/> ’ \/»
+ V + \ @ Z
Biaprey <\/ © Bl ap)((@p)<y) <\/ *Paapa@enan (V»)
+ v + . Z
+)‘a<15=(a(*ﬂ)<]y3(a<—ﬂ)ey (\/ o B(a<1ﬁ)-((a<—ﬂ)<1}/) <\/ S \/>>
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X y z
+haepy Bl gy ((\/ ° Biqfs(\/)) ° \/>
+Ag BT BF v

.8 (.f)—y (a-ﬁ)DV
z
+ e, /sB(a By (oz ﬂ)<1y
+ X y z
+}~a,;5}\a»ﬂ,y3(a.ﬁ)4y © ©

al>p
= (@—=>p>y
(@—>p)—>vy

X

al> B Y|z

axg N\ @=pay +}»a—>ﬂ.y( 5
o — -y

a?ﬂ (@< B)<y)
s (@<p) > (@<= B <y) 4+

Yz
Y @ap) (@< p<ay)
o< @—p)<y (aiﬂf;eya DIt daepy @<py
| - py<ay
ra.Bra
(@-B) <y + a.prapy a-p)- V

@<B) < (@<~ P <y)
(@<1p) < (@< p)<y)

(@< p) <y

(@-p)>vy
Fhap Ly

_ B+(\/) oBj, (%y(\y/) ° \/)
+B;(\‘/) oBEEV(\y/ °B§<V(\Z/>>
et (N ot (N N)

=8B () (8 ) e )

+ B;&(ﬂw)<\/ o Bmusw)( ﬂw(\/> ¢ \/»
Fapoy B (ﬁﬁy)<\c/ o <B§>v(\y/) ¢ \/»
#8pon(Beaen () (N 25 ()))
CB (\/ o Bl apey <\y/ ° B, <\/>)>
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x y 4
+ ka,a«yBiw&y)(\/ ° (\/ °Bls, (V)))
A B+ X y 4
+ 2.y By g | Bars ()
+ g, BT o BT
By Pa(py) a—(By)
+Kﬂ,yka,5.y3;(ﬁy)<\/ (\/ ))
_ B+ B B y z
= Bams (o) | Pl (80— Bon | Pl @-ys@ey) ¢ ¢
+ + X + y Z
+ By (g (Bab(ﬁay)e(ﬁby) (\/ * Bor By <oy (\/» © \/)
z
+ hat> (81,857 Bas (psy) (B(ab(ﬂﬁy)) (ﬁw)(\/ \/> ¢ \/>
+ Bt o Bt B y
a<—(B—y) a(B—>y)\ TB>Y
x y 4
"‘)“mﬁ%VB;(ﬂ»y)(\/ (B;Krby(\/) © V))
+ + X J + z
B, <Ba>(ﬂw)(\/) o (\/ o Bl (\/)))
+ X y + Z
+ Ba<—(ﬂ<—)/) <\/ © Boz<1(ﬂ<—)/) <\/ © Bﬁ<1y <\/))>
x y 4
+ )W,ﬂ%VBI(ﬁey)<\/ o (\/ o Bf,, (V)))
+ + X y 4
+ )\ﬁ,yBa_>(,3.V) (Bot[>(f3'}/) (\/) <& (\/ < \/))
+ X + y Z
+ Mf,me—w-y)(\/ ° Bm—(ﬁ-w(\/ © \/>)
+ Apyhapy BT VEERIERN :
B.yra.By By.(g.y) ©
y

X

(a> (B > y)
z
+ (a>(ﬁ—>y))<—(ﬁ>y)

- By

@>(B—>y)>(@Bry)
= (DtD(ﬂ—>)/))—>Eﬁ>V)

a—>(B—vy

@>@B >y By \C

T ha(B—y).poy )

z
By X

& a<a(B—>y)
+ a S Thasoy

>y

a-(B—v)
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| pay

4+ a>(B <y By + ai((%:—_y) +)La/3&y «-@ ey

01—>(ﬁ<—y)

x\Y/z
at>(B-y)
A ad(B-y) Aa LA .
BY sy t A8y ae(py) T MBIy a-(B-7)

By Lemma 2.13 and identifying the types of the planar rooted trees, we get that
(2, «,—>,q,>,-, L) isa A-ETS.

(c) = (a) By Lemma 2.13 and the definition of ¢, (K7 (X, Q), ¢, (B} )weq) is
an Q-Rota—Baxter algebra. Now we show the freeness of k7 (X, ).

Let (R, -, (Py)weq) be an Q-Rota—Baxter algebra of weight \g and f : X — Ra
set map. We extend f to an Q-Rota—Baxter algebra morphism f : k7 (X, Q) — R
such that foi = f.

For T € T(X, ), we define f(T) by induction on dep(T). If dep(T) = 1, then
T is of the form

Define
FOy=Fx1) - f(x2) - fxm).

For the induction step of dep(T') > 2, we define f(T') by induction on the branches
of T.If bra(T) = 1, then T is of the form

Define

F(T):=Py, (Po, (F(TD)) - f(x1) - Pay (F(T2)) -+ Py (F(T)) - £ Gim) - Po(F(Tns1))) -

If bra(T) > 1, then T is of the form
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Define
F(T):=Py (F(T1)) - £(x1)  Poy (F(T2)) -+ Pay, (F(Tw)) - £ tm) - Pee(f (T11))-

By construction of f, f oi = f and P, f = fB] forall € Q. Next we show
that f is an algebra homomorphism, i.e.

f(ToTy=f(T) - f(T) foralll,T' € T(X, Q). (44)

We prove Eq. (44) by induction on dep(T) + dep(T”). If dep(T') + dep(T’) = 2,
then dep(T) = dep(T’) = 1 and

X1 Xm , Y1 Yn .
T = and T = , with m,n > 0,

and

FToT) = fo)--- fOm)- fFO1) - fOn) = (F 1) f@m) - (F1) -+
) = F(T) o f(T).

For the induction step of dep(T') + dep(T") > 3.1f T © T’ belongs to the first three
cases, then f(T o T') = f(T) - f(T") by the definition of ¢ and the construction of
f. So we only need to consider the fourth case. Then

)3 T

@ o,
f(T © Tl) =f <T1 Ollx} S © <B;’;n+l—>ﬁl (B;rmHDﬁl(Tm""l) o Ty)

+ +
+B (Tm+1 © BanH—] 4,31 (Tl/))

Um+1<P1

+ /
+)\'am+la/31 Bo[erl-ﬂl (Tm+1 < T])>> <

_ (Pm FAD) - 1) - Py (FT) - Py (FCTo)) - F ).
8 ?(B;m*"ﬁﬂ' (B‘jm-%-l > B (Tn+1) © Tll)

+ B g (T 9By o (D) + e i B o (Tt © T{)))
o0 P (FAD) -+ Ppyy (FT)

= (P (FTD) - £ G0 - Poy (F(T2)) -+ Pay (FCTu)) - £ Cim) + Pty (F (1))
(Po (T - £ 1) - Py (FCTR) -+ Py (F(T41))
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= f(T) o f(T.

Moreover, by the construction of f, it is the unique way to extend f as an Q-Rota—
Baxter algebra morphism. Hence (k7 (X, 2), o, (B;)“ Jweq) together with the map i
is the free 2-Rota—Baxter algebra generated by X. O

Remark 2.15 (a) In Definition 2.8, 2 is required to be a set with five products <«
,—, <, 1>, and A is required to be a family of elements in k indexed by Q2.
This defines a category of 2-Rota—Baxter algebras for any such 2. Generally,
free 2-Rota—Baxter algebras are not based on 2-angularly decorated planar trees.
However, by Theorem 2.14, the condition of a free 2-Rota—Baxter algebra based
on the combinatorics of 2-angularly decorated planar trees, similar to the one of
(classical) Rota—Baxter algebras, is equivalent to (2, <—, —, <, >, -, A) being a
A-ETS.

(b) As a particular case, we recover the description of free family Rota—Baxter alge-
bras of [14]. An alternative description of free Rota—Baxter algebras (with rooted
forests) is done in [4].

Taking all elements in A to be 0, we get the following result:

Corollary 2.16 Let Q2 be a set with four products <, —, <, >. Then the following
conditions are equivalent:

(a) KT (X, Q), 0, (B(j)weg) together with the map i is the free Q-Rota—Baxter alge-
bra of weight 0 generated by X.

(b) (KT (X, Q), ¢, (B )weq) is an Q-Rota—Baxter algebra of weight 0.

(c) (2, «,—,<,>)isan EDS.

2.3 Commutative Q-Rota-Baxter algebras on typed words

Let 2 be a set and V a vector space. Recall from [5] that the space of Q-typed words
inVis

Shg(V) — @(kg)@)(n—l) ®Ven,

n>1

For the ease of statement, we redefine the space of Q2-typed words in V as

Shy(V =PVe ke -k eV

n>0

(n+1)’sVandn’s(k2)
and write each pure tensorv= vy @ w1 ® - - - ® w, ® v, € Q under the form
V=10 Qu V1 Qu, *** Qu, Un,

wheren > 0, w1, --- ,w, € 2 and vy, ---, v, € V with the convention v = vy if
n = 0. We call v an 2 -typed word in V and define its length ¢(v):=n + 1.

@ Springer



Journal of Algebraic Combinatorics (2023) 57:271-303 293

Let A be an algebra with identity 14, (2, <, —, <, I>, -) be a set with five products
and A = (Aq,)(q,p)cq? be a family of elements in k indexed by Q2. For any pure
tensors a = ap Q@q, a’, b = by ®p b’ € Shg(A) with £(a) = m and £(b) = n, define
a ¢ b inductively as follows:

apbg, ifm=n=0,
apby Qg @', ifm>0,n=0,
aob:=1{ aghy ®g, V', ifm=0,n>0, (45)
apbo B py ((1A B> a’) Qb/) + aobp u g, (a/ o (14 ®a; < b/))
+hay,,00b0 Qqy.p, (@ O, ifm>0,n>0.

Extending bilinearly, we construct a product ¢ on Shg(A).

Lemma 2.17 Let A be an algebra with identity 14, Q2 a set with five products <, —
, <, D>, - and A a family of elements in k indexed by Q2. If (2, «,—,q,>,,A)isa
A-ESD, then (Sh;g(A), ©) is an associative algebra with identity 1 4.

Proof By Eq. (45), Sh;g(A) is closed under ¢ and 14 is the identity of ©.
For pure tensors a, b, ¢ € Shg (A), we prove

(aob)oc=ac(boc) (46)

by induction on £(a) + £(b) + £(c). If £(a) + £(b) 4+ £(c) = 3, then £(a) = £(b) =
£(¢) =1and a = ag, b = by, ¢ = ¢y. Hence

(@aob)oc=apbpco =ac (boc).

Suppose Eq. (46) holds for £(a) 4+ £(b) 4+ £(¢c) < p, where p > 3 is a fixed integer.
Consider the case of £(a) + £(b) + £(c) = p + 1. If one of £(a), £(b), £(c) is equal
to 1, then Eq. (46) holds by direct calculation. Hence we assume £(a) > 1, £(b) >
1,4(c) > 1and

a=a)Qu a, b=>by®p b, c=c)®,, .
Then

(aob)oc
= (@0b0)co O —p—n (14 O@ sy (14 Buienp ) ob)) o)
+ (@0b0)co By (14 >y @) 0 ) 0 (14 B p1yan )
+ Ay —p.71 (@0b0)€0 By —pn (14 Bay-p, 2) o) 0 )
+ (@0b0)co®(a) —p1)—n
((1a ®e sy @ 0 (14 ®aypy b)) 0 ¢')
+ (a0b0) 0B oy < B1) <1
(@' 0 (14 ®@ <pi)— (@ —pn<y) (14 Ofay p)(ar 1<y B) 0 €)))
+ (@0b0)co®(a) —p1) 1
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(a" o (14 ® <p) (@ <pn<y) B 0 (1a B ap < <pnan €))))
+ A B, (@1 —pn<ay) (@050)co By )y (30 (1a Bayapy)-(r —pn<ay) (B ©¢)))
+ Ay B (@0b0)C0 B (@ gy (@0 (14 ®ay<py D)) 0 €)
+ Xy, 1 (@0D0)€0 ®a1-p)—m (14 Oar-pmp @ 0b)) o)
+ a1 (@0b0)C0 @y pry e (@ 0D © (14 Bay-pry<an €))
+ Ay A1 (@050)C0 ®ay 1)y (@ 0 b)) o ¢’)

and

ao(boc)
= ao(boco)Ra;— (1 —y1)

(14 B> 1> yn—@ier (14 O@>@B—>nns@iy a) o b)) o)
+ ao(boco)®a;— (81— 1)

((IA (1> (B1—71) < B> @ o(la B (1> (81— y)<UBI>1) b)) o c,)
+ A (81> 70,151 0 (B0€0) B> (81 —>71) (14 Bay (81> -Bimp) @ 0 b)) o)
+ag(boco) ®ay (g1 —yp) (20 (14 Buya(—y) (14 ®p iy, b) 0 €))
+ At (8170 (b0€0) Bay(Br—>y) (30 (14 Bpyyy B) 0 €)

+ a0 (boco) ®ay— 81—y (L4 By (81 —yp) @) 0 B (14 ®p, <y, €)))
+ a0 (boco) ®ay By (20 (L1a Bay <y B 0 (La B, ay €))))
+ Ay, (81 <y @0(b0co) Bay. (81— (370 (B 0 (14 ®p, <y, €)))

+ Ag1.1a0(B0C0) By (B1-11) ((14 Bay>(81-91) @) © (B 0 €))

+ 281.1140(B0c0) ®ay —(p1-y1) (2" (14 ®ay gy (b 0 €))

+ Ay k. (B1v1)@0(Boco) ®ay gy (270 (b0 €)).

By induction hypothesis and (€2, <—, —, <, >, -, A) being a A-ETS, (a¢ob) oc =
ao (boc). Hence (Shg(A), ©) is an associative algebra with identity 14. O

For each w € Q, define a linear map P, : Sh;,(A) — Shi(A),a > 14 ®, a.
If further A is a commutative algebra and (2, <, —, <, >, -, A) is a commutative
A-ETS, we get the following result:

Proposition 2.18 If A is a commutative algebra with identity 14 and (2, <, —
, <, D>, -, A) is a commutative A-ETS, then (Shg(A), O, (Py)weq) is the free com-
mutative Q2-Rota—Baxter algebra generated by A.

Proof Fora,b < Shg(A) and o, B € ,
Py(a) o Pg(b) = (14 ®q a) ¢ (14 ®p b)
=14 ®up (1 ®upa) 0b) + 1 Qu<p (a0 (14 ®uxp b))

+ )"Ol,ﬂlA ®oz-;3 (aob)
= Po—p(Par-p(@) ©b) + Pyp(a o Puqp(b)) + Ao pPu.pg(@ach),
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hence Shq(A) is an 2-Rota—Baxter algebra. Next we show
acb=boa (47
by induction on £(a) + £(b). If £(a) + £(b) = 2, then £(a) = £(b) = | and
aob=ayo by =agby = byag = by o agp =boa.

Suppose Eq. (47) holds for £(a) + €(b) < p, where p > 2 is a fixed integer. We
consider the case of ¢(a) + £(b) = p + 1. If one of £(a), £(b) is equal to 1, then
Eq. (47) holds directly. We assume that a = ap Qq, @', b = bo ®gp b’, then

aob = (a @, a') ¢ (bo ®p, b
= aobo Qa;— g ((1A Rai>p1 a’)o b/) + a0bo Qayp, (a/ O (I Qay<py b/))
+ Aoy p1a0b0 ®qy.p, (@' o D)
= boao Qu,— g, ((1A ®uy > A) <>b/)
+boao ®u; gy (2" 0 (14 ®ayapy D)) + ray.pb0a0 @aypy (D)
(byAbeing a commutative algebra)
= boap Qa;— g (b/ O (14 Qai>p: a/))
+ boao Qu; p; ((IA ®u<ipy b)) © a/) + Aay, p1b0a0 ®ay.p, (B 0 a")
(by the induction hypothesis)
= boao ®p) <o) (b0 (14 @p < @)
+ boao ®p,—a; ((14 ®p ey b)) 0 ') + A, bodo ®p,.o; (' 0 a’)
(byQ2being commutative)
= (bo ®p, V') ¢ (ap ®a, ') = b ®a.

Hence (Sh;z' (A), ©) is a commutative algebra.

Let (R, -, (Py)weq) be a commutative 2-Rota—Baxter algebra and f : A — R
a commutative algebra homomorphism. We extend f to an Q2-Rota—Baxter algebra
morphism? : Shg (A) — R asfollows: fora € Shg (A), we define ?(a) by induction
on £(a). If £(a) = 1, then define f(a) = f(a). Suppose f (a) has been defined for all
a with £(a) < p, where p > 1 is a fixed integer. Consider the case of £(a) = p + 1.
We suppose that a = ap ®q, a’, and we then put:

F@):=f(ao) - Po, (f(@").

We can get that it is the unique way to extend f as an 2-Rota—Baxter algebra mor-
phism. Hence (Shg(A), ©) is the free commutative 2-Rota—Baxter algebra generated
by A. O

Let us assume that A is unitary. We denote its unit by 14. For each w € 2, define
a linear map P, : Shq(A) — Shq(A),a— 14 ®, a.
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Proposition 2.19 If A is a unitary commutative algebra and (2, <—, —, <1, >, -, A) is
a commutative A-ETS, then (Shq(A), 0, (Py)weq) is a commutative 2-Rota—Baxter
algebra.

Proof Fora,b € Shq(A) and o, 8 € Q,

Py(a) o Pg(b) = (14 ®q a) © (14 ®p b)

=14 Qg (14 ®apa) 0b) + 14 Qup (a0 (14 ®axp b))
+ Aopla ®q.p (@aob)

= Py p(Par-p(@) ©b) + Pyp(a o Puqp(b)) + Ao pPop(acb),

hence Shq(A) is an Q2-Rota—Baxter algebra. Next we show
acb=boa (48)
by induction on £(a) + £(b). If £(a) + £(b) = 2, then £(a) = £(b) = 1 and
aob=ay o by =apby = bpag = by o ap =boa.

Suppose Eq. (48) holds for £(a) + €(b) < p, where p > 2 is a fixed integer. We
consider the case of £(a) + £(b) = p + 1. If one of £(a), £(b) is equal to 1, then
Eq. (48) holds directly. So assume a = ag ®q, a’, b = by ®g, b’, then

aob = (a ®q, a') o (by p, b)
= aobo ®a,—p, ((IA > ) © b/)
+ aobo ®a;p, (a' 0 (14 @y apy b)) + Aoy p100b0 @ay -, (@' 0 D)
= boao ®a,—p, (14 ®ay>p, @) o b')
+ oo Qay «py (3" 0 (14 Qay <y D)) + Aay 1 b0a0 Oay 5, (@' 0 b')
(byAbeing a commutative algebra)
= boap ®a; - (b/ o (14 ®ai>p a/))
+ oo Qa1 ((1a ®ayapy b)) ") 4 Xay pb0a0 @ay.5, (b 0 2")
(by the induction hypothesis)
= boao ®p,a;, (b ¢ (14 ®p,qa, 2))
+ boao ®p—ay ((1a ®pma) b) 0 ") 4+ Ap, 4b0a0 @p;.a, (b 0 a")
(by2being commutative)
= (bo ®p, b') ¢ (a0 @4, a') =b® a.

Hence (Shq(A), ¢) is a commutative algebra. O

Let A be a commutative algebra. We put uA = k @ A and give it a product defined
by

A +a)(u+b) =2ru+ (Ab + pa + ab).
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Then A is a commutative unitary algebra and its unit 14 is the unit 1 of k.

Theorem 2.20 We put

Sh’Q(A):A@@aA@(kQ)@--@(kQ)@uA.

n>2

n'sVand(n—1)"s(kQ)

Then Shi, (A) is the free commutative Q-Rota—Baxter algebra generated by the algebra
A.

Proof Let (R, -, (Py)wen) be a commutative ©2-Rota—Baxter algebraand f : A — R
a (nonunitary) algebra homomorphism. We extend f, first from # A to R as a unitary
algebra morphism by sending 1, 4 to 1, then as an 2-Rota—Baxter algebra morphism
f: Shi, (A) — R as follows: for a € Shq(A), we define f(a) by induction on £(a).
If £(a) = 1, then define f(a) = f(a). Suppose f(a) has been defined for all a with
£(a) < p,where p > 1is afixed integer. Consider the case of £(a) = p + 1. Suppose
a = ap Qq, @', then define

f@):=f(ap) - P, (f(@)).

For any a € Sh,(A) and for any o € Q:

foPy(a)=f(la®ya) =1 Py(f(a)) = Pyo f(a).

Let us prove that this is an algebra morphism. Let a, b € Shi,(A), let us prove that
f(aob) = f(a)f(b) by induction on n = £(a) + £(b). If £(a) = £(b) = I, then

f(aob) = f(aoho) = f(aoho) = f(ao) - f(bo) = f(a) - f(b).

If ¢@) = 1 and £(b) > 1, then

f@ob) = faohy ®a, a)
= f(aobo) - Po, o f (@)
= f(ao) - f(bo) - Po, o f(a)
= f(@) - f(b).

This is similar if £(@) > 1 and £(b) = 1. If £(@) > 1 and £(b) > 1, then

f@ob) = f(aghy ®u —p (1 @ >p, a) o) + flaghy ®u«p, @ (1 Q@ 4p, b))
+ [ (ray,pra0b0 ®qy.p, (@ ob)
= f(aoho) - Puy—p, © (1 ®a >p, @) o b)
+ f(aobo) - Pucp, o f(@ o (1 ®q,p, D))
+ Ay, g1 f(aobo) - Pyy.py, o f@ ob)
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= f(ao) - f(bo) - f(Pay—p; (Payi>p; (@) o b))
+ f(ag) - f(bo) - f(Pycp, (@ o Py qp ()
+ Ay gy f(ao) - f(bo) - f(Pyy.p, @ ob))

= f(ap) - f(bo) - f (P (@) Pg, (b))

= flao) - f(bo) - f(Py (@) - f(Pg (b)) (by the induction hypothesis)
= f(ag) - f(bo) - Poy o f(@') - Pg, o f(b)

= f(ag) - Pay o f(@") - f(bp) - Pg, o f(b) (asBis commutative)

= f(@) - f(b).

We get that it is the unique way to extend f as an 2-Rota—Baxter algebra morphism.
Hence Sh, (A) is the free commutative ©2-Rota—Baxter algebra generated by A. O

3 More results on 1-ETS and ETS
3.1 Description in terms of linear and bilinear maps

As in Lemma 5 of [5], we obtain:

Lemma3.1 Let (2, <, —, <, >, -) be aset with five operations and A = (Ag,)a, e
be afamily of elements ink indexed by Q* . We denote by K2 the vector space generated
by Q2. We put:

[ kQ®? — kQ®?
P AP — a <« BFRa<p,
[ kQ®? — kQ®?
¢ AR —a—BRa> B,
v kQ®? — kQ
T lae®B — Aepo- B

Then (2, <, —, <, >, -, A) is a A-ETS if, and only if:

(t®id) o ([d®¢p)o(t®id) o (9o ®id) = (¢, ®id) o (id ® ), (49)
([d®@p.)o(r®id) o ([d® ¢ ) ®(r ®id) o (9 ®id) = (¢ ®id) o (id @ ¢ ),
(50)
([d®¢_)o(T®id)o({d®¢.)o (T ®id) o (9. ®id) = (¢ ®id) o (id ® ¢_),
(51)
(d® @) o(p ®id)o (d® @) = (9 ®id) o (Id ® 7) 0 (P ®id), (52)
(id ® ¢-) o (9 ®id) o (id ® p—) = (9 ®id) 0 (iId ® 7) 0 (¢ RV id), (53)
o o(id®y.) = (Y. ®id) o (id ® 1) o (¢ ®id), (54)

Y. ®id)o(d®T)0((d® @) o (Tt ®id) o (¢ ®id) =T 09— 0 (Id ® ¥.),
(55)
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({d®Vy.)o(ps ®id) o ((d® @) = ¢, o (Y. ®id), (56)
(Y. ®id) o (id® 1) 0 (9« ®id) = (Y. ®id) o (id ® ¢-), (57)
(Y. ®id) o (Id ® ) = ¢ 0 (Y. ®1d), (58)
Y. o (Y. ®id) = V. o (id @ ¥.). (59)

In particular, . is an associative product.

Proof By Lemma 5 in [5], Egs. (49)-(53) are equivalent to (2, <, —, <, >) being an
EDS. Moreover, direct computations prove that Eq. (54) is equivalent to Eq. (11) and
condition (a); Eq. (55) is equivalent to Eq. (12) and condition (b); Eq. (56) is equivalent
to Eq. (13) and condition (c); Eq. (57) is equivalent to Eq. (14) and condition (d);
Eq. (58) is equivalent to Eq. (15) and condition (e); Eq. (59) is equivalent to Eq. (16)
and condition (f) in Definition 2.3. O

Similarly, we obtain for ETS:

Lemma3.2 Let (2, <, —, <, >, %, -) be a set with six operations. We put:

Q2 — Q2

Yl @B — (@« Baap),
Q2 — Q2

= @B — (@— Barp),
) Q?— Q2

P @ B) — (@-B.axp).

Then (2, <, —, <, >, %, -) is an ETS if, and only if, (34)-(38) of [5] are satisfied
and:

(p— ®id) o (Id ® ¢) = (1 ®1d) 0 (1Id ® ¢5) o (T ®id) 0 (¢ ®id),

(60)

(9 ®id) 0 (Id @ @) = ([ ® @) 0 (T ®id) 0 (Id @ p) o (T ®id) o (p— ®id),
(61)

(id ® ¢s) 0 (9 ®id) 0 (Id ® ) = (¢ ®id) o (Id ® 7) 0 (id ® @s),

(62)

(([d®@ @) o (T ®id) o (pe ®id) = ([d® ¢y) o (T ®id) 0 (d® 7) 0 (Id ® @),
(63)

(pxs ®id) 0o ((d® ) = (1 ®id) 0 ((d ® ¢ ) 0 (T ®id) o (px ®id),

(64)

(px ® id)o(id® 1) 0 ((ﬂ* ®id) =(@1d®71)o0 ((,0* ®id) o (Id® ©x).

(65)

Proof By Lemma 5 in [5], Egs. (34)-(38) are equivalent to (2, <—, —, <1, >) being an
EDS. Moreover, direct computations prove that Eq. (60) is equivalent to Egs. (17),(18)
and (28); Eq. (61) is equivalent to Eqgs. (19), (20) and (29); Eq. (62) is equivalent to
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Egs. (21), (22) and (30); Eq. (63) is equivalent to Eqgs. (23), (24) and (31); Eq. (64)
is equivalent to Egs. (25), (26) and (32); Eq. (65) is equivalent to Egs. (27), (33) and
(34). i

3.2 A description of all A1-ETS of cardinality two

The following table gives all A-ETS. We slightly generalize our definition, by accepting
more general maps ¢. : kQ®? — kQ. The underlying setis {a, b} and all the products
are given by a 2 x 2 table. Here, A,  are elements of the base field k.

By (), BY()

Type <« — < > [ Name
aa aa aa aa A+wa A+ pa
A (a a) (a a) aa aa ((A—G—/L)a Aa-‘rub) A1, )
ab (A+wa A+ pa
ab <(k+u)a Aa—i—p.h) A2, 1)
aa ab aa ra Aa ra \b f ”
B (a a) (a b) (Aa Aa)’ <)La Ab) By, By ()

< @) @) i) i)
) (6 s
) G cs
io) () (o) cx
v (o cs

The commutative A-ETS are the ones of type A and H, C1(}), C3(X), C5(A),
F{(x, n), F{'(x, ) and F4(1). The opposite of B (1), B (1), B5(%) and B} (%) are
respectively D} (1), D] (1), D5() and D5 (). The opposite of C3 is C4. The opposite
of E1(}), E> and E3(A) are respectively G1(X), G> and G3(1). The opposite of Fl/ Q)
is F, f’(k). The A-ETS F, and F5 are not commutative but are isomorphic to their
opposite in a non-trivial way. Finally, if * is an associative product, the opposite of
F3(%) is F3(x°P).

3.3 A description of all ETS of cardinality two

The following table gives all the ETS of cardinality 2.
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Type <« — < > *
A (a a) (a a) <a a) aa) (a a) (b b) (a a) <a a)
aa aa aa aa aa)’\bb aa)’\ab
ab aa
A2 <ab> bb>
B, (a a) (a b) aa aa (a a) (b b) (a a) <a b)
aa ab aa aa aa)’\bb aa)’\ab
ab aa
B, ab bb
c aa aa aa aa aa b b aa
1 (a b) <a b) <a a) aa) (a a)’ (b b) (a b>
ab aa
s ab bb
b b bb
Cs bb bb
D, (a a) (a a) aa) aa (a a) (b b) (a a> <a a)
bb aa aa aa aa)’\bb aa)’\bb
ab aa
b <ab> bb>
E, (a a) (a a) aa aa aa (b b) (a a)
bb bb aa aa aa)’\bb b b
ab aa aa
E3 ab bb aa
Fi (a a) <a b) <a a) aa> (aa (b b) aa> <a a) <a a)
bb ab aa aa aa)’\bb aa)’\ab)’\bb)
ab ab ab
ab)’\ba) bb)
Fs (a b) (a a) (a a) aa aa aa
: ab bb aa aa)’\ab) ' \bb)
ab ab ab
ab)’ <bu>’ (bb ’
ba b b
25) ()
aa b b ab
bb) aa) ab>
ab ba aa
ab) ba) bb>
G (a b> <a b) <a a) aa> aa (b b) ab>
ab ab aa aa aa)’\bb ab
G ab aa aa ab)
3 ab bb aa ab
H (a b) (a b) aa aa aa (b b) aa)
ba ba aa aa aa)’\bb ab
ab aa
2 <ab> bb>
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