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Abstract
We introduce a generalization of parametrized Rota–Baxter algebras, named�-Rota–
Baxter algebra, which includes family and matching Rota–Baxter algebras. We study
the structure needed on the set � of parameters in order to obtain that free �-Rota–
Baxter algebras are described in terms of typed and angularly decorated planar rooted
trees: we obtain the notion of λ-extended diassociative semigroup, which includes
sets (for matching Rota–Baxter algebras) and semigroups (for family Rota–Baxter
algebras), and many other examples. We also describe free commutative �-Rota–
Baxter algebras generated by a commutative algebra A in terms of typed words.
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1 Introduction

A Rota–Baxter algebra is an associative algebra A with a linear endomorphism P :
A −→ A, such that for any a, b ∈ A,

P(a)P(b) = P(a P(b)) + P(P(a)b) + λP(ab),

where λ is a scalar called the weight of the Rota–Baxter operator P . Firstly introduced
by Baxter [1] in a context of probability theory and popularized by Rota [8–10], they
now appear in numerous fields of mathematics and physics, see for example [3] for
examples and more details.

The first appearance of family Rota–Baxter algebras seems to be in [2], in the
context of Renormalization in Quantum Field Theories. This terminology, due to Li
Guo [6], refers to an associative algebra A with a family of linear endomorphism
Pα : A −→ A indexed by the elements of a semigroup (�, ∗), such that for any
a, b ∈ A, for any α, β ∈ �,

Pα(a)Pβ(b) = Pα∗β(Pα(a)b + a Pβ(b) + λab).

This notion of matching Rota–Baxter algebra is introduced in [11]. This time, the
Rota–Baxter operators are indexed by the elements of a set � with no structure, and
the weights are given by a family of scalars (λα)α∈�. For any a, b ∈ A, for any
α, β ∈ �,

Pα(a)Pβ(b) = Pβ(Pα(a)b) + Pα(a Pβ(b)) + λβ Pα(ab).

These notions have been extended to other types of algebras (Lie, pre-Lie,
dendriform. . .), see for example [11–14].

Our aim here is a generalization of both family andmatching Rota–Baxter algebras,
in the spirit of what is made in [5] for dendriform algebras. We here consider that the
set of parameters� is given five operations←,→,�,� and ·, and a family of scalars
λ = (λα,β)α,β∈�. An �-Rota–Baxter algebra of weight λ is an associative algebra A
with a family of linear endomorphisms indexed by � such that for any a, b ∈ A, for
any α, β ∈ �,

Pα(a)Pβ(b) = Pα→β(Pα�β(a)b) + Pα←β(a Pα�β(b)) + λα,β Pα·β(ab).

Taking

α → β = α ← β = α · β = α ∗ β, α � β = α, α � β = β,
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and λα,β being constant, we recover in this way family Rota–Baxter algebras. Taking

α → β = β, α ← β = α, α · β = α, α � β = α, α � β = β,

and λα,β depending only on β, w recover matching Rota–Baxter algebras.
For any set � with five operations and any family of scalars λ, we define an operad

and a category of �-Rota–Baxter algebras (Definition 2.8). This is far too general,
and we impose the extra constraint that the combinatorics of Rota–Baxter algebras is
somehow preserved. To be more precise, as free Rota–Baxter algebras are based on
planar rooted trees [14],we impose that free�-Rota–Baxter algebras own a description
in terms of angularly decorated (by the set of generators) and typed (by �) planar
rooted trees, that is to say in terms of planar rooted trees with angles decorated by the
generators and internal edges decorated by elements of�, with an inductive description
of the associative product and the Rota–Baxter operators being given by the grafting on
a new root, the created internal edge begin of the required type. We show in Theorem
2.14 that this imposes strong constraints on �: we obtain that this combinatorial
description holds if, and only if� is a λ-ETS, as defined inDefinition 2.3. In particular,
(�,←,→) has to be a diassociative semigroup: for any α, β, γ ∈ �,

(α ← β) ← γ = α ← (β ← γ ) = α ← (β → γ ),

(α → β) ← γ = α → (β ← γ ),

(α → β) → γ = (α ← β) → γ = α → (β → γ ).

This notion firstly appeared in Loday’s work [7] under the name of (associative)
dimonoid; the free dimonoid is also constructed in Loday’s article. Moreover, (�,←
,→,�,�) is an extended semigroup (see Definition 2.2 below), a notion used in [5]
for parametrization of dendriform algebras. Particular examples of λ-ETS attached to
a set give matching Rota–Baxter algebras (see Example 2.4-(b), withψ·(α⊗β) = λα)
and particular examples of λ-ETS attached to a semigroup gives family Rota–Baxter
algebras (see Example 2.4-(c)). In the case of weight 0, we obtain the generalization
of the result [3] establishing that any Rota–Baxter of weight 0 is a dendriform algebra,
see Proposition 2.11. Moreover, generalizing the construction of free commutative
Rota–Baxter algebras, we obtain that free commutative �-Rota–Baxter algebras can
be described in terms of �-typed words (Proposition 2.18 and Theorem 2.20).

This paper is organised as follows. The first section introduces the definitions of
EDS, λ-ETS, ETS and of �-Rota–Baxter algebras. The main result on free Rota–
Baxter algebras and λ-ETS is then proved (Theorem 2.14), with a description of free
�-Rota–Baxter algebras in terms of trees. The last subsection deals with commuta-
tive �-Rota–Baxter algebras and their description in terms of typed words (Theorem
2.20). The second section gives more examples of λ-ETS and ETS, and in particular
a classification of these objects of cardinality 2.

Notation. Throughout this paper, k is a unitary commutative ring which will be the
base ring of all modules, algebras, as well as linear maps.

123



274 Journal of Algebraic Combinatorics (2023) 57:271–303

2 Ä-Rota–Baxter algebras

2.1 Definitions

We first recall the definition of diassociative semigroups and extended diassociative
semigroups of [5], where these objects were used for parametrized versions of den-
driform algebras.

Definition 2.1 [5, 7] A diassociative semigroup is a family (�,←,→), where � is
a set and ←,→: � × � → � are maps such that

(α ← β) ← γ = α ← (β ← γ ) = α ← (β → γ ),

(α → β) ← γ = α → (β ← γ ),

(α → β) → γ = (α ← β) → γ = α → (β → γ ),

for all α, β, γ ∈ �.

Definition 2.2 [5, Definition 2] An extended diassociative semigroup (abbr. EDS) is
a family (�,←,→,�,�), where � is a set and ←,→,�,� : � × � → � such
that (�,←,→) is a diassociative semigroup and

α � (β ← γ ) = α � β, (1)

(α → β) � γ = β � γ, (2)

(α � β) ← ((α ← β) � γ ) = α � (β ← γ ), (3)

(α � β) � ((α ← β) � γ ) = β � γ, (4)

(α � β) → ((α ← β) � γ ) = α � (β → γ ), (5)

(α � β) � ((α ← β) � γ ) = β � γ, (6)

(α � (β → γ )) ← (β � γ ) = (α ← β) � γ, (7)

(α � (β → γ )) � (β � γ ) = α � β, (8)

(α � (β → γ )) → (β � γ ) = (α → β) � γ, (9)

(α � (β → γ )) � (β � γ ) = α � β, (10)

for all α, β, γ ∈ �.

We shall use here the notion of λ-extended triassociative semigroup, where a family
of scalars plays the role of weights.

Definition 2.3 An λ-extended triassociative semigroup (abbr. λ-ETS) is a family
(�,←,→,�,�, ·, ∗, λ), where (�,←,→,�,�) is an EDS and λ = (λα,β)α,β∈�

is a family of elements in k indexed by �2 such that

λα→β,γ = λβ,γ (11)

λα�β,(α←β)�γ = λβ,γ (12)

λα←β,γ = λα,β→γ (13)
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λα�(β→γ ),β�γ = λα,β (14)

λα,β = λα,β←γ (15)

λα,βλα·β,γ = λβ,γ λα,β·γ (16)

and, for all α, β, γ ∈ �:

(a) If λα→β,γ = λβ,γ �= 0, then

α � β = α � (β · γ ), (17)

(α → β) · γ = α → (β · γ ). (18)

(b) If λα�β,(α←β)�γ = λβ,γ �= 0, then

(α � β) · ((α ← β) � γ ) = α � (β · γ ), (19)

(α ← β) ← γ = α ← (β · γ ). (20)

(c) If λα�(β→γ ),β�γ = λα,β �= 0, then

α → (β → γ ) = (α · β) → γ, (21)

(α � (β → γ )) · (β � γ ) = (α · β) � γ. (22)

(d) If λα←β,γ = λα,β→γ �= 0, then

(α ← β) · γ = α · (β → γ ), (23)

α � β = β � γ. (24)

(e) If λα,β = λα,β←γ �= 0, then

(α · β) � γ = β � γ, (25)

(α · β) ← γ = α · (β ← γ ). (26)

(f) If λα,βλα·β,γ = λβ,γ λα,β·γ �= 0, then

(α · β) · γ = α · (β · γ ). (27)

Example 2.4 (a) Let (�,←,→,�,�) be an EDS. If we put λα,β = 0 for any α, β ∈
�, then for any product ·, (�,←,→,�,�, ·, λ) is a λ-ETS.

(b) If for any α, β ∈ �,

α ← β = β → α = β � α = α � β = α,

then (�,←,→,�,�, ·, λ) is a λ-ETS if, and only if, the following map defines
an associative product:

ψ· :
{
k� ⊗ k� −→ k�

α ⊗ β −→ λα,βα · β.
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Indeed, for any α, β, γ ∈ �,

ψ· ◦ (ψ· ⊗ id)(α ⊗ β ⊗ γ ) = λα,βλα·β,γ (α · β) · γ,

ψ· ◦ (id ⊗ ψ·)(α ⊗ β ⊗ γ ) = λβ,γ λα,β·γ α · (β · γ ),

which gives the missing condition (27).
(c) Let (�, �) be a semigroup and λ ∈ k. We put, for any α, β ∈ �:

α ← β = α�β, α � β = β,

α → β = α�β, α � β = α,

λα,β = λ, α · β = α�β.

Then (�,←,→,�,�, ·, λ) is a λ-ETS.
(d) Let (�, �) be an abelian group and let λ ∈ k. For any α, β ∈ �, we put:

α ← β = α, α → β, β,

α � β = α�β�−1, α � β = α�−1�β,

λα,β = λ, α · β = α.

Then (�,←,→,�,�, ·, λ) is a λ-ETS.
(e) Let � = (�,←,→,�,�, ·, λ) be a λ-ETS. For any α, β ∈ �, we put

α ←op β = β → α, α �op α = β � α,

α →op β = β ← α, α �op α = β � α,

α ·op β = β · α, λ
op
α,β = λβ,α.

Then (�,←op,→op,�op,�op, ·op, λop) is also a λ-ETS, called the opposite of
� and denoted by �op. We shall say that � is commutative if it is equal to its
opposite.

Definition 2.5 A extended triassociative semigroup (abbr. ETS) is a family (�,←
,→,�,�, ·, ∗), where (�,←,→,�,�) is an EDS and

(α → β) ∗ γ = β ∗ γ,

(17)α � β = α � (β · γ ),

(18)(α → β) · γ = α → (β · γ ), (28)

(α � β) ∗ ((α ← β) � γ ) = β ∗ γ,

(19)(α � β) · ((α ← β) � γ ) = α � (β · γ ),

(20)(α ← β) ← γ = α ← (β · γ ), (29)

(α � (β → γ )) ∗ (β � γ ) = α ∗ β,

(21)α → (β → γ ) = (α · β) → γ,

(22)(α � (β → γ )) · (β � γ ) = (α · β) � γ, (30)
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(α ← β) ∗ γ = α ∗ (β → γ ),

(23)(α ← β) · γ = α · (β → γ ),

(24)α � β = β � γ, (31)

α ∗ β = α ∗ (β ← γ ),

(25)(α · β) � γ = β � γ,

(26)(α · β) ← γ = α · (β ← γ ), (32)

α ∗ β = α ∗ (β · γ ), (33)

(α · β) ∗ γ = β ∗ γ,

(27)(α · β) · γ = α · (β · γ ). (34)

Example 2.6 (a) Let (�, ∗, ·) be a set with two products such that for any α, β, γ ∈ �:

α ∗ β = α ∗ (β · γ ), (35)

(α · β) ∗ γ = β ∗ γ, (36)

(α · β) · γ = α · (β · γ ). (37)

We put, for any α, β ∈ �:

α ← β = α, α � β = β,

α → β = α, α � β = β.

Then (�,←,→,�,�, ·, ∗) is an ETS.
(b) Let (�,←,→,�,�, ·, ∗) be an ETS. For any α, β ∈ �, we put

α ←op β = β → α, α �op α = β � α,

α →op β = β ← α, α �op α = β � α,

α ∗op β = β ∗ α, α ·op β = β · α.

Then (�,←op,→op,�op,�op, ∗op, ·op) is also an ETS, called the opposite of
�. We shall say that � is commutative if it is equal to its opposite.

Actually, each ETS induces a λ-ETS, as the following result indicates:

Proposition 2.7 Let (�,←,→,�,�, ·, ∗) be an ETS and let (μα)α∈� be a family of
scalars. For any α, β ∈ �, we put:

λα,β = μα∗β.

Then (�,←,→,�,�, ·, λ) is a λ-ETS.

Proof Conditions (a)-(f) of Definition 2.3 are obviously satisfied by (17)-(27). (11) is
(28), (12) is (29), (13) is (31), (14) is (30), (15) is (32), and (16) comes from (33) and
(34). 	
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We now propose the concept of �-Rota–Baxter algebras as follows:

Definition 2.8 Let � be a set with five products ←,→,�,�, · and λ = (λα,β)α,β∈�

be a family of elements in k indexed by �2. An �-Rota–Baxter algebra of weight λ
is a family (A, (Pω)ω∈�) where A is an associative algebra and Pω : A ⊗ A → A is
a linear map for each ω ∈ �, such that

Pα(a)Pβ(b) = Pα→β(Pα�β(a)b) + Pα←β(a Pα�β(b)) + λα,β Pα·β(ab),

for all a, b ∈ A and α, β ∈ �. If, further, A is commutative, then (A, (Pω)ω∈�) is a
commutative �-Rota–Baxter algebra.

Taking all elements of λ equal to 0, we get the concept of �-Rota–Baxter algebras
of weight 0:

Definition 2.9 Let � be a set with four products ←,→,�,�. An �-Rota–Baxter
algebra of weight 0 is a family (A, (Pω)ω∈�) where A is an associative algebra and
Pω : A ⊗ A → A is a linear map for each ω ∈ �, such that

Pα(a)Pβ(b) = Pα→β(Pα�β(a)b) + Pα←β(a Pα�β(b)),

for all a, b ∈ A and α, β ∈ �.

Example 2.10 (a) If (�, �) is a semigroup, we recover the definition of Rota–Baxter
family algebras [6, 13] by defining

α ← β = α → β = α · β = α�β, α � β = α, α � β = β,

and requiring all elements of λ to be equal. Note that this is the λ-ETS of Example
2.4 (c).

(b) For a set �, define

α → β = α � β = β, α � β = α ← β = α · β = α,

and λα,β = λα , for a family (λα)α∈� of elements of k. Then we get the concept
of matching Rota–Baxter algebra [12], up to the change of the product of A into
its opposite.

As we know, Rota–Baxter algebras of weight 0 induce dendriform algebras [3].
Similarly, we can show that each �-Rota–Baxter algebra of weight 0 has a structure
of an �-dendriform algebra [5, definition 11]:

Proposition 2.11 Let � be a set with four products ←,→,�,� and (A, (Pω)ω∈�) an
�-Rota–Baxter algebra of weight 0. Then (A, (≺ω)ω∈�, (�ω)ω∈�) is an�-dendriform
algebra, where

a ≺ω b:=a Pω(b), a �ω b:=Pω(a)b,

for all a, b ∈ A and ω ∈ �.
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Proof For a, b, c ∈ A and α, β ∈ �,

(a ≺α b) ≺β c = (
a Pα(b)

)
Pβ(c)

= a
(
Pα(b)Pβ(c)

) = a
(
Pα→β(Pα�β(b)c) + Pα←β(bPα�β(c))

)
= a Pα→β(Pα�β(b)c) + a Pα←β(bPα�β(c))

= a ≺α→β (b �α�β c)

+ a ≺α←β (b ≺α�β c), a �α (b ≺β c) =
Pα(a)

(
bPβ(c)

)
= (

Pα(a)b
)
Pβ(c) = (a �α b) ≺β c,

a �α (b �β c) = Pα(a)
(
Pβ(b)c

) = (
Pα(a)Pβ(b)

)
c

= (
Pα→β(Pα�β(a)b)

+ Pα←β(a Pα�β(b))
)
c = Pα→β(Pα�β(a)b)c + Pα←β(a Pα�β(b)c

= (a �α�β b) �α→β c + (a ≺α�β b) �α←β c.

	


2.2 Ä-Rota–Baxter algebras on typed angularly decorated planar rooted trees

First, let us recall some notations on planar rooted trees (see [14] for more details).
For a planar rooted tree T , we shall consider the root and the leaves of T as edges
rather than vertices. Denote by I E(T ) the set of internal edges of T , i.e. edges which
are neither leaves nor the root and denote by V (T ) the set of vertices of T . For each
vertex v yields a (possibly empty) set of angles A(v), an angle being a pair (e, e′) of
adjacent incoming edges for v. Let A(T ) =

⊔
v∈V (T )

A(v) be the set of angles of T .

Then:

Definition 2.12 [14, Definition 2.2] Let X and � be two sets. An X -angularly deco-
rated � -typed (abbr. typed angularly decorated) planar rooted tree is a triple
T = (T , dec, type), where T is a planar rooted tree, dec : A(T ) → X and
type : I E(T ) → � are maps.

For n ≥ 0, let Tn(X , �) denote the set of X -angularly decorated �-typed planar
rooted trees with n + 1 leaves and at least one internal vertex such that internal edges
are decorated by elements of �. We put

T (X , �):=
⊔
n≥0

Tn(X , �) and kT (X , �):=
⊕
n≥0

kTn(X , �).
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For example,

T0(X , �) =

⎧⎪⎨
⎪⎩ , α ,

α

β
, . . .

∣∣α, β, . . . ∈ �

⎫⎪⎬
⎪⎭ ,

T1(X , �) =

⎧⎪⎨
⎪⎩

x
,

x

α ,
x

β

α
,

x

γ
α β

,
x

γ
α

β

,

x

β

α

, . . .

∣∣x ∈ X , α, β, γ, . . . ∈ �
}
,

T2(X , �) =

⎧⎪⎨
⎪⎩

x
y

γ
β α ,

y

x α ,

y

x
β
α ,

x y
α ,

x y
α ,

x y
β

α
, . . .

∣∣x, y ∈ X , α, β, γ, . . . ∈ �
}
,

Graphically, an element T ∈ T (X , ♠) is of the form:

T = T1

T2 Tn

Tn+1x1
· · ·

xn
α1 αn+1

α2 αn

, with n ≥ 0, where x1, . . . , xn ∈ X ,

αi ∈ � if Ti �= | and otherwise

αi does not exist for 1 ≤ i ≤ n + 1.
For each ω ∈ �, there is a grafting operator B+

ω : kT (X , �) → kT (X , �) which
add a new root to a tree and an new internal edge typed by ω between the new root
and the root of the tree.

For example,

B+
ω

(
α

)
= α

ω
, B+

ω

(
x

α

)
=

x

α

ω

.

The depth dep(T ) of a rooted tree T is the maximal length of linear chains from the
root to the leaves of the tree. For example,

dep

( )
= dep

(
x

)
= 1 and dep

(
ω

)
= dep

⎛
⎝ x y

α

⎞
⎠ = 2.

123



Journal of Algebraic Combinatorics (2023) 57:271–303 281

We also consider the trivial tree | and put by convention dep(|):=0. For each typed
angularly decorated planar rooted tree T , define the number of branches of T to be
bra(T ) = 0 if T = |. Otherwise, dep(T ) ≥ 1 and T is of the form

T = T1

T2 Tn

Tn+1x1
· · ·

xn
α1 αn+1

α2 αn

with n ≥ 0,

where Tj ∈ T (X , �)
{|}, j = 1, . . . , n +1. We define bra(T ):=n +1. For example,

bra

( )
= 1, bra

⎛
⎝

y

x α

⎞
⎠ = 2 and bra

(
x y

α

)
= 3.

Let X be a set, (�,←,→,�,�, ·) be a set with five products, and λ =
(λα,β)(α,β)∈�2 be a family of elements in k indexed by �2. By analogy with the
construction of free Rota–Baxter algebras, we define a product � on kT (X , �) as fol-
lows. For T , T ′ ∈ T (X , �), we define T � T ′ by induction on dep(T )+dep(T ′) ≥ 2.
For the initial step dep(T ) + dep(T ′) = 2, we have dep(T ) = dep(T ′) = 1 and T , T ′
are of the form

T =
x1

· · ·
xm

and T ′ =
y1

· · ·
yn

, with m, n ≥ 0.

Define

T � T ′:=
x1

· · ·
xm �

y1
· · ·

yn := x1

· · ·
xm y1 · · ·

yn . (38)

For the induction step dep(T ) + dep(T ′) ≥ 3, the trees T and T ′ are of the form

T = T1

T2 Tm

Tm+1x1
· · ·

xm
α1 αm+1

α2 αm

and T ′ = T ′
1

T ′
2 T ′

n

T ′
n+1y1

· · ·
yn

β1 βn+1

β2 βn

with some

Ti �= | or some T ′
j �= |.

There are four cases to consider.
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Case 1: Tm+1 = | = T ′
1. Define

T � T ′:= T1

T2 Tm

x1
· · ·

xm
α1

α2 αm

�

T ′
2 T ′

n

T ′
n+1y1

· · ·
yn
βn+1

β2 βn := T1

T2

Tm T ′
2

T ′
n

T ′
n+1x1

· · · xm y1

· · ·

yn
α1 βn+1

α2

αm β2
βn . (39)

Case 2: Tm+1 �= | = T ′
1. Define

T � T ′:= T1

T2 Tm

Tm+1x1
· · ·

xm
α1 αm+1

α2 αm

�

T ′
2 T ′

n

T ′
n+1y1

· · ·
yn
βn+1

β2 βn
:=

T1

T2

Tm
Tm+1 T ′

2

T ′
n

T ′
n+1x1

· · · xm y1

· · ·

yn
α1 βn+1

α2

αm β2
βn

αm+1

.

(40)

Case 3: Tm+1 = | �= T ′
1. Define

T � T ′:= T1

T2 Tm

x1
· · ·

xm
α1

α2 αm

� T ′
1

T ′
2 T ′

n

T ′
n+1y1

· · ·
yn

β1 βn+1

β2 βn :=
T1

T2

Tm
T ′
1 T ′

2

T ′
n

T ′
n+1x1

· · · xm y1

· · ·

yn
α1 βn+1

α2

αm β2
βn

β1

.

(41)

Case 4: Tm+1 �= | �= T ′
1. Define

T � T ′:= T1

T2 Tm

Tm+1x1
· · ·

xm
α1 αm+1

α2 αm

� T ′
1

T ′
2 T ′

n

T ′
n+1y1

· · ·
yn

β1 βn+1

β2 βn

:=

⎛
⎜⎜⎜⎜⎜⎝ T1

T2 Tm

x1
· · ·

xm
α1

α2 αm

�
(

B+
αm+1

(Tm+1) � B+
β1

(T ′
1)

)
⎞
⎟⎟⎟⎟⎟⎠

�

T ′
2 T ′

n

T ′
n+1y1

· · ·
yn
βn+1

β2 βn

123



Journal of Algebraic Combinatorics (2023) 57:271–303 283

:=

⎛
⎜⎜⎜⎜⎜⎝ T1

T2 Tm

x1
· · ·

xm
α1

α2 αm

�
(

B+
αm+1→β1

(
B+

αm+1�β1
(Tm+1) � T ′

1

) + B+
αm+1←β1

(
Tm+1 � B+

αm+1�β1
(T ′

1)
)

+λαm+1,β1 B+
αm+1 ·β1

(
Tm+1 � T ′

1

))
⎞
⎟⎟⎟⎟⎟⎠

�

T ′
2 T ′

n

T ′
n+1y1

· · ·
yn
βn+1

β2 βn
. (42)

Here the first � is defined by Case 3, the second, third and fourth � are defined by
induction and the last � is defined by Case 2. This inductively define the multiplication
� onT (X , �).We then extend� by linearity tokT (X , �).We then have the following
result:

Lemma 2.13 Let (�,←,→,�,�, ·, λ) be a λ-ETS. Then (kT (X , �),�) is an asso-

ciative algebra with identity .

Proof By the construction of �, kT (X , �) is closed under � and is the identity of

�.
Now we show the associativity of �, i.e.

(T1 � T2) � T3 = T1 � (T2 � T3), (43)

for all T1, T2, T3 ∈ T (X , �) We prove Eq. (43) by induction on the sum of depths
p:=dep(T1) + dep(T2) + dep(T3). If p = 3, then dep(T1) = dep(T2) = dep(T3) = 1
and T1, T2, T3 are of the form

T1 =
x1

· · ·
xl

, T2 =
y1

· · ·
ym

, and T3 =
z1

· · ·
zn

with l, m, n ≥ 0.

Then (T1 � T2) � T3 = T1 � (T2 � T3) by a direct calculation.
For the induction step p ≥ 4,we use induction on the sumof branchesq:=bra(T1)+

bra(T2) + bra(T3). If q = 3 and one of T1, T2, T3 has depth 1, then this tree must be

of the form and the associativity of � follows directly. Assume

T1 = B+
α (T ′

1), T2 = B+
β (T ′

2), T3 = B+
γ (T ′

3) for someα, β, γ ∈ �andT ′
1, T ′

2, T ′
3

∈ T (X , �),

then

(T1 � T2) � T3 = (
B+

α (T ′
1) � B+

β (T ′
2)

) � B+
γ (T ′

3)
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= B+
α→β(B+

α�β(T ′
1) � T ′

2) � B+
γ (T ′

3)

+ B+
α←β(T ′

1 � B+
α�β(T ′

2)) � B+
γ (T ′

3)

+ λα,β B+
α·β(T ′

1 � T ′
2) � B+

γ (T ′
3)

= B+
(α→β)→γ

(
B+

(α→β)�γ (B+
α�β(T ′

1) � T ′
2) � T ′

3

)
+ B+

(α→β)←γ

(
(B+

α�β(T ′
1) � T ′

2) � B+
(α→β)�γ (T ′

3)
)

+ λα→β,γ B+
(α→β)·γ

(
(B+

α�β(T ′
1) � T ′

2) � T ′
3

)
+ B+

(α←β)→γ

(
B+

(α←β)�γ (T ′
1 � B+

α�β(T ′
2)) � T ′

3

)
+ B+

(α←β)←γ

(
(T ′

1 � B+
α�β(T ′

2)) � B+
(α←β)�γ (T ′

3)
)

+ λα←β,γ B+
(α←β)·γ

(
(T ′

1 � B+
α�β(T ′

2)) � T ′
3

)
+ λα,β B+

(α·β)→γ

(
B+

(α·β)�γ (T ′
1 � T ′

2) � T ′
3

)
+ λα,β B+

(α·β)←γ

(
(T ′

1 � T ′
2) � B+

(α·β)�γ (T ′
3)

)
+ λα,βλα·β,γ B+

(α·β)·γ
(
(T ′

1 � T ′
2) � T ′

3

)
= B+

(α→β)→γ

(
B+

(α→β)�γ (B+
α�β(T ′

1) � T ′
2) � T ′

3

)
+ B+

(α→β)←γ

(
(B+

α�β(T ′
1) � T ′

2) � B+
(α→β)�γ (T ′

3)
)

+ λα→β,γ B+
(α→β)·γ

(
(B+

α�β(T ′
1) � T ′

2) � T ′
3

)
+ B+

(α←β)→γ

(
B+

(α←β)�γ (T ′
1 � B+

α�β(T ′
2)) � T ′

3

)
+ B+

(α←β)←γ

(
T ′
1 � (B+

α�β(T ′
2) � B+

(α←β)�γ (T ′
3))

)
+ λα←β,γ B+

(α←β)·γ
(
(T ′

1 � B+
α�β(T ′

2)) � T ′
3

)
+ λα,β B+

(α·β)→γ

(
B+

(α·β)�γ (T ′
1 � T ′

2) � T ′
3

)
+ λα,β B+

(α·β)←γ

(
(T ′

1 � T ′
2) � B+

(α·β)�γ (T ′
3)

)
+ λα,βλα·β,γ B+

(α·β)·γ
(
(T ′

1 � T ′
2) � T ′

3

)
(by the induction hypothesis)

= B+
(α→β)→γ

(
B+

(α→β)�γ (B+
α�γ (T ′

1) � T ′
2) � T ′

3

)
+ B+

(α→β)←γ

(
(B+

α�β(T ′
1) � T ′

2) � B+
(α→β)�γ (T ′

3)
)

+ λα→β,γ B+
(α→β)·γ

(
(B+

α�β(T ′
1) � T ′

2) � T ′
3

)
+ B+

(α←β)→γ

(
B+

(α←β)�γ (T ′
1 � B+

α�β(T ′
2)) � T ′

3

)
+ B+

(α←β)←γ

(
T ′
1 � B+

(α�β)→((α←β)�γ )(B+
(α�β)�((α←β)�γ )(T

′
2) � T ′

3)
)

+ B+
(α←β)←γ (T ′

1 � B+
(α�β)←((α←β)�γ )(T

′
2 � B+

(α�β)�((α←β)�γ )(T
′
3)))

+ λα�β,(α←β)�γ B+
(α←β)←γ

(
T ′
1 � B+

(α�β)·((α←β)�γ )(T
′
2 � T ′

3)
)

+ λα←β,γ B+
(α←β)·γ

(
(T ′

1 � B+
α�β(T ′

2)) � T ′
3

)
+ λα,β B+

(α·β)→γ

(
B+

(α·β)�γ (T ′
1 � T ′

2) � T ′
3

)
+ λα,β B+

(α·β)←γ

(
(T ′

1 � T ′
2) � B+

(α·β)�γ (T ′
3)

)
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+ λα,βλα·β,γ B+
(α·β)·γ

(
(T ′

1 � T ′
2) � T ′

3

)
,

and

T1 � (T2 � T3) = B+
α (T ′

1) � (
B+

β (T ′
2) � B+

γ (T ′
3)

)
= B+

α (T ′
1) � B+

β→γ (B+
β�γ (T ′

2) � T ′
3) + B+

α (T ′
1) � B+

β←γ (T ′
2 � B+

β�γ (T ′
3))

+ λβ,γ B+
α (T ′

1) � B+
β·γ (T ′

2 � T ′
3)

= B+
α→(β→γ )

(
B+

α�(β→γ )(T
′
1) � (B+

β�γ (T ′
2) � T ′

3)
)

+ B+
α←(β→γ )

(
T ′
1 � B+

α�(β→γ )(B+
β�γ (T ′

2) � T ′
3)

)
+ λα,β→γ B+

α·(β→γ )

(
T ′
1 � (B+

β�γ (T ′
2) � T ′

3)
)

+ B+
α→(β←γ )

(
B+

α�(β←γ )(T
′
1) � (T ′

2 � B+
β�γ (T ′

3))
)

+ B+
α←(β←γ )

(
T ′
1 � B+

α�(β←γ )(T
′
2 � B+

β�γ (T ′
3))

)
+ λα,β←γ B+

α·(β←γ )

(
T ′
1 � (T ′

2 � B+
β�γ (T ′

3))
)

+ λβ,γ B+
α→(β·γ )

(
B+

α�(β·γ )(T
′
1) � (T ′

2 � T ′
3)

)
+ λβ,γ B+

α←(β·γ )

(
T ′
1 � B+

α←(β·γ )(T
′
2 � T ′

3)
)

+ λβ,γ λα,β·γ B+
α·(β·γ )

(
T ′
1 � (T ′

2 � T ′
3)

)
= B+

α→(β→γ )

(
(B+

α�(β→γ )(T
′
1) � B+

β�γ (T ′
2)) � T ′

3

)
+ B+

α←(β→γ )

(
T ′
1 � B+

α�(β→γ )(B+
β�γ (T ′

2) � T ′
3)

)
+ λα,β→γ B+

α·(β→γ )

(
T ′
1 � (B+

β�γ (T ′
2) � T ′

3)
)

+ B+
α→(β←γ )

(
B+

α�(β←γ )(T
′
1) � (T ′

2 � B+
β�γ (T ′

3))
)

+ B+
α←(β←γ )

(
T ′
1 � B+

α�(β←γ )(T
′
2 � B+

β�γ (T ′
3))

)
+ λα,β←γ B+

α·(β←γ )

(
T ′
1 � (T ′

2 � B+
β�γ (T ′

3))
)

+ λβ,γ B+
α→(β·γ )

(
B+

α�(β·γ )(T
′
1) � (T ′

2 � T ′
3)

)
+ λβ,γ B+

α←(β·γ )

(
T ′
1 � B+

α←(β·γ )(T
′
2 � T ′

3)
)

+ λβ,γ λα,β·γ B+
α·(β·γ )

(
T ′
1 � (T ′

2 � T ′
3)

)
(by the induction hypothesis)

= B+
α→(β→γ )

(
B+

(α�(β→γ ))→(β�γ )(B+
(α�(β→γ ))�(β�γ )(T

′
1) � T ′

2) � T ′
3

)
+ B+

α→(β→γ )

(
B+

α�(β→γ )←(β�γ )(T
′
1 � B+

(α�(β→γ )�(β�γ ))(T
′
2)) � T ′

3

)
+ λα�(β→γ ),β�γ B+

α→(β→γ )(B+
(α�(β→γ ))·(β�γ )(T

′
1 � T ′

2) � T ′
3)

+ B+
α←(β→γ )

(
T ′
1 � B+

α�(β→γ )(B+
β�γ (T ′

2) � T ′
3)

)
+ λα,β→γ B+

α·(β→γ )

(
T ′
1 � (B+

β�γ (T ′
2) � T ′

3)
)

+ B+
α→(β←γ )

(
B+

α�(β←γ )(T
′
1) � (T ′

2 � B+
β�γ (T ′

3))
)

+ B+
α←(β←γ )

(
T ′
1 � B+

α�(β←γ )(T
′
2 � B+

β�γ (T ′
3))

)
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+ λα,β←γ B+
α·(β←γ )

(
T ′
1 � (T ′

2 � B+
β�γ (T ′

3))
)

+ λβ,γ B+
α→(β·γ )

(
B+

α�(β·γ )(T
′
1) � (T ′

2 � T ′
3)

)
+ λβ,γ B+

α←(β·γ )

(
T ′
1 � B+

α←(β·γ )(T
′
2 � T ′

3)
)

+ λβ,γ λα,β·γ B+
α·(β·γ )

(
T ′
1 � (T ′

2 � T ′
3)

)
.

By the induction hypothesis and (�,←,→,�,�, ·, λ) being a λ-ETS, we get

(T1 � T2) � T3 = T1 � (T2 � T3).

If q > 3, then at least one of T1, T2, T3 have branches greater than or equal to 2. If
bra(T1) ≥ 2, then there exist T ′

1, T ′′
1 of the form

T ′
1 = T

′
1

T
′
2 T

′
m

x1
· · ·

xm
α1

α2 αm

and T ′′
1 = T

′′
1

T
′′
2 T

′′
n

T
′′
n+1y1

· · ·
yn
βn+1

β2 βn

such that T1 = T ′
1 � T ′′

1 . Hence

(T1 � T2) � T3 = ((T ′
1 � T ′′

1 ) � T2) � T3
= (T ′

1 � (T ′′
1 � T2)) � T3 (by the induction hypothesis)

= T ′
1 � ((T ′′

1 � T2) � T3) (by the form ofT ′
1and the definition of�)

= T ′
1 � (T ′′

1 � (T2 � T3)) (by the induction hypothesis)

= T ′
1 � T ′′

1 � (T2 � T3) (by the form ofT ′
1and the definition of�)

= T1 � (T2 � T3).

If bra(T2) ≥ 2 or bra(T3) ≥ 2, the associativity can be proved similarly. 	

Let i : X → kT (X , �), x �→ x be the natural inclusion. Then

Theorem 2.14 Let � be a set with five products ←,→,�,�, · and λ a family of
elements in k indexed by �2. Then the following conditions are equivalent:

(a) (kT (X , �),�, (B+
ω )ω∈�) together with the map i is the free �-Rota–Baxter alge-

bra generated by X.
(b) (kT (X , �),�, (B+

ω )ω∈�) is an �-Rota–Baxter algebra.
(c) (�,←,→,�,�, ·, λ) is a λ-ETS.

Proof (a) �⇒ (b) It is obvious. (b) �⇒ (c) For α, β, γ ∈ � and x
,

y
,

z ∈ T (X , �), we have

(
B+

α

(
x

)
� B+

β

(
y

) )
� B+

γ

(
z

)
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= B+
α→β

(
B+

α�β

(
x

)
� y

)
� B+

γ

(
z

)

+ B+
α←β

(
x � B+

α�β

(
y

))
� B+

γ

(
z

)

+ λα,β B+
α·β

(
x � y

)
� B+

γ

(
z

)

= B+
(α→β)→γ

(
B+

(α→β)�γ

(
B+

α�β

(
x

)
� y

)
� z

)

+ B+
(α→β)←γ

((
B+

α�β

(
x

)
� y

)
� B+

(α→β)�γ

(
z

))

+ λα→β,γ B+
(α→β)·γ

((
B+

α�β

(
x

)
� y

)
� z

)

+ B+
(α←β)→γ

(
B+

(α←β)�γ

(
x � B+

α�β

(
y

))
� z

)

+ B+
(α←β)←γ

((
x � B+

α�β

(
y

))
� B+

(α←β)�γ

(
z

))

+ λα←β,γ B+
(α←β)·γ

((
x � B+

α�β

(
y

))
� z

)

+ λα,β B+
(α·β)→γ

(
B+

(α·β)�γ

(
x � y

)
� z

)

+ λα,β B+
(α·β)←γ

((
x � y

)
� B+

(α·β)�γ

(
z

))

+ λα,βλα·β,γ B+
(α·β)·γ

((
x � y

)
� z

)

= B+
(α→β)→γ

(
B+

(α→β)�γ

(
B+

α�γ

(
x

)
� y

)
� z

)

+ B+
(α→β)←γ

((
B+

α�β

(
x

)
� y

)
� B+

(α→β)�γ

(
z

))

+ λα→β,γ B+
(α→β)·γ

((
B+

α�β

(
x

)
� y

)
� z

)

+ B+
(α←β)→γ

(
B+

(α←β)�γ

(
x � B+

α�β

(
y

))
� z

)

+ B+
(α←β)←γ

(
x � B+

(α�β)→((α←β)�γ )

(
B+

(α�β)�((α←β)�γ )

(
y

)
� z

))

+ B+
(α←β)←γ

(
x � B+

(α�β)←((α←β)�γ )

(
y � B+

(α�β)�((α←β)�γ )

(
z

)))

+ λα�β,(α←β)�γ B+
(α←β)←γ

(
x � B+

(α�β)·((α←β)�γ )

(
y � z

))
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+ λα←β,γ B+
(α←β)·γ

((
x � B+

α�β

(
y

))
� z

)

+ λα,β B+
(α·β)→γ

(
B+

(α·β)�γ

(
x � y

)
� z

)

+ λα,β B+
(α·β)←γ

((
x � y

)
� B+

(α·β)�γ

(
z

))

+ λα,βλα·β,γ B+
(α·β)·γ

((
x � y

)
� z

)

=
•

(α → β) � γ

α � β

(α → β) → γ

z
y

x

+
•

α � β (α → β) � γ

(α → β) ← γ

y

zx

+ λα→β,γ
(α → β) · γ

α � β y z

x

•

+
•

(α ← β) � γ

α � β

(α ← β) → γ

z

x
y

+
•

(α � β) → ((α ← β) � γ )

(α � β) � ((α ← β) � γ )

(α ← β) ← γ

x

z
y

+
•

(α � β) ← ((α ← β) � γ )

(α � β) � ((α ← β) � γ )

(α ← β) ← γ

x
y

z

+ λα�β,(α←β)�γ
•

y z

(α � β) · ((α ← β) � γ )

(α ← β) ← γ

x + λα←β,γ

x

z

y

•

α � β

(α ← β) · γ

+ λα,β
•
z

x y

(α · β) � γ

(α · β) → γ
+ λα,β

•

x y

z

(α · β) � γ

(α · β) ← γ
+ λα,βλα·β,γ

zyx

• (α · β) · γ
,

and

B+
α

(
x

)
�

(
B+

β

(
y

)
� B+

γ (
z

)

)

= B+
α

(
x

)
� B+

β→γ

(
B+

β�γ

(
y

)
� z

)

+ B+
α

(
x

)
� B+

β←γ

(
y � B+

β�γ

(
z

))

+ λβ,γ B+
α

(
x

)
� B+

β·γ
(

y � z
)

= B+
α→(β→γ )

(
B+

α�(β→γ )

(
x

)
�

(
B+

β�γ

(
y

)
� z

))

+ B+
α←(β→γ )

(
x � B+

α�(β→γ )

(
B+

β�γ

(
y

)
� z

))

+ λα,β→γ B+
α·(β→γ )

(
x �

(
B+

β�γ

(
y

)
� z

))

+ B+
α→(β←γ )

(
B+

α�(β←γ )

(
x

)
�

(
y � B+

β�γ

(
z

)))

+ B+
α←(β←γ )

(
x � B+

α�(β←γ )

(
y � B+

β�γ

(
z

)))
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+ λα,β←γ B+
α·(β←γ )

(
x �

(
y � B+

β�γ

(
z

)))

+ λβ,γ B+
α→(β·γ )

(
B+

α�(β·γ )

(
x

)
�

(
y � z

))

+ λβ,γ B+
α←(β·γ )

(
x � B+

α←(β·γ )

(
y � z

))

+ λβ,γ λα,β·γ B+
α·(β·γ )

(
x �

(
y � z

))

= B+
α→(β→γ )

(
B+

(α�(β→γ ))→(β�γ )

(
B+

(α�(β→γ ))�(β�γ )

(
x

)
� y

)
� z

)

+ B+
α→(β→γ )

(
B+

α�(β→γ )←(β�γ )

(
x � B+

(α�(β→γ )�(β�γ ))

(
y

))
� z

)

+ λα�(β→γ ),β�γ B+
α→(β→γ )

(
B+

(α�(β→γ ))·(β�γ )

(
x � y

)
� z

)

+ B+
α←(β→γ )

(
x � B+

α�(β→γ )

(
B+

β�γ

(
y

)
� z

))

+ λα,β→γ B+
α·(β→γ )

(
x �

(
B+

β�γ

(
y

)
� z

))

+ B+
α→(β←γ )

(
B+

α�(β←γ )

(
x

)
�

(
y � B+

β�γ

(
z

)))

+ B+
α←(β←γ )

(
x � B+

α�(β←γ )

(
y � B+

β�γ

(
z

)))

+ λα,β←γ B+
α·(β←γ )

(
x �

(
y � B+

β�γ

(
z

)))

+ λβ,γ B+
α→(β·γ )

(
B+

α�(β·γ )

(
x

)
�

(
y � z

))

+ λβ,γ B+
α←(β·γ )

(
x � B+

α←(β·γ )

(
y � z

))

+ λβ,γ λα,β·γ B+
α·(β·γ )

(
x �

(
y � z

))

=
•

(α � (β → γ )) → (β � γ )

(α � (β → γ )) � (β � γ )

α → (β → γ )

z
y

x

+
•

(α � (β → γ )) ← (β � γ )

(α � (β → γ )) � (β � γ )

α → (β → γ )

z

x
y

+ λα�(β→γ ),β�γ
•
z

x y

(α � (β → γ )) · (β � γ )

α → (β → γ )

+
•

α � (β → γ )

β � γ

α ← (β → γ )

x

z
y

+ λα,β→γ

x

z

y

•

β � γ

α · (β → γ )
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+
•

α � (β ← γ ) β � γ

α → (β ← γ )

y

zx

+
•

α � (β ← γ )

β � γ

α ← (β ← γ )

x
y

z

+ λα,β←γ
•

x y

z

β � γ

α · (β ← γ )

+ λβ,γ
α → (β · γ )

α � (β · γ ) y z

x

•
+ λβ,γ

•

y z

α � (β · γ )

α ← (β · γ )

x + λβ,γ λα,β·γ
zyx

• α · (β · γ )
.

By Lemma 2.13 and identifying the types of the planar rooted trees, we get that
(�,←,→,�, �, ·, λ) is a λ-ETS.

(c) �⇒ (a) By Lemma 2.13 and the definition of �, (kT (X , �),�, (B+
ω )ω∈�) is

an �-Rota–Baxter algebra. Now we show the freeness of kT (X , �).
Let (R, ·, (Pω)ω∈�) be an �-Rota–Baxter algebra of weight λ� and f : X → R a

set map. We extend f to an �-Rota–Baxter algebra morphism f : kT (X , �) → R
such that f ◦ i = f .

For T ∈ T (X , �), we define f (T ) by induction on dep(T ). If dep(T ) = 1, then
T is of the form

T =
x1

· · ·
xm

.

Define

f (T ):= f (x1) · f (x2) · · · f (xm).

For the induction step of dep(T ) ≥ 2, we define f (T ) by induction on the branches
of T . If bra(T ) = 1, then T is of the form

T = T1

T2 Tm

Tm+1x1
· · ·

xm
α1 αm+1

α2 αm

• ω

.

Define

f (T ):=Pω

(
Pα1

(
f (T1)

) · f (x1) · Pα2

(
f (T2)

) · · · Pαm

(
f (Tm)

) · f (xm) · Pα

(
f (Tm+1)

))
.

If bra(T ) > 1, then T is of the form

T = T1

T2 Tm

Tm+1x1
· · ·

xm
α1 αm+1

α2 αm

.
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Define

f (T ):=Pα1

(
f (T1)

) · f (x1) · Pα2

(
f (T2)

) · · · Pαm

(
f (Tm)

) · f (xm) · Pα

(
f (Tm+1)

)
.

By construction of f , f ◦ i = f and Pω f = f B+
ω for all ω ∈ �. Next we show

that f is an algebra homomorphism, i.e.

f (T � T ′) = f (T ) · f (T ′) for allT , T ′ ∈ T (X , �). (44)

We prove Eq. (44) by induction on dep(T ) + dep(T ′). If dep(T ) + dep(T ′) = 2,
then dep(T ) = dep(T ′) = 1 and

T =
x1

· · ·
xm

and T ′ =
y1

· · ·
yn

, with m, n ≥ 0,

and

f (T � T ′) = f (x1) · · · f (xm) · f (y1) · · · f (yn) = ( f (x1) · · · f (xm)) · ( f (y1) · · ·
f (yn)) = f (T ) � f (T ′).

For the induction step of dep(T ) + dep(T ′) ≥ 3. If T � T ′ belongs to the first three
cases, then f (T � T ′) = f (T ) · f (T ′) by the definition of � and the construction of
f . So we only need to consider the fourth case. Then

f

(
T � T ′

)
= f

⎛
⎜⎜⎜⎝

(
T1

T2 Tm

x1
· · ·

xm
α1

α2 αm

�
(

B+
αm+1→β1

(
B+

αm+1�β1
(Tm+1) � T ′

1
)

+B+
αm+1←β1

(
Tm+1 � B+

αm+1�β1
(T ′

1)
)

+λαm+1,β1 B+
αm+1·β1

(
Tm+1 � T ′

1
)))

�

T ′
2 T ′

n

T ′
n+1y1

· · ·
yn
βn+1

β2 βn

⎞
⎟⎟⎟⎟⎠

=
(

Pα1( f (T1)) · f (x1) · Pα2 ( f (T2)) · · · Pαm ( f (Tm)) · f (xm)·

× f
(

B+
αm+1→β1

(
B+

αm+1�β1
(Tm+1) � T ′

1
)

+ B+
αm+1←β1

(
Tm+1 � B+

αm+1�β1
(T ′

1)
) + λαm+1,β1 B+

αm+1·β1
(
Tm+1 � T ′

1
)))

· f (y1) · Pβ2 ( f (T ′
2)) · · · Pβn+1( f (T ′

n+1))

=
(

Pα1( f (T1)) · f (x1) · Pα2 ( f (T2)) · · · Pαm ( f (Tm)) · f (xm) · Pαm+1( f (Tm+1))
)

·
(

Pβ1( f (T ′
1)) · f (y1) · Pβ2 ( f (T ′

2)) · · · Pβn+1( f (T ′
n+1))

)
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= f (T ) � f (T ′).

Moreover, by the construction of f , it is the unique way to extend f as an �-Rota–
Baxter algebra morphism. Hence (kT (X , �),�, (B+

ω )ω∈�) together with the map i
is the free �-Rota–Baxter algebra generated by X . 	

Remark 2.15 (a) In Definition 2.8, � is required to be a set with five products ←

,→,�,�, · and λ is required to be a family of elements in k indexed by �2.
This defines a category of �-Rota–Baxter algebras for any such �. Generally,
free�-Rota–Baxter algebras are not based on�-angularly decorated planar trees.
However, by Theorem 2.14, the condition of a free �-Rota–Baxter algebra based
on the combinatorics of �-angularly decorated planar trees, similar to the one of
(classical) Rota–Baxter algebras, is equivalent to (�,←,→,�,�, ·, λ) being a
λ-ETS.

(b) As a particular case, we recover the description of free family Rota–Baxter alge-
bras of [14]. An alternative description of free Rota–Baxter algebras (with rooted
forests) is done in [4].

Taking all elements in λ to be 0, we get the following result:

Corollary 2.16 Let � be a set with four products ←,→,�,�. Then the following
conditions are equivalent:

(a) (kT (X , �),�, (B+
ω )ω∈�) together with the map i is the free �-Rota–Baxter alge-

bra of weight 0 generated by X.
(b) (kT (X , �),�, (B+

ω )ω∈�) is an �-Rota–Baxter algebra of weight 0.
(c) (�,←,→,�,�) is an EDS.

2.3 CommutativeÄ-Rota–Baxter algebras on typed words

Let � be a set and V a vector space. Recall from [5] that the space of �-typed words
in V is

Sh+
�(V ) =

⊕
n≥1

(k�)⊗(n−1) ⊗ V ⊗n .

For the ease of statement, we redefine the space of �-typed words in V as

Sh+
�(V ) =

⊕
n≥0

V ⊗ (k�) ⊗ · · · ⊗ (k�) ⊗ V︸ ︷︷ ︸
(n+1)′sV andn′s(k�)

and write each pure tensor v = v0 ⊗ ω1 ⊗ · · · ⊗ ωn ⊗ vn ∈ � under the form

v = v0 ⊗ω1 v1 ⊗ω2 · · · ⊗ωn vn,

where n ≥ 0, ω1, · · · , ωn ∈ � and v0, · · · , vn ∈ V with the convention v = v0 if
n = 0. We call v an � -typed word in V and define its length 
(v):=n + 1.
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Let A be an algebrawith identity 1A, (�,←,→,�,�, ·) be a set with five products
and λ = (λα,β)(α,β)∈�2 be a family of elements in k indexed by �2. For any pure
tensors a = a0 ⊗α1 a

′,b = b0 ⊗β1 b
′ ∈ Sh+

�(A) with 
(a) = m and 
(b) = n, define
a � b inductively as follows:

a � b:=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a0b0, if m = n = 0,
a0b0 ⊗α1 a

′, if m > 0, n = 0,
a0b0 ⊗β1 b

′, if m = 0, n > 0,
a0b0 ⊗α1→β1

(
(1A ⊗α1�β1 a

′) � b′) + a0b0 ⊗α←β1

(
a′ � (1A ⊗α1�β1 b

′)
)

+λα1,β1a0b0 ⊗α1·β1 (a′ � b′), if m > 0, n > 0.

(45)

Extending bilinearly, we construct a product � on Sh+
�(A).

Lemma 2.17 Let A be an algebra with identity 1A, � a set with five products ←,→
,�,�, · and λ a family of elements in k indexed by �2. If (�,←,→,�,�, ·, λ) is a
λ-ESD, then (Sh+

�(A),�) is an associative algebra with identity 1A.

Proof By Eq. (45), Sh+
�(A) is closed under � and 1A is the identity of �.

For pure tensors a,b, c ∈ Sh+
�(A), we prove

(a � b) � c = a � (b � c) (46)

by induction on 
(a) + 
(b) + 
(c). If 
(a) + 
(b) + 
(c) = 3, then 
(a) = 
(b) =

(c) = 1 and a = a0,b = b0, c = c0. Hence

(a � b) � c = a0b0c0 = a � (b � c).

Suppose Eq. (46) holds for 
(a)+ 
(b)+ 
(c) ≤ p, where p ≥ 3 is a fixed integer.
Consider the case of 
(a) + 
(b) + 
(c) = p + 1. If one of 
(a), 
(b), 
(c) is equal
to 1, then Eq. (46) holds by direct calculation. Hence we assume 
(a) > 1, 
(b) >

1, 
(c) > 1 and

a = a0 ⊗α1 a
′, b = b0 ⊗β1 b

′, c = c0 ⊗γ1 c
′.

Then

(a � b) � c

= (a0b0)c0 ⊗(α1→β1)→γ1

(
(1A ⊗(α1→β1)�γ1 ((1A ⊗α1⊗�β1 a

′) � b′)) � c′)
+ (a0b0)c0 ⊗(α1→β1)←γ1

(
((1A ⊗α1�β1 a

′) � b′) � (1A ⊗(α1→β1)�γ1 c
′)
)

+ λ(α1→β1),γ1 (a0b0)c0 ⊗(α1→β1)·γ1
(
((1A ⊗α1�β1 a

′) � b′) � c′)
+ (a0b0)c0⊗(α1←β1)→γ1(
(1A ⊗(α1←β1)�γ1 (a′ � (1A ⊗α1�β1 b

′))) � c′)
+ (a0b0)c0⊗(α1←β1)←γ1(
a′ � (1A ⊗(α1�β1)→((α1←β1)�γ1) ((1A ⊗(α1�β1)�((α1←β1)�γ1) b

′) � c′))
)

+ (a0b0)c0⊗(α1←β1)←γ1
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(
a′ � (1A ⊗(α1�β1)←((α1←β1)�γ1) (b′ � (1A ⊗(α1�β1)�((α1←β1)�γ1) c

′)))
)

+ λ(α1�β1),((α1←β1)�γ1)(a0b0)c0 ⊗(α1←β1)←γ1

(
a′ � (1A ⊗(α1�β1)·((α1←β1)�γ1) (b′ � c′))

)
+ λ(α1←β1),γ1 (a0b0)c0 ⊗(α1←β1)·γ1

(
(a′ � (1A ⊗α1�β1 b

′)) � c′)
+ λα1,β1 (a0b0)c0 ⊗(α1·β1)→γ1

(
(1A ⊗(α1·β1)�γ1 (a′ � b′)) � c′)

+ λα1,β1 (a0b0)c0 ⊗(α1·β1)←γ1

(
(a′ � b′) � (1A ⊗(α1·β1)�γ1 c

′)
)

+ λα1,β1λ(α1·β1),γ1 (a0b0)c0 ⊗(α1·β1)·γ1
(
(a′ � b′) � c′)

and

a � (b � c)

= a0(b0c0)⊗α1→(β1→γ1)(
(1A ⊗(α1�(β1→γ1))→(β1�γ1) ((1A ⊗(α1�(β1→γ1))�(β1�γ1) a

′) � b′)) � c′)
+ a0(b0c0)⊗α1→(β1→γ1)(
(1A ⊗(α1�(β1→γ1))←(β1�γ1) (a′ � (1A ⊗(α1�(β1→γ1))�(β1�γ1) b

′))) � c′)
+ λ(α1�(β1→γ1)),(β1�γ1)a0(b0c0) ⊗α1→(β1→γ1)

(
(1A ⊗(α1�(β1→γ1))·(β1�γ1) (a′ � b′)) � c′)

+ a0(b0c0) ⊗α1←(β1→γ1)

(
a′ � (1A ⊗α1�(β1→γ1) ((1A ⊗β1�γ1 b

′) � c′))
)

+ λα1,(β1→γ1)a0(b0c0) ⊗α1·(β1→γ1)

(
a′ � ((1A ⊗β1�γ1 b

′) � c′)
)

+ a0(b0c0) ⊗α1→(β1←γ1)

(
(1A ⊗α1�(β1←γ1) a

′) � (b′ � (1A ⊗β1�γ1 c
′))

)
+ a0(b0c0) ⊗α1←(β1←γ1)

(
a′ � (1A ⊗α1�(β1←γ1) (b′ � (1A ⊗β1�γ1 c

′)))
)

+ λα1,(β1←γ1)a0(b0c0) ⊗α1·(β1←γ1)

(
a′ � (b′ � (1A ⊗β1�γ1 c

′))
)

+ λβ1,γ1a0(b0c0) ⊗α1→(β1·γ1)
(
(1A ⊗α1�(β1·γ1) a′) � (b′ � c′)

)
+ λβ1,γ1a0(b0c0) ⊗α1←(β1·γ1)

(
a′ � (1A ⊗α1�(β1·γ1) (b′ � c′))

)
+ λβ1,γ1λα1,(β1·γ1)a0(b0c0) ⊗α1·(β1·γ1)

(
a′ � (b′ � c′)

)
.

By induction hypothesis and (�,←,→,�,�, ·, λ) being a λ-ETS, (a � b) � c =
a � (b � c). Hence (Sh+

�(A),�) is an associative algebra with identity 1A. 	


For each ω ∈ �, define a linear map Pω : Sh+
�(A) → Sh+

�(A), a �→ 1A ⊗ω a.
If further A is a commutative algebra and (�,←,→,�,�, ·, λ) is a commutative
λ-ETS, we get the following result:

Proposition 2.18 If A is a commutative algebra with identity 1A and (�,←,→
,�,�, ·, λ) is a commutative λ-ETS, then (Sh+

�(A),�, (Pω)ω∈�) is the free com-
mutative �-Rota–Baxter algebra generated by A.

Proof For a,b ∈ Sh+
�(A) and α, β ∈ �,

Pα(a) � Pβ(b) = (1A ⊗α a) � (1A ⊗β b)

= 1A ⊗α→β

(
(1 ⊗α�β a) � b

) + 1 ⊗α←β

(
a � (1A ⊗α�β b)

)
+ λα,β1A ⊗α·β (a � b)

= Pα→β(Pα�β(a) � b) + Pα←β(a � Pα�β(b)) + λα,β Pα·β(a � b),
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hence Sh�(A) is an �-Rota–Baxter algebra. Next we show

a � b = b � a (47)

by induction on 
(a) + 
(b). If 
(a) + 
(b) = 2, then 
(a) = 
(b) = 1 and

a � b = a0 � b0 = a0b0 = b0a0 = b0 � a0 = b � a.

Suppose Eq. (47) holds for 
(a) + 
(b) < p, where p ≥ 2 is a fixed integer. We
consider the case of 
(a) + 
(b) = p + 1. If one of 
(a), 
(b) is equal to 1, then
Eq. (47) holds directly. We assume that a = a0 ⊗α1 a

′,b = b0 ⊗β1 b
′, then

a � b = (a0 ⊗α1 a
′) � (b0 ⊗β1 b

′)
= a0b0 ⊗α1→β1

(
(1A ⊗α1�β1 a

′) � b′) + a0b0 ⊗α1←β1

(
a′ � (1A ⊗α1�β1 b

′)
)

+ λα1,β1a0b0 ⊗α1·β1 (a′ � b′)
= b0a0 ⊗α1→β1

(
(1A ⊗α1�β1 a

′) � b′)
+ b0a0 ⊗α1←β1

(
a′ � (1A ⊗α1�β1 b

′)
) + λα1,β1b0a0 ⊗α1·β1 (a′ � b′)

(byAbeing a commutative algebra)

= b0a0 ⊗α1→β1

(
b′ � (1A ⊗α1�β1 a

′)
)

+ b0a0 ⊗α1←β1

(
(1A ⊗α1�β1 b

′) � a′) + λα1,β1b0a0 ⊗α1·β1 (b′ � a′)
(by the induction hypothesis)

= b0a0 ⊗β1←α1

(
b′ � (1A ⊗β1�α1 a

′)
)

+ b0a0 ⊗β1→α1

(
(1A ⊗β1�α1 b

′) � a′) + λβ1,α1b0a0 ⊗β1·α1 (b′ � a′)
(by�being commutative)

= (b0 ⊗β1 b
′) � (a0 ⊗α1 a

′) = b ⊗ a.

Hence (Sh+
�(A),�) is a commutative algebra.

Let (R, ·, (Pω)ω∈�) be a commutative �-Rota–Baxter algebra and f : A → R
a commutative algebra homomorphism. We extend f to an �-Rota–Baxter algebra
morphism f : Sh+

�(A) → R as follows: for a ∈ Sh+
�(A), we define f (a) by induction

on 
(a). If 
(a) = 1, then define f (a) = f (a). Suppose f (a) has been defined for all
a with 
(a) ≤ p, where p ≥ 1 is a fixed integer. Consider the case of 
(a) = p + 1.
We suppose that a = a0 ⊗α1 a

′, and we then put:

f (a):= f (a0) · Pα1( f (a′)).

We can get that it is the unique way to extend f as an �-Rota–Baxter algebra mor-
phism. Hence (Sh+

�(A),�) is the free commutative �-Rota–Baxter algebra generated
by A. 	


Let us assume that A is unitary. We denote its unit by 1A. For each ω ∈ �, define
a linear map Pω : Sh�(A) → Sh�(A), a �→ 1A ⊗ω a.

123



296 Journal of Algebraic Combinatorics (2023) 57:271–303

Proposition 2.19 If A is a unitary commutative algebra and (�,←,→,�,�, ·, λ) is
a commutative λ-ETS, then (Sh�(A),�, (Pω)ω∈�) is a commutative �-Rota–Baxter
algebra.

Proof For a,b ∈ Sh�(A) and α, β ∈ �,

Pα(a) � Pβ(b) = (1A ⊗α a) � (1A ⊗β b)

= 1A ⊗α→β

(
(1A ⊗α�β a) � b

) + 1A ⊗α←β

(
a � (1A ⊗α�β b)

)
+ λα,β1A ⊗α·β (a � b)

= Pα→β(Pα�β(a) � b) + Pα←β(a � Pα�β(b)) + λα,β Pα·β(a � b),

hence Sh�(A) is an �-Rota–Baxter algebra. Next we show

a � b = b � a (48)

by induction on 
(a) + 
(b). If 
(a) + 
(b) = 2, then 
(a) = 
(b) = 1 and

a � b = a0 � b0 = a0b0 = b0a0 = b0 � a0 = b � a.

Suppose Eq. (48) holds for 
(a) + 
(b) < p, where p ≥ 2 is a fixed integer. We
consider the case of 
(a) + 
(b) = p + 1. If one of 
(a), 
(b) is equal to 1, then
Eq. (48) holds directly. So assume a = a0 ⊗α1 a

′,b = b0 ⊗β1 b
′, then

a � b = (a0 ⊗α1 a
′) � (b0 ⊗β1 b

′)
= a0b0 ⊗α1→β1

(
(1A ⊗α1�β1 a

′) � b′)
+ a0b0 ⊗α1←β1

(
a′ � (1A ⊗α1�β1 b

′)
) + λα1,β1a0b0 ⊗α1·β1 (a′ � b′)

= b0a0 ⊗α1→β1

(
(1A ⊗α1�β1 a

′) � b′)
+ b0a0 ⊗α1←β1

(
a′ � (1A ⊗α1�β1 b

′)
) + λα1,β1b0a0 ⊗α1·β1 (a′ � b′)

(byAbeing a commutative algebra)

= b0a0 ⊗α1→β1

(
b′ � (1A ⊗α1�β1 a

′)
)

+ b0a0 ⊗α1←β1

(
(1A ⊗α1�β1 b

′) � a′) + λα1,β1b0a0 ⊗α1·β1 (b′ � a′)
(by the induction hypothesis)

= b0a0 ⊗β1←α1

(
b′ � (1A ⊗β1�α1 a

′)
)

+ b0a0 ⊗β1→α1

(
(1A ⊗β1�α1 b

′) � a′) + λβ1,α1b0a0 ⊗β1·α1 (b′ � a′)
(by�being commutative)

= (b0 ⊗β1 b
′) � (a0 ⊗α1 a

′) = b ⊗ a.

Hence (Sh�(A),�) is a commutative algebra. 	

Let A be a commutative algebra. We put u A = k⊕ A and give it a product defined

by

(λ + a)(μ + b) = λμ + (λb + μa + ab).
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Then u A is a commutative unitary algebra and its unit 1A is the unit 1 of k.

Theorem 2.20 We put

Sh′
�(A) = A ⊕

⊕
n≥2

u A ⊗ (k�) ⊗ · · · ⊗ (k�) ⊗ u A︸ ︷︷ ︸
n′sV and(n−1)′s(k�)

.

ThenSh′
�(A) is the free commutative �-Rota–Baxter algebra generated by the algebra

A.

Proof Let (R, ·, (Pω)ω∈�) be a commutative �-Rota–Baxter algebra and f : A → R
a (nonunitary) algebra homomorphism. We extend f , first from u A to R as a unitary
algebra morphism by sending 1u A to 1R , then as an�-Rota–Baxter algebra morphism
f : Sh′

�(A) → R as follows: for a ∈ Sh�(A), we define f (a) by induction on 
(a).
If 
(a) = 1, then define f (a) = f (a). Suppose f (a) has been defined for all a with

(a) ≤ p, where p ≥ 1 is a fixed integer. Consider the case of 
(a) = p + 1. Suppose
a = a0 ⊗α1 a

′, then define

f (a):= f (a0) · Pα1( f (a′)).

For any a ∈ Sh′
�(A) and for any α ∈ �:

f ◦ Pα(a) = f (1A ⊗α a) = 1B · Pα( f (a)) = Pα ◦ f (a).

Let us prove that this is an algebra morphism. Let a,b ∈ Sh′
�(A), let us prove that

f (a � b) = f (a) f (b) by induction on n = 
(a) + 
(b). If 
(a) = 
(b) = 1, then

f (a � b) = f (a0b0) = f (a0b0) = f (a0) · f (b0) = f (a) · f (b).

If 
(a) = 1 and 
(b) > 1, then

f (a � b) = f (a0b0 ⊗α1 a
′)

= f (a0b0) · Pα1 ◦ f (a′)
= f (a0) · f (b0) · Pα1 ◦ f (a′)
= f (a) · f (b).

This is similar if 
(a) > 1 and 
(b) = 1. If 
(a) > 1 and 
(b) > 1, then

f (a � b) = f ( a0b0 ⊗α1→β1 ((1 ⊗α1�β1 a
′) � b′)) + f (a0b0 ⊗α←β1 (a′ � (1 ⊗α1�β1 b

′)))
+ f (λα1,β1a0b0 ⊗α1·β1 (a′ � b′))

= f ( a0b0) · Pα1→β1 ◦ f ((1 ⊗α1�β1 a
′) � b′)

+ f (a0b0) · Pα←β1 ◦ f (a′ � (1 ⊗α1�β1 b
′)))

+ λα1,β1 f (a0b0) · Pα1·β1 ◦ f (a′ � b′)
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= f (a0) · f (b0) · f (Pα1→β1(Pα1�β1(a
′) � b′))

+ f (a0) · f (b0) · f (Pα←β1(a
′ � Pα1�β1(b

′)))
+ λα1,β1 f (a0) · f (b0) · f (Pα1·β1 (a′ � b′))

= f (a0) · f (b0) · f (Pα1(a
′)Pβ1(b

′))
= f (a0) · f (b0) · f (Pα1(a

′)) · f (Pβ1(b
′)) (by the induction hypothesis)

= f (a0) · f (b0) · Pα1 ◦ f (a′) · Pβ1 ◦ f (b′)
= f (a0) · Pα1 ◦ f (a′) · f (b0) · Pβ1 ◦ f (b′) (asBis commutative)

= f (a) · f (b).

We get that it is the unique way to extend f as an �-Rota–Baxter algebra morphism.
Hence Sh′

�(A) is the free commutative �-Rota–Baxter algebra generated by A. 	


3 More results on �-ETS and ETS

3.1 Description in terms of linear and bilinear maps

As in Lemma 5 of [5], we obtain:

Lemma 3.1 Let (�,←,→,�,�, ·) be a set with five operations and λ = (λα,β)α,β∈�

be a family of elements ink indexed by �2 . We denote byk� the vector space generated
by �. We put:

ϕ← :
{
k�⊗2 −→ k�⊗2

α ⊗ β −→ α ← β ⊗ α � β,

ϕ→ :
{
k�⊗2 −→ k�⊗2

α ⊗ β −→ α → β ⊗ α � β,

ψ· :
{
k�⊗2 −→ k�

α ⊗ β −→ λα,βα · β.

Then (�,←,→,�,�, ·, λ) is a λ-ETS if, and only if:

(τ ⊗ id) ◦ (id ⊗ ϕ←) ◦ (τ ⊗ id) ◦ (ϕ→ ⊗ id) = (ϕ→ ⊗ id) ◦ (id ⊗ ϕ←), (49)

(id ⊗ ϕ←) ◦ (τ ⊗ id) ◦ (id ⊗ ϕ←) ⊗ (τ ⊗ id) ◦ (ϕ← ⊗ id) = (ϕ← ⊗ id) ◦ (id ⊗ ϕ←),

(50)

(id ⊗ ϕ→) ◦ (τ ⊗ id) ◦ (id ⊗ ϕ←) ◦ (τ ⊗ id) ◦ (ϕ← ⊗ id) = (ϕ← ⊗ id) ◦ (id ⊗ ϕ→),

(51)

(id ⊗ ϕ←) ◦ (ϕ→ ⊗ id) ◦ (id ⊗ ϕ→) = (ϕ→ ⊗ id) ◦ (id ⊗ τ) ◦ (ϕ← ⊗ id), (52)

(id ⊗ ϕ→) ◦ (ϕ→ ⊗ id) ◦ (id ⊗ ϕ→) = (ϕ→ ⊗ id) ◦ (id ⊗ τ) ◦ (ϕ→ ⊗ id), (53)

ϕ→ ◦ (id ⊗ ψ·) = (ψ· ⊗ id) ◦ (id ⊗ τ) ◦ (ϕ→ ⊗ id), (54)

(ψ· ⊗ id) ◦ (id ⊗ τ) ◦ (id ⊗ ϕ←) ◦ (τ ⊗ id) ◦ (ϕ← ⊗ id) = τ ◦ ϕ← ◦ (id ⊗ ψ·),
(55)

123



Journal of Algebraic Combinatorics (2023) 57:271–303 299

(id ⊗ ψ·) ◦ (ϕ→ ⊗ id) ◦ (id ⊗ ϕ→) = ϕ→ ◦ (ψ· ⊗ id), (56)

(ψ· ⊗ id) ◦ (id ⊗ τ) ◦ (ϕ← ⊗ id) = (ψ· ⊗ id) ◦ (id ⊗ ϕ→), (57)

(ψ· ⊗ id) ◦ (id ⊗ ϕ←) = ϕ← ◦ (ψ· ⊗ id), (58)

ψ· ◦ (ψ· ⊗ id) = ψ· ◦ (id ⊗ ψ·). (59)

In particular, ψ· is an associative product.

Proof By Lemma 5 in [5], Eqs. (49)-(53) are equivalent to (�,←,→,�,�) being an
EDS. Moreover, direct computations prove that Eq. (54) is equivalent to Eq. (11) and
condition (a); Eq. (55) is equivalent to Eq. (12) and condition (b); Eq. (56) is equivalent
to Eq. (13) and condition (c); Eq. (57) is equivalent to Eq. (14) and condition (d);
Eq. (58) is equivalent to Eq. (15) and condition (e); Eq. (59) is equivalent to Eq. (16)
and condition (f) in Definition 2.3. 	


Similarly, we obtain for ETS:

Lemma 3.2 Let (�,←,→,�,�, ∗, ·) be a set with six operations. We put:

ϕ← :
{

�2 −→ �2

(α, β) −→ (α ← β, α � β),

ϕ→ :
{

�2 −→ �2

(α, β) −→ (α → β, α � β),

ϕ∗ :
{

�2 −→ �2

(α, β) −→ (α · β, α ∗ β).

Then (�,←,→,�,�, ∗, ·) is an ETS if, and only if, (34)-(38) of [5] are satisfied
and:

(ϕ→ ⊗ id) ◦ (id ⊗ ϕ∗) = (τ ⊗ id) ◦ (id ⊗ ϕ∗) ◦ (τ ⊗ id) ◦ (ϕ→ ⊗ id),
(60)

(ϕ← ⊗ id) ◦ (id ⊗ ϕ∗) = (id ⊗ ϕ∗) ◦ (τ ⊗ id) ◦ (id ⊗ ϕ←) ◦ (τ ⊗ id) ◦ (ϕ← ⊗ id),
(61)

(id ⊗ ϕ∗) ◦ (ϕ→ ⊗ id) ◦ (id ⊗ ϕ→) = (ϕ→ ⊗ id) ◦ (id ⊗ τ) ◦ (id ⊗ ϕ∗),
(62)

(id ⊗ ϕ∗) ◦ (τ ⊗ id) ◦ (ϕ← ⊗ id) = (id ⊗ ϕ∗) ◦ (τ ⊗ id) ◦ (id ⊗ τ) ◦ (id ⊗ ϕ→),

(63)

(ϕ∗ ⊗ id) ◦ (id ⊗ ϕ←) = (τ ⊗ id) ◦ (id ⊗ ϕ←) ◦ (τ ⊗ id) ◦ (ϕ∗ ⊗ id),
(64)

(ϕ∗ ⊗ id) ◦ (id ⊗ τ) ◦ (ϕ∗ ⊗ id) = (id ⊗ τ) ◦ (ϕ∗ ⊗ id) ◦ (id ⊗ ϕ∗).
(65)

Proof By Lemma 5 in [5], Eqs. (34)-(38) are equivalent to (�,←,→,�,�) being an
EDS.Moreover, direct computations prove that Eq. (60) is equivalent to Eqs. (17),(18)
and (28); Eq. (61) is equivalent to Eqs. (19), (20) and (29); Eq. (62) is equivalent to
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Eqs. (21), (22) and (30); Eq. (63) is equivalent to Eqs. (23), (24) and (31); Eq. (64)
is equivalent to Eqs. (25), (26) and (32); Eq. (65) is equivalent to Eqs. (27), (33) and
(34). 	


3.2 A description of all �-ETS of cardinality two

The following table gives allλ-ETS.We slightly generalize our definition, by accepting
more generalmapsϕ· : k�⊗2 −→ k�. The underlying set is {a, b} and all the products
are given by a 2 × 2 table. Here, λ,μ are elements of the base field k.

Type ← → � � ϕ∗ Name

A

(
a a
a a

) (
a a
a a

) (
a a
a a

) (
a a
a a

) (
(λ + μ)a (λ + μ)a
(λ + μ)a λa + μb

)
A1(λ, μ)(

a b
a b

) (
a a
b b

) (
(λ + μ)a (λ + μ)a
(λ + μ)a λa + μb

)
A2(λ, μ)

B

(
a a
a a

) (
a b
a b

) (
a a
a a

) (
a a
a a

) (
λa λa
λa λa

)
,

(
λa λb
λa λb

)
B′
1(λ), B′′

1 (λ)(
a b
a b

) (
a a
b b

)
B′
2(λ), B′′

2 (λ)

C

(
a a
a b

) (
a a
a b

) (
a a
a a

) (
a a
a a

) (
λa λa
λa λb

)
C1(λ)(

a b
a b

) (
a a
b b

)
C3(λ)(

b b
b b

) (
b b
b b

)
C5(λ)(

a a
a a

) (
b b
b b

) (
0 0
0 0

)
C2(

b b
b b

) (
a a
a a

)
C4

The commutative λ-ETS are the ones of type A and H , C1(λ), C3(λ), C5(λ),
F ′
1(λ, μ), F ′′

1 (λ, μ) and F4(λ). The opposite of B ′
1(λ), B ′′

1 (λ), B ′
2(λ) and B ′′

2 (λ) are
respectively D′

1(λ), D′′
1 (λ), D′

2(λ) and D′′
2 (λ). The opposite of C2 is C4. The opposite

of E1(λ), E2 and E3(λ) are respectively G1(λ), G2 and G3(λ). The opposite of F ′
1(λ)

is F ′′
1 (λ). The λ-ETS F2 and F5 are not commutative but are isomorphic to their

opposite in a non-trivial way. Finally, if ∗ is an associative product, the opposite of
F3(∗) is F3(∗op).

3.3 A description of all ETS of cardinality two

The following table gives all the ETS of cardinality 2.
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Ty
pe

←
→

�
�

ϕ
∗

N
am

e

D

( a
a

b
b)

( a
a

a
a)

( a
a

a
a)

( a
a

a
a)

( λ
a

λ
a

λ
a

λ
a) ,

( λ
a

λ
a

λ
b

λ
b)

D
′ 1
(λ

),
D

′′ 1
(λ

)
( a

b
a

b)
( a

a
b

b)
D

′ 2
(λ

),
D

′′ 2
(λ

)

E

( a
a

b
b)

( a
a

b
b)

( a
a

a
a)

( a
a

a
a)

( λ
a

λ
a

λ
b

λ
b)

E
1
(λ

)
( a

b
a

b)
( a

a
b

b)
E
3
(λ

)
( a

a
a

a)
( b

b
b

b)
( 0

0
0
0)

E
2

F

( a
a

b
b)

( a
b

a
b)

( a
a

a
a)

( a
a

a
a)

( (λ
+

μ
)a

(λ
+

μ
)a

(λ
+

μ
)a

λ
a

+
μ

b

) ,

( (λ
+

μ
)a

(λ
+

μ
)b

(λ
+

μ
)b

λ
a

+
μ

b

) ,
F

′ 1
(λ

,
μ

),
F

′′ 1
(λ

,
μ

)
( λ

a
λ

b
λ

a
λ

b) ,

( λ
a

λ
a

λ
b

λ
b)

F
′ 1
(λ

),
F

′′ 1
(λ

)
( a

b
a

b)
( a

a
b

b)
an
y
as
so
ci
at
iv
e
pr
od
uc
t∗

F
3
(∗)

( a
b

b
a)

( a
b

b
a)

( λ
a

0
0

λ
b)

F
4
(λ

)
( a

a
a

a)
( b

b
b

b)
( 0

0
0
0)

F
2

( a
b

b
a)

( b
a

a
b)

F
5

G

( a
b

a
b)

( a
b

a
b)

( a
a

a
a)

( a
a

a
a)

( λ
a

λ
b

λ
a

λ
b)

G
1
(λ

)
( a

b
a

b)
( a

a
b

b)
G
3
(λ

)
( a

a
a

a)
( b

b
b

b)
( 0

0
0
0)

G
2

H

( a
b

b
a)

( a
b

b
a)

( a
a

a
a)

( a
a

a
a)

( λ
a

λ
b

λ
b

λ
a)

H
1
(λ

)
( a

b
a

b)
( a

a
b

b)
H
2
(λ

)
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Type ← → � � ∗ ·

A1

(
a a
a a

) (
a a
a a

) (
a a
a a

) (
a a
a a

) (
a a
a a

)
,

(
b b
b b

) (
a a
a a

)
,

(
a a
a b

)

A2

(
a b
a b

) (
a a
b b

)

B1

(
a a
a a

) (
a b
a b

) (
a a
a a

) (
a a
a a

) (
a a
a a

)
,

(
b b
b b

) (
a a
a a

)
,

(
a b
a b
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