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Abstract
We show that the v-number of an arbitrary monomial ideal is bounded below by the
v-number of its polarization and also find a criteria for the equality. By showing the
additivity of associated primes of monomial ideals, we obtain the additivity of the
v-numbers for arbitrary monomial ideals. We prove that the v-number v(I (G)) of the
edge ideal I (G), the induced matching number im(G) and the regularity reg(R/I (G))

of a graph G, satisfy v(I (G)) ≤ im(G) ≤ reg(R/I (G)), where G is either a bipartite
graph, or a (C4, C5)-free vertex decomposable graph, or a whisker graph. There is
an open problem in Jaramillo and Villarreal (J Combin Theory Ser A 177:105310,
2021), whether v(I ) ≤ reg(R/I ) + 1, for any square-free monomial ideal I . We
show that v(I (G)) > reg(R/I (G)) + 1, for a disconnected graph G. We derive some
inequalities of v-numbers which may be helpful to answer the above problem for the
case of connected graphs. We connect v(I (G)) with an invariant of the line graph
L(G) of G. For a simple connected graph G, we show that reg(R/I (G)) can be
arbitrarily larger than v(I (G)). Also, we try to see how the v-number is related to the
Cohen–Macaulay property of square-free monomial ideals.
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1 Introduction

Let R = K [x1 . . . , xn] = ⊕∞
d=0 Rd denote the polynomial ring in n variables

over a field K , with the standard gradation. Given a graph G, we assume V (G) =
{x1, . . . , xn} and all graphs are assumed to be simple graphs.

For a graded ideal I of R, the set of associated prime ideals of I , denoted by Ass(I )
or Ass(R/I ), is the collection of prime ideals of R of the form (I : f ), for some
f ∈ Rd . A prime ideal p ∈ Ass(R/I ) is said to be a minimal prime of I if for all
q ∈ Ass(R/I ), with p �= q, we have q � p. If an associated prime ideal of I is not
minimal, then I is called an embedded prime of I .

Definition 1.1 ([8, Definition 4.1]) Let I be a proper graded ideal of R. Then v-number
of I is denoted by v(I ) and is defined by

v(I ) := min{d ≥ 0 | ∃ f ∈ Rd and p ∈ Ass(I ), with (I : f ) = p}.

For each p ∈ Ass(I ), we can locally define v-number as

vp(I ) := min{d ≥ 0 | ∃ f ∈ Rd , with (I : f ) = p}.

Then v(I ) = min{vp(I ) | p ∈ Ass(I )}.
The v-number of I was introduced as an invariant of the graded ideal I , in [8],

in the study of Reed–Muller-type codes. This invariant of I helps us understand the
behaviour of the generalized minimum distance function δI of I , in the said context.
See [8, 18, 24, 26] for further details on this.

Procedure A1 in [13] helps us compute the v-number of monomial ideals using
Macaulay2 [12]. In [18], Jaramillo and Villarreal have discussed some properties
of v(I ) and have proved combinatorial formula of v(I ), where I is a square-free
monomial ideal. They have proved that v(I ) ≤ reg(R/I ) is satisfied for several cases
of square-free monomial ideals I . In the same article, the authors have also disproved
[26, Conjecture 4.2] by giving an example [18, Example 5.4] of a connected graph
G, with 3 = v(I (G)) > reg(R/I (G)) = 2. They have proposed an open problem
in [18], whether v(I ) ≤ reg(R/I ) + 1, for any square-free monomial ideal I . In this
paper, we give a counter-example (Example 5.1) to this open problem and modify the
question (Question 5.2) for edge ideals of those clutters which cannot be written as a
disjoint union of two clutters. We try to give a partial answer to this question. We find
the relation between the v-number of an arbitrary monomial ideal and the v-number
of its polarization, along with some criteria for equality.

Bounds of Castelnuovo–Mumford regularity of edge ideals (see [2, 3, 9, 11, 14, 20,
30]) and bounds of induced matching number of graphs (see [5–7, 19, 23, 31]) are two
trending topics in the research of commutative algebra and combinatorics, respectively.
Also, obtaining induced matching number in general is N P-hard. So it would be an
interesting problem to find the bounds of regularity and induced matching number by
the v-number. Considering I (G) as the edge ideal of a graph G, we give a relation
between v(I ), reg(R/I ) and im(G) for bipartite graphs (Theorem 4.5) , (C4, C5)-free
vertex decomposable graphs (Theorem 4.11), whisker graphs (Theorem 4.12), etc. We
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also obtain some results on the v-number and propose some problems. The paper is
arranged in the following manner.

In Sect. 2, we discuss the Preliminaries.We recall some definitions, notations, basic
concepts pertinent to Graph theory and Commutative Algebra and results from [18].
In Sect. 3, our main result is the following:
Theorem 3.4. Let I be a monomial ideal. If there exists

p = 〈
xs1,bs1

, . . . , xsk ,bsk

〉 ∈ Ass(I (pol)),

such that v(I (pol)) = vp(I (pol)), and if there is no embedded prime of I properly
containing

〈
xs1 , . . . , xsk

〉
, then

v(I ) = v(I (pol)).

In general,we get v(I (pol)) ≤ v(I ) (Corollary 3.5).Also, in this section,we generalize
some results proved in [18], related to the v-number of square-free monomial ideals
to arbitrary monomial ideals with special type, which includes the monomial ideals
having no embedded primes. The additive property of associated primes is known
for square-free monomial ideals (see [22, Lemma 2.14]). We prove that the additive
property of associated primes holds for arbitrary monomial ideals in Lemma 3.8 and
this result has been used to show the additivity of v-numbers for monomial ideals,
which is the following:
Proposition 3.9. Let I1 ⊆ R1 = K [x] and I2 ⊆ R2 = K [y] be two monomial ideals
and consider R = K [x, y]. Then we have

v(I1R + I2R) = v(I1) + v(I2).

In addition, we derive some properties (see Proposition 3.13) of v(I ) for any
square-free monomial ideal I . For any graph G, we show that v(I (G)) ≤ α0(G)

(Proposition 3.14), where α0(G) is the vertex covering number of G. In Sect. 4,
we relate v(I (G)) with an invariant of L(G), the line graph of G (see Proposi-
tion 4.1). We derive some properties of the v-number for edge ideals of graphs
(see Proposition 4.2), which could be helpful in finding the relation between the
v-number and the regularity of edge ideals. We find the following relations between
v(I (G)), reg(R/I (G)), im(G) for certain classes of graphs G:
Theorems 4.5, 4.11, 4.12. If G is a bipartite graph or (C4, C5)-free vertex decompos-
able graph or whisker graph, then

v(I (G)) ≤ im(G) ≤ reg(R/I (G)).

Also, we show that for a graph G, the difference between v(I (G)) and reg(R/I (G))

may be arbitrarily large (see Corollary 4.15). In Proposition 4.18, we try to relate the
Cohen–Macaulay property of (R/I ) with v(I ∨), where I = I (C) is an edge ideal of
a clutter C, such that C cannot be written as a union of two disjoint clutters and I ∨
denotes the Alexander dual ideal (Definition 4.17) of I . In Sect. 5, we give a counter-
example (Example 5.1) to the problem given in [18] and pose the modified question
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(see Question 5.2). We also propose some open problems related to the v-number in
terms of regularity, depth and induced matching number.

2 Preliminaries

In this section, we recall some basic definitions, results, and notations of graph theory
and commutative algebra. Also, we mention some results, concepts, and notations
from [18].

In R, we denote a monomial xa1
1 · · · xan

n by xa, where a = (a1, . . . , an) ∈ Nn and
N denotes the set of all non-negative integers. An ideal I ⊆ R is called a monomial
ideal if it is minimally generated by a set of monomials in R. The set of minimal
monomial generators of I is unique and it is denoted by G(I ). If G(I ) consists of only
square-free monomials, then we say I is a square-free monomial ideal.

Definition 2.1 A clutter C is a pair of two sets (V (C), E(C)), where V (C) is called
the vertex set and E(C) is a collection of subsets of V (C), called edge set, such that
no two elements (called edges) of E(C) contains each other. A clutter is also known
as simple hypergraph. A simple graph is an example of a clutter, whose edges are of
cardinality two.

Let C be a clutter on a vertex set V (C). An edge e ∈ E(C) is said to be incident
on a vertex x ∈ V (C) if x ∈ e. A subset C ⊆ V (C) is called a vertex cover of C if
any e ∈ E(C) is incident to a vertex of C . If a vertex cover is minimal with respect
to inclusion, then we call it a minimal vertex cover. The cardinality of a minimum
(smallest) vertex cover is known as the vertex covering number of C and is denoted
by α0(C). Also a subset A ⊆ V (C) is said to be stable or independent if e � A for any
e ∈ E(C) and A is said to be maximal independent set if it is maximal with respect to
inclusion. The number of vertices in a maximum (largest) independent set, denoted by
β0(C), is called the independence number of C. Note that a vertex coverC is a minimal
vertex cover of C if and only if its complement V (C) \ C is a maximal independent
set.

Let C be a clutter on the vertex set V (C) = {x1, . . . , xn}. Then for A ⊆ V (C),
we consider X A := ∏

xi ∈A xi as a square-free monomial in the polynomial ring
R = K [x1, . . . , xn] over a field K . The edge ideal of the clutter C, denoted by I (C),
is the ideal in R defined by

I (C) = 〈
Xe | e ∈ E(C)

〉
.

Set of square-free monomial ideals are in one to one correspondence with the set
of clutters. For a simple graph G, the edge ideal I (G) is generated by square-free
quadratic monomials. It is a well-known fact that

ht(I (C)) = α0(C) and dim(R/I (C)) = β0(C),

where ht(I (C)) is the height of I (C) and dim(R/I (C)) is the Krull dimension of
R/I (C). Note that α0(C) + β0(C) = n.
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Let A be a stable set of a clutter C. Then the neighbour set of A in C, denoted by
NC(A), is defined by

NC(A) = {xi ∈ V (C) | {xi } ∪ A contains an edge of C}.

We denote NC[A] := NC(A) ∪ A. Now we recall some notations and results from
[18]. Let FC denote the collection of all maximal stable sets of C and AC denote the
collection of those stable sets A of C, such thatNC(A) is a minimal vertex cover of C.
The following theorems in [18] gives the combinatorial formula for v(I (C)).

Lemma 2.2 ([18, Lemma 3.4]) Let I = I (C) be the edge ideal of a clutter C. Then
the following hold:

(a) For A ∈ AC , we have (I : X A) = 〈NC(A)
〉
.

(b) If A is stable and NC(A) is a vertex cover, then NC(A) is a minimal vertex cover.
(c) If (I : f ) = p for some f ∈ Rd and some p ∈ Ass(I ), then there is A ∈ AC , with

|A| ≤ d, such that (I : X A) = 〈NC(A)
〉 = p.

(d) If A ∈ FC , then NC(A) = V (C) \ A and (I : X A) = 〈NC(A)
〉
.

Theorem 2.3 ([18, Theorem 3.5]) Let I = I (C) be the edge ideal of a clutter C. If I
is not prime, then FC ⊆ AC and

v(I ) = min{|A| : A ∈ AC}.

In this paper, we use Lemma 2.2 and Theorem 2.3 frequently.
Let V = {x1, . . . , xn}. A simplicial complex � on the vertex set V is a collection

of subsets of V , with the following properties:

(i) {xi } ∈ � for all xi ∈ V ;
(ii) F ∈ � and G ⊆ F imply G ∈ �.

An element F ∈ � is called a face of �. A maximal face of � is called a facet of �.
For a vertex v ∈ V , del�(v) is a subcomplex, called deletion of v, on the vertex set
V \ {v} given by

del�(v) := {F ∈ � | v /∈ F}

and the lk�(v), called the link of v, is the subcomplex of del�(v) given by

lk�(v) := {F ∈ � | v /∈ F and F ∪ {v} ∈ �}.

If V is the only facet of �, then � is called a simplex.

Definition 2.4 A simplicial complex � is called vertex decomposable, if either � is a
simplex, or � = φ, or � contains a vertex v such that

(a) both of del�(v) and lk�(v) are vertex decomposable, and
(b) every facet of del�(v) is a facet of �.

A vertex v satisfying condition (b) is called a shedding vertex of �.
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The independence complex �C of a clutter C is a simplicial complex whose faces are
the stable sets of C. Note that the Stanley–Reisner ideal I�C is equal to I (C).

Definition 2.5 Let I and J be ideals of a ring R. The colon ideal of I with respect to
J is an ideal of R, denoted by (I : J ) and is defined as

(I : J ) = {u ∈ R | uv ∈ I for all v ∈ J }.

For an element f ∈ R, (I : f ) := (I : ( f )). If I is a monomial ideal and f ∈ R is a
monomial, then by [16, Proposition 1.2.2], we have

(I : f ) = 〈 u

gcd(u, f )
| u ∈ G(I )

〉
.

Let I be an ideal in a ring R. Then a presentation I = ⋂k
i=1 qi , where each qi is

a primary ideal, is called a primary decomposition of I . A primary decomposition is
irredundant if no qi can be omitted in the presentation and pi �= p j for i �= j , where
pi = √

qi . Each pi is said to be an associated prime ideal of I and the set of associated
prime ideals of I is denoted by Ass(I ) or Ass(R/I ). From [1, Theorem 4.5] and [16,
Corollary 1.3.10], we can say that the associated prime ideals of a monomial ideal
I are precisely the prime ideals of the form (I : f ), for some monomial f ∈ R. If
a monomial ideal cannot be written as a proper intersection of two other monomial
ideals, then we say it is irreducible. For a monomial ideal I , a presentation of the
form I = ⋂k

i=1 qi , where each qi is irreducible, is called an irredundant irreducible
decomposition if no qi can be omitted in the decomposition. By [29, Theorem 6.1.17]
and [16, Corollary 1.3.2], any monomial ideal can be written as an unique irredun-
dant intersection of irreducible monomial ideals, and the irreducible components are
generated precisely by pure powers of the variables.

Lemma 2.6 ([29, Lemma 6.3.37]) Let I = I (C) be an edge ideal of a clutter C. Then
p ∈ Ass(I ) if and only if p = 〈

C
〉

for some minimal vertex cover C of C.

Definition 2.7 [[27, Construction 21.7]] The polarization of monomials of the type
xai

i is defined as xai
i (pol) = ∏ai

j=1 xi, j and the polarization of xa = xa1
1 · · · xan

n is
defined as

xa(pol) = xa1
1 (pol) · · · xan

n (pol).

For a monomial ideal I = 〈
xa1 , . . . , xan

〉 ⊆ R, the polarization I (pol) is defined to be
the square-free monomial ideal

I (pol) = 〈
xa1(pol), . . . , xan(pol)

〉
,

in the ring R(pol) = K [xi, j | 1 ≤ i ≤ n, 1 ≤ j ≤ ri ] , where ri is the power of xi in
the lcm of {xa1 , . . . , xan}.
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Definition 2.8 Let F. be a minimal graded free resolutions of R/I as R module such
that

F. 0 →
⊕

j

R(− j)βk, j → · · · →
⊕

j

R(− j)β1, j → R → R/I → 0,

where I is a graded ideal of the graded ring R. The Castelnuovo–Mumford regularity
of R/I (in short regularity of R/I ) is denoted by reg(R/I ) and defined as

reg(R/I ) = max{ j − i | βi, j �= 0}.

The projective dimension of R/I is defined to be

pd(R/I ) = max{i | βi, j �= 0 for some j} = k.

For a clutter C and A ⊆ V (C), we define the induced clutter C \ A on the vertex
set V (C) \ A with E(C \ A) = {e ∈ E(C) | e ∩ A = φ}. If A = {xi }, C \ {xi } is the
clutter, called deletion of xi , and in this case

〈
I (C \ {xi }), xi

〉 = 〈
I (C), xi

〉
. We often

denote the ideal generated by I and f by (I , f ) instead of
〈
I , f

〉
.

Definition 2.9 Let G be a graph. A set M ⊆ E(G) is said to be a matching in G
if no two edges in M are adjacent, i.e., no two edges in M share a common vertex.
A matching M = {e1, . . . , ek} is called an induced matching in G if the induced
subgraph on the vertex set

⋃k
i=1 ei contains only M as the edge set, i.e., no two edges

in M are joined by an edge. The cardinality of a maximum (largest) induced matching
in G is known as the induced matching number of G, denoted by im(G).

3 v-number of monomial ideals via polarization

The v-number of square-free monomial ideals has been discussed broadly in [18]. In
this section, we study the v-number of arbitrary monomial ideals using the technique
of polarization and generalize some results of [18].

Proposition 3.1 Let I be a monomial ideal and f = xa1
1 · · · xan

n be a monomial such
that (I : f ) = 〈

xs1 , . . . , xsk

〉
, where ai ≤ highest power of xi appears in G(I ). Then

(I (pol) : f (pol)) = 〈
xs1,bs1

, . . . , xsk ,bsk

〉
,

where bsi − 1 is the power of xsi in f .

Proof We know that (I : f ) = 〈 u

gcd(u, f )
| u ∈ G(I )

〉
. Therefore, xsi = ui

gcd(ui , f )
,

for some ui ∈ G(I ). Consider the ring R(pol) corresponding to the ideal I (pol).
By the given condition on f , we have f (pol) ∈ R(pol). Let ui = xb1

1 · · · xbn
n . Then
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gcd(ui , f ) = xb1
1 · · · x

bsi −1
si · · · xbn

n and we get

ui (pol)

gcd(ui (pol), f (pol))
= xsi ,bsi

,

where bsi − 1 is the power of xsi in f . Now suppose for some u ∈ G(I ), we have
u

gcd(u, f )
∈ 〈

xm
〉
, where m ∈ {s1, . . . , sk}. Let u = xr1

1 · · · xrn
n and gcd(u, f ) =

x p1
1 · · · x pn

n . Then we have rm − pm ≥ 1 and ri − pi ≥ 0 for all i ∈ [n] \ {m}.
Therefore, we can write

u(pol)

gcd(u(pol), f (pol))
= u(pol)

gcd(u, f )(pol)

=(x1,p1+1 · · · x1,r1) · · · (xm,pm+1 · · · xm,rm )

· · · (xn,pn+1 · · · xn,rn ).

Since rm ≥ pm +1, it follows that
u(pol)

gcd(u(pol), f (pol))
∈ 〈

xm,pm+1
〉
. Now x pm

m | f but

x pm+1
m � f imply pm is the power of xm in f . Therefore, xm,pm+1 ∈ (I (pol) : f (pol)),
and hence,

(I (pol) : f (pol)) = 〈
xs1,bs1

, . . . , xsk ,bsk

〉
,

where bsi − 1 is the power of xsi in f . ��

Lemma 3.2 Let I ⊆ R be a monomial ideal and f /∈ I be a monomial in R. If〈
xs1 , . . . , xsk

〉 ⊆ (I : f ), where all si are distinct, then there exists a monomial g ∈ R
such that

(I : g) = 〈
xs1 , . . . , xsr

〉
and f | g,

for some r ≥ k.

Proof We know that (I : f ) = 〈 u

gcd(u, f )
| u ∈ G(I )

〉
. If we have

〈
xs1 , . . . , xsk

〉 =
(I : f ), then take g = f and we are done. So wemay assume

〈
xs1 , . . . , xsk

〉
� (I : f ).

Then for each 1 ≤ i ≤ k, there exists ui ∈ G(I ), such that
ui

gcd(ui , f )
= xsi .

Let G(I ) = {u1, . . . , uk, uk+1, . . . , uk+m}. If uk+1

gcd(uk+1, f )
is divided by any of

xs1 , . . . , xsk , then
uk+1

gcd(uk+1, f )
∈ 〈

xs1 , . . . , xsk

〉
and set f1 = f . If

uk+1

gcd(uk+1, f )
=

h1 is not divided by any of xs1 , . . . , xsk , then h1 is a non-constant monomial in
K [xsk+1, . . . , xsn ] as f /∈ I . Without loss of generality, we assume xsk+1 | h1 and
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set f1 = f h1

xsk+1

. Then
ui

gcd(ui , f1)
= xsi is true for each 1 ≤ i ≤ k. Now

uk+1

gcd(uk+1, f1)
= uk+1

gcd
(
uk+1,

f h1

xsk+1

)

= uk+1

gcd(uk+1, f ) gcd
( uk+1

gcd(uk+1, f )
,

h1

xsk+1

)

= h1

gcd
(
h1,

h1

xsk+1

)

= xsk+1 .

Therefore, we get
〈
xs1 , . . . , xsk+1

〉 ⊆ (I : f1). Continue this process with the
remaining elements of G(I ). Finally, we get fm = g such that

(I : g) = 〈
xs1 , . . . , xsr

〉
and f | g,

for some r ≥ k. ��
Proposition 3.3 Let I be a monomial ideal and consider

p = 〈
xs1,bs1

, . . . , xsk ,bsk

〉 ∈ Ass(I (pol)),

such that there exists no embedded prime of I containing
〈
xs1 , . . . , xsk

〉
. Let D = {d |

∃ M ∈ Rd with (I (pol) : M) = p}. Then to find min D we can choose M in such a
way that (I (pol) : M) = p, and for that M we get a monomial f with deg f ≤ deg M,
such that (I : f ) = 〈

xs1 , . . . , xsk

〉
.

Proof Since p ∈ Ass(I (pol)), by [10, Proposition 2.5], there exists an irredundant
irreducible primary component of I such that q = 〈

x
as1
s1 , . . . , x

ask
sk

〉
, where asi ≥

bsi ≥ 1 for i = 1, . . . , k. Let C be the clutter corresponding to the ideal I (pol), i.e.,
I (C) = I (pol). By Lemma 2.2, there exists a stable set A of C such that

(I (pol) : X A) = 〈NC(A)
〉 = p.

Now there exists ei ∈ E(C) such that ei ⊆ A ∪ {xsi ,bsi
}, for 1 ≤ i ≤ k. For each

1 ≤ i ≤ k, we have Xei = ui (pol) for some ui ∈ G(I ). Again ui ∈ q implies x
as ji
s ji

divides ui , for some 1 ≤ ji ≤ k. Now xs ji ,bs ji
/∈ A and ei ⊆ A ∪ {xsi ,bsi

} imply

s ji = si . Let csi be the power of xsi in ui . Then csi ≥ asi . Now consider the prime
ideal p′ = 〈

xs1,as1
, . . . , xsk ,ask

〉 ∈ Ass(I (pol)). Let

B = A ∪k
i=1 {xsi ,bsi

} \ ∪k
i=1{xsi ,asi

}.
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For any u ∈ G(I ), there exists some x
as j
s j which divides u, where 1 ≤ j ≤ k.

Therefore, xs j ,as j
| u(pol), which implies that corresponding edge of u(pol) in E(C)

is not contained in B, and hence, B is a stable set in C. Also it is clear that

|A| = |B| and (I (pol) : X B) = 〈NC(B)
〉 = p′.

Take the stable set B ′ = ∪k
i=1(ei \ {xsi ,asi

}) ⊆ B. Again using Lemma 2.2, we can
write

|B ′| ≤ |B| and (I (pol) : X B′) = 〈NC(B ′)
〉 = p′.

Now consider the monomial f = lcm

{
u1

xs1
, . . . ,

uk

xsk

}

. Then we have deg( f ) = |B ′|
and xsi f ∈ I , for all 1 ≤ i ≤ k, which imply

〈
xs1 , . . . , xsk

〉 ⊆ (I : f ). Since

X B′ = lcm

{
u1(pol)

xs1,as1

, . . . ,
uk(pol)

xsk ,ask

}

and
ui (pol)

gcd (ui (pol), X B′)
= xsi ,asi

,

we have
ui

gcd (ui , f )
= xsi , for all 1 ≤ i ≤ k. Let u be a minimal generator of

I other than u1, . . . , uk . If
u

gcd (u, f )
/∈ 〈

xs1 , . . . , xsk

〉
, then by Lemma 3.2 there

exists an associated prime ideal of I properly containing
〈
xs1 , . . . , xsk

〉
. This gives

a contradiction to our assumption and so
u

gcd (u, f )
∈ 〈

xs1 , . . . , xsk

〉
. Hence, (I :

f ) = 〈
xs1 , . . . , xsk

〉
and deg( f ) = |B ′| ≤ |B| = |A|. To find min D we can choose

M = X A, for some stable set A in C, and this completes the proof. ��
Theorem 3.4 Let I be a monomial ideal. If there exists

p = 〈
xs1,bs1

, . . . , xsk ,bsk

〉 ∈ Ass(I (pol)),

such that v(I (pol)) = vp(I (pol)) and if there is no embedded prime of I properly
containing

〈
xs1 , . . . , xsk

〉
, then

v(I ) = v(I (pol)).

Proof Let p′ = {xt1 , . . . , xtr } ∈ Ass(I ) and f be the monomial such that

(I : f ) = p′ with deg( f ) = v(I ).

Then power of any xi in f is less than or equal to the highest power of xi appearing
in G(I ). Then by Proposition 3.1, we have

(I (pol) : f (pol)) = 〈
xt1,bt1

, . . . , xtr ,btr

〉 ∈ Ass(I (pol)),

where bti − 1 is the power of xti in f for each 1 ≤ i ≤ r . Thus, we have

123



Journal of Algebraic Combinatorics (2022) 56:903–927 913

v(I (pol)) ≤ v(I ),

as deg( f ) = deg( f (pol)). Again there exists p ∈ Ass(I (pol)) and a square-free
monomial M such that

(I (pol) : M) = p with deg(M) = v(I (pol)).

Then by Proposition 3.3, there exists a monomial g such that

(I : g) = {xs1 , . . . , xsk } ∈ Ass(I ) with deg(g) ≤ deg(M).

So we get v(I ) ≤ v(I (pol)), and hence, v(I ) = v(I (pol)). ��
Corollary 3.5 For a monomial ideal I , we have v(I (pol)) ≤ v(I ). Moreover, if I has
no embedded prime, then v(I (pol)) = v(I ).

The converse of the above Corollary 3.5 is not necessarily true, i.e., despite having
an embedded prime of a monomial ideal I , it may happen that v(I (pol)) = v(I ).

Example 3.6 Let I = 〈
x1x22 , x2x23 , x21 x3

〉 ⊆ Q[x1, x2, x3]. Then

I = 〈
x22 , x3

〉 ∩ 〈
x1, x23

〉 ∩ 〈
x21 , x2

〉 ∩ 〈
x21 , x22 , x23

〉
.

Here Ass(I ) = {〈
x2, x3

〉
,
〈
x1, x3

〉
,
〈
x1, x2

〉
,
〈
x1, x2, x3

〉}
. With the help of [13, Pro-

cedure A1], we obtain v(I ) = 3 = v(I (pol)). In fact, we have (I : x1x2x3) =〈
x1, x2, x3

〉
, where

〈
x1, x2, x3

〉
is an embedded prime of I . Also, we have I (pol) =〈

x1,1x2,1x2,2, x2,1x3,1x3,2, x3,1x1,1x1,2
〉
and

(I (pol) : x1,1x2,1x3,1) = 〈
x1,2, x2,2, x3,2

〉
.

Note that v(I (pol)) = 3 = deg(x1,1x2,1x3,1) and this justifies our Theorem 3.4, as
there is no associated prime ideals of I properly containing

〈
x1, x2, x3

〉
.

FromTheorem3.4,we get relations between the v-number of an arbitrarymonomial
ideal and the v-number of its polarization. The next result is the generalization of [18,
Proposition 3.1] for a monomial ideal with some special properties.

For a graded module M �= 0, we define α(M) := min{deg( f ) | f ∈ M \ {0}}.
Proposition 3.7 Let I be a monomial ideal. Suppose there exists

p = 〈
xs1,bs1

, . . . , xsk ,bsk

〉 ∈ Ass(I (pol))

such that v(I (pol)) = vp(I (pol)) and there is no embedded prime of I properly
containing

〈
xs1 , . . . , xsk

〉
. Then, we have

v(I ) = min{α((I : p)/I ) | p ∈ Ass(I )}.
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Proof If I is a prime ideal, then (I : 1) = I , (I : I ) = R, and therefore, we have

v(I ) = α((I : I )/I ) = α(R/I ) = 0.

So we may assume I is not prime. Now there exists p′ ∈ Ass(I ) and f ∈ Rd such that
(I : f ) = p′ with v(I ) = deg( f ). Then f ∈ (I : p′) but f /∈ I , and so f ∈ (I : p′)\ I .
Thus,

v(I ) ≥ α((I : p′)/I ) ≥ min{α((I : p)/I ) | p ∈ Ass(I )}.

Let us assume p′′ = 〈
xs1 , . . . , xsk

〉 ∈ Ass(I ). Let h ∈ (I : p′′) \ I be a monomial.
Then hxsi ∈ I implies ui | hxsi , for some ui ∈ G(I ), where 1 ≤ i ≤ k. Now ui � h

as h /∈ I and so xsi | ui . We take h′ = lcm

{
u1

xs1
, . . . ,

uk

xsk

}

. Then xsi h
′ ∈ I for

all 1 ≤ i ≤ k and deg(h′) ≤ deg(h). Each
ui

xsi

| h implies h′ divide h, and hence,

h′ /∈ I as h /∈ I . Therefore, we can say h′(pol) ∈ R(pol) and since
ui

gcd(ui , h′)
= xsi

for each i ∈ {1, . . . , k}, we also have (h′xs1 · · · xsk )(pol) ∈ R(pol). Now consider

g = (h′xs1 · · · xsk )(pol)

xs1,1 · · · xsk ,1
. Then g /∈ I (pol) as h′ /∈ I . Again xsi h

′ ∈ 〈
ui

〉
implies

gxsi ,1 ∈ 〈
ui (pol)

〉
, for all i ∈ {1, . . . , k}. Therefore, g ∈ (

I (pol) : 〈
xs1,1, . . . , xsk ,1

〉) \
I (pol), and from [10, Proposition 2.5] we also have

〈
xs1,1, . . . , xsk ,1

〉 ∈ Ass(I (pol)).

Note that deg(g) = deg(h′) ≤ deg(h). Since h ∈ (I : p′′) \ I is arbitrary, we have

α
(
(I (pol) : 〈

xs1,1, . . . , xsk ,1
〉
)/I (pol)

) ≤ α((I : p′′)/I ).

Therefore, using [18, Proposition 3.1] we get v(I (pol)) ≤ min{α((I : p)/I ) | p ∈
Ass(I )} and also by Theorem 3.4, v(I ) = v(I (pol)). Hence, v(I ) ≤ min{α((I :
p)/I ) | p ∈ Ass(I )} and the result follows. ��
Lemma 3.8 Let I1 ⊆ R1 = K [x] and I2 ⊆ R2 = K [y] be two monomial ideals and
K be a field. Consider R = K [x, y] and I = I1R + I2R. Then p ∈ Ass(R/I ) if and
only if p = p1R + p2R, where p1 ∈ Ass(R1/I1) and p2 ∈ Ass(R2/I2).

Proof Since I is the smallest ideal containing I1R and I2R, we have

G(I ) = G(I1) � G(I2).

Let p = 〈
xs1 , . . . , xsk , yt1 , . . . , ytl

〉 ∈ Ass(R/I ). Then there exists a monomial f ∈ R,
such that (I : f ) = p. We can write f = f1 f2, where f1 ∈ R1 and f2 ∈ R2. Now

p = (I : f ) =
〈

u

gcd(u, f )
,

v

gcd(v, f )
| u ∈ G(I1), v ∈ G(I2)

〉

.
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Also, we have

u

gcd(u, f )
= u

gcd(u, f1)
∈ p ∩ R1 and

v

gcd(v, f )
= v

gcd(v, f2)
∈ p ∩ R2,

for all u ∈ G(I1) and v ∈ G(I2). Therefore, we get

(I1 : f1) = 〈
xs1 , . . . , xsk

〉 = p1 ∈ Ass(R1/I1)

and

(I2 : f2) = 〈
yt1 , . . . , ytl

〉 = p2 ∈ Ass(R2/I2).

Hence, p = p1R + p2R, where p1 ∈ Ass(R1/I1) and p2 ∈ Ass(R2/I2).
Let p = p1R + p2R, where p1 ∈ Ass(R1/I1) and p2 ∈ Ass(R2/I2). Then clearly

p is a prime ideal in R containing I . We have monomials f1 ∈ R1 and f2 ∈ R2, such
that (I1 : f1) = p1 and (I2 : f2) = p2. Setting f = f1 f2, we get for all u ∈ G(I1)
and v ∈ G(I2),

u

gcd(u, f )
= u

gcd(u, f1)
∈ p1 and

v

gcd(v, f )
= v

gcd(v, f2)
∈ p2.

As (I : f ) =
〈

w

gcd(w, f )
| w ∈ G(I )

〉

and G(I ) = G(I1) � G(I2), we have

(I : f ) = p, i.e., p ∈ Ass(R/I ).
��

In [18, Proposition 3.8], the additivity of the v-number for square-free monomial
ideals was shown. In the next proposition, we show that the v-number is additive for
arbitrary monomial ideals.

Proposition 3.9 (v-number is additive) Let I1 ⊆ R1 = K [x] and I2 ⊆ R2 = K [y] be
two monomial ideals and consider R = K [x, y]. Then we have

v(I1R + I2R) = v(I1) + v(I2).

Proof Let I = I1R + I2R. Then there exists a monomial f ∈ R and p ∈ Ass(R/I )
such that

(I : f ) = p and v(I ) = deg( f ).

We can write f = f1 f2, such that f1 ∈ R1 and f2 ∈ R2. Then by Lemma 3.8, we
have p = p1R + p2R, where

(I1 : f1) = p1 ∈ Ass(R1/I1) and (I2 : f2) = p2 ∈ Ass(R2/I2).

By definition of v-number, v(I1) + v(I2) ≤ deg( f1) + deg( f2) = v(I ). For the
reverse inequality, we choose monomials fi ∈ Ri and pi ∈ Ass(Ri/Ii ), such that
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(Ii : fi ) = pi and v(Ii ) = deg( fi ), where i ∈ {1, 2}. Again by Lemma 3.8, we
have p = p1R + p2R ∈ Ass(R/I ) and (I : f1 f2) = p. Thus, v(I ) ≤ deg( f1 f2) =
v(I1) + v(I2). ��

The next result is the generalization of [18, Proposition 3.9].

Proposition 3.10 Let I be a complete intersection monomial ideal with G(I ) =
{xa1 , . . . , xak }. If di = deg(xai ) for all i = 1, . . . , k, then we have

v(I ) = d1 + · · · + dk − k = reg(R/I ).

Proof I is complete intersection implies that |G(I )| = ht(I ). By [10, Proposition
2.3], ht(I ) = ht(I (pol)), and therefore, we have

|G(I (pol))| = |G(I )| = ht(I ) = ht(I (pol)),

i.e., I (pol) is a complete intersection. According to [16, Corollary 1.6.3], reg(R/I ) =
reg(R(pol)/I (pol)). Since I is complete intersection, I has no embeddedprime.There-
fore, by Theorem 3.4, we have v(I ) = v(I (pol)). Again deg(xai (pol)) = deg(xai ) =
di , for i = 1, . . . , k, and hence, by [18, Proposition 3.9], we have

v(I ) = v(I (pol)) = d1 + · · · + dk − k = reg(R/I ). ��
Proposition 3.11 Let I be a monomial ideal and f be a monomial such that f /∈ I .
Then v(I ) ≤ v(I : f ) + deg( f ).

Proof Suppose (I : f ) is an associated prime of I . Then by definition of v-number,
v(I ) ≤ deg( f ) and so the result follows as Proposition 3.10 implies v(I : f ) = 0.
Now assume (I : f ) /∈ Ass(I ). Then there exists an associated prime p of (I : f )

and a monomial g such that ((I : f ) : g) = p and v(I : f ) = deg(g). Note that
(I : f g) = p, and hence, we get

v(I ) ≤ deg( f g) = v(I : f ) + deg( f ). ��
Corollary 3.12 Let I be a monomial ideal and xi be a variable such that xi /∈ I . Then
v(I ) ≤ v(I : xi ) + 1.

Proof The result follows by taking f = xi in Proposition 3.11. ��
Some properties of v-number of edge ideals of graphswere discussed in [18, propo-

sition 3.12].We extend someof those for edge ideals of clutters, i.e., for any square-free
monomial ideal in Proposition 3.13.

Proposition 3.13 Let I = I (C) be an edge ideal of a clutter C. Then the following
results are true.

(i) If {xi } /∈ E(C), then v(I ) ≤ v(I : xi ) + 1, where xi ∈ V (C).
(ii) v(I : xi ) ≤ v(I ), for some xi ∈ V (C).
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(iii) If v(I ) ≥ 2, then v(I : xi ) < v(I ) for some xi ∈ V (C).
(iv) v(I (C \ {xi })) ≤ v(I (C)) for some xi ∈ V (C).

Proof (i) Follows from Corollary 3.12.
(ii) By Lemma 2.2 and Theorem 2.3, we have a stable set A of C such that

(I : X A) = 〈NC(A)
〉 = p ∈ Ass(I ) and v(I ) = |A|.

We are assuming I �= m, otherwise, (m : xi ) = R for any xi ∈ V (C). Then there
exists some xi ∈ V (C), which is not in p. Note that p ⊆ (I : xi X A). Let us take
f ∈ (I : xi X A). Then f xi ∈ p and xi /∈ p together imply f ∈ p. Thus, (I : xi X A) = p,
i.e., ((I : xi ) : X A) = p. Therefore, we have

v(I : xi ) ≤ |A| = v(I ).

(iii) Take a stable set A of C with

(I : X A) = 〈NC(A)
〉 = p ∈ Ass(I ) and v(I ) = |A|.

Since |A| ≥ 2, we have A′ = A \ {xi } �= φ for any xi ∈ A. Then

(I : X A) = (I : xi X A′) = ((I : xi ) : X A′) = p,

which gives v(I : xi ) ≤ |A′| < |A| = v(I ).
(iv) Note that if I = I (C) then v(I , xi ) = v(I (C \ {xi })). Take A and p as in (ii). Pick
xi ∈ V (C)\ A and so A is a stable set of the clutter C \{xi } also. Let e ∈ E(C \{xi }) ⊆
E(C). Then there exists y ∈ NC(A) such that y ∈ e. Also, by definition of NC(A),
there exists e′ ∈ E(C), such that e′ ⊆ A ∪ {y}. Now xi /∈ e implies y �= xi , and
therefore, xi /∈ e′. Then we have e′ ∈ E(C \ {xi }), which implies y ∈ NC\{xi }(A).
Thus,NC\{xi }(A) is a vertex cover of C \ {xi } and A being a stable set of C \ {xi }, using
Lemma 2.2, we have

(I (C \ {xi }) : X A) = 〈NC\{xi }(A)
〉
.

Indeed, it is easy to see thatNC\{xi }(A) = NC(A) \ {xi }. Hence, by Theorem 2.3, we
get v(I , xi ) = v(I (C \ {xi })) ≤ |A| = v(I ). ��
Proposition 3.14 For a graph G, we have v(I (G)) ≤ α0(G).

Proof Let A be a minimal vertex cover of G with |A| = α0(G). Since A is a minimal
vertex cover for G, for each x ∈ A, there exists an edge ex ∈ E(G), which is not
adjacent to any other vertex of A, i.e. ex ∩ A = {x}. Let ex = {x, yx }, for every
x ∈ A and B = {yx | x ∈ A}. For different x ∈ A, some yx may coincide and so
|B| ≤ |A| = α0(G). Byour choice of B, it is clear that A∩B = φ and so B is a stable set
in G. Also we haveNG(B) = A, and hence, by Lemma 2.2, (I (G) : X B) = 〈NG(B)

〉
.

Thus, Theorem 2.3 gives v(I (G)) ≤ |B| ≤ α0(G). ��
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4 Bound of regularity and inducedmatching number by the
v-number

The line graph of a graph G, denoted by L(G), is a graph on the vertex set V (L(G)) =
E(G) and the edge set

E(L(G)) = {{ei , e j } ⊆ E(G) | ei ∩ e j �= φ in G}.

For a positive integer k, the k-th power of G, denoted by Gk , is the graph on the vertex
set V (Gk) = V (G) such that there is an edge between two vertices of Gk if and only
if the distance between the corresponding vertices in G is less than or equal to k.

Finding amatching in a graph G is equivalent to finding an independent set in L(G)

(see [4]) and an induced matching in G is equivalent to an independent set in L2(G),
the square of L(G) (see [5]). Now we want to know the relation between v(I (G))

and im(G), which might be a step forward towards answering Question 5.2. In the
next proposition, we try to see v(I (G)) in terms of some invariants in the graph L(G).
What is remaining is to see the connection between v(I (G)) with invariants of the
graph L2(G).

Proposition 4.1 Let G be a simple graph and L(G) be its line graph. Suppose that
c(L(G)) denotes the minimum number of cliques in L(G), such that any vertex of
L(G) is either a vertex of those cliques or adjacent to some vertices of those cliques.
Then v(I (G)) = c(L(G)).

Proof Lemma 2.2 and Theorem 2.3 ensure that there exists a stable set A in G such
that

(I (G) : X A) = 〈NG(A)
〉
and |A| = v(I (G)).

For each xi ∈ A, let EG(xi ) = {ei1, . . . , eimi } be the set of edges incident to the
vertex xi . Then EG(xi ) forms a clique in L(G), for each xi ∈ A. Since A is stable,
cliques corresponding to each EG(xi ), where xi ∈ A, are disjoint to each other. Let
e ∈ V (L(G)) be a vertex other than the vertices of the cliques EG(xi ), for xi ∈ A.
Let e = {u, v} be the corresponding edge of e in G. Then, one of u or v should belong
to NG(A), as NG(A) is a minimal vertex cover of G. Assume u ∈ NG(A) and our
choice of e ensures that v /∈ A. Then u ∈ NG(xi ) and so {xi , u} = eik , for some
1 ≤ k ≤ mi . Therefore, e and eik being adjacent in G, we have e is adjacent to the
vertex eik ∈ EG(xi ) in L(G). Hence, we have c(L(G)) ≤ |A| = v(I (G)).

Now for the reverse inequality, let r = c(L(G)) and we can choose r disjoint
cliques C1, . . . , Cr in L(G), such that any vertex of L(G) is either a vertex of Ci

or adjacent to some vertices of Ci , 1 ≤ i ≤ r . Since each Ci is a clique in L(G),
corresponding edges in G of vertices of Ci either shares a common vertex or they form
a triangle in G. Suppose corresponding edges of C1, . . . , Ck in G share a common
vertex, say x1, . . . , xk , respectively, and corresponding edges in G of Ck+1, . . . , Cr

form triangles. Take one vertex from each triangle formed by the corresponding edges
in G of Ck+1, . . . , Cr , say xk+1, . . . , xr . Since C1, . . . , Cr are disjoint in L(G), B =
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{x1 . . . , xr } is a stable set in G. We will show that NG(B) forms a minimal vertex
cover for G. Pick any e = {u, v} ∈ E(G). Then, e ∈ V (L(G)) and if e ∈ Ci for
1 ≤ i ≤ r then one of u or v should belong to NG(xi ). Suppose e is a vertex other
than the vertices of C1, . . . , Cr in L(G). Then e ∩ B = φ and e is adjacent to some
vertex ei j ∈ Ci in L(G), 1 ≤ i ≤ r . Therefore, e and ei j share a common vertex,
say u, in G. Then u ∈ NG(xi ) and so NG(B) is a vertex cover for G. Thus, using
Lemma 2.2, we get

(I (G) : X B) = 〈NG(B)
〉
,

and hence, v(I (G)) ≤ |B| = r = c(L(G)). ��
Let G be a simple graph and e ∈ E(G) be an edge.

• We define G \ e as the graph on V (G) just by removing the edge e from E(G).
• By Ge, we mean the induced subgraph of G on the vertex set V (G) \ NG\e[e].
• The contraction of e on G (see [3, Definition 5.2]), denoted by G/e, is defined
by V (G/e) = (V (G) \ e) ∪ {w}, where w is a new vertex, and E(G/e) =
E(G \ e) ∪ {{w, z} : z ∈ NG\e(e)}.
Let us first cite some results which give some bounds of reg(R/I (G)) in terms of

some graphs obtained from G:

(1) From [14, Theorem 3.5], we get

reg(R/I (G)) ≤ max{reg(R/I (G \ e)), reg(R/I (Ge)) + 1}.

(2) In [3], Biyikoğlu and Civan proved that

reg(R/I (G/e)) ≤ reg(R/I (G)) ≤ reg(R/I (G/e)) + 1.

(3) ([30, Theorem 3]). Let J ⊆ V (G) be an induced clique in G. Then

reg(R/I (G)) ≤ reg(R/I (G \ J )) + 1,

where G \ J denotes the induced subgraph on V (G) \ J .

As a consequence of the above results, we prove the following Proposition 4.2,
which might be helpful in finding a relation between the v-number and regularity
using induction hypothesis.

Proposition 4.2 Let G be a simple graph. Then

(i) v(I (G \ e)) ≤ v(I (G)) + 1, for any e ∈ E(G).
(ii) v(I (G)) ≤ v(I (G \ J )) + 1, where J is a clique of G.

(iii) There exists an edge e ∈ E(G), such that v(I (G/e)) ≤ v(I (G)).

Proof (i) By Lemma 2.2 and Theorem 2.3, there exists a stable set A of G such that

(I (G) : X A) = 〈NG(A)
〉

and v(I (G)) = |A|.
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Clearly, A is a stable set too in G \ e.
Case I. Suppose e ∩ A = φ. Then NG\e(A) = NG(A) and it is also a vertex cover
for G \ e. Thus, using Lemma 2.2, we have

(I (G \ e) : X A) = 〈NG\e(A)
〉
,

which implies v(I (G \ e)) ≤ v(I (G)).
Case II. Let e ∩ A �= φ and u ∈ e ∩ A, where e = {u, v}. Then v ∈ NG(A). If
v ∈ NG\e(A), then NG(A) = NG\e(A) is a vertex cover of G \ e. Therefore, by
Lemma 2.2,

(I (G \ e) : X A) = 〈NG\e(A)
〉
,

and so v(I (G \ e)) ≤ v(I (G)). If v /∈ NG\e(A), then A ∪ {v} is a stable set in G \ e
and NG\e(A ∪ {v}) forms a vertex cover for G \ e. Again by Lemma 2.2, we have

(I (G \ e) : X A∪{v}) = 〈NG\e(A ∪ {v})〉.

Hence, v(I (G \ e)) ≤ |A| + 1 = v(I (G)) + 1.
(ii) From Lemma 2.2 and Theorem 2.3, we have a stable set A of G \ J such that

(I (G \ J ) : X A) = 〈NG\J (A)
〉
and v(I (G \ J )) = |A|.

Note that A is also a stable set in G. If all vertices of J is contained in NG(A), then
NG(A) is a vertex cover of G and by Lemma 2.2, we have (I (G) : X A) = 〈NG(A)

〉
.

Thus, by Theorem 2.3, v(I (G)) ≤ v(I (G \ J )). Suppose there is a vertex x ∈ J such
that x /∈ NG(A). Then A ∪ {x} is a stable set in G andNG(A ∪ {x}) is a vertex cover
of G. So by Lemma 2.2,

(I (G) : X A∪{x}) = 〈NG(A ∪ {x})〉.

Hence, by Theorem 2.3, v(I (G)) ≤ v(I (G \ J )) + 1.
(iii) By Lemma 2.2 and Theorem 2.3, there is a stable set A of G such that

(I (G) : X A) = 〈NG(A)
〉
and v(I (G)) = |A|.

Let u ∈ A and by minimality of A there exists v ∈ NG(u) such that v /∈ NG(A \ {u}).
Contract the edge e = {u, v} in G and let after contracting e we get the vertex w in
G/e instead of u and v. Then B = (A \ {u}) ∪ {w} is a stable set in G/e. It is clear
that NG/e(B) is a vertex cover for G/e. Using Lemma 2.2 we get

(I (G/e) : X B) = 〈NG/e(B)
〉
.

Therefore, by Theorem 2.3, v(I (G/e)) ≤ |B| = |A| = v(I (G)). ��
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In [21], Liu and Zhou gave formula for induced matching number of a graphs in
terms of its induced bipartite subgraph. Using that formula, we show that v(I (G)) ≤
im(G) for any bipartite graph G (see Theorem 4.5).

Theorem 4.3 ([21, Theorem 2.1]) For a simple graph G,

im(G) = max
H

min{|X ′| : X ′ ⊆ X and Y ⊆ NH (X ′)},

where H is an induced bipartite subgraph of G with partite sets X , Y and has no
isolated vertices.

Theorem 4.4 ([21, Theorem 2.3]) Let G be a bipartite graph with partite sets X , Y
and has no isolated vertices. Then

im(G) = max
H

min{|X ′| : X ′ ⊆ H ⊆ X and NG(X ′) = NG(H)}.

Theorem 4.5 Let G be a bipartite graph with partite sets X and Y . Then v(I (G)) ≤
im(G). Moreover, we have

v(I (G)) ≤ reg(R/I (G)).

Proof Let X1 ⊆ X be such that NG(X1) = NG(X) and

|X1| = min{|X ′| : X ′ ⊆ X and NG(X ′) = NG(X)}.

Then X1 is a stable set in G andNG(X) being a minimal vertex cover for G, we have
by Theorem 2.3, v(I (G)) ≤ |X1|. Now taking H = X in Theorem 4.4, we get

v(I (G)) ≤ |X1| ≤ im(G).

Therefore, by [14, Theorem 4.1] (or [20, Lemma 2.2]), we have

v(I (G)) ≤ im(G) ≤ reg(R/I (G)). ��
Corollary 4.6 Let G be a graph with a vertex x ∈ V (G), such that any of the following
holds:

(i) The independent complex �(G \ {x}) or �(G \NG [x]) is vertex decomposable.
(ii) The graph G \ {x} or G \ NG [x] is a bipartite graph.

Then v(I (G)) ≤ reg(R/I (G)) + 1.

Proof Let I = I (G). If the condition (i) or (ii) holds, then by Theorem 4.5 and [18,
Theorem 3.13], we have

v(I , x) ≤ reg(R/(I , x)) or v(I : x) ≤ reg(R/(I : x)).
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Now by [18, Lemma 3.12], we have

v(I ) ≤ v(I , x) + 1 and v(I ) ≤ v(I : x) + 1.

Also G \ {x} and G \ NG [x] being subgraphs of G [29, Proposition 6.4.6] implies
that reg(R/(I , x)) ≤ reg(R/I ) and reg(R/(I : x)) ≤ reg(R/I ). Therefore, we have
v(I ) ≤ reg(R/I ) + 1. ��
Corollary 4.7 If G is an unicyclic graph, i.e., a graph with only one induced cycle,
then v(I (G)) ≤ reg(R/I (G)) + 1.

Proof Choose a vertex x from the unique induced cycle of G. Then G\{x} is a bipartite
graph, and hence, by Corollary 4.6, the result follows. ��
Definition 4.8 ([5]) A clique neighbourhood Kc is the set of edges of a clique c in a
graph G together with some edges which are adjacent to some edges of the clique c.

Theorem 4.9 ([5, Theorem 2]) Let G be a chordal graph. Then

im(G) = min{|N | :N is a set of clique neighbourhoods

in G which covers E(G)}.

We now prove that v(I (G)) ≤ im(G) = reg(R/I (G)) is true for chordal graphs.
This also follows from Theorem 4.11, where we prove the same inequality for a more
general class. However, the proofs of Theorems 4.10 and 4.11 are of different flavours.

Theorem 4.10 For a chordal graph G, we have

v(I (G)) ≤ im(G) = reg(R/I (G)).

Proof Let N be a set of clique neighbourhoods in G which covers E(G). Let N =
{Kc1, . . . , Kcm }, where each Kci , for 1 ≤ i ≤ m, is a clique neighbourhood containing
the clique ci such that every edge of Kci is adjacent to some edges of ci . Now choose
a maximal stable set from the set of vertices

⋃m
i=1 V (ci ), name it A. Since A is a

maximal stable set in
⋃m

i=1 V (ci ), we have
⋃m

i=1 V (ci ) \ A ⊆ NG(A). Let e ∈ E(G)

be an edge. Then e ∈ Kci , for some 1 ≤ i ≤ m. If e ∈ E(ci ), then e ∩ NG(A) �= φ.
Suppose e /∈ E(ci ). Then e is adjacent to some edges of ci , i.e., e is incident to some
vertex v ∈ V (ci ). Now if v /∈ NG(A), then v ∈ A as A is a maximal stable set in⋃m

i=1 V (ci ) and so e \ {v} ∈ NG(A). As e ∈ E(G) is an arbitrarily chosen edge,
NG(A) is a vertex cover of G. Therefore, by Lemma 2.2, we have

(I (G) : X A) = 〈NG(A)
〉
,

and so Theorem 2.3 gives v(I (G)) ≤ |A|. Since A ⊆ ⋃m
i=1 V (ci ) is a stable set and

ci ’s are cliques, |A| ≤ m = |N |. This is true for any set of clique neighbourhoods
in G which covers E(G). Hence, by Theorem 4.9, v(I (G)) ≤ im(G) and by [15,
Corollary 6.9], im(G) = reg(R/I (G)). ��
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Theorem 4.11 If G is a (C4, C5)-free vertex decomposable graph, then v(I (G)) ≤
im(G) = reg(I (G)).

Proof If G is a (C4, C5)-free vertex decomposable graph, then by [2, Theorem 24],
we get im(G) = reg(I (G)) and also G being a vertex decomposable graph, by [18,
Theorem 3.13], we get v(I (G)) ≤ reg(I (G)). ��

Let G be a graph with V (G) = {x1, . . . , xn}. Consider the graph WG by adding a
new set of vertices Y = {y1, . . . , yn} to G and attaching the edges {xi , yi } to G for
each 1 ≤ i ≤ n. The graph WG is known as the whisker graph of G and the attached
edges {xi , yi } are called the whiskers.

Theorem 4.12 Let G be a simple graph and WG be the whisker graph of G. Then
v(I (WG)) ≤ im(WG).

Proof Let A be a maximal stable set of G. Then the set of whiskers M = {{xi , yi } |
xi ∈ A} forms an induced matching in WG . Therefore, we have im(WG) ≥ |A|.
Now A is a stable set in WG too and it is clear from the construction of WG that
NWG (A) is a vertex cover of WG . Thus, applying Lemma 2.2 and Theorem 2.3, we
get v(I (WG)) ≤ |A| ≤ im(WG). ��
Theorem 4.12 also follows from [13, Theorem 2 and Lemma 1].

Definition 4.13 ([17]) Let G be a simple graph on the vertex set V (G) = {x1, . . . , xn},
without any isolated vertex. For an independent set S ⊆ V (G), the S-suspension of
G, denoted by GS , is the graph given by

• V (GS) = V (G) ∪ {xn+1}, where xn+1 is a new vertex;
• E(GS) = E(G) ∪ {{xi , xn+1} | xi /∈ S}.

Proposition 4.14 Let G be a simple graph and GS be a S-suspension of G with respect
to an independent set S ⊆ V (G). Then v(I (GS)) = 1.

Proof Take A = {xn+1}. Then we have

NGS (A) = V (G) \ S = V (GS) \ (S ∪ {xn+1}).

By construction of GS , S ∪ {xn+1} is an independent set of GS , and hence, NGS (A)

is a vertex cover of GS . Therefore, from Lemma 2.2 it follows that

(I (GS) : X A) = 〈NGS (A)
〉
.

Thus, by Theorem 2.3, we have v(I (GS)) = |A| = 1. ��
Corollary 4.15 Let n be any positive integer. Then we have a graph G such that
reg(R/I (G)) − v(I (G)) = n, i.e., for a simple connected graph G, reg(R/I (G))

can be arbitrarily larger than v(I (G)).
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Proof We can choose a connected graph H with reg(R′/I (H)) = n + 1, where
R′ = K [V (H)]. Consider the graph G = H S , where S is a stable set of H . Then
Proposition4.14gives v(I (G)) = 1, andby [17, Lemma1.5],wehave reg(R/I (G)) =
reg(R′/I (H)) = n+1,where R = R′[xn+1]. Therefore, reg(R/I (G))−v(I (G)) = n.
��
Theorem 4.16 (Terai, [28]) Let I be a square-free monomial ideal in a polynomial
ring R. Then reg(I ) = reg(R/I ) + 1 = pd(R/I ∨).

Definition 4.17 Let I = I (C) be an edge ideal of a clutter C. The Alexander dual ideal
of I , denoted by I ∨, is the ideal defined by

I ∨ = 〈{XC | C is a minimal vertex cover of C}〉.

From [18, Lemma 3.16], we have v(I (C)∨) ≥ α0(C) − 1.

Proposition 4.18 Let C be a clutter that cannot be written as a union of two disjoint
clutters. If the answer to Question 5.2 (see Sect. 5) is true and v(I ∨) ≥ α0(C) + 1,
then I = I (C) is not Cohen–Macaulay.

Proof By the Auslander–Buchsbaum formula [27, Formula 15.3], we have

depth(R/I ) + pd(R/I ) = n.

By the given condition, Question 5.2 implies v(I ∨) ≤ reg(R/I )+1. Therefore, using
Theorem 4.16 we get

depth(R/I ) = n − 1 − reg(R/I ∨)

≤ n − v(I ∨)

≤ n − 1 − α0(C) = dim(R/I ) − 1.

Hence, I is not Cohen–Macaulay as depth(R/I ) < dim(R/I ). ��
For a large class of square-free monomial ideals I , we have v(I ) ≤ reg(R/I ). The

following Corollary gives a sufficient condition for the non-Cohen–Macaulayness of
I = I (C).

Corollary 4.19 If α0(C) ≤ v(I ∨) ≤ reg(R/I ∨), then I = I (C) is not Cohen–
Macaulay.

Proof Follows directly from the proof of Proposition 4.18. ��

5 Some open problems on v-number

Jaramillo and Villarreal disproved [26, Conjecture 4.2] by giving an example [18,
Example 5.4] of a graph G for which v(I (G)) > reg(R/I (G)). They also proposed
an open problem, whether v(I ) ≤ reg(R/I ) + 1 for any square-free monomial ideal
I . The answer is no and we give the following example in support:
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Example 5.1 Take H = G1 � G2, with G1 � G2 � G, where G is the graph in [18,
Example 5.4]. Itwas given in [18, Example 5.4] that v(I (G)) = 3 and reg(R′/I (G)) =
2, where R′ = Q[V (G)]. Then by Proposition 3.9 and by [30, Lemma 7], we have
v(I (H)) = 6 and reg(R/I (H)) = 4, where R = Q[V (H)]. Hence, v(I (H)) >

reg(R/I (H)) + 1.

In our example, the graph H is not connected. So we can modify the open problem
by putting the condition of connectedness:

Question 5.2 Let C be a clutter which cannot be written as a union of two disjoint
clutters. Then is it true that

v(I (C)) ≤ reg(R/I (C)) + 1?

This question for graphs would be the following:
Let G be a simple connected graph. Is it true that

v(I (G)) ≤ reg(R/I (G)) + 1?

For a simple graph G, we have from [14, Theorem 4.1] (or [20, Lemma 2.2]) that
im(G) ≤ reg(R/I (G)). So, we want to find a relation between v(I (G)) and im(G)

for a connected graph G, which might help us find an answer to Question 5.2 for
connected graphs. In many cases, we have v(I (G)) ≤ im(G), for example, if G is
a bipartite graph (see Theorem 4.5) or if G is a (C4, C5)-free vertex decomposable
graph (see Theorem 4.11) or G is a whisker graph (see Theorem 4.12). Let us consider
the following example:

1 2

3 4

5

G

1 2

3 4

5

H

We have v(I (G)) = 2, im(G) = 1 and v(I (H)) = 1, im(H) = 2. In view of this,
we can ask the following question, which can answer Question 5.2 for edge ideals of
graphs.

Question 5.3 For a connected graph G, is it true that

v(I (G)) ≤ im(G) + 1?

Moreover, we can generalize Question 5.3 for edge ideals of a clutter C, which
cannot be written as a union of two disjoint clutters (see Question 5.4).
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Let C be a clutter. A set M ⊆ E(C) is called a matching in C if the edges in M are
pairwise disjoint. The matching M is called an induced matching in C if the induced
subclutter on the vertex set (

⋃
e∈M e) contains only M as the edge set. The maximum

size of an induced matching in C is known as the induced matching number of C,
denoted by im(C).

Let C be a clutter and let {e1, . . . , ek} form an induced matching in C. Then [14,
Theorem 4.2] (or [25, Corollary 3.9]) gives

k∑

i=1

(|ei | − 1) ≤ reg(R/I (C)).

Question 5.4 Let C be a clutter which cannot be written as a union of two disjoint
clutters. Does there exist an induced matching {e1, . . . , ek} of C such that

v(I (C)) ≤
k∑

i=1

(|ei | − 1) + 1?

An answer to Question 5.4, together with [14, Theorem 4.2] (or [25, Corollary
3.9]) can give an answer to Question 5.2.

The next problem is about our interest to know the relation between depth(R/I )
and v(I ) for any square-free monomial ideal. If R/I is Cohen–Macaulay, then by
Theorem 2.3, v(I ) ≤ depth(R/I ).

Question 5.5 For a square-free monomial ideal I , does v(I ) ≤ depth(R/I ) hold?
Also can we say that

v(I ) ≥ dim(R/I ) − depth(R/I )?

If we can relate v(I (G)) with respect to some invariants of L2(G), then it would
be easy to answer Question 5.3 because im(G) = β0(L2(G)).

Question 5.6 Find v(I (G)) in terms of some invariants of L2(G), where G is a con-
nected graph.
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2. Biyikoğlu, T., Civan, Y.: Vertex-decomposable graphs, codismantlability, Cohen-Macaulayness, and
Castelnuovo-Mumford regularity. Electron. J. Combin. 21(1), 17 (2014)

3. Biyikosğlu, T., Civan, Y.: Castelnuovo-Mumford regularity of graphs. Combinatorica 38(6), 1353–
1383 (2018)

123



Journal of Algebraic Combinatorics (2022) 56:903–927 927

4. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for Industrial and Applied
Mathematics, Philadelphia (1999)

5. Cameron, K.: Induced matchings. Discrete Appl. Math. 24, 97–102 (1989)
6. Cameron, K.: Induced matching in intersection graphs. Discrete Math. 278, 1–9 (2004)
7. Cameron, K., Sritharan, R., Tang, Y.: Finding a maximum induced matching in weakly chordal graphs.

Discrete Math. 266, 133–142 (2003)
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