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Abstract
For a finite group G, denote by α(G) the minimum number of vertices of any graph
� having Aut(�) ∼= G. In this paper, we prove that α(G) ≤ |G|, with specified
exceptions. The exceptions include four infinite families of groups, and 17 other small
groups. Additionally, we compute α(G) for the groupsG such that α(G) > |G|where
the value α(G) was previously unknown.

Keywords Graph · Automorphism group · Minimum order · Generalised dicyclic
group · Generalised quaternion group

1 Introduction

In [4] it is shown that every finite group can be realised, up to isomorphism, as the
automorphism group of a finite graph; in fact, for every finite group G there exist
infinitely many finite graphs having automorphism group isomorphic to G. Given a
finite groupG, defineα(G) to be the smallest number of vertices of any graph� having
Aut(�) ∼= G. The problem of finding α(G) has been considered by many authors. The
value of α(G) has been determined in [1] for abelian groups G, in [7, 9, 10, 15] for
dihedral groups G, in [13] for quasi-dihedral groups and quasi-abelian groups G and
in [8] for generalised quaternion groups G. The question has also been investigated
for several families of finite simple groups in [14]. A recent survey on this problem
can be found in [22]. In [2], Babai showed that α(G) ≤ 2|G|, for every finite group
G that is not cyclic of order 3, 4 or 5. In this paper, we improve Babai’s bound to |G|,
with specified exceptions (including four infinite families of groups).

In Table 1, we let Dicm = 〈a, b | a2m = 1, b2 = am, bab−1 = a−1〉 for m =
3, 5, 6, which is a group of order 4m, andG16 = 〈a, b | a4 = b4 = 1, bab−1 = a−1〉,
G ′

16 = 〈a, b | a8 = b2 = 1, bab−1 = a5〉, which are groups of order 16.
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Theorem 1 Let G be a finite group of order n. Then one of the following is true:

(i) α(G) ≤ n,

(ii) G is cyclic of order pk or 2p, where p is prime and k is positive integer (n �= 2),
(iii) G is Q2r or Q2r × C2, where Q2r is the generalised quaternion group of order

2r , r ≥ 3,
(iv) G is one of the 17 exceptional groups of order at most 25 shown in Table 1.

If (ii), (iii) or (iv) holds, then α(G) > n; indeed, if (ii) holds, α(G) is as described in
Propositions 3.2 and 3.3; if (iii) holds, α(G) = 2n or α(G) = n + 2 for G = Q2r or
G = Q2r × C2, respectively; if (iv) holds, α(G) is as shown in Table 1.

As a consequence, we deduce when equality holds in Babai’s bound.

Corollary 1.1 Let G be a finite group of order n. Then α(G) = 2n if and only if

(i) G is a generalised quaternion group of order 2r , r ≥ 3, or
(ii) G is cyclic of order p, where p is prime and p ≥ 7, or
(iii) G is the abelian group C3 × C3.

The main tool in the proof of Theorem 1 is the GRR-Theorem (Theorem 2.3).
It states that, with some specified families of exceptions, every finite group G has a
graphical regular representation (GRR), i.e., a Cayley graph having full automorphism
group isomorphic toG. If a group G has a GRR, then α(G) ≤ |G|. Therefore, in order
to prove Theorem 1, it suffices to study the exceptions in the GRR-Theorem.

Making use of the preliminary results presented in Sect. 2, we prove Theorem 1
across Sects. 3, 4, and 5. Section 3 concerns the case of abelian groups; the key fact
is that α(G) has been determined for every abelian group G, in [1]. Sections 4 and 5
are devoted to the non-abelian exceptional groups of the GRR-Theorem. In Sect. 4,
we address the non-abelian groups G for which the assertion of Theorem 1 is that
α(G) ≤ |G|. For these groups, we construct a graph on at most |G| vertices having
automorphism group isomorphic to G. In Sect. 5, we show that there exists no graph
on at most |G| vertices with automorphism group isomorphic toG, for the non-abelian
groups G for which the assertion of Theorem 1 is that α(G) > |G|. The values of
α(Q2r ), α(Q2r × C2) and α(G) for the non-abelian groups G in Table 1 are also
justified in this section.

Table 1 The groups G mentioned in Theorem 1, (iv), and the values α(G)

G α(G)

1–4 C12, C15, C20, C21 18, 21, 25, 23

5–8 C2 × C4, C3 × C3, C4 × C4, C5 × C5 12, 18, 20, 30

9–10 C2 × C2 × C3, C2 × C3 × C3 13, 20

11–13 Dic3, Dic5, Dic6 17, 23, 25

14 G16 18

15 A4 16

16 G′
16 18

17 Q8 × C3 25
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2 Background

Throughout the paper, all groups and graphs mentioned are assumed to be finite.
Let us now present two families of groups that play an important role in our text.

Definition 2.1 [21] Let A be an abelian group that contains an element of order 2k for
some k ≥ 2. A group G of the form

G = 〈A, b | b4 = 1, b2 ∈ A \ {1}, bab−1 = a−1,∀ a ∈ A〉

is called generalised dicyclic and is denoted by Dic(A, b2).
If A is cyclic, G is simply called dicyclic. It is denoted by Dicm , where m = |G|

4 .
A dicyclic group of order 2r is called generalised quaternion (r ≥ 3). We denote

it by Q2r .

Note that the existence of the element of order 2k in Definition 2.1 ensures that
generalised dicyclic groups are non-abelian.

Definition 2.2 Let A be an abelian group. A group G of the form

G = 〈A, b | b2 = 1, bab−1 = a−1,∀ a ∈ A〉

is called generalised dihedral and is denoted by Dih(A).
If A is cyclic of order m, G is the dihedral group of order 2m, which we denote by

D2m .

A graph � consists of a vertex set, which we denote by V (�) and an edge set,
denoted by E(�); we consider an edge to be an unordered pair of vertices of �. We
denote an edge between v,w ∈ V (�) by v ∼ w or we say that [v,w] ∈ E(�).
Moreover, if X is a subgraph of � and v ∈ V (X), we denote by ρX (v) the valency of
v in X and by ρ(v) the valency of v in the graph �. If a group G acts on a graph �

and v ∈ V (�), then we denote byOv the orbit containing v,Ov = {gv | g ∈ G}, and
by Gv the stabilizer of v, Gv = {g ∈ G | gv = v}.

Given a group G and a set S ⊂ G \ {1} that is inverse-closed, we define the
Cayley graph Cay(G, S) to be the graph with vertex set G and edges {x, sx}, for all
x ∈ G, s ∈ S.

A graph � is called a Graphical Regular Representation (GRR) of a group G if
there exists some S ⊂ G such that Cay(G, S) = � and Aut(�) ∼= G. The following
theorem is known as the GRR-Theorem. It was proven by Godsil [6] for non-solvable
groups and by Hetzel [11] for solvable groups using previous results of several authors
including [12, 16–21].

Theorem 2.3 [6] A group admits a GRR if and only if it is not an abelian group of
exponent greater than 2, a generalised dicyclic group, or one of the 13 exceptional
groups shown in Table 2.

Corollary 2.4 If G is a non-abelian , non-generalised dicyclic group that is not one of
the 13 groups shown in Table 2, then α(G) ≤ |G|.
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Table 2 The groups G mentioned in the GRR-Theorem (Theorem 2.3)

G |G|
1–3 C2 × C2, C2 × C2 × C2, C2 × C2 × C2 × C2 4, 8, 16

4–6 D6, D8, D10 6, 8, 10

7 A4 12

8 〈a, b, c | a2 = b2 = c2 = 1, abc = bca = cab〉 16

9 G′
16 16

10 〈a, b, c | a3 = b3 = c2 = 1, ab = ba, (ac)2 = (bc)2 = 1〉 18

11 〈a, b, c | a3 = c3 = 1, ac = ca, bc = cb, b−1ab = ac〉 27

12–13 Q8 × C3, Q8 × C4 24, 32

Let us now state Babai’s theorem.

Theorem 2.5 (Babai, [2]) If G is a group different from the cyclic groups of order 3,
4, 5 then α(G) ≤ 2|G|.
The values of α(G) for cyclic groups G and graph constructions can be found in [1],
which builds on the work of Sabidussi [18]. For the non-cyclic groups, we will use
the following construction, given by Babai in [2]:

Construction 2.6 Let G be a non-cyclic group of order |G| ≥ 6 and let H =
{h1, . . . , hd} be a minimal generating set of G. Let G ′ be an isomorphic copy of
G with an isomorphism g �−→ g′ from G to G ′. We define the graphs X1 and X3 to
be such that

V (X1) = G, E(X1) = {[ghi , ghi+1]
∣∣∣ g ∈ G, i = 1, . . . , d − 1

}
,

V (X3) = G ′, E(X3) = {[g′h′
1, g

′]
∣∣∣ g′ ∈ G ′}.

Let ρXs be the valency of the vertices of Xs, s = 1, 3. We define the graph X2 to be

X2 =
{
X3, if ρX1 �= ρX3 ,

X3, if ρX1 = ρX3 ,

where X3 is the complement graph of X3.
Finally, let us define the graph X such that

V (X) = V (X1) ∪ V (X2),

E(X) = E(X1) ∪ E(X2) ∪ {[
g′, g

]
,
[
g′, ghi

]∣∣∣ g ∈ G, i = 1, . . . , d
}
.

The map g : V (X) → V (X) such that

g(v) =
{
gv, if v ∈ V (X1),

g′v, if v ∈ V (X2),
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Fig. 1 A graph on 10 vertices
that has automorphism group
isomorphic to C4

3

6

4

5

7 8
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1 2

is a graph automorphism for every g ∈ G, and Aut(X) ∼= G; the proof appears in
[2].

The inequality in Babai’s Theorem 2.5 does not hold for the three cyclic groups
excluded.

Example 2.7 We will see shortly (Proposition 3.3) that α(C4) = 10. A graph on 10
vertices that has automorphismgroup isomorphic toC4 is shown in Fig. 1. In particular,
the automorphism group of this graph can be realised as the subgroup 〈b〉 of S10, where
b = (1 2)(3 4 5 6)(7 8 9 10) ([22, Lemma 2.1.3.3.]).

3 Proof of Theorem 1: abelian groups

The aim of this section is to prove that Theorem 1 holds for every abelian group G.

Proposition 3.1 Let G be an abelian group. Then one of the following holds:

(i) α(G) ≤ |G|,
(ii) G is cyclic of order pk or 2p for some prime number p (|G| �= 2),
(iii) G is one of the 10 abelian groups shown in Table 1.

If (ii) or (iii) is true then α(G) > |G|.
The value of α(G) was determined for every cyclic group G by Sabidussi [18, 19],
when |G| is a prime number, and by Meriwether (unpublished, see [19]), in general.
However, Arlinghaus [1] was the first to present an algorithm to compute α(G) when
G is cyclic or, more generally, abelian. Table 3 contains the value of α(G) for some
small abelian groups, which we computed using Arlinghaus’ algorithm [1, Theorem
8.1].
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Table 3 The values of α(G) for certain abelian groups G

G = Cp
r1
1

× Cp
r2
2

(pr11 ≤ pr22 )

pr11

pr22
2 3 4 5 7 8

2 4 11 12 17 16 16

3 18 18 21 23 22

4 20 25 24 24

5 30 29 29

G = C2 ×Cp
r2
2

×Cp
r3
3

(pr22 ≤ pr33 )

pr22

pr33
2 3 4 5 7 8 9 11 13

2 6 13 14 19 18 18 19 26 30

3 20 20 23 25 24 23 33 37

4 22 27 26 26 26 34 38

Proposition 3.2 [1, Theorem 8.1] Consider the abelian group G = Cq1 ×Cq2 ×· · ·×
Cqs , where qi is a prime power, i = 1, . . . , s. Then,

α(G) ≤ α(Cq1) + α(Cq2) + · · · + α(Cqs ), (1)

α(C2 × Cq2) = 2 + α(Cq2). (2)

Proposition 3.3 [1, Theorem 5.4] Let p be a prime number and r be a positive integer.
Then

α(Cpr ) =

⎧
⎪⎪⎨

⎪⎪⎩

2, if pr = 2,
pr + 2p, if p = 3, 5,
pr + 6, if p = 2, r ≥ 2,
pr + p, if p ≥ 7.

Proposition 3.3 gives rise to the following inequalities that are essential for the
proof of Proposition 3.1:

α(Cpr ) ≤ 3pr , (3)

α(Cpr ) ≤ 2pr , if pr ≥ 7, (4)

α(Cpr ) ≤ pr + max
{
6, 2p

}
. (5)

In preparation for proving Proposition 3.1, we establish the following lemma.

Lemma 3.4 Proposition 3.1 holds when G is a direct product of two cyclic groups of
prime-power order.

Proof Let G = Cp
r1
1

× Cp
r2
2

for some prime powers pr11 , pr22 such that pr11 ≤ pr22 .

Using Table 3 we deduce that the Lemma holds when pr11 ≤ 5 and pr22 ≤ 8. If pr11 > 5
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then the inequalities (1) and (4) imply that

α(G) ≤ α(Cp
r1
1

) + α(Cp
r2
2

) ≤ 2pr11 + 2pr22 ≤ 4pr22 < |G|.

Hence we make the assumption that pr11 ≤ 5 and pr22 > 8.
If |G| = 2p2 then (2) and Proposition 3.3 imply that α(C2p2) = 2 + 2p2, thus

α(G) > |G|. On the other hand, if |G| = 2pr22 and r2 > 1, then the inequality

2 + max
{
6, 2p2

}
< pr22 (6)

holds; indeed, we assumed that pr22 > 8, so (6) holds in case p2 = 2; if p2 ≥ 3 then
2 + 2p2 < 3p2 ≤ pr22 . It follows from (2), (5) and (6) that

α(C2p
r2
2

) ≤ 2 + pr22 + max
{
6, 2p2

}
< 2pr22 = |G|.

If pr11 = 3 then by (1), (4) and Proposition 3.3, we get that α(G) ≤ 9 + 2pr22 ≤
3pr22 = |G|.

Finally, if 4 ≤ pr11 ≤ 5 then it is implied by (1), (4) and Proposition 3.3 that

α(G) ≤ 15 + 2pr22 < 4pr22 ≤ |G|.

��
Proof of Proposition 3.1 If |G| = 1 thenα(G) = |G|. LetG = Cp

r1
1

×Cp
r2
2

×· · ·×Cprss ,

where pr11 ≤ · · · ≤ prss are prime powers.
If s = 1 or s = 2 then the statements in Proposition 3.1 hold forG as a consequence

of Proposition 3.3 or Lemma 3.4, respectively.
Let s = 3. If pr11 pr22 ≥ 9, then using inequalities (1) and (3) we conclude that

α(G) ≤ 3pr11 + 3pr22 + 3pr33 ≤ 9pr33 ≤ |G|.

Assume now that pr11 pr22 < 9; thus, pr11 = 2 and 2 ≤ pr22 ≤ 4. If pr33 < 16 then using
Table 3 we verify that the claim in Proposition 3.1 holds for G. If pr33 ≥ 16 instead,
then (1) and (3) together with Proposition 3.3 imply that

α(G) ≤ 2 + 3pr22 + 3pr33 < 4pr33 ≤ |G|.

Let s = 4. If pr11 pr22 pr33 ≥ 12, then by (1) and (3) we have

α(G) ≤ 3pr11 + 3pr22 + 3pr33 + 3pr44 ≤ 12pr44 ≤ |G|.

Otherwise pr11 = pr22 = pr33 = 2, in which case (1), (3) and Proposition 3.3 show that

α(G) ≤ 2 + 2 + 2 + 3pr44 < 8pr44 = |G|.
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Finally, let us assume that s ≥ 5. Then, using (1) and (3) we conclude that

α(G) ≤ 3pr11 + 3pr22 + · · · + 3prss ≤ 3s ps
rs .

Furthermore, since 3s < 2s−1 and prii ≥ 2 for every i ∈ {1, . . . , s − 1}, we have that

3s ps
rs < 2s−1 ps

rs ≤ p1
r1 p2

r2 · · · psrs = |G|.

Hence α(G) < |G|. ��

4 Proof of Theorem 1: the bound˛(G) ≤ |G|
In this section we prove the bound α(G) ≤ |G| for groups G that are non-abelian and
do not satisfy (iii), (iv) in Theorem 1, as summarised in the following theorem.

Theorem 4.1 Let G be a non-abelian group such that

(i) G is not a generalised quaternion group,
(ii) G is not a generalised dicyclic group of the form Q2r × C2,
(iii) G is not one of the groups shown in Table 1.

Then α(G) ≤ |G|.
By the GRR-Theorem (Theorem 2.3), in order to prove Theorem 4.1, we only

need to consider the cases when G is generalised dicyclic and when G is one of
the non-abelian groups that appear in Table 2 but not in Table 1. We will do this in
Propositions 4.9 and 4.10. In particular, in Proposition 4.9, we consider the groups
D6, D8, D10, and

G1 = 〈a, b, c | a2 = b2 = c2 = 1, abc = bca = cab〉,
G2 = 〈a, b, c | a3 = b3 = c2 = 1, ab = ba, (ac)2 = (bc)2 = 1〉,
G3 = 〈a, b, c | a3 = c3 = 1, ac = ca, bc = cb, b−1ab = ac〉,
G4 = Q8 × C4,

Gr+2 = Q2r × C2 × C2 × C2, r ≥ 3;

(7)

the remaining groups are addressed in Proposition 4.10.
Let us start with two lemmas that will be used in the proof of Proposition 4.10.

Lemma 4.2 Let G = Dih(X) be a generalised dihedral group of order 2k, where
k ≥ 6, k �= 9, that is not the group C2 × C2 × C2 × C2. Then there exists a GRR for
G.

Proof By the GRR-Theorem, it suffices to prove that G is non-generalised dicyclic
and not one of the groups appearing in Table 2.
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Let G = 〈X , b〉, b2 = 1. Suppose that G = Dic(A, c2), for some A ≤ G, c ∈ G.
Then the order of c is 4 and the order of b is 2, hence c ∈ X , b ∈ A. It follows from
the properties of generalised dicyclic and generalised dihedral groups that

bcb−1 = c−1 and cbc−1 = b−1.

The equalities given above imply that c2 = 1, which is a contradiction.
The restriction k �= 9, implies that G is not the group of order 18 in Table 2.

Moreover, since |G| = 2k ≥ 12, G is not among the groups C2 ×C2, C2 ×C2 ×C2,
D6, D8, D10 or the group of order 27 in Table 2. On the other hand, the group A4 has
no abelian subgroup of index 2, hence it is not generalised dihedral. The remaining 4
suitable groups given in Table 2 contain a central element of order 3 or 4. However, if g
is in the center ofG andG is non-abelian then g ∈ X , hence bgb = g−1. Furthermore,
bgb = g, as g is central. Therefore, g has order 2. ��
The following lemma can be proven by elementary group theory arguments.

Lemma 4.3 Let G be an abelian 2-group and let c ∈ G be an element of order 2. Then
there exists some y ∈ G, A < G such that

G = 〈y〉 ⊕ A and c ∈ 〈y〉.

Let us now define a collection of graphs, one for each group appearing in (7).

Construction 4.4 Let us first define the graph �1 on 16 vertices and 52 edges. Let
V (�1) = V1 ∪ V2, where V1 = {1, 2, . . . , 8} and V2 = {1′, 2′, . . . , 8′}. Let E(�1) be
such that, for v,w ∈ V1,

v ∼ w ⇐⇒ (v,w) ∈
⋃

i, j ∈{0,1}

({1+i+4 j, 3+i+4 j}×{5 + i − 4 j, 7 + i − 4 j});

v′ ∼ w′ ⇐⇒ v,w ∈
⋃

i∈{0,1}

{
1 + 4i, 2 + 4i, 3 + 4i, 4 + 4i

}
, v �= w;

v ∼ w′ ⇐⇒
⎧
⎨

⎩

w − v = 0, 4, or
v − w ≡ 2 (mod 4), v > 4, w ≤ 4, or
v − w ≡ ±1 (mod 4) and (v > 4 ⇐⇒ w > 4).

Construction 4.5 Let us now define the graph �2, which has 18 vertices and 99 edges.
Let V (�2) = W1 ∪ W2, where W1 = {1, 2, . . . , 9}, W2 = {1′, 2′, . . . , 9′}, and E(�2)

is such that, for v,w ∈ W1,

v′ ∼ w′ ⇐⇒
⎧
⎨

⎩

∀k ∈ {0, 1, 2}, v > 3k ⇐⇒ w > 3k, v �= w, or
w − v ≡ ± 3 (mod 9), or
[v,w] ∈ {[1, 6], [2, 4], [3, 5]};

v ∼ w ⇐⇒ v′
� w′, v �= w;

v � w′ ⇐⇒ v,w ∈ {1, 2, 3}, or v,w ∈ {4, 5, 6}.
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Construction 4.6 Let us also construct the graph �3 on 27 vertices and 171 edges.
Let V (�3) = O1 ∪ O1′ ∪ O1′′ , where O1 = {1, 2, . . . , 9}, O1′ = {1′, 2′, . . . , 9′} and
O1′′ = {1′′, 2′′, . . . , 9′′}. The edge set of �3 is such that, for every v,w ∈ O1, we have

v′
� w′; v′′

� w′′;
v ∼ w ⇐⇒ v �= w;

v ∼ w′′ ⇐⇒
{

w − v ≡ 1 (mod 3), or
w − v ≡ 0, 3 (mod 9);

v ∼ w′ ⇐⇒
{

w − v ≡ 0, 2k, 4k (mod 9), v ≡ k (mod 3) for some k ∈ {1, 2}, or
w − v ≡ 0, ±1 (mod 9), v ≡ 0 (mod 3);

v′ ∼ w′′ ⇐⇒ w ∼ v′.

Construction 4.7 Let � be the graph on 10 vertices with automorphism group
Aut(�) ∼= C4 given in Example 2.7. Let �′ be a graph on 16 vertices constructed
according to Babai’s Construction 2.6 for the group Q8. We define �4 to be the graph
�4 = � ∪ �′.

Construction 4.8 Let r ≥ 3. We let � be a graph on 2r+1 vertices constructed
according to Babai’s Construction 2.6 for the generalised quaternion group Q2r

and �′ to be a graph on 6 vertices such that Aut(�′) ∼= C2 × C2 × C2, which
exists since α(C2 × C2 × C2) = 6 (see Table 3 and [1, Theorem 8.1] for a proof).
Then, the graph �r+2 = � ∪ �′ on 2r+1 + 6 vertices has automorphism group
Aut(�r+2) ∼= Gr+2, since � is a connected component of �r+2 of size 2r+1 > 6
and Aut(�) ∼= Q2r , Aut(�′) ∼= C2 × C2 × C2.

Proposition 4.9 If G is the dihedral group D2n, where 3 ≤ n ≤ 5, or one of the groups
G1,G2,G3,G4,Gr+2 (r ≥ 3) in (7) then α(G) ≤ |G|.
Proof The n-cycle has full automorphism group D2n .

The graphs �i in Constructions 4.4−4.8 are designed to have at most |Gi | vertices
and automorphism groups Aut(�i ) ∼= Gi , for each i ≥ 1. We omit the proof that
Aut(�i ) ∼= Gi for 1 ≤ i ≤ 4, which we verified using the mathematical software
GAP [5]. ��

We will now show that Theorem 4.1 also holds for the generalised dicyclic groups
G that are different from Q2r × C2 × C2 × C2, r ≥ 3, completing the proof of
Theorem 4.1.

Proposition 4.10 Let G be a generalised dicyclic group such that

(i) G is not a generalised quaternion group,
(ii) G is not a generalised dicyclic group of the form Q2r ×C2 or Q2r ×C2×C2×C2,
(iii) G is not one of the groups Dic3, Dic5, Dic6, G16 that appear in Table 1.

Then α(G) ≤ |G|.
The rest of this section concerns the proof of Proposition 4.10.

123



Journal of Algebraic Combinatorics (2022) 56:609–633 619

Let G = Dic(A, b2) be a generalised dicyclic group as in Proposition 4.10 and let

A = A2 ⊕ A2′ ,

where A2 is the Sylow 2-subgroup of A and A2′ is the Hall 2′-subgroup of A. Then,
by Lemma 4.3, there exist y ∈ A2 and B2 < A2 such that

A2 = 〈y〉 ⊕ B2 and b2 ∈ 〈y〉.

Setting X = B2 ⊕ A2′ , we get A = X ⊕ 〈y〉.
Let r , k be such that 〈y〉 ∼= C2r , |X | = k. We note that the quotient group G/X

is isomorphic to the generalised quaternion group Q2r+1 , for r > 1, and to the cyclic
group C4, for r = 1. Moreover, the quotient group G/〈y〉 is isomorphic to the gener-
alised dihedral group Dih(X).

Construction 4.11 We will construct a graph � such that Aut(�) ∼= G. We start by
defining two graphs, �1, �2, with the property that Aut(�1) ∼= G/X, Aut(�2) ∼=
G/〈y〉.

For r ≥ 2, we let�1 be the graphwith vertex set V (�1) = G/X∪(G/X)′ that arises
from Babai’s Construction 2.6 for the generalised quaternion group G/X with respect
to the minimal generating set H = {yX , bX}. Furthermore, we partition the set of
vertices G/X of �1 into the sets T1, T2, where Ti = {ynb(i−1)X | n ∈ N}, i = 1, 2.
For r = 1, we define �1 to be the graph with automorphism group isomorphic to the
cyclic group C4 that was presented in Example 2.7. Likewise, we partition its vertex
set into the sets Ti , where Ti = {2k + i | 0 ≤ k ≤ 4}, i = 1, 2.

Let us describe the graph �2 for all values of k. The conditions (i), (ii) in Propo-
sition 4.10 ensure that k ≥ 3. For 3 ≤ k ≤ 5, we construct �2 with vertex
set V (�2) = G/〈y〉 ∪ (G/〈y〉)′ according to Babai’s Construction 2.6 for the
generalised dihedral group G/〈y〉, with respect to some minimal generating set
K = {k1, k2, . . . , kd} of G/〈y〉 such that k1 = b〈y〉. For k ≥ 6, k �= 9, we
choose a GRR for G/〈y〉, which exists by assumption (ii) in Proposition 4.10 and
Lemma 4.2, and define the graph �2 to be either this GRR or its complement, with
the additional property that the number k + ρ�2(v) is even, for v ∈ V (�2). Fur-
thermore, for k ≥ 3, k �= 9, we partition the set of vertices G/〈y〉 of �2 into
Si = {xb(i−1)〈y〉 | x ∈ X}, i = 1, 2. Finally, for k = 9, we let �2 be the graph on 18
vertices presented in Proposition 4.9, and Si = Wi , whereWi is as in Construction 4.5,
for i = 1, 2.

Let us now define the graph � such that

V (�) = V (�1) ∪ V (�2);
E(�) = E(�1) ∪ E(�2) ∪ E, where

E =
{[
ti , si

] | ti ∈ Ti , si ∈ Si , i = 1, 2
}
.

Lemma 4.12 Let the sets of vertices V (�1), V (�2) of � be fixed by φ, for every
φ ∈ Aut(�). Then Aut(�) ∼= G.
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Proof By construction, the groups G/X and G/〈y〉 act on V (�1) and V (�2), respec-
tively. Using these actions, we associate a map g : V (�) → V (�) to every g ∈ G by
setting

g(v) =
{
gX(v), if v ∈ V (�1)

g〈y〉(v), if v ∈ V (�2).

In other words, the map g is defined to satisfy g �V (�1)= gX and g �V (�2)= g〈y〉.
Let g ∈ G. We will show that the map g is an automorphism of �. If v,w ∈ V (�i )

for some i ∈ {1, 2} then g is an automorphism of �, since

v ∼ w in � ⇐⇒ v ∼ w in �i ⇐⇒ g �V (�i ) v ∼ g �V (�i ) w in

�i ⇐⇒ gv ∼ gw in �.

Let v ∈ V (�1), w ∈ V (�2). By construction of �, g(Ti × Si ) = Tj × S j , where i=j
if and only if g ∈ 〈X , y〉, i, j ∈ {1, 2}. Thus,

[v,w] ∈ E(�) ⇐⇒ (v,w) ∈
2⋃

i=1

(Ti × Si ) ⇐⇒ (gv, gw) ∈
2⋃

i=1

(Ti × Si ).

In other words, v ∼ w ⇐⇒ gv ∼ gw. Since 〈y〉 ∩ X = {1}, we have G ≤ Aut(�).
For the opposite inclusion, letφ ∈ Aut(�). Since, by assumption,φ fixes V (�1), the

restriction φ �V (�1) of φ is an automorphism of �1. Since Aut(�1) ∼= G/X , we have
that φ �V (�1)= g1X , for some g1 ∈ G. Then the automorphism g−1

1 φ acts trivially on
V (�1). As the set of vertices T1 is fixed by g−1

1 φ, the set consisting of all neighbours
of T1 is also fixed by the same automorphism. However, g−1

1 φ fixes all neighbours of
T1, except, possibly, from elements of the set S1. Therefore, S1 is fixed by g−1

1 φ.
Likewise, we consider the restriction of the automorphism g−1

1 φ on �2 to conclude
that there exists some g2 ∈ G such that the automorphism g−1

2 g−1
1 φ acts trivially on

V (�2); without loss of generality, we let g2 ∈ 〈X , b〉. Since the graph automorphisms
g−1
1 φ and g−1

2 g−1
1 φ fix the set S1, we conclude that g2 ∈ X . However, X acts trivially

on V (�1). Therefore, the graph automorphism g−1
2 g−1

1 φ is the identity automorphism
of �. Thus,

φ = g1g2 ∈ G

and hence Aut(�) ≤ G. ��
Lemma 4.13 Let φ ∈ Aut(�). The sets of vertices V (�1), V (�2) are fixed by φ.

Proof First, we partition V (�1), V (�2) into the sets V (Xi ), V (Yi ), where i ∈ {1, 2},
and

V (X1) =
{
G/X , if r ≥ 2
V (�1), if r = 1,

V (X2) =
{

(G/X)′, if r ≥ 2
∅, if r = 1,
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V (Y1) =
{
G/〈y〉, if k �= 9
V (�2), if k = 9,

V (Y2) =
{

(G/〈y〉)′, if 3 ≤ k ≤ 5
∅, if k ≥ 6.

We will examine all possible values of r , k in order to show that V (�2) is fixed by φ,
using the automorphisms’ property to preserve the valency of the vertices permuting.

The valency of a vertex v ∈ V (�i ) in � is

ρ(v) = ρ�i (v) + ν� j (v), (8)

whereν� j (v) is the number of neighbours ofv that lie inV (� j ) and i, j ∈ {1, 2}, i �= j .
Case 1 Assume that r ≥ 2, k ≥ 6. Let xi ∈ V (Xi ), yi ∈ V (Yi ), i ∈ {1, 2}. By (8),

ρ(x1) = 5 + k, ρ(y1) = ρ�2(y1) + 2r ,

which, together with the assumption that the number k +ρ�2(y1) is even, implies that
ρ(x1) �= ρ(y1).

Suppose now that φ(v) ∈ V (�1), for some v ∈ V (�2). Then ρ(v) = ρ(y1) �=
ρ(x1), hence φ(v) ∈ V (X2). Since ρ(φ(v)) = ρ(x2) �= ρ(x1), the set V (X1) is fixed
by φ. Therefore, the number of neighbours of v that lie in V (X1), which is 2r , is equal
to the number of neighbours of φ(v) in V (X1), which is 3; a contradiction. Hence
V (�2) is fixed by φ.
Case 2 Suppose that 3 ≤ k ≤ 5; we assume that G satisfies Proposition 4.10, (iii),
thus r ≥ 2. If xi ∈ V (Xi ), yi ∈ V (Yi ), i ∈ {1, 2}, then, by (8),

ρ(x1) = 5 + k, ρ(y1) = ρ�2(y1) + 2r ,

ρ(x2) = 2r+1, ρ(y2) = d + 2.

Wewill show that the sets of vertices V (Y2) and V (Y1) are fixed by φ. Considering all
abeliangroups of order 3, 4or 5,we conclude that the size of aminimal generating set of
a generalised dihedral group of size 2k, such that 3 ≤ k ≤ 5, is between 2 and 3; hence
4 ≤ ρ(y2) ≤ 5. On the other hand, by construction, min{ρ(x1), ρ(x2), ρ(y1)} > 5.
As graph automorphisms preserve the valency of the vertices they permute, V (Y2) is
fixed by φ. It is implied that the set of neighbours of V (Y2), which is V (Y1), is also
fixed by φ.
Case 3 Assume now that r = 1, k ≥ 6, k �= 9. First, we will compute the valency
of each vertex of �. By (8), the valency of the vertices that lie in the sets of vertices
{1, 2}, {3, 4, 5, 6}, {7, 8, 9, 10} is k + 4, k + 5, k + 3, respectively, and the valency of
the vertices v ∈ V (�2) is ρ�2(v) + 5.

Suppose that φ(v) ∈ V (�1) for some v ∈ V (�2). Without loss of generality, we
assume that v ∈ S1. Graph automorphisms preserve the valency of the vertices they
permute so

ρ�2(v) + 2 = k + j, for some j ∈ {0, 1, 2}.

The graph � was constructed so that the number ρ�2(y1) + k is even, hence j is even.
In other words, the set of vertices {1, 2} is fixed by φ, as is either the set {7, 8, 9, 10}
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or the set {3, 4, 5, 6}. The vertex 1 ∈ V (�1) is connected to all other vertices in
T1 = {1, 3, 5, 7, 9} and no vertex in T2. Furthermore, the set of neighbours of v that
lie in V (�1) is T1. These properties combine to say that φ(v) is adjacent to either the
vertices 1, 3 + 2 j, 5 + 2 j or the vertices 2, 4 + 2 j, 6 + 2 j . However, there exists
no vertex in V (�1) that is adjacent to any of these triplets of vertices. Thus, φ fixes
V (�2).
Case 4 Finally, let r = 1, k = 9. We confirmed that the graph � on 28 vertices
constructed has the desired property using the mathematical software GAP [5]. ��
The last step in the proof of Proposition 4.10 is to show that the order of the graph �

constructed is bounded by the order of the group G.

Lemma 4.14 The graph �, defined in Construction 4.11, has at most |G| vertices.
Proof The graph � was constructed so that the set V (�1) has size 10, for r = 1, and
2|G/X |, for r ≥ 2. Moreover, the size of V (�2) is 2|G/〈y〉|, for 3 ≤ k ≤ 5, and
|G/〈y〉|, for k ≥ 6. Thus,

|V (�)| = |V (�1)| + |V (�2)| = max
{
2

|G|
|X | , 10

}
+

(
1 +

⌊5
k

⌋) |G|
|〈y〉| ,

where � 5
k � is the integer part of the real number 5

k . Let us now explain why |V (�)| ≤
|G|. If k = 3 then the assumption that r ≥ 3 (Proposition 4.10, (iii)) implies that
|V (�)| = 2

3 |G| + 1
2r−1 |G| < |G|. Similarly, if 4 ≤ k ≤ 5 then r ≥ 2, hence

|V (�)| ≤ 1
2 |G|+ 1

2r−1 |G| ≤ |G|.Finally, if k ≥ 6 then |V (�)| ≤ 1
3 |G|+ 1

2r |G| < |G|.
��

5 Proof of Theorem 1: the bound˛(G) > |G|
In this section we prove the bound α(G) > |G| and compute α(G) for groups G that
are non-abelian and satisfy one of (iii), (iv) in Theorem 1.

Theorem 5.1 Let G be a group such that one of the following holds:

(i) G is a generalised quaternion group,
(ii) G is a generalised dicyclic group of the form Q2r × C2,
(iii) G is one of the non-abelian groups that appear in Table 1.

Then α(G) > |G|; indeed, if (i) holds, α(G) = 2|G|; if (ii) holds, α(G) = |G| + 2;
if (iii) holds, α(G) is as shown in Table 1.

The proof of Theorem 5.1 is the subject of this section. Specifically, we compute
the value of α(G) when G is contained in one of the families of groups mentioned
in Theorem 5.1, (i), (ii), in Propositions 5.4 and 5.5. Then, we calculate α(G) for
the non-abelian groups G that are shown in Table 1 in Propositions 5.7, 5.10, 5.14
and 5.17.

Let us start by presenting two lemmas that will be used throughout the section.
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Lemma 5.2 Let G be the dicyclic group of order 2r+1q, where q is an odd prime or
q = 1. Let � be a graph such that G ∼= Aut(�) and consider the action of G on the
vertex set V (�). If every orbit has size at mostmax{2r+1, 2r q} then there exist at least
2 orbits of size 2r+1.

Proof Let G = 〈y, x, b | y2
r = xq = 1, y2

r−1 = b2, yx = xy, byb−1 =
y−1, bxb−1 = x−1〉.
As the action of G on V (�) is faithful, there exists a vertex w of � such that b2 /∈ Gw.
Then, since b2 is the only element of order 2, by Cauchy’s Theorem, 2 does not divide
|Gw|. Therefore, by the orbit-stabilizer lemma, 2r+1 divides |Ow|.Thus |Ow| = 2r+1,
since |Ow| ≤ max{2r+1, 2r q}. Suppose that Ow is the only orbit of size 2r+1.

Let B = {ykbw | k ∈ N}. We will show that the map φ : V (�) → V (�), where

φ(v) =
{
b2v, if v ∈ B,

v, if v /∈ B,

is an automorphism of �. Indeed, the property v1 ∼ v2 ⇐⇒ φ(v1) ∼ φ(v2) holds
for every v1, v2 ∈ V (�) as

• For v1, v2 ∈ B, b2 ∈ Aut(�) hence v1 ∼ v2 ⇐⇒ b2v1 ∼ b2v2,
• For v1, v2 /∈ B, clearly v1 ∼ v2 ⇐⇒ φ(v1) ∼ φ(v2),
• For v1 = g1w /∈ B, v2 = g2w ∈ B, g1 ∈ 〈y, x〉, g2 ∈ 〈y, x〉b, we have g1w ∼

g2w ⇐⇒ g1g
−1
2 g1w ∼ g1w ⇐⇒ b2g2w ∼ g1w, since g1g

−1
2 ∈ Aut(�) and

g1g
−1
2 g1 = b2g2,

• For v1 /∈ Ow, v2 ∈ B, we have that v1 ∼ v2 ⇐⇒ v1 ∼ b2v2, as b2 ∈ Aut(�)

and b2 ∈ Gv1 , by the assumption that 2 divides |Gv1 |.
We have reached a contradiction since Gw = Gbw = 〈x〉. Hence there exists a second
orbit of size 2r+1. ��
Lemma 5.3 Let G = Dicq , q ∈ {3, 5}, and let � be a graph on at most 4q +4 vertices
such that Aut(�) ∼= G. Then, there is no orbit of size |G| = 4q in the action of G on
V (�).

Proof Let G = 〈x, b〉, where xq = b4 = 1.
Suppose that there is a vertex v ∈ V (�) with stabilizer Gv = {1}. If there exists

an orbit of size 4, let u ∈ V (�) be a vertex with stabilizer Gu = 〈x〉. By possibly
replacing the graph � with its complement, �, we assume that v is adjacent to up to
two vertices in the orbit Ou , if it exists. Without loss of generality, we also assume
that if v is adjacent to a vertex inOu then v ∼ u. Let B = {

xkblv | k ∈ N, l ∈ {1, 3}}
and let φ : V (�) → V (�),

φ(w) =

⎧
⎪⎪⎨

⎪⎪⎩

b2w, if w ∈ B,

b(−1)klw, if w = bku and v ∼ blu, where k ∈ N, l ∈ {1, 3},
b−kw, if w = bku and v � blu,∀ l ∈ {1, 3}, where k ∈ N,

w, if 2 divides |Gw| or w ∈ Ov \ B.

We will show that φ ∈ Aut(�). The property v1 ∼ v2 ⇐⇒ φ(v1) ∼ φ(v2) holds
for every v1, v2 ∈ V (�), as
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• If v1, v2 ∈ B then v1 ∼ v2 ⇐⇒ b2v1 ∼ b2v2, since b2 ∈ Aut(�),
• If v1, v2 are fixed by φ then clearly v1 ∼ v2 ⇐⇒ φ(v1) ∼ φ(v2),
• If v1 = g1v /∈ B, v2 = g2v ∈ B, g1 ∈ 〈x, b2〉, g2 ∈ 〈x, b2〉b, then g1v ∼

g2v ⇐⇒ g1g
−1
2 g1v ∼ g1v ⇐⇒ b2g2v ∼ g1v, since g1g

−1
2 ∈ Aut(�) and

g1g
−1
2 g1 = b2g2,

• If v1 ∈ Ou then v2 ∈ Ov ∪Ou (Ov andOu are the only orbits, as |V (�)| ≤ 4q+4);
φ was constructed to preserve adjacency and non-adjacency between v1 and v2,

• If v1 ∈ B, 2 divides |Gv2 | then b2 ∈ Gv2 , hence v1 ∼ v2 ⇐⇒ b2v1 ∼ v2.

We have reached a contradiction, since φ fixes v but not bv and Gv = Gbv = {1}. ��
Using Lemma 5.2 we recover the following result, which was first proven in [8].

Proposition 5.4 The generalised quaternion group Q2r+1 satisfies α(Q2r+1) = 2r+2.

Proof By Babai’s Theorem 2.5, α(Q2r+1) ≤ 2r+2. The inequality α(Q2r+1) ≥ 2r+2

follows from Lemma 5.2. ��
Proposition 5.5 The generalised dicyclic group Q2r+1 ×C2 satisfies α(Q2r+1 ×C2) =
2r+2 + 2.

Proof Let G = 〈y, x, b | y2r = x2 = 1, y2
r−1 = b2, yx = xy, bx = xb, byb−1 =

y−1〉.
Let � be a graph on at most 2r+2+1 vertices with automorphism group isomorphic

to G. The faithfulness of the action of G on V (�) implies the existence of some
w ∈ V (�) such that b2 /∈ Gw. Then Gw ∈ {〈1〉, 〈x〉, 〈b2x〉}. Let u ∈ V (�) be
such that Gu ∈ {〈x〉, 〈b2x〉} and u /∈ Ow; if no such vertex exists, let u = w. Since
|V (�)| ≤ 2r+2 + 1, there exist at most two orbits of size 2r+1 or one of size 2r+2.
Therefore, if u �= w then Gu �= Gw, as the action of G on V (�) is faithful.

Let B = {
ykxlbz | z ∈ {w, u}, k, l ∈ N

}
and let φ : V (�) → V (�) be the map

φ(v) =
{
b2v, if v ∈ B,

v, if v /∈ B.

Wewill show that φ is an automorphism of � by proving that v1 ∼ v2 ⇐⇒ φ(v1) ∼
φ(v2), for every v1, v2 ∈ V (�). Indeed,

• If v1, v2 ∈ B, then v1 ∼ v2 ⇐⇒ b2v1 ∼ b2v2, since b2 ∈ Aut(�),
• If v1, v2 /∈ B, then clearly v1 ∼ v2 ⇐⇒ φ(v1) ∼ φ(v2),
• If v1 = g1z /∈ B, v2 = g2z ∈ B, z ∈ {w, u}, g1 ∈ 〈y, x〉, g2 ∈ 〈y, x〉b,
then g1z ∼ g2z ⇐⇒ g1g

−1
2 g1z ∼ g1z ⇐⇒ b2g2z ∼ g1z, as

g1g
−1
2 ∈ Aut(�), g1g

−1
2 g1 = b2g2,

• If v1 /∈ B, v2 ∈ B and Gv1 = 〈b2nx〉,Gv2 = 〈b2(n+1)x〉 for some n ∈ {1, 2}, then
we have v1 ∼ v2 ⇐⇒ v1 ∼ (b2nx)(b2(n+1)x)v2 ⇐⇒ v1 ∼ b2v2,

• If v1 /∈ Ow ∪ Ou , v2 ∈ B, then v1 ∼ v2 ⇐⇒ v1 ∼ b2v2, since b2 ∈ Gv1 .

Themapφ fixesw but not bw andGw = Gbw; a contradiction. Thus,α(G) ≥ 2r+2+2.

Let us now construct a graph � on 2r+2 + 2 vertices such that Aut(�) ∼= G.
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Construction 5.6 Let�1 be a graph on 2r+2 vertices constructed according to Babai’s
Construction 2.6 for the generalised quaternion group Q2r+1 and �2 be the connected
graph on 2 vertices. The graph � = �1 ∪�2 has Aut(�) ∼= G, since it consists of two
connected components,�1, �2, of different size andAut(�1) ∼= Q2r+1 ,Aut(�2) ∼= C2.

��
Proposition 5.7 The generalised dicyclic group G16 = 〈x, b | x4 = b4 =
1, bxb−1 = x3〉 satisfies α(G16) = 18.

We will prove Proposition 5.7 using the following lemma.

Lemma 5.8 Suppose that � is a graph on at most 17 vertices such that Aut(�) ∼= G,
where G = G16, and consider the action of G on V (�). Then, there is no vertex
with stabilizer equal to 〈x2b2〉. Moreover, there are two orbits, Ov1 ,Ov2 , such that
Gv1,Gv2 ∈ {〈x〉, 〈b2x〉}.
Proof The action of G on V (�) is faithful; thus, there exists some vertex v1 ∈ V (�)

such that b2 /∈ Gv1 . Let v1, v2, . . . , vs ∈ V (�) form a maximal set of vertices such
that b2 /∈ Gvi , for i ∈ {1, . . . , s}, and the orbits Ov1 , . . . ,Ovs are distinct. Since
|Ovi | ≥ 4, for i ∈ {1, . . . , s}, the assumption |V (�)| ≤ 17 implies that s ≤ 4.

Suppose that there do not exist distinct i, j ∈ {1, . . . , s} such that Gvi ,Gv j ∈{〈x〉, 〈b2x〉} or there exists i ∈ {1, . . . , s} such that Gvi = 〈x2b2〉. Since |V (�)| ≤ 17
and the action of G on V (�) is faithful, if s ≥ 3 then there exists i ∈ {1, . . . , s} such
that x2 /∈ Gvi ; hence Gvi = 〈x2b2〉. Moreover, since the action is faithful, there is
at most one i ∈ {1, . . . , s} such that Gvi = 〈x2b2〉. To sum up, we have s ≤ 2 or
Gvi = 〈x2b2〉 for a unique i ∈ {1, . . . , s}. If the latter is true, without loss of generality
let v1 have stabilizer Gv1 = 〈x2b2〉; alternatively, let v1 be such that |Ov1 | ≥ |Ovi |,
for i ∈ {1, s}. Moreover, if s = 2, without loss of generality we assume that if v1 is
connected toOv2 then v1 ∼ v2. Finally, by possibly replacing � with its complement,
let v1 be adjacent to at most half the vertices of Ov2 .

Let B = {
xkblv1 | k ∈ N, l ∈ {1, 3}}. We will show that the map φ : V (�) →

V (�),

φ(v) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b2v, if v ∈ B,

v, if v ∈ Ov2 and Gv1 = 〈x2b2〉,
b(−1)klv, if v = bkv2, v1 ∼ blv2, where k∈N, l ∈ {1, 3}, and Gv1 �=〈x2b2〉,
b−kv, if v = bkv2, v1 � blv2, ∀ l ∈ {1, 3}, where k∈N, and Gv1 �=〈x2b2〉,
v, if v /∈ (B ∪ Ov2 ),

is an automorphism of �. Indeed, u1 ∼ u2 ⇐⇒ φ(u1) ∼ φ(u2), for all u1, u2 ∈
V (�), as

• If u1, u2 ∈ B then u1 ∼ u2 ⇐⇒ b2u1 ∼ b2u2, since b2 ∈ Aut(�),
• If u1, u2 are fixed by φ then clearly u1 ∼ u2 ⇐⇒ φ(u1) ∼ φ(u2),
• If u1 = g1v1 /∈ B, u2 = g2v1 ∈ B, g1 ∈ 〈x, b2〉, g2 ∈ 〈x, b2〉b, then g1v1 ∼

g2v1 ⇐⇒ g1g
−1
2 g1v1 ∼ g1v1 ⇐⇒ b2g2v1 ∼ g1v1, since g1g

−1
2 ∈ Aut(�)

and g1g
−1
2 g1 = b2g2,
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• If u1 ∈ Ov2 , u2 ∈ Ov1 ∪ Ov2 and Gv1 �= 〈x2b2〉, then φ was constructed to
preserve adjacency and non-adjacency between u1, u2,

• If u1 ∈ B, u2 ∈ Ov2 and Gv1 = 〈x2b2〉, then u1 ∼ u2 ⇐⇒ x2(x2b2)u1 ∼
u2 ⇐⇒ b2u1 ∼ u2 since x2b2 ∈ Gv1 , x

2 ∈ Gv2 ,
• If φ(u1) = b2u1 and u2 /∈ Ovi for all i ∈ {1, . . . , s}, then u1 ∼ u2 ⇐⇒ b2u1 ∼
u2, as b2 ∈ Gu2 ,

• If φ(u1) = blu1 for some l ∈ {1, 3}, and u2 /∈ Ovi for all i ∈ {1, . . . , s}, then,
by assumption, Gv1 = 〈x2〉 and Gv2 = Gu1 ∈ {〈x〉, 〈b2x〉}. By faithfulness,
there is w ∈ V (�), x2 /∈ Gw. Since |V (�)| ≤ 17, Gw = 〈xkb〉, for some
k ∈ N. In any case, Gu1 ∈ {〈x〉, 〈b2x〉}, Gu2 ∈ {〈xkb〉 | k ∈ N} ∪ G imply that
u1 ∼ u2 ⇐⇒ blu1 ∼ u2.

We have reached a contradiction since Gv1 = Gbv1 and φ fixes v1 but not bv1. ��
Proof of Proposition 5.7 LetG = G16. Suppose that� is a graph on at most 17 vertices
such that Aut(�) ∼= G. As the action of G on V (�) is faithful, there exists w1 ∈
V (�) such that x2 /∈ Gw1 ; by Lemma 5.8, Gw1 �= 〈1〉, 〈x2b2〉, hence Gw1 = 〈b2〉
or Gw1 = 〈xkb〉 for some k ∈ N. Let Ov1 ,Ov2 be two distinct orbits such that
Gv1,Gv2 ∈ {〈x〉, 〈b2x〉}, which exist by Lemma 5.8. Since |V (�)| ≤ 17, there are
up to two orbits, of total size at most eight, containing vertices that are not fixed by
x2. If there are exactly eight such vertices, let w2 ∈ V (�) be such that x2 /∈ Gw2 and
the vertices {w1, xw1, x2w1, x3w1, w2, xw2, x2w2, x3w2} are distinct; if only four
vertices of � are not fixed by x2, let w2 = w1. By possibly replacing � with its
complement, we assume that the vertex w1 is adjacent to up to two vertices of the
set {w2, xw2, x2w2, x3w2}. Without loss of generality, if w1 �= w2, let these vertices
be w2 and xδw2, δ ∈ {0, 1, 2, 3}; if w1 is adjacent to exactly one vertex of the set
{xkw2 | k ∈ N} or w1 = w2, let δ = 0. Then

w1 ∼ xnw2 ⇐⇒ w1 ∼ xδ−nw2, ∀ n ∈ N. (9)

We will show that the map ψ : V (�) → V (�), where

ψ(v) =
⎧
⎨

⎩

x−kw1, if v = xkw1, k ∈ N,

xδ−lw2, if v = xlw2, l ∈ N,

v, if x2 ∈ Gv,

is an automorphism of �. Indeed, u1 ∼ u2 ⇐⇒ ψ(u1) ∼ ψ(u2) for all u1, u2 ∈
V (�), as

• if u1 = xkwi , u2 = xlwi , k, l ∈ N, i ∈ {1, 2}, then xkwi ∼ xlwi ⇐⇒
x j−lwi ∼ x j−kwi , for j = 0, δ, since x j−k−l ∈ Aut(�),

• If u1, u2 are fixed by ψ then clearly u1 ∼ u2 ⇐⇒ ψ(u1) ∼ ψ(u2),
• If u1 = xkw1, u2 = xlw2 for k, l ∈ N and w1 �= w2 then, by (9), xkw1 ∼

xlw2 ⇐⇒ w1 ∼ xl−kw2 ⇐⇒ w1 ∼ xδ−l+kw2 ⇐⇒ x−kw1 ∼ xδ−lw2,
• If u1 ∈ Ov1 ∪Ov2 or |Ou1 | = 1, and u2 ∈ Ow1 ∪Ow2 , then u1 ∼ u2 ⇐⇒ u1 ∼

xku2, for all k ∈ N, since Gu1 ∈ {〈x〉, 〈b2x〉,G} and b2 ∈ Gu2 ,
• If |Ou1 | = 2 and u2 = xkw1, k ∈ {1, 3}, then x2 ∈ Gu1 hence u1 ∼ xkw1 ⇐⇒
u1 ∼ xk+2w1 ⇐⇒ ψ(u1) ∼ ψ(u2); note that w1 = w2, since |V (�)| ≤ 17.
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We have reached a contradiction: ψ fixes v1 and w1 but Gv1 ∩ Gw1 = {1}. Thus
α(G) ≥ 18.

We will complete the proof by constructing a graph � on 18 vertices having
Aut(�) ∼= G.

Construction 5.9 Let � be a graph with vertex set V (�) = O1 ∪ O1′ ∪ O1′′ ∪ O1′′′ ,
where O1 = {1, 2, . . . , 8}, O1′ = {1′, 2′}, O1′′ = {1′′, 2′′, 3′′, 4′′} and O1′′′ =
{1′′′, 2′′′, 3′′′, 4′′′}. We define the edge set of � to be such that, for v,w ∈ O1,

v′
� w′; v′

� w′′; v′
� w′′′; v′′′

� w′′′;
v ∼ w′ ⇐⇒ v − w ≡ 0 (mod 2);

v′′ ∼ w′′′ ⇐⇒ w − v ≡ 0, 1 (mod 4);
v′′ ∼ w′′ ⇐⇒ v − w ≡ 2 (mod 4);

v ∼ w′′ ⇐⇒ (v,w) ∈
⋃

k∈{0,1}

({4k + i | 1 ≤ i ≤ 4} × {k + 1, k + 3});

v ∼ w′′′ ⇐⇒ v ∼ w′′;
v ∼ w ⇐⇒ w − v ≡ 0, (−1)k (mod 4), v �= w, and

k ∈ {0, 1} is such that v ∈ {4k + i | 1 ≤ i ≤ 4}, w /∈ {4k + i | 1 ≤ i ≤ 4}.
Using the mathematical software GAP [5] we verified that Aut(�) ∼= G. ��

The proofs of Propositions 5.10, 5.14, and 5.17 that follow are similar in nature to
the proof of Proposition 5.7. Therefore, some of the technical details are omitted.

Proposition 5.10 For the groupsDic3, Dic5, Dic6, Q8×C3 we have that α(Dic3) =
17, α(Dic5) = 23, and α(Dic6) = α(Q8 × C3) = 25.

Proof Let G = 〈y, x, b〉 be a generating set for G such that y2
r = xq = 1, y2

r−1 =
b2, yx = xy, where r ∈ {1, 2}, q ∈ {3, 5}. Suppose that there exists a graph � such
that Aut(�) ∼= G and |V (�)| < 3q + 2r+2.

Suppose, in addition, that less than 3q vertices are not fixed by x . The faithfulness
of the action ofG on V (�) implies the existence of v ∈ V (�) such that x /∈ Gv , hence
q divides |Ov|. Let V = {

xkz | z ∈ {v, u}, k ∈ N

}
be the set of vertices of � that are

not fixed by x , where u /∈ {xkv | k ∈ N}, if there exist two orbits of size q or one of
size 2q, and u = v, if there is exactly one orbit of size q.

We may assume that v is adjacent to up to two vertices of the set {xku | k ∈ N}. If
v �= u, let us consider these vertices to be u and xδu, where δ ∈ {0, 1, . . . , q − 1}; if
v is adjacent to exactly one vertex in {xku | k ∈ N} or v = u, let δ = 0. In any case,
we have

v ∼ xnu ⇐⇒ v ∼ xδ−nu, ∀ n ∈ N. (10)

Similar to the map ψ in Proposition 5.7, the map ψ : V (�) → V (�), where

ψ(z) =
⎧
⎨

⎩

x−kv, if z = xkv, k ∈ N,

xδ−lu, if z = xlu, l ∈ N,

z, if q divides |Gz |,
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is an automorphism of �. The faithfulness of the action implies the existence of
w ∈ V (�) such that b2 /∈ Gw, hence Gw = 〈x〉 (Gw �= {1}, since there exist less than
3q vertices that are not fixed by x). Then, ψ ∈ Gw ∩ Gv = {1} and ψ(xv) = x−1v;
a contradiction.

We will show that there is no orbit of size |G|. Indeed, if |G| = 24 then we
assumed that |V (�)| ≤ 24 hence, by the GRR theorem, there exists no orbit of size
24. If |G| = 12, 20 then, by Lemma 5.3, every orbit has size at most 2r q.

By Lemma 5.2, there exist at least two orbits of size 2r+1 (a similar statement to
Lemma 5.2 holds for the groupG = Q8×C3 and the proof is analogous). Considering
the number of vertices that are fixed or not fixed by x we conclude that |V (�)| ≥
3q + 2r+2; a contradiction. Hence, α(G) ≥ 3q + 2r+2.

Let us now consider each case for G ∈ {
Dic3,Dic5,Dic6, Q8 ×C3

}
and construct

a graph � such that Aut(�) ∼= G, completing the proof that α(G) = 3q + 2r+2.

Construction 5.11 Assume that G = Dicq for some q ∈ {3, 5}. Let � be a graph
with vertex set V (�) = O1 ∪ O1′ ∪ O1′′ ∪ O1′′′ , where O1 = {1, 2, . . . , 2q}, O1′ =
{1′, 2′, . . . , q ′}, O1′′ = {1′′, 2′′, 3′′, 4′′}, O1′′′ = {1′′′, 2′′′, 3′′′, 4′′′}, and edge set such
that, given v,w ∈ O1,

v′
� w′; v′′′

� w′′′; v′
� w′′; v′

� w′′′;
v ∼ w ⇐⇒ w − v ≡ 0 (mod q), v �= w;

v′′ ∼ w′′ ⇐⇒ w − v ≡ 1 (mod 4);
v ∼ w′ ⇐⇒ w − v ≡ 0 (mod q), v ≤ q, or w − v ≡ 1 (mod q), v > q;
v ∼ w′′ ⇐⇒ w − v ≡ 0 (mod 2), v > q, or w − v ≡ 1 (mod 2), v ≤ q;
v ∼ w′′′ ⇐⇒ v ∼ w′′;

v′′ ∼ w′′′ ⇐⇒ w − v ≡ 0, 1 (mod 4).

Construction 5.12 For G = Dic6, we let � be the graph with vertex set V (�) =
O1 ∪ O1′ ∪ O1′′ ∪ O1′′′ , where O1 = {1, 2, . . . , 8}, O1′ = {1′, 2′, . . . , 8′}, O1′′ =
{1′′, 2′′, . . . , 6′′}, O1′′′ = {1′′′, 2′′′, 3′′′}, and edge set such that, for v,w ∈ O1,

v � w; v′′′
� w′′′; v � w′′′; v′

� w′′; v′
� w′′′;

v′ ∼ w′ ⇐⇒ w − v ≡ 4 (mod 8);
v′′ ∼ w′′ ⇐⇒ w−v≡1 (mod 3), v ≤ 3, w>3, or w−v≡2 (mod 3), v>3, w≤3;

v ∼ w′ ⇐⇒ w − v ≡ 0 (mod 8), or w−v≡3 (mod 4) and (v ≤ 4 ⇐⇒ w ≤ 4);
v ∼ w′′ ⇐⇒ v ≤ 4, w ≤ 3, or v > 4, w > 3;

v′′ ∼ w′′′ ⇐⇒ w − v ≡ 0 (mod 3).

Construction 5.13 Finally, for G = Q8 × C3, let �1 be a graph on 16 vertices con-
structed according to Babai’s Construction 2.6 for the group Q8 and let �2 be a
graph on 9 vertices such that Aut(�2) ∼= C3, which exists by Proposition 3.3. We let
� = �1 ∪ �2.

Using GAP [5], we confirmed that each graph has the desired automorphism group. ��
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Proposition 5.14 Let G = 〈a, b | a8 = b2 = 1, bab−1 = a5〉. Then α(G) = 18.

Suppose that there exists graph � with V (�) ≤ 17 and Aut(�) ∼= G. As G
acts faithfully on V (�), there exists w ∈ V (�) such that a4 /∈ Gw, hence Gw ∈
{〈1〉, 〈a4b〉, 〈b〉}. If Gw = 〈1〉 then the subgraph �1 of � induced byOw has order 16
and Aut(�1) ∼= G, contradicting the non-existence of a GRR for G. Since 〈a4b〉, 〈b〉
are conjugate, we may assume that Gw = 〈b〉. Let u ∈ V (�) such that u /∈ Ow and
Gu = 〈b〉, if there exists a second orbit with elements not fixed by a4; if no such orbit
exists, let u = w.

Lemma 5.15 The vertex w is adjacent to exactly one of the vertices a2u, a6u in �,
with � as above.

Proof Suppose, conversely, that

w ∼ a2u ⇐⇒ w ∼ a6u. (11)

Let B = {w, a4w, u, a4u}. Then, the map φ : V (�) → V (�), where

φ(v) =
{
a4v, if v ∈ B,

v, if v /∈ B,

is an automorphism of �. The proof is similar to that of the other automorphisms
defined in this section. However, φ fixes a2w but not w, contradicting the equality
Gw = Ga2w. ��
Proof of Proposition 5.14 If � is a graph on at most 17 vertices having Aut(�) ∼= G
and Ow, Ou are the orbits of size 8 listed above then by Lemma 5.15 either w ∼ a2u
or w ∼ a6u (hence w �= u). Arguing analogously, we can show that w ∼ u ⇐⇒
w � a4u. Without loss of generality, we assume that w ∼ u, w ∼ a2u. Moreover,
since b ∈ Gw, b ∈ Gu, we have that w ∼ a3u ⇐⇒ w ∼ ba3bu ⇐⇒ w ∼ a7u.
Hence, it holds for every n ∈ N that

w ∼ anu ⇐⇒ w ∼ a2−nu. (12)

Since |V (�)| ≤ 17 and |Ow∪Ou | = 16, there is at most one additional orbit, which
has size 1. Similar to themapψ in Proposition 5.7, themapψ : V (�) → V (�), where

ψ(v) =
⎧
⎨

⎩

a−ku, if v = aku, k ∈ N,

a6−lw, if v = alw, l ∈ N,

v, if |Ov| = 1.

is an automorphism. This is a contradiction as Gu = Ga2u and ψ fixes u but not a2u.
We complete the proof by constructing a graph�with V (�) = 18 andAut(�) ∼= G.
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Construction 5.16 Let � be a graph with V (�) = V1 ∪ V2 ∪ V3, where V1 =
{1, 2, . . . , 8}, V2 = {1′, 2′, . . . , 8′} and V3 = {1′′, 2′′}. We define the edge set of
� to be such that, for v,w ∈ V1,

v′′
� w′′;

v ∼ w ⇐⇒ w − v ≡ 1, 7 (mod 8);
v′ ∼ w′ ⇐⇒ w − v ≡ 3, 5 (mod 8);
v ∼ w′ ⇐⇒ w − v ≡ 0, 1, 3 (mod 8);
v ∼ w′′ ⇐⇒ w = 1;
v′ ∼ w′′ ⇐⇒ w = 2.

Using GAP [5] we computed that Aut(�) ∼= G. ��
Proposition 5.17 The alternating group A4 satisfies α(A4) = 16.

Let G = 〈a, b〉, where a = (1 2 3) and b = (1 2)(3 4). Suppose that there exists a
graph � on at most 15 vertices with Aut(�) ∼= G.

Since G has no subgroup of order 6, there is no orbit of size 2. Furthermore, there
exists z ∈ V (�) such that b /∈ Gz . Then |Gz | ∈ {1, 2, 3}, hence the orbit Oz has size
4, 6 or 12. We examine each of these cases.

Lemma 5.18 Let G = A4 and let � be as in the previous paragraph and consider the
action of G on V (�). Then, there exists no orbit of size 4.

Proof Suppose, in contrast, that there exists some orbit of size 4. If there also exists
an orbit of size 6 as well as an orbit of size 3, then without loss of generality we let
w ∈ V (�) be such that |Ow| = 3 and u ∼ aw ⇐⇒ u ∼ a2w, for every u ∈ V (�)

having Gu = 〈b〉; this is possible since the bound |V (�)| ≤ 15 ensures that there is
at most one orbit of size 6. Otherwise, let w be such that Gw = 〈aba〉. Then the map
φ : V (�) → V (�), where

φ(v) =
⎧
⎨

⎩

a2v, if Gv = 〈b〉,Gv = 〈aba〉 or v = w,

av, if Gv = 〈a2ba〉,Gv = 〈ab〉 or v = a2w,

v, otherwise,

is an automorphism. The proof is more technical but similar to others in this section.
For a detailed justification, we refer the reader to the arXiv version of this article [3].

Practically, φ interchanges two pairs of vertices in the orbit of size 6, if it exists,
one pair in the orbit of size 3, if both an orbit of size 3 and 6 exist, and one pair
in every orbit of size 4. However, φ fixes two vertices, v1, v2, such that Gv1 = 〈a〉,
Gv2 = 〈a2b〉, but Gv1 ∩ Gv2 = {1}; a contradiction. ��
Lemma 5.19 Let G = A4 and let � be as in Proposition 5.17 and consider the action
of G on V (�). Then, there exists no orbit of size 12.

Proof Suppose that there exists an orbit of size 12. In [21, Proposition 3.7], Watkins
proved that G has no GRR. The arguments in [21, Proposition 3.7] extend to the case
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that � contains an additional orbit of size 3, or up to three additional orbits of size 1.
For details on the extension we refer the reader to the arXiv version of this article [3].

��
Proof of Proposition 5.17 We assumed that � is a graph on at most 15 vertices having
Aut(�) ∼= G; then b /∈ Gz for some z ∈ V (�). By Lemmas 5.18 and 5.19, there is no
orbit of size 4 or 12, and |Gz | = 6. Using the group structure of G we can prove that
χ : V (�) → V (�),

χ(v) =
{
aba2v, if Gv = 〈b〉,
v, if Gv �= 〈b〉,

is an automorphism of �.
However,χ fixes two vertices, v1, v2 ∈ Oz such thatGv1 = 〈aba2〉,Gv2 = 〈a2ba〉,

contradicting the property Gv1 ∩ Gv2 = {1}. Therefore, α(G) ≥ 16.

We will show that α(G) = 16 by constructing a graph � on 16 vertices with
Aut(�) ∼= G.

Construction 5.20 Let � be a graph with vertex set V (�) = O1 ∪ O1′ ∪ O1′′ , where
O1 = {1, 2, . . . , 6}, O1′ = {1′, 2′, . . . , 6′} and O1′′ = {1′′, 2′′, 3′′, 4′′}. We define the
edge set of � to be such that, for v,w ∈ O1,

v′
� w′; v′

� w′′; v′
� w′′′; v′′′

� w′′′;
v ∼ w′ ⇐⇒ v − w ≡ 0 (mod 2);

v′′ ∼ w′′′ ⇐⇒ w − v ≡ 0, 1 (mod 4);
v′′ ∼ w′′ ⇐⇒ v − w ≡ 2 (mod 4);

v ∼ w′′ ⇐⇒ (v,w) ∈
1⋃

k=0

({4k + i | 1 ≤ i ≤ 4} × {k + 1, k + 3});

v ∼ w′′′ ⇐⇒ v ∼ w′′;
v ∼ w ⇐⇒ w − v ≡ 0, (−1)k (mod 4), v �= w, and

k ∈ {0, 1} is such that v ∈ {4k + i | 1 ≤ i ≤ 4}, w /∈ {4k + i | 1 ≤ i ≤ 4}.

Using the mathematical software GAP [5] we computed that Aut(�) ∼= G. ��
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