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Abstract

In this paper we consider r-regular graphs G that admit the vertex set partition such
that one of the induced subgraphs is the join of an s-vertex clique and a ¢-vertex co-
clique and represents a star complement for an eigenvalue p of G. The cases in which
one of the parameters s, ¢ is less than 2 or u = r are already resolved. It is conjectured
in Wang et al. (Linear Algebra Appl 579:302-319, 2019) that if s, ¢ > 2 and u # r,
then u = —2,¢t =2 and G = (s + 1)K,. For u = —t we verify this conjecture to be
true. We further study the case in which i # —¢ and confirm the conjecture provided
12 — 4%t — 413 = 0. For the remaining possibility we determine the structure of a
putative counterexample and relate its existence to the existence of a particular 2-class
block design. It occurs that the smallest counterexample would have 1265 vertices.
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1 Introduction

If u is an eigenvalue of (the adjacency matrix A(G) of) a finite simple graph G with
multiplicity k, then a star complement for  in G is the induced subgraph G — X such
that | X| = k and p is not an eigenvalue of G — X. In this situation X is called a star set
for 1 in G. The main properties of star complements can be found in [3, Chapter 5].

Graphs with prescribed star complements have been extensively studied in [2,4,7,9—
12,15]. In particular, Jackon and Rowlinson [6] characterized regular graphs with the
complete bipartite graph K> 5 as a star complement, Asgharsharghi and Kiani [1]
characterized regular graphs with the complete tripartite graph K, , , as a star com-
plement, Yuan et al. [18] determined maximal graphs with K ; in the role of a star
complement for © = —2 and also described regular graphs with the complete bipartite
K> ; graph as a star complement for any eigenvalue. Trees and complete graphs as star
complements for 1 as the second largest eigenvalue are characterized by Stani¢ [13].

We use K, and n K to denote the clique (i.e. the complete graph) and the co-clique
(the graph without edges) of order n, respectively. The disjoint union of the graphs G
and H is denoted by G U H. The join GV H is obtained by inserting an edge between
every vertex of G and every vertex of H. The complement of G is denoted by G. For
the remaining terminology and notation, we refer the reader to [3,15].

The graph K;VtK;| (= sK1 U K;) in the role of a star complement has received a
great deal of attention in the recent years. For # = 1 the star complement reduces to
the complete graph K 1, and this case is completely resolved in [14,16]. Stani¢ [14]
considered strongly regular graphs with this star complement, proved that they do not
exist for 5,7 > 2 and provided some examples for s = 1,7 > 2. Rowlinson and
Tayfeh-Rezaie [12] characterized all regular graphs with K ; as a star complement.
Wang et al. [16] determined all r-regular graphs with K, V¢ K as a star complement
for r, and formulated the following conjecture.

Conjecture 1.1 [16] If an r-regular graph G has K;VtKy (s,t > 2) as a star com-
plement for an eigenvalue (n #r, then u = =2, t =2 and G = (s + 1)K».

In this paper we prove that the conjecture holds for u = —¢. For © # —t we
confirm the conjecture under the additional assumption that 1> — 4%t — 4u3 = 0.
For 1> — 4u”t — 4u> # 0 we prove that & must be a positive integer, determine the
structure of a putative counterexample and relate its existence to the existence of a
particular 2-class block design. We also list the sets of feasible parameters of such
a graph for u < 800. It occurs that the smallest counterexample would have 1265
vertices.

Section 2 is preparatory and mostly related to star complements. Our contribution
is reported in Sects. 3 and 4.

2 Preliminaries
We fix some notation and recall some results related to star complements in graphs.

For a subset X of the vertex set V (G) of a graph G, we write G[X] to denote the graph
induced by X. The first result is the well-known reconstruction theorem.
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Theorem 2.1 [3, Theorem 5.1.7] Let X be a set of k vertices in a graph G and suppose
that G has adjacency matrix

AG) = (ﬁ;‘ BCT) , M
where Ay is the adjacency matrix of G[X]. We have:
(i) X is a star set for i in G if and only if u is not an eigenvalue of G — X and
wl —Ax = BT(ul — C)™'B. )
(ii) If X is a star set for u, then the eigenspace of | consists of vectors
(ul — Z)_le) , forx € Rk,

With the notation of Theorem 2.1, let H = G — X. Itis clear that H is a subgraph
of G induced by X = V(G)\X, with |X| =n —k and A(H) = C. Foru € X, denote
by b, the vector column of B corresponding to u. Obviously, b, is the characteristic
vector of the H-neighbourhood Ny (1) of u.

We define the bilinear form on R"* by (x,y) = xT(ul — A(H))~'y. By direct
computation we get

uw ifu=wv,
(by,byy =13 -1 ifu~wv,

0 otherwise.

Obviously, for u # v, b, # b, provided u ¢ {0, —1}, which leads to the following
result.

Lemma 2.2 [8] Let X be a star set for p in G. If u # 0, then Ny (u) (u € X) is
non-empty and if u ¢ {—1, 0}, then Ny (u) # Ny (v) for distinct u, v € X.

We conclude this section by the two more results taken from [3].

Lemma 2.3 [3, Proposition 5.2.1] Let C be a square matrix with minimal polynomial
m(x) = x4t 4 cdxd + cd_lxd71 + .-+ c1x +cp.
If 1 is not an eigenvalue of C, then
m(u)(ul —C)~' = asC+ag 1€ + -+ ar1C +al,
where ag = 1 and for 0 <i <d,
aa—i = +cap' "t +ea T4 caivt

Lemma 2.4 [3, Proposition 5.2.4] If X is a star set in an r-regular graph G for an
eigenvalue | # r, then (b,,j) = —1 forallu € X.
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3 K;VtKq (s, t > 2) as a star complement in a regular graph

In this section we consider aregular graph G that has a star complement H = KVt K|
(s, t > 2) for an eigenvalue p. After a suitable labelling A(G) can be expressed as in
(1) along with

3)

A(H) — (Jsxs - Is><s Js><t) .

Jt><s Ot><t

Now we use the same notations as in [16]. Let V(H) = V(K;) UV (K;) = R{ U

RyU---UR;UV(tKy), where |R;| = 1 for1 <i <s. A vertex u € X is of type

(c1,¢2,...,c5,b) ifithas ¢; € {0, 1} neighbours in R; and b neighbours in V(¢ K).
s

It is clear that |N;k, (u)| = b. If we set Y ¢; = a, then we also have |Ng, (u)| = a.

i=1
We first quote a lemma which will be used in the sequel.

Lemma 3.1 [16, Theorem 3.3] Suppose that an r-regular graph G contains the star
complement K;VtKy (s,t > 2) for an eigenvalue |1, with the corresponding star set
N

X. Ifall vertices in X are of type (c1, 2, ..., Cs, D) with Y ¢; =s — 1, then u = =2,
i=1
b=t=2and G = (s + 1)K>.
We now use Lemma 2.3 to compute m () (ul — A(H))~!. From (3) we have

A(H)2 _ ((S +t =2 Jgus + Lixs (5 — 1)~’s><l>

(s — DJixs sTrxt
and

ACH) = (s2—|—2s12—3s—2t—|—3)Jsxs—ISXS (s2+st2—2s+l)JSX, '
(5% + 5t =25 + DJrxs (57 = 8)Jixt

It follows that the minimal polynomial of A(H) is given by
m(x) =x(x + 1)(x2 — (s —Dx —s1) = x4+ 2 - s)x3 +(1—-s5— st)x2 — stx.

Since p is not an eigenvalue of H, we have p ¢ {0, —1} and w2 —(s—Dp—st #0.
Then, with the notation of Lemma 2.3, we have

c3=2-—s5,

o= (1—s5—s1),
c|] = —St,
C()ZO,
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which leads to

az =1,

a=p+s—-2,

a=p>+Q-sH)pn+1—s—st,

av=wW +Q—-s)u*+ 1A —s—st)m—st = (u—+ D(u?— (s — Du — st).

Moreover, by regarding A(H) as C in Lemma 2.3, we obtain

m(u)(ul — AGH) ™ = ACH) + (42 = )ACHD® + (W2 + 20 — s+ 1 —s = s)) A(H)
F A D@~ = Du—snl
_ aJsxs + Bulsxs 8 Jsxt
- 8Jixs YJixe + B+ Dt )’
“)
where o = p2 4+ put, B=pu? — (s — D — st, y = (us +s) and 8§ = (u? + p).
If u, v are some vertices of the star set X, then we suppose that u is of type

N
(c1,¢2,...,¢5,b), where Y ¢; = a, and v is of type (eq,ea,...,es, ), where
i=1
N
Y ei = e. Let N, (u) = Y1, Njk,(u) = Zi and Ng,(v) = Y2, Nk, (v) = Zo.
i=1
Recall that b, and b, are the columns of B corresponding to u and v, respectively.
From (3) we see that b, has the form b, = (le , b}l)T, where by, and bz, are the
characteristic vectors of Y and Z; (i.e. they determine the Y;-neighbourhood and
Z1-neighbourhood of u), respectively. Similarly, b, = (b;z, b}z)T, where by, and
bz, are the characteristic vectors of ¥> and Z,, respectively. Then

INk,(w)| = |Y1] = a,
[INik, ()| = |Z1| = b,
[Nk, (V)| = |Y2| = e,
INik, (W =22 = f,

and so

INgW)| = [Y1| + 1Z1]| =a + b,
INg()| = Y2l +|Z2] = e+ f.

We further denote p; = |Ng, (1) N Nk, (v)| and p; = |N;k,(u) N Nig, (v)|, along
with U = (ul — Ax) — BT(ul — A(H))"'B and f(u; u,v) = m(u)Uy,y, where

U, stands for the (u, v)-entry of U. But, from (2) we know that U is an all-0 matrix,
which yields

£, v) =m0 Uy = m() (] — Ax)uw = bI (] — ACH))"'by) = 0.
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Combining this with (4), we obtain

—ayym(p) =bTm(w)(ul — AC(H)) " 'b,

:(bT bT) aJsxs + Budgxs 8Jsxr sz
Y10 0z 8Jrxs YJixt + B+ Dlixi ) \ bz,

b
= (b], @Joxs + BitTyus) + 8] Jrs 8bT, Joscr +bY (v Jise + B + Dlrsr) (bZ)

:b;l (o Jyxs + ,B,ulsxs)sz + ab}l thstz + (Sb;l Jsxtbzz + b}] (Y Jexe
+ B+ Dlix)bz,
=aae + Bups +dbe +daf +ybf + B+ Dp;.

Therefore,
[ (s u,v) = — ayym(p) — (aae + Bups + (be +af)s + ybf + B+ 1)p;)

= (—auott — ps — P+ D(U* — (s — D — st)
— (ae — ps + be +af)u* — (aet + py(s — 1) + be + af + sbf)u

—stps —sbf =0.
Q)
Similarly, for u = v we have
Fuzuu) = m(u) Ui = m(@) (] = A = b] (I = AGH))™'b,) = 0.
Combining this with (4), we obtain
um () =bIm(u)(ul — A(H) ™ 'b,
=aa® + Bua + dab + Sab + yb® + B(u + 1)b.
Hence,
FGus u,u) = pum(u) — (@a* + Bpa + dab + dab + yb* + B(u + 1)b)
=W+ Q-ut+U—-b—s—st—au’
+(as—2b—2ab—|—bs—st—az—a)u2 (6)
+ (bs —2ab — b — a’t — b*s +ast + bst)u
— sb?> +sth =0.

The equality (6) can also be found in [11]; here, we reproduce it for the sake of
completeness. Since p # r, from Lemma 2.4 we have (b, j) = —1. By multiplying
both sides of this equality by m(u), we get

—m(p) =bIm(w)(ul — AH)) ™'

:(bT bT) aJsxs + Bulyxs 35t Js
vi° Pz, 8T Yixi + B+ Dl ) s

=asa + Bura + dsb + §ta + ytb + B(u + 1)b,
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which gives

a(p+1)+b(u+1) =s(u+1)—pupn+1), (7
equivalently, b = % — . Combining this with (6), we get

((? = (s — D = st)((t + p)a* + (¢ + 2 — 25t — 25 + tpe + 2u)a

+x —st—2su + 5% — ZS/JL2 +s2u+3u2 +3/«L3 +u4 - st,u))/(u—i— 1) =0.
(@)
Since u? — (s — )y — st # 0 and u # —1 (since —1 is an eigenvalue of the star
complement), by taking into account (8), we arrive at

(t+u)a2+(t+2,u—2st—2su+tu+2u2)a+u—st—2su

)
+ 5% — ZSMZ + szu + 3M2 + 3M3 + ,u4 —stu =0.

We record this as the following lemma.

Lemma3.2 Let K;VtK; (s,t > 2) be a star complement for an eigenvalue L in
an r-regular graph G, and let X denote the corresponding star set. The parameter
INk, ()| = a satisfies Eq. (9).

In what follows we first consider the case in which u = —¢. It follows that r +2u —
25t — 2sp 4+ tjn +2p% = pu( + 1) # 0. Thus, the equality (9) is linear in a, which
leads to @ = —pu? — 2 + s — 1. On the other hand, from (7) we have b = —p = t.
Combining this with Lemma 3.2 we immediately get the following corollary.

Corollary 3.3 Under the assumption of Lemma 3.2, if p = —t then

{|NKS(u)| =a=—p=2p+s—1,
INig, )| =b=—p =1t

holds for allu € X.
We are now in position to prove a conditional resolution of Conjecture 1.1.
Theorem 3.4 Conjecture 1.1 holds for u = —t.

Proof Let G be an r-regular graph satisfying the assumptions of the conjecture, along
with © = —t. We need to prove that G = (s + 1) K>.

From Corollary 3.3 we see that every vertex of X is adjacent to all vertices of 7K.
In other words, |Nx (w)| = | X| holds for every w € V(¢K1). Since G is r-regular and
G — X = K VtK; is a star complement for u, we have

r=d(w)=s+|X]|.
Suppose that [Ny (w’)| = ¢ for w’ € V(K;) and [Nx(u)| =d < |X| — 1 foru € X.
As above, we get

r=dw)=s—-1+t+c,
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while from the first equality of Corollary 3.3, we obtain
r=du)=a+b+d=—p>—2u+s—1—pu+d.
Combining the previous equalities, we get
X|—t+l=c=a+b+d—s+1—t=—p*>—2u+d, (10)

which leads to —u? —2u = | X|—t4+1—d = | X|+pu+1—d.Hence, —u> —3u—1 =
|X| —d > 1, and thus © € {—1, —2}. Moreover, since © # —1, we have u = -2
(and then b = r = 2). It follows from Corollary 3.3 that a = s — 1, while from (10)
we have c = d = | X| — 1. Consequently, G — X = K, V2K and X induces a clique.

It follows from the previous computation that every u € X is adjacent to s — 1
vertices of K and both vertices of 2K ;. On the other hand, by Lemma 2.2, we have
Np(u) # Ny (v), fordistinct u, v € X. This implies that Ny (u) NV (K;) # Ng(v)N
V(Kj), and thus | X| < (sil) = s. Taking into account that ¢ = |Nx (w)| = | X| — 1,
we get that every w’ € Kj is adjacent to | X| — 1 neighbours of X. By counting the
number of edges between X and V(K;) we get (|X| — 1)s = |X|(s — 1), and so
|X| = s. Therefore, G is obtained from K1) by deleting a perfect matching, i.e.
G=(s+ DK>. O

From this point we assume that i # —t. This implies that Eq. (9) is quadratic in a
with roots

S_(M+1)(2M+t+ 12 —4p?t —4pd)
2(n+1)

B (+DQRu+1t — /12 —4p2t —4u3)

- 2G4 1) '

The next result follows immediately from (7) and (11).

Y

Corollary 3.5 Let, under the assumptions of Lemma 3.2, u # —t.

(i) If 12 — 4u2t — 4p® = 0, then [Nk, (u)| = a = s — % and | N g, ()| =
b= % where a, b are defined in the beginning of this section.
(ii) Ift2 — 4u2t — 4,u3 # 0, then |Nk, (u)| = ay or az, and |N;x,(u)| = by or by,

where the latter parameters are obtained by inserting ay, ap of (11) into (7).

The two cases that arise from the previous corollary are considered in forthcoming
Theorems 3.6 and 3.7.

Theorem 3.6 If 1 # —t and t* — 4u’t — 4> = 0, then there is no regular graph G
with the star complement K;VtKy (s, t > 2) for an eigenvalue .

Proof Under the given assumptions Eq. (9) has a single root

alzazza:s_w' (12)
2 +1)
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Combining this with (7) we obtain that b = % must be an integer. Observe now that
wis aroot of f(x) = 1% — 4x%t — 4x3 due to

12— 4pPt — 4’ =0. (13)

Suppose first that f has a rational root w, which in fact must be an integer. From
(13) we get t = 2% £ J4u* 4+ 43 = 2 £ 2|u|/(u + 1) and u(u +1) > 0
(e.p < —lorp > Oduetopn ¢ {0,—1}). Since (u + 1)? > pu(u+1) > u? if

w>0,and (u+ 1D? < u(u+1) < p?if p < —1, we see that /(i + 1) is not a
rational number, which implies that # is not an integer, a contradiction.

Suppose now that f has an irrational root . We know that t + © = % due to
(13). Hence,

. _wtbeutn

2(n+1)
2
t 2t
=s—pu—l+-—--— 14
H 2 2(u+1) (14
o 2uP(r—1
:S_M—I-FE—%, (15)

which gives w +u=s—1+ % — a. Hence, w + w is an integer, say z,
wherez = s — 1+ % —a.Thus2(r — Dpu?+tu—tz=0isa quadratic equation with
integral coefficients, and therefore u = [ —i—g«/ﬁ, where [ = 4(:—_t1), g = :i:ﬁ, h =
1> +8(t— 1)tz € Q, g, h # 0and h is not an square because  is irrational. Replacing
for u in (14), we get

I S kel
a=sTH 2 2t
t % -1
=s—l—-gJh—1+4+-——" "
* svh 3 2(t +1 + gvh)
B t (2= +1) 2 —1)
=s—l=1+5- 2((t + 1?2 — g2h) * <2((t+l)2 —g%h) 1>gﬁ'

(Gad)
It follows that the last term | ————~ — 1 g\/E must be zero, and so
2((r+)2—g2h)

t*—t=2(tt +D* - g*h). (16)
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Similarly, replacing for p in (15), we obtain

to2pt(—1
a:s—u—l—l—z—#

o2 —1
=s—1—gﬁ—1+— ( )(12+g2h+21g\/_)

:s—l—l+%—( l)(l2+gZh) ( 410[—_))«/}7

4l(t n

It follows that 1 + =0, and so

= (17)

Moreover, from (13) we obtain

0=1>—4u’r —4u°
=17 —4p>(t + )
=12 —4(P + Pt +1g%h +31g%h + g(31* + g*h + 210 V1),

which yields
312 + g%h + 21t = 0.

Combining this with (16) and (17), we get
=6 +3:7+2t =0.

The latter equation has roots: 0, 2, %(1 + ﬁ) and %(1 — «/3). Therefore, t = 2 since

it is an integer. Replacing for ¢ in (17) and (2), we obtain [ = —% and g2h = %, and
sou=1+gvh= —% + é However, from (12) we have a = s — 1, which implies
@ = —2 by Lemma 3.1, a contradiction. O

Evidently, the result of the previous theorem confirms Conjecture 1.1 under the
assumption that 1> — 4%t — 43 = 0.

Let further G = G(r; «, B, y) be a putative r-regular graph with vertex set partition
V(G) = U U X satisfying the following conditions:
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K 123} X
Fig.1 A sketch of a Y-graph G(r; o, B, y)

o G[U]=K; viKjy;
e Forx € X, |[Ng(x) N V(K)| =0and [Ng(x) N V(tKy)| = «;
e For each pair of vertices u, v € X,

B ifu~v,
|Niky () () Ni, (0)] = {y Y

We call G the Y-graph with parameters r, o, f and y. It is sketched in Fig. 1. We
remark that for each x € X we have |Nx(x)| = r — «, foreach w € V(¢K) we have
[Nx(w)| = r — s and the order of a Y-graph is | X| + s + 7.

Theorem 3.7 Suppose that an r-regular graph G of order n contains KgVtKy (s, t >
2) as a star complement for an eigenvalue |1, with the corresponding star set X. If
w# —tand t*> —4p* —4p3 #£ 0, then G is a Y-graph G(r; a, B, y) such that

A D e 1= 9+ e D =)
s(u+1-—y) ’
oot
nw+1—s (18)

PRCE (Gt

w+1—s
— SMZ
V_M—i—l—s'

@ Springer



394 Journal of Algebraic Combinatorics (2022) 56:383-401

Moreover,
INx(W)| =5 —(n+1)+ M, foru € X,
W) = L+ D+ (At 1 =)+ D =) forw € VD,
s(u+1—15)
L e+ D2+ (n+1-5)7?)
s(u+1—y) ’
= BEAEDH G L =97 (= DA D+ (4 1= 97)
ws2(u+1—s) '
(D2 +s(u= D) (433 =36 — D + Bs? —4s + D — 57 + 257 —5)
a us2(u+1—s) '

19)

Proof This is a considerably long proof and we begin with a short concept. We divide
the proof into the 3 parts.

e In Part 1 we perform some initial computation; in particular, we express
ai, az, by, by and ¢ and show that p is an integer satisfying u + ¢ > 0.

o In Part 2 we eliminate the possibility that u is negative.

e In Part 3 we deal with u being a positive integer. In an intermediate step we prove
that for distinct u, v € X, there must be a = |Nk, (1) N Nk, (v)| = 0. Then we
show that a putative graph satisfying the assumptions of the statement must be a
Y-graph and compute the parameters of (18) and (19).

Part 1. By solving Eq. (9) under the assumptions given in the formulation of this
statement, we get the roots

_,_ W+ DCutr+ 12— 4p’t — 4p3)
2(n+1)

(D CuAt = 12— 4pPt — 4

T 20+ '

(20)

On the other hand, (7) gives b = % — . Replacing a with a; and then with

as, we get the following two possibilities for b:

t+/12 —4p2 —4u3

by = ,
: 2

t— 12 —4p%t — 43
by = > .

Obviously, v/t2 — 4u2t — 43 is a non-negative integer because by, by are integers,

and so we may set
V2 —4plt —4p3 =p e N (21)
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2 2
From (20) we obtain a; —ay = LFV! 4’” 4 1’(#+1) . We set p(ﬁfl) q-

Evidently, g isrational since ay, a; are. Moreover nis also ratlonal since for otherwise
from p(u+1) = g(u+t), wehave p—qt = (¢q—p)u,andthus p = ¢, u+1 = pu+t,
which leads to the impossible scenario ¢t = 1. We further have u € Z since it is an
algebraic integer.

Next, from (7) we have a = s —
because a < s. Consequently, it holds

(u+1) (u+b) : (u+1) (u+b)
TEra— which means that e >0

w+t>0, (22)
as for otherwise we would have u +b < u+t <0, u+ 1 < u+t < 0, and then
W < 0, which contradicts the previous conclusion.

Part 2. Here we eliminate the possibility that i is negative. By way of contradiction
we have u < —2 (as p is an integer distinct from —1). We first notice that 2 +¢ > 0.
Namely, if 21+t < Othent < —2u, and so 2 < 4u2. By (22), we getthat u+1¢ > 1
is an integer, and then from (21) we obtain

0<p?=12—ap?t —4p® = 1> —4p?(t +p) < 4p? — 4>t +p) <0,

a contradiction.
From 244 4 ¢ > 0 and the first equality of (20), we see that

P V(O s 12— 4p2t — 4u3) “o
' 2+ 1) ’

since 20 +t + /12 — 4p?t — 4u3 > 0 and 2(u + t) > 0, a contradiction.
Similarly, by taking into account the second equality of (20), we get

(U DQu = 1 — APt —4pd)
- 2(u+1)

s —

On the other hand, we also have 2 +¢ — /12 — 42t — 4u3 > 0, since for otherwise
we would have 0 < 2u +t < /t2 — 4u?t — 4u3, which gives u € {0, —1}. Thus,
s — ap < 0, which is impossible.

Part 3. Here we assume that p is a positive integer. It follows that ¢ = P(li‘—:tl) > 0.

Since ¢ > 0, we have r = 2% + /4u* + 413 + p? from (21), and therefore

0=p(u+1) —qu+n=p+1)—qu+2u®+4u* +4u> + p?),

which gives p(u—+1) —g(u+2u?) = g/4u* + 4u3 + p? > 0. We claim that at least
one of aj, a> is not an integer. Indeed, by assuming that a;, ay € Z, we immediately

get g € Z. Further, from (20) we obtain a; = s — W, which gives % =
qu

2(s —ay) — n — 1 — g. Now since £= is a positive integer (due to g, p, u > 0), we
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have p < guand p(u+1) —q(u+2u%) <gup+1)—g(u+2u*) = —qu? <0,
a contradiction.

Therefore, exactly one of aj, a> is an integer, which leads to the following settings:
If a; is an integer, then @ = aj and b = by, otherwise a = a and b = by. We also
have that all vertices in X have a neighbours in K and b neighbours in 7K (since
u € X is chosen arbitrarily).

Next, taking into account regularity of G and conditions s, t > 2, we easily conclude
that | X| > 2. Letv € X, v # u, and suppose that v is of type (e, e2, ..., es, f). Then

N

Y ei =aand f =b.Let py = [Nk, (u) N Nk, (v)| and p; = |N;k, (u) N Neg, (V)]

i=1

From (5) we obtain (—ayuit — ps — p) (it + D(u? = (s = D — s1) = (@* — ps +
2ab)u® + (a®t + ps(s — 1) + 2ab + sb*) i + st ps + sb*. This equality leads to

psit (@ 4 2ab)u?* + (@t + 2ab + sb*)ju + sb?
w1 (w+ D(u? = (s — Dp — st) '

Pr = —Ayy — (23)

We shall return to the previous equality soon. At this point, by expressing ¢ from (7)
we get

b+mwp+1
l’l’ + —’

s —a

r=— (24)
where s —a > 0 (since s = a implies b = —u < 0). Replacing for ¢ in (6), we get

(u+ D (bs +ap)(=p® — > + bp+ b +ab —bs) _
s —a

0’

Recall that ¢ # —1, while by Lemma 2.2 we know that @ = 0 and b = 0 cannot
simultaneously hold. Thus,

0=—w’ — 2 +bpu+b+tab—bs=—p 2w+ +bu+1+a—s),
which can also be written as

e 2 1A (s —a) 25)
u+l4+a—s u+l4+a—s

because —u?(u + 1) #0Oand then u + 1 +a — s # 0. Now by combining (24) and

(25), we obtain

—u(pe+D*+(uw+1+a—s)?)
(a—s)(u+1+a—s) '

If u ~ v, then we have a,,, = 1 in (23) and, together with (25) and (26), this leads to

f = (26)

p(a—ps—pu—Dp+1+a—s)+pp+1)(s —a)
o= . (27)
mw+Dpu+14+a—s)
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In a similar way, for u ~ v we get

(@ = p)(A1+a—s)+pp+Dis —a))
N w+Du+14+a—s) ’

(28)

We now claim that a = p; = 0 is the unique possibility. In what follows we first
show that p, cannot be an integer unless a = p,. Assume that p, is an integer when
u ~ v. From (27) we get

p(@—ps—p—1)(u+1+a—s)+u(p+(s—a)) =0 (mod (u+1)(u+1+a—s)).

(29)
By virtue of (25), we have that 2269 — p _ ;2 s an i due to b, u2 € Z
yv1rtueo( ), we avetatm— — m~ 1S an 1nteger due to b, u- € Z.
Then it holds

(+Dps—a)=0(mod (u+ D(u+1+a—ys)).
Also, it is clear that
p—p—Dp+1+a—s)=0(mod (u+ D(u+1+a—s). (30

Combining (29)—(30), we deduce that u(a — ps)(u +1+a —s) =0 (mod (n +
D(u+1+a —s)), ie. ula—ps) =0 (mod (u+ 1)). Since p and p + 1 are coprime,
we obtain that

(a—ps)=0 (mod w+ 1),
which is equivalent to
(s—a)—(s—2a+ps)50(mod ,u,—i—l). 31

We have 0 < |V(K)\(Nk, (u) U Nk, (v))| =5 —2a+ ps < s —adueto py < a.
Moreover, it follows from (26) that 0 < uw + 14+ a — s,i.e. s —a < u + 1 since
t is a positive integer, and this leads to the conclusion that (31) is possible only if
s —a = s —2a + ps, i.e. a = ps. The other possibility for p; (that is u ~ v) is
considered in a very similar way.

Therefore, all vertices in X share the same neighbourhood in K. On the contrary,
all vertices in K have the same number of neighbours in X since G is regular, which
implies that a = 0 or @ = 5. Recalling from the previous part of this proof that a # s,
we get p; = a = 0, as desired.

Now, by taking an arbitrary vertex w’ € V(Kj), we see that

WD =) (s (D =)
a s(u+1-s)

r=dw)=s—1+t

’
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which is the first parameter of (18). The remaining three follow by setting @ = 0 in
(25), (27) and (28), respectively. The equalities of (18) assure that G is a Y-graph with
desired parameters.

The first two parameters of (19) are computed by replacing for r in [Ny (u)| =
r—a—>b=r—>band |Nx(w)| =r — s, the third follows by setting a = 0 in (26),
and the remaining two are computed from | X| = @ = % andn = | X|+s+1.

The proof is complete. O

From the proof of Theorem 3.7 we know that i must be a positive integer and the
parameters related to Y-graph G are uniquely determined by p and s. In Table 1 we
list the sets of feasible parameters obtained for u < 800. Every row contains p (the
eigenvalue in question), s, ¢ (the parameters related to the star complement), | X | (the
size of the corresponding star set), 7, o, 8, v (the parameters of a putative Y-graph G)
and n (the order of G).

However, we were not able to construct any Y -graph due to the fact that the corre-
sponding parameters are comparatively large, and the smallest possible example has
1265 vertices. Clearly, the existence of a Y -graph would disprove Conjecture 1.1.

In what follows we eliminate the two particular cases in which s € {2, 3}. The
following corollaries can be deduced from the results of [16,17]. Here we give the
short proofs that rely on the results of this paper.

Corollary 3.8 cf. [17] If an r-regular graph G has the star complement K,VtK| for
the eigenvalue i # r, then u = —t =2 and G = 3K».

Proof If u = —t, the result follows from Theorem 3.4. If for u # —¢, we also have
t? — 4p’t — 4u3 = 0, then Lemma 3.6 tells us that there is no graph satisfying the
assumptions of this corollary. If 12 — 4%t — 4> # 0, then G is a Y-graph with
o =pu+ %’ which yields ZL_zl =« — u? € Z. Note that i and p — 1 are coprime,
which implies that 2 is divisible by u — 1, necessarily u € {2, 3}. However, we get
|X| =57/2for u =2 and | X| = 247/3 for u = 3, a contradiction. O

Corollary 3.9 [16] If an r-regular graph G has the star complement K3Vt K for the
eigenvalue jt = r, then u = —t =2 and G = 4K>.

Proof As before, the case u = —t is settled by Theorem 3.4. For otherwise, G is a
Y -graph such that

3u? 12
o=+ =436+ ——,
w—2 n—2
X = (B + D>+ =223+ = D+ 1>+ (n —2)%)
Yu(p —2) '

Since 0 < « € Z we have % € Z,ie. u € {1,3,4,5,6,8}. However, | X| is not a
positive integer for any possible 1, and we are done. O

By virtue of Corollaries 3.8 and 3.9, we conclude that Conjecture 1.1 holds for
w#—t, 12 —4p* —4p® #£0ands € {2, 3).
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4 Relation with block designs

By the foregoing results, if there is a graph for which Conjecture 1.1 does not hold,
then this graph must be a Y-graph defined upon Theorem 3.7. Here we show that its
existence depends on the existence of a 2-class block design formed as below.

Let G be a Y-graph and set T = X U V(tK). To construct G it is sufficient to
construct its subgraph G induced by T'. In fact, the existence of G depends on
the existence of a block design D = (X, B) whose points are identified with the
vertices of X, while blocks are determined by the vertices of K1 in such a way that
a point of X belongs to a block of B if and only if the corresponding vertices are
adjacent. If so, then D has the following parameters. The number of points | X]|, the
block size k = |N(w)| and the number of blocks ¢ are given in (19). The replication
(i.e. the number of occurrences of every point) is ¢, two points joined by an edge occur
together in B blocks and two non-adjacent points occur together in y blocks, where
these parameters are given in (18). (According to the terminology for block designs,
since two points are allowed to occur together in o or 8 blocks, the corresponding
design is said to be a 2-class block design.)

Observe that the subgraph G[X] induced by X is regular with vertex degree r —o =

2
s—(u+1D+ M Moreover, if N is the incidence matrix whose rows and columns
are indexed by X and B, then

NNT = (a« =y)I + (B —y)AGIXD + v /. (32)

It is not difficult to see that G[X] is a strongly regular graph if and only if D is the
so-called symmetric 2-class partial incomplete block design [14, Subsection 3.8.2].
In this case, the identity (32) leads to the conclusion that NN T has exactly 3 eigen-
values. Moreover, by the same reference, in this particular case we have an additional
condition:

(r—a)B-y)=ak-1)—-y(X]-D. (33)

Example 4.1 Suppose that G is a Y-graph that corresponds to the first row of Table 1.
Then G[X]is a219-regular graph (since |[Nx (u)| = r —|N;g, ()| — | Nk, (u)| = 219)
and the existence of D is conditioned by the existence of such a graph satisfying
NNT =811 —9A(G[X]) + 54J. By (33) we conclude that G[X] cannot be strongly
regular. The search for other possibilities in case of this or any other set of feasible
parameters at this moment remains open.
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