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Abstract
In this paper we consider r -regular graphs G that admit the vertex set partition such
that one of the induced subgraphs is the join of an s-vertex clique and a t-vertex co-
clique and represents a star complement for an eigenvalue μ of G. The cases in which
one of the parameters s, t is less than 2 orμ = r are already resolved. It is conjectured
in Wang et al. (Linear Algebra Appl 579:302–319, 2019) that if s, t ≥ 2 and μ �= r ,
then μ = −2, t = 2 and G = (s + 1)K2. For μ = −t we verify this conjecture to be
true. We further study the case in which μ �= −t and confirm the conjecture provided
t2 − 4μ2t − 4μ3 = 0. For the remaining possibility we determine the structure of a
putative counterexample and relate its existence to the existence of a particular 2-class
block design. It occurs that the smallest counterexample would have 1265 vertices.
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1 Introduction

If μ is an eigenvalue of (the adjacency matrix A(G) of) a finite simple graph G with
multiplicity k, then a star complement for μ in G is the induced subgraph G − X such
that |X | = k andμ is not an eigenvalue ofG− X . In this situation X is called a star set
for μ in G. The main properties of star complements can be found in [3, Chapter 5].

Graphswith prescribed star complements have been extensively studied in [2,4,7,9–
12,15]. In particular, Jackon and Rowlinson [6] characterized regular graphs with the
complete bipartite graph K2,5 as a star complement, Asgharsharghi and Kiani [1]
characterized regular graphs with the complete tripartite graph Kr ,r ,r as a star com-
plement, Yuan et al. [18] determined maximal graphs with K1,t in the role of a star
complement forμ = −2 and also described regular graphs with the complete bipartite
K2,t graph as a star complement for any eigenvalue. Trees and complete graphs as star
complements for 1 as the second largest eigenvalue are characterized by Stanić [13].

We use Kn and nK1 to denote the clique (i.e. the complete graph) and the co-clique
(the graph without edges) of order n, respectively. The disjoint union of the graphs G
and H is denoted by G ∪ H . The join G∇H is obtained by inserting an edge between
every vertex of G and every vertex of H . The complement of G is denoted by G. For
the remaining terminology and notation, we refer the reader to [3,15].

The graph Ks∇t K1 (= sK1 ∪ Kt ) in the role of a star complement has received a
great deal of attention in the recent years. For t = 1 the star complement reduces to
the complete graph Ks+1, and this case is completely resolved in [14,16]. Stanić [14]
considered strongly regular graphs with this star complement, proved that they do not
exist for s, t ≥ 2 and provided some examples for s = 1, t ≥ 2. Rowlinson and
Tayfeh-Rezaie [12] characterized all regular graphs with K1,t as a star complement.
Wang et al. [16] determined all r -regular graphs with Ks∇t K1 as a star complement
for r , and formulated the following conjecture.

Conjecture 1.1 [16] If an r-regular graph G has Ks∇t K1 (s, t ≥ 2) as a star com-
plement for an eigenvalue μ �= r , then μ = −2, t = 2 and G = (s + 1)K2.

In this paper we prove that the conjecture holds for μ = −t . For μ �= −t we
confirm the conjecture under the additional assumption that t2 − 4μ2t − 4μ3 = 0.
For t2 − 4μ2t − 4μ3 �= 0 we prove that μ must be a positive integer, determine the
structure of a putative counterexample and relate its existence to the existence of a
particular 2-class block design. We also list the sets of feasible parameters of such
a graph for μ ≤ 800. It occurs that the smallest counterexample would have 1265
vertices.

Section 2 is preparatory and mostly related to star complements. Our contribution
is reported in Sects. 3 and 4.

2 Preliminaries

We fix some notation and recall some results related to star complements in graphs.
For a subset X of the vertex set V (G) of a graphG, we writeG[X ] to denote the graph
induced by X . The first result is the well-known reconstruction theorem.
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Theorem 2.1 [3, Theorem 5.1.7] Let X be a set of k vertices in a graph G and suppose
that G has adjacency matrix

A(G) =
(
AX Bᵀ
B C

)
, (1)

where AX is the adjacency matrix of G[X ]. We have:
(i) X is a star set for μ in G if and only if μ is not an eigenvalue of G − X and

μI − AX = Bᵀ(μI − C)−1B. (2)

(ii) If X is a star set for μ, then the eigenspace of μ consists of vectors(
x

(μI − C)−1Bx

)
, for x ∈ R

k .

With the notation of Theorem 2.1, let H = G − X . It is clear that H is a subgraph
of G induced by X = V (G)\X , with |X | = n − k and A(H) = C . For u ∈ X , denote
by bu the vector column of B corresponding to u. Obviously, bu is the characteristic
vector of the H -neighbourhood NH (u) of u.

We define the bilinear form on R
n−k by 〈x, y〉 = xᵀ(μI − A(H))−1y. By direct

computation we get

〈bu,bv〉 =
⎧⎨
⎩

μ if u = v,

−1 if u ∼ v,

0 otherwise.

Obviously, for u �= v, bu �= bv provided μ /∈ {0,−1}, which leads to the following
result.

Lemma 2.2 [8] Let X be a star set for μ in G. If μ �= 0, then NH (u) (u ∈ X) is
non-empty and if μ /∈ {−1, 0}, then NH (u) �= NH (v) for distinct u, v ∈ X.

We conclude this section by the two more results taken from [3].

Lemma 2.3 [3, Proposition 5.2.1] Let C be a square matrix with minimal polynomial

m(x) = xd+1 + cd x
d + cd−1x

d−1 + · · · + c1x + c0.

If μ is not an eigenvalue of C, then

m(μ)(μI − C)−1 = adC
d + ad−1C

d−1 + · · · + a1C + a0 I ,

where ad = 1 and for 0 < i ≤ d,

ad−i = μi + cdμ
i−1 + cd−1μ

i−2 + · · · + cd−i+1.

Lemma 2.4 [3, Proposition 5.2.4] If X is a star set in an r-regular graph G for an
eigenvalue μ �= r , then 〈bu, j〉 = −1 for all u ∈ X.
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3 Ks∇tK1 (s, t ≥ 2) as a star complement in a regular graph

In this sectionwe consider a regular graphG that has a star complement H = Ks∇t K1
(s, t ≥ 2) for an eigenvalue μ. After a suitable labelling A(G) can be expressed as in
(1) along with

A(H) =
(
Js×s − Is×s Js×t

Jt×s Ot×t

)
. (3)

Now we use the same notations as in [16]. Let V (H) = V (Ks) ∪ V (t K1) = R1 ∪
R2 ∪ · · · ∪ Rs ∪ V (t K1), where |Ri | = 1 for 1 ≤ i ≤ s. A vertex u ∈ X is of type
(c1, c2, . . . , cs, b) if it has ci ∈ {0, 1} neighbours in Ri and b neighbours in V (t K1).

It is clear that |NtK1(u)| = b. If we set
s∑

i=1
ci = a, then we also have |NKs (u)| = a.

We first quote a lemma which will be used in the sequel.

Lemma 3.1 [16, Theorem 3.3] Suppose that an r-regular graph G contains the star
complement Ks∇t K1 (s, t ≥ 2) for an eigenvalue μ, with the corresponding star set

X. If all vertices in X are of type (c1, c2, . . . , cs, b) with
s∑

i=1
ci = s−1, then μ = −2,

b = t = 2 and G = (s + 1)K2.

We now use Lemma 2.3 to compute m(μ)(μI − A(H))−1. From (3) we have

A(H)2 =
(

(s + t − 2)Js×s + Is×s (s − 1)Js×t

(s − 1)Jt×s s Jt×t

)

and

A(H)3 =
(

(s2 + 2st − 3s − 2t + 3)Js×s − Is×s (s2 + st − 2s + 1)Js×t

(s2 + st − 2s + 1)Jt×s (s2 − s)Jt×t

)
.

It follows that the minimal polynomial of A(H) is given by

m(x) = x(x + 1)(x2 − (s − 1)x − st) = x4 + (2 − s)x3 + (1 − s − st)x2 − st x .

Since μ is not an eigenvalue of H , we have μ /∈ {0,−1} and μ2 − (s − 1)μ− st �= 0.
Then, with the notation of Lemma 2.3, we have

⎧⎪⎪⎨
⎪⎪⎩

c3 = 2 − s,
c2 = (1 − s − st),
c1 = −st,
c0 = 0,
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which leads to
⎧⎪⎪⎨
⎪⎪⎩

a3 = 1,
a2 = μ + s − 2,
a1 = μ2 + (2 − s)μ + 1 − s − st,
a0 = μ3 + (2 − s)μ2 + (1 − s − st)μ − st = (μ + 1)(μ2 − (s − 1)μ − st).

Moreover, by regarding A(H) as C in Lemma 2.3, we obtain

m(μ)(μI − A(H))−1 = A(H)3 + (μ + 2 − s)A(H)2 + (μ2 + 2μ − sμ + 1 − s − st)A(H)

+ (μ + 1)(μ2 − (s − 1)μ − st)I

=
(

α Js×s + βμIs×s δ Js×t
δ Jt×s γ Jt×t + β(μ + 1)It×t

)
,

(4)
where α = μ2 + μt , β = μ2 − (s − 1)μ − st , γ = (μs + s) and δ = (μ2 + μ).

If u, v are some vertices of the star set X , then we suppose that u is of type

(c1, c2, . . . , cs, b), where
s∑

i=1
ci = a, and v is of type (e1, e2, . . . , es, f ), where

s∑
i=1

ei = e. Let NKs (u) = Y1, NtK1(u) = Z1 and NKs (v) = Y2, NtK1(v) = Z2.

Recall that bu and bv are the columns of B corresponding to u and v, respectively.
From (3) we see that bu has the form bu = (bᵀ

Y1
,bᵀ

Z1
)ᵀ, where bY1 and bZ1 are the

characteristic vectors of Y1 and Z1 (i.e. they determine the Y1-neighbourhood and
Z1-neighbourhood of u), respectively. Similarly, bv = (bᵀ

Y2
,bᵀ

Z2
)ᵀ, where bY2 and

bZ2 are the characteristic vectors of Y2 and Z2, respectively. Then

⎧⎪⎪⎨
⎪⎪⎩

|NKs (u)| = |Y1| = a,

|NtK1(u)| = |Z1| = b,
|NKs (v)| = |Y2| = e,
|NtK1(v)| = |Z2| = f ,

and so
{ |NH (u)| = |Y1| + |Z1| = a + b,

|NH (v)| = |Y2| + |Z2| = e + f .

We further denote ρs = |NKs (u) ∩ NKs (v)| and ρt = |NtK1(u) ∩ NtK1(v)|, along
with U = (μI − AX ) − Bᵀ(μI − A(H))−1B and f (μ; u, v) = m(μ)Uuv , where
Uuv stands for the (u, v)-entry of U . But, from (2) we know that U is an all-0 matrix,
which yields

f (μ; u, v) = m(μ)Uuv = m(μ)
(
(μI − AX )uv − bᵀ

u (μI − A(H))−1bv

) = 0.
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Combining this with (4), we obtain

−auvm(μ) =bᵀ
u m(μ)(μI − A(H))−1bv

= (bᵀ
Y1

, bᵀ
Z1

)

(
α Js×s + βμIs×s δ Js×t

δ Jt×s γ Jt×t + β(μ + 1)It×t

) (
bY2
bZ2

)

= (
bᵀ
Y1

(α Js×s + βμIs×s) + δbᵀ
Z1
Jt×s δbᵀ

Y1
Js×t + bᵀ

Z1
(γ Jt×t + β(μ + 1)It×t )

) (
bY2
bZ2

)

=bᵀ
Y1

(α Js×s + βμIs×s)bY2 + δbᵀ
Z1
Jt×sbY2 + δbᵀ

Y1
Js×tbZ2 + bᵀ

Z1
(γ Jt×t

+ β(μ + 1)It×t )bZ2

=αae + βμρs + δbe + δa f + γ b f + β(μ + 1)ρt .

Therefore,

f (μ; u, v) = − auvm(μ) − (
αae + βμρs + (be + a f )δ + γ b f + β(μ + 1)ρt

)
= (−auvμ − ρs − ρt )(μ + 1)(μ2 − (s − 1)μ − st)

− (ae − ρs + be + a f )μ2 − (aet + ρs(s − 1) + be + a f + sb f )μ

− stρs − sb f = 0.
(5)

Similarly, for u = v we have

f (μ; u, u) = m(μ)Uuu = m(μ)
(
(μI − AX )uu − bᵀ

u (μI − A(H))−1bu
) = 0.

Combining this with (4), we obtain

μm(μ) =bᵀ
um(μ)(μI − A(H))−1bu

= αa2 + βμa + δab + δab + γ b2 + β(μ + 1)b.

Hence,

f (μ; u, u) = μm(μ) − (αa2 + βμa + δab + δab + γ b2 + β(μ + 1)b)

= μ5 + (2 − s)μ4 + (1 − b − s − st − a)μ3

+ (as − 2b − 2ab + bs − st − a2 − a)μ2

+ (bs − 2ab − b − a2t − b2s + ast + bst)μ

− sb2 + stb = 0.

(6)

The equality (6) can also be found in [11]; here, we reproduce it for the sake of
completeness. Since μ �= r , from Lemma 2.4 we have 〈bu, j〉 = −1. By multiplying
both sides of this equality by m(μ), we get

−m(μ) =bᵀ
um(μ)(μI − A(H))−1j

= (bᵀ
Y1

,bᵀ
Z1

)

(
α Js×s + βμIs×s δ Js×t

δ Jt×s γ Jt×t + β(μ + 1)It×t

) (
js
jt

)

= αsa + βμa + δsb + δta + γ tb + β(μ + 1)b,
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which gives
a(μ + t) + b(μ + 1) = s(μ + t) − μ(μ + 1), (7)

equivalently, b = (s−a)(μ+t)
μ+1 − μ. Combining this with (6), we get

(
(μ2 − (s − 1)μ − st)((t + μ)a2 + (t + 2μ − 2st − 2sμ + tμ + 2μ2)a

+ x − st − 2sμ + s2t − 2sμ2 + s2μ + 3μ2 + 3μ3 + μ4 − stμ)
)
/(μ + 1) = 0.

(8)
Since μ2 − (s − 1)μ − st �= 0 and μ �= −1 (since −1 is an eigenvalue of the star
complement), by taking into account (8), we arrive at

(t + μ)a2 + (t + 2μ − 2st − 2sμ + tμ + 2μ2)a + μ − st − 2sμ

+ s2t − 2sμ2 + s2μ + 3μ2 + 3μ3 + μ4 − stμ = 0.
(9)

We record this as the following lemma.

Lemma 3.2 Let Ks∇t K1 (s, t ≥ 2) be a star complement for an eigenvalue μ in
an r-regular graph G, and let X denote the corresponding star set. The parameter
|NKs (u)| = a satisfies Eq. (9).

In what follows we first consider the case in whichμ = −t . It follows that t+2μ−
2st − 2sμ + tμ + 2μ2 = μ(μ + 1) �= 0. Thus, the equality (9) is linear in a, which
leads to a = −μ2 − 2μ + s − 1. On the other hand, from (7) we have b = −μ = t .
Combining this with Lemma 3.2 we immediately get the following corollary.

Corollary 3.3 Under the assumption of Lemma 3.2, if μ = −t then

{ |NKs (u)| = a = −μ2 − 2μ + s − 1,
|NtK1(u)| = b = −μ = t

holds for all u ∈ X.

We are now in position to prove a conditional resolution of Conjecture 1.1.

Theorem 3.4 Conjecture 1.1 holds for μ = −t .

Proof Let G be an r -regular graph satisfying the assumptions of the conjecture, along
with μ = −t . We need to prove that G = (s + 1)K2.

From Corollary 3.3 we see that every vertex of X is adjacent to all vertices of t K1.
In other words, |NX (w)| = |X | holds for every w ∈ V (t K1). Since G is r -regular and
G − X = Ks∇t K1 is a star complement for μ, we have

r = d(w) = s + |X |.

Suppose that |NX (w′)| = c for w′ ∈ V (Ks) and |NX (u)| = d ≤ |X | − 1 for u ∈ X .
As above, we get

r = d(w′) = s − 1 + t + c,
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while from the first equality of Corollary 3.3, we obtain

r = d(u) = a + b + d = −μ2 − 2μ + s − 1 − μ + d.

Combining the previous equalities, we get

|X | − t + 1 = c = a + b + d − s + 1 − t = −μ2 − 2μ + d, (10)

which leads to−μ2−2μ = |X |−t+1−d = |X |+μ+1−d. Hence,−μ2−3μ−1 =
|X | − d ≥ 1, and thus μ ∈ {−1,−2}. Moreover, since μ �= −1, we have μ = −2
(and then b = t = 2). It follows from Corollary 3.3 that a = s − 1, while from (10)
we have c = d = |X | − 1. Consequently, G − X = Ks∇2K1 and X induces a clique.

It follows from the previous computation that every u ∈ X is adjacent to s − 1
vertices of Ks and both vertices of 2K1. On the other hand, by Lemma 2.2, we have
NH (u) �= NH (v), for distinct u, v ∈ X . This implies that NH (u)∩V (Ks) �= NH (v)∩
V (Ks), and thus |X | ≤ ( s

s−1

) = s. Taking into account that c = |NX (w′)| = |X | − 1,
we get that every w′ ∈ Ks is adjacent to |X | − 1 neighbours of X . By counting the
number of edges between X and V (Ks) we get (|X | − 1)s = |X |(s − 1), and so
|X | = s. Therefore, G is obtained from K2(s+1) by deleting a perfect matching, i.e.
G = (s + 1)K2. �

From this point we assume that μ �= −t . This implies that Eq. (9) is quadratic in a
with roots ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
a1 = s − (μ + 1)(2μ + t + √

t2 − 4μ2t − 4μ3)

2(μ + t)
,

a2 = s − (μ + 1)(2μ + t − √
t2 − 4μ2t − 4μ3)

2(μ + t)
.

(11)

The next result follows immediately from (7) and (11).

Corollary 3.5 Let, under the assumptions of Lemma 3.2, μ �= −t .

(i) If t2 − 4μ2t − 4μ3 = 0, then |NKs (u)| = a = s − (μ+1)(2μ+t)
2(μ+t) and |NtK1(u)| =

b = t
2 , where a, b are defined in the beginning of this section.

(ii) If t2 − 4μ2t − 4μ3 �= 0, then |NKs (u)| = a1 or a2, and |NtK1(u)| = b1 or b2,
where the latter parameters are obtained by inserting a1, a2 of (11) into (7).

The two cases that arise from the previous corollary are considered in forthcoming
Theorems 3.6 and 3.7.

Theorem 3.6 If μ �= −t and t2 − 4μ2t − 4μ3 = 0, then there is no regular graph G
with the star complement Ks∇t K1 (s, t ≥ 2) for an eigenvalue μ.

Proof Under the given assumptions Eq. (9) has a single root

a1 = a2 = a = s − (μ + 1)(2μ + t)

2(μ + t)
. (12)
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Combining this with (7) we obtain that b = t
2 must be an integer. Observe now that

μ is a root of f (x) = t2 − 4x2t − 4x3 due to

t2 − 4μ2t − 4μ3 = 0. (13)

Suppose first that f has a rational root μ, which in fact must be an integer. From
(13) we get t = 2μ2 ± √

4μ4 + 4μ3 = 2μ2 ± 2|μ|√μ(μ + 1) and μ(μ + 1) ≥ 0
(i.e. μ < −1 or μ > 0 due to μ /∈ {0,−1}). Since (μ + 1)2 > μ(μ + 1) > μ2 if
μ > 0, and (μ + 1)2 < μ(μ + 1) < μ2 if μ < −1, we see that

√
μ(μ + 1) is not a

rational number, which implies that t is not an integer, a contradiction.
Suppose now that f has an irrational root μ. We know that t + μ = t2

4μ2 due to
(13). Hence,

a = s − (μ + 1)(2μ + t)

2(μ + t)

= s − μ − 1 + t

2
− t2 − t

2(μ + t)
(14)

= s − μ − 1 + t

2
− 2μ2(t − 1)

t
, (15)

which gives 2μ2(t−1)
t + μ = s − 1 + t

2 − a. Hence, 2μ2(t−1)
t + μ is an integer, say z,

where z = s − 1+ t
2 − a. Thus 2(t − 1)μ2 + tμ− t z = 0 is a quadratic equation with

integral coefficients, and thereforeμ = l+g
√
h, where l = −t

4(t−1) , g = ± 1
4(t−1) , h =

t2+8(t −1)t z ∈ Q, g, h �= 0 and h is not an square becauseμ is irrational. Replacing
for μ in (14), we get

a = s − μ − 1 + t

2
− t2 − t

2(μ + t)

= s − l − g
√
h − 1 + t

2
− (t2 − t)

2(t + l + g
√
h)

= s − l − 1 + t

2
− (t2 − t)(t + l)

2
(
(t + l)2 − g2h

) +
(

(t2 − t)

2
(
(t + l)2 − g2h

) − 1

)
g
√
h.

It follows that the last term

(
(t2−t)

2
(
(t+l)2−g2h

) − 1

)
g
√
h must be zero, and so

t2 − t = 2
(
(t + l)2 − g2h

)
. (16)
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Similarly, replacing for μ in (15), we obtain

a = s − μ − 1 + t

2
− 2μ2(t − 1)

t

= s − l − g
√
h − 1 + t

2
− 2(t − 1)

t
(l2 + g2h + 2lg

√
h)

= s − l − 1 + t

2
− 2(t − 1)

t
(l2 + g2h) − g

(
1 + 4l(t − 1)

t

)√
h.

It follows that 1 + 4l(t−1)
t = 0, and so

l = −t

4(t − 1)
. (17)

Moreover, from (13) we obtain

0 = t2 − 4μ2t − 4μ3

= t2 − 4μ2(t + μ)

= t2 − 4
(
l3 + l2t + tg2h + 3lg2h + g(3l2 + g2h + 2lt)

√
h
)
,

which yields
3l2 + g2h + 2lt = 0.

Combining this with (16) and (17), we get

2t4 − 6t3 + 3t2 + 2t = 0.

The latter equation has roots: 0, 2, 1
2 (1+ √

3) and 1
2 (1− √

3). Therefore, t = 2 since
it is an integer. Replacing for t in (17) and (2), we obtain l = − 1

2 and g2h = 5
4 , and

so μ = l + g
√
h = − 1

2 ±
√
5
2 . However, from (12) we have a = s − 1, which implies

μ = −2 by Lemma 3.1, a contradiction. �
Evidently, the result of the previous theorem confirms Conjecture 1.1 under the

assumption that t2 − 4μ2t − 4μ3 = 0.
Let furtherG = G(r;α, β, γ ) be a putative r -regular graphwith vertex set partition

V (G) = U ∪ X satisfying the following conditions:
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Fig. 1 A sketch of a Y -graph G(r; α, β, γ )

• G[U ] = Ks � t K1;
• For x ∈ X , |NG(x) ∩ V (Ks)| = 0 and |NG(x) ∩ V (t K1)| = α;
• For each pair of vertices u, v ∈ X ,

|NtK1(u) ∩ NtK1(v)| =
{

β if u ∼ v,

γ if u � v.

We call G the Y -graph with parameters r , α, β and γ . It is sketched in Fig. 1. We
remark that for each x ∈ X we have |NX (x)| = r − α, for each w ∈ V (t K1) we have
|NX (w)| = r − s and the order of a Y -graph is |X | + s + t .

Theorem 3.7 Suppose that an r-regular graph G of order n contains Ks∇t K1 (s, t ≥
2) as a star complement for an eigenvalue μ, with the corresponding star set X. If
μ �= −t and t2 − 4μ2 − 4μ3 �= 0, then G is a Y -graph G(r;α, β, γ ) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r = μ2(μ + 1)2 + (μ + 1 − s)
(
s2 + (μ + 1)(μ − s)

)
s(μ + 1 − s)

,

α = μ2 + sμ2

μ + 1 − s
,

β = μ(μ + 1)(s − 1)

μ + 1 − s
,

γ = sμ2

μ + 1 − s
.

(18)
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Moreover,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|NX (u)| = s − (μ + 1) + μ(μ + 1)2

s
, foru ∈ X ,

|NX (w)| = μ2(μ + 1)2 + (μ + 1 − s)(μ + 1)(μ − s)

s(μ + 1 − s)
, forw ∈ V (t K1),

t = μ
(
μ(μ + 1)2 + (μ + 1 − s)2

)
s(μ + 1 − s)

,

|X | =
(
μ(μ + 1)2 + (μ + 1 − s)2

)(
s + (μ − 1)(μ + 1)2 + (μ + 1 − s)2

)
μs2(μ + 1 − s)

,

n =
(
(μ + 1)2 + s(μ − 1)

)(
μ4 + 3μ3 − 3(s − 1)μ2 + (3s2 − 4s + 1)μ − s3 + 2s2 − s

)
μs2(μ + 1 − s)

.

(19)

Proof This is a considerably long proof and we begin with a short concept. We divide
the proof into the 3 parts.

• In Part 1 we perform some initial computation; in particular, we express
a1, a2, b1, b2 and t and show that μ is an integer satisfying μ + t > 0.

• In Part 2 we eliminate the possibility that μ is negative.
• In Part 3 we deal with μ being a positive integer. In an intermediate step we prove
that for distinct u, v ∈ X , there must be a = |NKs (u) ∩ NKs (v)| = 0. Then we
show that a putative graph satisfying the assumptions of the statement must be a
Y -graph and compute the parameters of (18) and (19).

Part 1. By solving Eq. (9) under the assumptions given in the formulation of this
statement, we get the roots

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a1 = s − (μ + 1)(2μ + t + √

t2 − 4μ2t − 4μ3)

2(μ + t)
,

a2 = s − (μ + 1)(2μ + t − √
t2 − 4μ2t − 4μ3)

2(μ + t)
.

(20)

On the other hand, (7) gives b = (s−a)(μ+t)
(μ+1) − μ. Replacing a with a1 and then with

a2, we get the following two possibilities for b:

⎧⎪⎪⎨
⎪⎪⎩
b1 = t + √

t2 − 4μ2t − 4μ3

2
,

b2 = t − √
t2 − 4μ2t − 4μ3

2
.

Obviously,
√
t2 − 4μ2t − 4μ3 is a non-negative integer because b1, b2 are integers,

and so we may set √
t2 − 4μ2t − 4μ3 = p ∈ N. (21)
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From (20) we obtain a2 −a1 = (μ+1)
√

t2−4μ2t−4μ3

μ+t = p(μ+1)
μ+t . We set p(μ+1)

μ+t = q.
Evidently,q is rational sincea1, a2 are.Moreover,μ is also rational, since for otherwise
from p(μ+1) = q(μ+t), we have p−qt = (q− p)μ, and thus p = q,μ+1 = μ+t ,
which leads to the impossible scenario t = 1. We further have μ ∈ Z since it is an
algebraic integer.

Next, from (7) we have a = s − (μ+1)(μ+b)
μ+t , which means that (μ+1)(μ+b)

μ+t ≥ 0
because a ≤ s. Consequently, it holds

μ + t > 0, (22)

as for otherwise we would have μ + b ≤ μ + t < 0, μ + 1 < μ + t < 0, and then
(μ+1)(μ+b)

μ+t < 0, which contradicts the previous conclusion.
Part 2.Here we eliminate the possibility thatμ is negative. Byway of contradiction

we have μ ≤ −2 (asμ is an integer distinct from−1). We first notice that 2μ+ t > 0.
Namely, if 2μ+ t ≤ 0 then t ≤ −2μ, and so t2 ≤ 4μ2. By (22), we get thatμ+ t ≥ 1
is an integer, and then from (21) we obtain

0 < p2 = t2 − 4μ2t − 4μ3 = t2 − 4μ2(t + μ) ≤ 4μ2 − 4μ2(t + μ) ≤ 0,

a contradiction.
From 2μ + t > 0 and the first equality of (20), we see that

s − a1 = (μ + 1)(2μ + t + √
t2 − 4μ2t − 4μ3)

2(μ + t)
< 0,

since 2μ + t + √
t2 − 4μ2t − 4μ3 > 0 and 2(μ + t) > 0, a contradiction.

Similarly, by taking into account the second equality of (20), we get

s − a2 = (μ + 1)(2μ + t − √
t2 − 4μ2t − 4μ3)

2(μ + t)
.

On the other hand, we also have 2μ+ t −√
t2 − 4μ2t − 4μ3 > 0, since for otherwise

we would have 0 < 2μ + t ≤ √
t2 − 4μ2t − 4μ3, which gives μ ∈ {0,−1}. Thus,

s − a2 < 0, which is impossible.
Part 3.Here we assume thatμ is a positive integer. It follows that q = p(μ+1)

μ+t > 0.

Since t > 0, we have t = 2μ2 + √
4μ4 + 4μ3 + p2 from (21), and therefore

0 = p(μ + 1) − q(μ + t) = p(μ + 1) − q(μ + 2μ2 +
√
4μ4 + 4μ3 + p2),

which gives p(μ+1)−q(μ+2μ2) = q
√
4μ4 + 4μ3 + p2 > 0.We claim that at least

one of a1, a2 is not an integer. Indeed, by assuming that a1, a2 ∈ Z, we immediately
get q ∈ Z. Further, from (20) we obtain a1 = s − (μ+1)(2μ+t+p)

2(t+μ)
, which gives qμ

p =
2(s − a1) − μ − 1 − q. Now since qμ

p is a positive integer (due to q, p, μ > 0), we
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have p ≤ qμ and p(μ+1)−q(μ+2μ2) ≤ qμ(μ+1)−q(μ+2μ2) = −qμ2 < 0,
a contradiction.

Therefore, exactly one of a1, a2 is an integer, which leads to the following settings:
If a1 is an integer, then a = a1 and b = b1, otherwise a = a2 and b = b2. We also
have that all vertices in X have a neighbours in Ks and b neighbours in t K1 (since
u ∈ X is chosen arbitrarily).

Next, taking into account regularity ofG and conditions s, t ≥ 2,we easily conclude
that |X | ≥ 2. Let v ∈ X , v �= u, and suppose that v is of type (e1, e2, . . . , es, f ). Then
s∑

i=1
ei = a and f = b. Let ρs = |NKs (u) ∩ NKs (v)| and ρt = |NtK1(u) ∩ NtK1(v)|.

From (5) we obtain (−auvμ − ρs − ρt )(μ + 1)
(
μ2 − (s − 1)μ − st

) = (a2 − ρs +
2ab)μ2 + (

a2t + ρs(s − 1) + 2ab + sb2
)
μ + stρs + sb2. This equality leads to

ρt = −auvμ − ρsμ

μ + 1
− (a2 + 2ab)μ2 + (a2t + 2ab + sb2)μ + sb2

(μ + 1)(μ2 − (s − 1)μ − st)
. (23)

We shall return to the previous equality soon. At this point, by expressing t from (7)
we get

t = −μ + (b + μ)(μ + 1)

s − a
, (24)

where s − a > 0 (since s = a implies b = −μ < 0). Replacing for t in (6), we get

(μ + 1)(bs + aμ)(−μ3 − μ2 + bμ + b + ab − bs)

s − a
= 0,

Recall that μ �= −1, while by Lemma 2.2 we know that a = 0 and b = 0 cannot
simultaneously hold. Thus,

0 = −μ3 − μ2 + bμ + b + ab − bs = −μ2(μ + 1) + b(μ + 1 + a − s),

which can also be written as

b = μ2(μ + 1)

μ + 1 + a − s
= μ2 + μ2(s − a)

μ + 1 + a − s
(25)

because −μ2(μ + 1) �= 0 and then μ + 1 + a − s �= 0. Now by combining (24) and
(25), we obtain

t = −μ
(
μ(μ + 1)2 + (μ + 1 + a − s)2

)
(a − s)(μ + 1 + a − s)

. (26)

If u ∼ v, then we have auv = 1 in (23) and, together with (25) and (26), this leads to

ρt = μ
(
(a − ρs − μ − 1)(μ + 1 + a − s) + μ(μ + 1)(s − a)

)
(μ + 1)(μ + 1 + a − s)

. (27)
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In a similar way, for u � v we get

ρt = μ
(
a − ρs)(μ + 1 + a − s) + μ(μ + 1)(s − a)

)
(μ + 1)(μ + 1 + a − s)

. (28)

We now claim that a = ρs = 0 is the unique possibility. In what follows we first
show that ρt cannot be an integer unless a = ρs . Assume that ρt is an integer when
u ∼ v. From (27) we get

μ
(
(a−ρs−μ−1)(μ+1+a−s)+μ(μ+1)(s−a)

) ≡ 0
(
mod (μ+1)(μ+1+a−s)

)
.

(29)

By virtue of (25), we have that μ2(s−a)
μ+1+a−s = b − μ2 is an integer due to b, μ2 ∈ Z.

Then it holds

(μ + 1)μ2(s − a) ≡ 0
(
mod (μ + 1)(μ + 1 + a − s)

)
.

Also, it is clear that

μ(−μ − 1)(μ + 1 + a − s) ≡ 0
(
mod (μ + 1)(μ + 1 + a − s)

)
. (30)

Combining (29)–(30), we deduce that μ(a − ρs)(μ + 1 + a − s) ≡ 0
(
mod (μ +

1)(μ+1+a−s)
)
, i.e.μ(a−ρs) ≡ 0

(
mod (μ+1)

)
. Sinceμ andμ+1 are coprime,

we obtain that

(a − ρs) ≡ 0
(
mod μ + 1

)
,

which is equivalent to

(s − a) − (s − 2a + ρs) ≡ 0
(
mod μ + 1

)
. (31)

We have 0 ≤ |V (Ks)\(NKs (u) ∪ NKs (v))| = s − 2a + ρs ≤ s − a due to ρs ≤ a.
Moreover, it follows from (26) that 0 < μ + 1 + a − s, i.e. s − a < μ + 1 since
t is a positive integer, and this leads to the conclusion that (31) is possible only if
s − a = s − 2a + ρs , i.e. a = ρs . The other possibility for ρt (that is u � v) is
considered in a very similar way.

Therefore, all vertices in X share the same neighbourhood in Ks . On the contrary,
all vertices in Ks have the same number of neighbours in X since G is regular, which
implies that a = 0 or a = s. Recalling from the previous part of this proof that a �= s,
we get ρs = a = 0, as desired.

Now, by taking an arbitrary vertex w′ ∈ V (Ks), we see that

r = d(w′) = s − 1 + t = μ2(μ + 1)2 + (μ + 1 − s)
(
s2 + (μ + 1)(μ − s)

)
s(μ + 1 − s)

,
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which is the first parameter of (18). The remaining three follow by setting a = 0 in
(25), (27) and (28), respectively. The equalities of (18) assure thatG is a Y -graph with
desired parameters.

The first two parameters of (19) are computed by replacing for r in |NX (u)| =
r − a − b = r − b and |NX (w)| = r − s, the third follows by setting a = 0 in (26),
and the remaining two are computed from |X | = (r−s)t

b = t(t−1)
b and n = |X |+ s+ t .

The proof is complete. �
From the proof of Theorem 3.7 we know that μ must be a positive integer and the

parameters related to Y -graph G are uniquely determined by μ and s. In Table 1 we
list the sets of feasible parameters obtained for μ ≤ 800. Every row contains μ (the
eigenvalue in question), s, t (the parameters related to the star complement), |X | (the
size of the corresponding star set), r , α, β, γ (the parameters of a putative Y -graph G)
and n (the order of G).

However, we were not able to construct any Y -graph due to the fact that the corre-
sponding parameters are comparatively large, and the smallest possible example has
1265 vertices. Clearly, the existence of a Y -graph would disprove Conjecture 1.1.

In what follows we eliminate the two particular cases in which s ∈ {2, 3}. The
following corollaries can be deduced from the results of [16,17]. Here we give the
short proofs that rely on the results of this paper.

Corollary 3.8 cf. [17] If an r-regular graph G has the star complement K2∇t K1 for
the eigenvalue μ �= r , then μ = −t = 2 and G = 3K2.

Proof If μ = −t , the result follows from Theorem 3.4. If for μ �= −t , we also have
t2 − 4μ2t − 4μ3 = 0, then Lemma 3.6 tells us that there is no graph satisfying the
assumptions of this corollary. If t2 − 4μ2t − 4μ3 �= 0, then G is a Y -graph with

α = μ2 + 2μ2

μ−1 , which yields
2μ2

μ−1 = α − μ2 ∈ Z. Note that μ and μ − 1 are coprime,
which implies that 2 is divisible by μ − 1, necessarily μ ∈ {2, 3}. However, we get
|X | = 57/2 for μ = 2 and |X | = 247/3 for μ = 3, a contradiction. �
Corollary 3.9 [16] If an r-regular graph G has the star complement K3∇t K1 for the
eigenvalue μ �= r , then μ = −t = 2 and G = 4K2.

Proof As before, the case μ = −t is settled by Theorem 3.4. For otherwise, G is a
Y -graph such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α = μ2 + 3μ2

μ − 2
= μ2 + 3μ + 6 + 12

μ − 2
,

|X | =
(
μ(μ + 1)2 + (μ − 2)2

)(
3 + (μ − 1)(μ + 1)2 + (μ − 2)2

)
9μ(μ − 2)

.

Since 0 ≤ α ∈ Z we have 12
μ−2 ∈ Z, i.e. μ ∈ {1, 3, 4, 5, 6, 8}. However, |X | is not a

positive integer for any possible μ, and we are done. �
By virtue of Corollaries 3.8 and 3.9, we conclude that Conjecture 1.1 holds for

μ �= −t , t2 − 4μ2 − 4μ3 �= 0 and s ∈ {2, 3}.
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4 Relation with block designs

By the foregoing results, if there is a graph for which Conjecture 1.1 does not hold,
then this graph must be a Y -graph defined upon Theorem 3.7. Here we show that its
existence depends on the existence of a 2-class block design formed as below.

Let G be a Y -graph and set T = X ∪ V (t K1). To construct G it is sufficient to
construct its subgraph GT induced by T . In fact, the existence of GT depends on
the existence of a block design D = (X ,B) whose points are identified with the
vertices of X , while blocks are determined by the vertices of t K1 in such a way that
a point of X belongs to a block of B if and only if the corresponding vertices are
adjacent. If so, then D has the following parameters. The number of points |X |, the
block size k = |N (w)| and the number of blocks t are given in (19). The replication
(i.e. the number of occurrences of every point) is α, two points joined by an edge occur
together in β blocks and two non-adjacent points occur together in γ blocks, where
these parameters are given in (18). (According to the terminology for block designs,
since two points are allowed to occur together in α or β blocks, the corresponding
design is said to be a 2-class block design.)

Observe that the subgraphG[X ] induced by X is regular with vertex degree r−α =
s−(μ+1)+ μ(μ+1)2

s . Moreover, if N is the incidencematrix whose rows and columns
are indexed by X and B, then

NNᵀ = (α − γ )I + (β − γ )A(G[X ]) + γ J . (32)

It is not difficult to see that G[X ] is a strongly regular graph if and only if D is the
so-called symmetric 2-class partial incomplete block design [14, Subsection 3.8.2].
In this case, the identity (32) leads to the conclusion that NNᵀ has exactly 3 eigen-
values. Moreover, by the same reference, in this particular case we have an additional
condition:

(r − α)(β − γ ) = α(k − 1) − γ (|X | − 1). (33)

Example 4.1 Suppose that G is a Y -graph that corresponds to the first row of Table 1.
ThenG[X ] is a 219-regular graph (since |NX (u)| = r −|NtK1(u)|−|NKs (u)| = 219)
and the existence of D is conditioned by the existence of such a graph satisfying
NNT = 81I − 9A(G[X ]) + 54J . By (33) we conclude that G[X ] cannot be strongly
regular. The search for other possibilities in case of this or any other set of feasible
parameters at this moment remains open.
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