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Abstract
By means of a new notion of subforests of an angularly decorated rooted forest, we
give a combinatorial construction of a coproduct on the free Rota–Baxter algebra on
angularly decorated rooted forests. We show that this coproduct equips the Rota–
Baxter algebra with a bialgebra structure and further a Hopf algebra structure.
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1 Introduction

The study of rooted trees is important in combinatorics and has broad applications.
Many algebraic structures have been equipped on rooted trees, which give intu-
itive meaning to these abstract structures. Well-known examples of Hopf algebras
on rooted trees include those of Connes–Kreimer, Loday–Ronco, Foissy–Holtkamp
and Grassman–Larson [8,13,14,16,22,25].

Amajor advantage of applying combinatorial objects andmethods in algebra, espe-
cially in Hopf algebra, is that the algebraic operations can be described intuitively and
explicitly. A prime example is the Connes–Kreimer Hopf algebra of rooted trees, as
a baby model of the Hopf algebra of Feynman graphs arising from their study on
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renormalization of quantum field theory [23,24,28]. Even though the coproduct has a
recursive formula by a cocycle condition, the coproduct is made clear and useful by
its explicit formula first in terms of admissible cuts and then in terms of subtrees and
subforests. The recent work of Gao and Zhang [32] on explicit construction of the
coproduct in Loday–Ronco Hopf algebra of planar rooted trees is a similar contribu-
tion.

We are interested in the combinatorial construction of a Hopf algebra structures on
free Rota–Baxter algebras by rooted trees.

The study of Rota–Baxter algebras was originated from the work of G.Baxter [5]
on fluctuation theory in probability in 1960. It was studied by well-known mathemati-
cians such as Atkinson, Cartier and Rota [3,7,30] in the 1960–1970s. Their study has
experienced a quite remarkable renascence in the recent decades with many applica-
tions in mathematics and physics [1,4,10,17,18,26,27,29,31], most notably the work
of Connes and Kreimer on renormalization of quantum field theory [8,9,12]. See [19]
for further details and references.

As in the case of any algebraic structures, the understanding of free Rota–Baxter
algebras is fundamental in the study of Rota–Baxter algebras and their applications.
In the commutative case, the first construction of free commutative Rota–Baxter alge-
bras by Rota [30] led him to the close relationship between Spitzer’s identity and
Waring formula for symmetric functions. In the second construction of free commu-
tative Rota–Baxter algebra [7], Cartier introduced a notion (later called a stuffle) that
became instrumental in the study of multiple zeta values [6] many years later. In the
third construction [17], the authors gave a generalization of the shuffle product, which
turned out to be equivalent to the well-known quasi-shuffle product [21] and shuffles.
In the non-commutative case, free Rota–Baxter algebras have been constructed by
various combinatorial objects, including bracketed words, leaf decorated forests and
angularly decorated forests [2,10,20]. As in the commutative case, the different con-
structions of free Rota–Baxter algebras give different angles to study free Rota–Baxter
algebras, even though they are naturally isomorphic. More recently, a Hopf algebra
structure has been given to free Rota–Baxter algebras on leaf decorated forests [31].
The construction of free Rota–Baxter algebra is from a selected set of leaf decorated
forests. The coproduct is obtained by first defining a coproduct on the whole space of
leaf decorated forests and then taking the quotient to the space for the free Rota–Baxter
algebra. As such, the coproduct cannot be explicitly computed, since it is not clear
how to obtain the coproduct of any given leaf decorated forest in the free Rota–Baxter
algebra without taking quotients or going through a recursion.

In light of the importance of explicit constructions of the Connes–Kreimer and
Loday–Ronco Hopf algebras mentioned above, for further study of the Hopf algebra
on free Rota–Baxter algebras and for its applications, it is desirable to describe the
coproduct directly on the rooted trees without the ambiguity of taking a quotient or
the indirectness of going through a recursion.

This is the purpose of this paper. We will work with free Rota–Baxter algebras on
angularly decorated planar rooted trees, following the construction in [10,19]. The
advantage of this construction is that the underlying module is spanned by all planar
rooted trees with angular decorations, in contrast to the construction by leaf decorated
forests in [31] where a selected class of forests are used as representatives of the Hopf
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algebra on all leaf decorated planar rooted forests modulo the Rota–Baxter relation.
We then introduce a coproduct on the angularly decorated planar rooted forests by
suitably defining cuts and subforests, leading to a connected Hopf algebra structure
on the free Rota–Baxter algebra.

The layout of the paper is as follows: In Sect. 2, we first recall the notions of
angularly decorated rooted forests and their use in constructing free Rota–Baxter
algebras. We then construct in Sect. 3 a coproduct on free unitary Rota–Baxter algebra
of angularly decorated rooted forests using a suitable notion of subforests, in analogy
to the construction of the Connes–Kreimer coproduct on rooted trees. This coproduct
is shown to be compatible with the multiplication on the free Rota–Baxter algebra,
leading to a bialgebra structure on these forests. Finally, the resulting bialgebra is
shown in Sect. 4 to be coaugmented, cofiltered and connected and hence can be
enriched to a Hopf algebra.

2 Rota–Baxter algebras and angularly decorated forests

In this section, we recall the construction of the free Rota–Baxter algebra on angularly
decorated forests.

2.1 Angularly decorated forests

We first recall the notion of Rota–Baxter algebras [5,19].

Definition 2.1 Let λ be a given element of commutative ring k. A Rota–Baxter alge-
bra of weight λ is a pair (R, P) consisting of a k-algebra R and a linear operator
P : R → R that satisfies the Rota–Baxter equation

P(u)P(v) = P(u P(v)) + P(P(u)v) + λP(uv), ∀u, v ∈ R. (1)

We give some basic examples of Rota–Baxter algebras and refer the reader to [19]
for more details.

Example 2.1 (Integration) Let R be theR-algebra of continuous functions onR. Define
P : R → R by the integration

P( f )(x) =
∫ x

0
f (t)dt .

Then, P is a Rota–Baxter operator of weight 0.

Example 2.2 (Scalar product) Let R be a k-algebra. For any given λ ∈ k, the operator

Pλ : R → R r �→ −λr

is a Rota–Baxter operator of weight λ.
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Example 2.3 (Laurent series) Let R = C[t−1, t]] be the algebra of Laurent series with
coefficients in C, consisting of series

∑
n≥N

antn where N is any integer. Then, the

projection to the pole part:

P

⎛
⎝∑

n≥N

antn

⎞
⎠ :=

∑
n<0

antn

is a Rota–Baxter operator of weight −1. Here the sum on the right is understood to be
zero if N ≥ 0. This operator plays an essential role in the study of renormalization of
quantum field theory [8].

In order to construct free Rota–Baxter algebras, we next recall the notions of planar
rooted trees and planar rooted forests. Then, we introduce angularly decorated rooted
forests, which will be our basic tools used in this paper.

A rooted tree is a connected and simply connected set of vertices and oriented edges
such that there is precisely one distinguished vertex, called the root, with no incoming
edge. A planar rooted tree is a plane rooted tree with a fixed embedding into the plane.
The following list shows the first few of them.

Let T denote the set of planar rooted trees and F the set of planar forests, which
can be identified with S(T ), the free semigroup generated by T in which the product
is denoted by

⊔
or simply suppressed if there is no danger of confusion. Then, a

planar rooted forest can be naturally expressed as an element of S(T ), of the form
T1

⊔
T2 · · · ⊔ Tn consisting of trees T1, · · · , Tn . Here

⊔
means putting two trees

next to each other and will often be suppressed. Here some examples of planar rooted
forests.

� = , � � = , � � � =

Obviously the multiplication
⊔

satisfies the associativity.
We use �T1

⊔
T2 · · · ⊔ Tn	 to denote the tree obtained from the forest T1

⊔
T2 · · ·⊔

Tn by adding a new root and an edge from the new root to each of the trees
T1, · · · , Tn . In combinatorial terms, this is called the grafting of T1

⊔
T2 · · · ⊔ Tn

and is denoted by B+(T1, · · · , Tn). So the operator B+ is called the grafting opera-
tor. For example,

� 	 = B+( ) = , � 	 = .
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For a rooted tree T , define the depth dep(T ) of T to be the maximal length of the
paths from the root to the leaves of the tree. For a forest F = T1

⊔
T2 · · · ⊔ T� with

rooted trees T1, T2 · · · , T�, we define the depth dep(F) of F to be the maximum of
the depths of the trees T1, · · · , Tk . We also define � to be the length of the forest F .
So �(F) is the number of tree factors in F . For example,

�(• ) = 2, �( • ) = 3, dep( ) = 1, dep( ) = 2.

We now recall the construction of angularly decorated rooted trees. See [11,19] for
further details.

Definition 2.2 Let X be a set.

(a) An angularly decorated rooted tree is a planar rooted tree in which each angle
(between two adjacent leafs) is decorated by an element of X .

(b) An angularly decorated rooted forest is a planar rooted forest with each angle
decorated by an element of X . LetFa

X denote the set of angularly decorated rooted
forests with decoration set X .

Note that the space between two rooted trees is taken as an angle. For example,

•, , x ,
x2

, x1

are angularly decorated trees, while

•x•, •x1 • x2•, x•, •x1 x2 , x1 x2

are angularly decorated forests.
From the definition of angularly decorated rooted forests, we add decorations to the

angles ofF = S(T ) to obtain angularly decorated forests. Intuitively, we use elements
from X to replace

⊔
. So an angularly decorated rooted forest is of the form

T1x1T2x2 · · · x�−1T�, x1, · · · , x�−1 ∈ X , (2)

consisting of angularly decorated rooted trees T1, · · · , T�. The length and depth of
an angularly decorated forest are defined to be the same as the underlying decorated
forest. We note that the notion of length is different from the notion of breadth that we
will introduced later.

2.2 Rota–Baxter algebras by angularly decorated trees

With notations in Sect. 2.1, we let kFa
X denote the free k-module with basis Fa

X . We
will equip kFa

X with a Rota–Baxter algebra structure. In order to do this, we define a
multiplication 
a on kFa

X .
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For this purpose, we define


a : Fa
X × Fa

X −→ kFa
X

and then extend by bilinearity to a multiplication


a : kFa
X × kFa

X −→ kFa
X .

The multiplication


a : Fa
X × Fa

X −→ kFa
X ,

is defined recursively utilizing a grading structure on Fa
X together with the grafting

operator

B+ : Fa
X −→ Fa

X .

The grading is given by the disjoint union (note the different meaning from the
concatenation of trees)

Fa
X =

⊔
n≥0

Fa
X ,n,

where Fa
X ,n is the set of angularly decorated forests of depth n. Then, we have the

linear grading

kFa
X =

⊕
n≥0

kFa
X ,n .

We will see later that the multiplication 
a gives kFa
X a filtered algebra, not a graded

algebra. So we have to be careful.
To be precise, the recursive definition of


a : Fa
X × Fa

X −→ kFa
X

means that we can apply induction on n ≥ 0 to define


a ,n : Fa
X ,i × Fa

X , j −→ kFa
X

for all i, j ≥ 0 with i + j = n. Once this is achieved, then 
a is well defined as the
direct sum of 
a ,n, n ≥ 0, because of the disjoint union

Fa
X × Fa

X =
⊔
n≥0

⊔
i+ j=n

Fa
X ,i × Fa

X , j .
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First let n = 0. Then i + j = n implies i = j = 0. Note that

Fa
X ,0 = {•x1 • · · · • xk • | k ≥ 0}

with the convention that •x1 • · · · • xk• = • when k = 0. Then, it is valid to define


a ,0 : Fa
X ,0 × Fa

X ,0 → kFa
X ,

by

• 
a ,0• = •, • 
a ,0(•x1 • · · · • xm•) = (•x1 • · · · • xm•) 
a ,0• = •x1 • · · · • xm•,

(•x1 • · · · • xm•) 
a ,0(•y1 • · · · • yn•) = •x1 • · · · • xm • y1 • · · · • yn • .

For a given k ≥ 0, assume that 
a ,m, 0 ≤ m ≤ k, have been defined, and we define

a ,k+1. Then k + 1 is greater than or equal to 1.

Let T ∈ Fa
X ,i , T ′ ∈ Fa

X , j with i + j = k + 1 ≥ 1. We consider two cases.
(a) Suppose the length �(T ) = �(T ′) = 1, that is, T and T ′ are both angularly

decorated rooted trees. Then, T can be one and only one of the forms • or B+(T ),
and T ′ can be one and only one of the forms • or B+(T

′
). Thus, there are four cases

and we define

T 
a,k+1T ′ :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

•, if T = T′ = •,

T , if T′ = •,

T ′, if T = •,
B+(T 
a T ′) + B+(T 
a T ′)

+λB+(T 
a T ′), if T = B+(T),T′ = B+(T′).

(3)

Everything is clear except the last case. There, we note that dep(B+(T )) = dep(T )+1
and dep(B+(T

′
)) = dep(T

′
) + 1. So for the three terms in the last case, we have

dep(T ) + dep(T ′) = dep(T ) + dep(T ′) − 1 = k;
dep(T ) + dep(T ′) = dep(T ) + dep(T ′) − 1 = k;
dep(T ) + dep(T ′) = dep(T ) + dep(T ′) − 2 = k − 1.

Therefore, T 
a,k T
′
, T 
a,k T ′ and T 
a,k−1T

′
are all well defined by the induction

hypothesis. Thus, the expression T 
a,k+1T ′ is well defined.
(b) Suppose �(T ) = m ≥ 2 or �(T ′) = n ≥ 2. Then T = T1x1 . . . xm−1Tm and

T ′ = T ′
1y1 . . . yn−1T ′

n with T1, · · · , Tm, T ′
1, · · · , T ′

n ∈ Fa
X , x1, . . . , xm−1, y1, . . . ,

yn−1 ∈ X . Then, we define:

T 
a T ′ := T1x1 . . . xm−2Tm−1xm−1(Tm 
a T ′
1)y1T ′

2y2 . . . yn−1T ′
n, (4)

with Tm 
a T ′
1 defined in Case (a). Note that Tm 
a T ′

1 is a sum of angularly deco-
rated trees by Case (a). So the above equation gives a well-defined sum of angularly
decorated forests.
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This completes the recursive definition of 
a on Fa
X . Finally, as noted above, we

expand the binary operation 
a and B+ to kFa
X by bilinearity. Note that the multipli-

cation 
a is not commutative. For example, for T1 := , T2 := •x•, we have

T1 
a T2 = x• = •x = T2 
a T1.

Applying [10,19], we obtain

Theorem 2.3 (a) The triple (kFa
X ,
a, B+) is a non-commutative unitary Rota–Baxter

algebra of weight λ with unit •.
(b) Let ix : X → kFa

X , x → •x• be the set map. The triple (kFa
X ,
a, B+, ix ) is a

free non-commutative unitary Rota–Baxter algebra on a set X characterized by
the following universal property: for any non-commutative unitary Rota–Baxter
algebra (R,
R, P) and any set map f : X → R, there is a unique Rota–Baxter
algebra homomorphism f̄ : kFa

X → R such that f̄ ◦ ix = f .

3 Bialgebra structure on the free Rota–Baxter algebra

In [31], the free Rota–Baxter algebra on leaf decorated rooted forests was equipped
with a bialgebra andHopf algebra structure. Through the isomorphismbetween the free
Rota–Baxter algebra in [31] and the free Rota–Baxter algebra on angularly decorated
rooted forests in this paper, the bialgebra and Hopf algebra structures on the former
free Rota–Baxter algebra can be transported to the latter one. However, in either case,
the coproduct is defined by a recursion via a cocycle condition. Even though there is a
combinatorial description of the coproduct on leaf decorated rooted forests, like in the
work of Connes and Kreimer [8], this combinatorial description does not carry over
to the quotient, which gives the free Rota–Baxter algebra on leaf decorated rooted
trees. Thus, such a definition of coproduct is not explicit and does not reveal possible
relationship with the combinatorial properties of rooted forests.

In this section, we use a combinatorial procedure to define a coproduct on the
free Rota–Baxter algebra on angularly decorated rooted forests. This procedure is
given in terms of substructures of angularly decorated rooted forest, in analogue to the
substructures of leaf decorated rooted forests in the coproduct of Connes and Kreimer.

3.1 Construction of the coproduct

First we define the counit

εa : kFa
X → k

by sending • to 1k and 0 otherwise. Also, we denote m : kFa
X ⊗ kFa

X → kFa
X for

the product 
a defined in the last section and u : k → kFa
X , 1k �→ • for the unit.

Now we give a combinatorial definition of a coproduct on angularly decorated
rooted forests kFa

X .
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Our construction ismotivated by the coproduct of rooted trees and forests of Connes
and Kreimer [8], defined by subforests. So we briefly recall their definition.

Let T be a rooted tree or forest. Recall that a subtree T ′ of a tree T , denoted T ′ � T ,
is a vertex of T together with its descendants and the edges connecting these vertices.
A subtree is called non-trivial if it is not the one vertex tree •. More generally, a
subforest F ′ of a forest F = T1 · · · Tk , denoted F ′ � F , is F ′ = T ′

1 · · · T ′
k where

T ′
i � Ti , 1 ≤ i ≤ k. Equivalently, a subforest F ′ of F is a subset of vertices of F

together with the edges connecting them, so that if a vertex is in F , then all descendants
of the vertex are in F .

In this language, the Connes–Kreimer coproduct of rooted forests is defined by:

�(F) :=
∑

F ′�F

F ′ ⊗ (F/F ′), (5)

where F/F ′ is the forest obtained when the vertices of F and edges (both internal and
external) connecting to these vertices are removed from F .

Now let F be an angularly decorated forest, with the decomposition

F = T1x1T2x2 · · · xk−1Tk

as in Eq. (2). A vertex of F is called a non-leaf vertex if it is not a leaf. A subtree T
of F , denoted T � F , is a subset of vertices of T together with the edges connecting
them, so that if a vertex is in F , then all descendants of the vertex are in F . The only
vertex of • is regarded as a leaf.

Definition 3.1 Let F be an angularly decorated forest. Let ι be a symbol not in X .

(a) A real subtree of F is a non-leaf subtree of F as defined above for rooted trees
together with all its angular decorations.

(b) A letter subtree is a set (in fact a vector) of decorations of a real subtree without
the underlying subtree.

(c) A virtual subtree is either a real subtrees or a letter subtrees.
(d) A (angularly decorated) virtual subforest H of an angularly decorated forest F ,

denoted H � F , consists of a sequence H1, · · · , Hn of mutually disjoint virtual
subtrees of F in the order that they appear in F .

(e) The closure of a virtual subforest H = H1 · · · Hn of F , denoted cl(H), is the
angularly decorated forest obtained from expanding H as follows.

(i) If H1 (resp. Hn) is a letter subtree, then replace H1 (resp. Hn) by •H1 (resp.
Hn•);

(ii) If Hi and Hi+1 are both letter subtrees, then replace Hi Hi+1 by Hi • Hi+1
(iii) If Hi and Hi+1 are both real subtrees, then replace Hi Hi+1 by Hi ιHi+1.

The role of the symbol ι is to represent the operation 
a without executing it, that
is, withoutmultiplying out Hi 
a Hi+1, in order to keep and show the combinatorial
structure. This closure is called the angularly decorated forest generated by H .

(f) For a virtual subforest H = H1 · · · Hn of F , the quotient forest F/H is obtained
from F by carrying out the following procedure for each Hi , 1 ≤ i ≤ n:
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(i) if Hi is a real subtree, then take it out of F as for the usual rooted forests;
(ii) if Hi = {x} is a letter subtree, then replace x by ι at the angle that x decorates.

In both cases, the role of ι is the multiplication 
a . See the examples below.

Example 3.1 (a) For the angularly decorated tree x , the real subtrees are the trivial

tree • and x , the only letter subtree is x . Thus, the virtual subforests are

•, x , x . Their closures are

•, x , •x • . (6)

The corresponding quotients are

x , •, ι .

(b) For the angularly decorated tree
x2

x1 , the real subtrees are •, x1 ,
x2

x1 , the
letter subtrees are x1, x2. Thus, the virtual subforests, their closures and quotients
are:

Virtual subforests • x1 x1 x2 x1x2 x1 x2
x2

x1

Closures • •x1• x1 •x2• •x1 • x2• x1 x2•
x2

x1

Quotients
x2

x1
x2

ι
x2

ι

x1

ι

ι
ι •

Definition 3.2 For F ∈ kFa
X , with notations above, we define the angular coproduct

of F by

�a(F) :=
∑
G�T

cl(G) ⊗ T /G, (7)

where the sum is taken over virtual subforests.
If ι appears in the right-hand side, then replace ι by 
a .

Example 3.2 For the angularly decorated trees in Example 3.1, we have

�a( x ) = • ⊗ x + x ⊗ • + •x • ⊗ ι (by Eq. (7))
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= • ⊗ x + x ⊗ • + •x • ⊗B+(•ι•) (by the definition ofB+)

= • ⊗ x + x ⊗ • + •x • ⊗ (by •ι• := • 
a • = •)

For another example, we compute

�a (

x2
x1 ) = • ⊗

x2
x1 + •x1 • ⊗ x2

ι
+ x1 ⊗ x2 + •x2 • ⊗ ι

x1

+ • x1 • x2 • ⊗ ι

ι
+ x1 x2 • ⊗ ι +

x2
x1 ⊗ • (by Eq. (7))

= • ⊗
x2

x1 + •x1 • ⊗B+(B+(•ι•)x2•) + •x2 • ⊗B+( x1 ι•)

+ • x1 • x2 • ⊗B+(B+(•ι•)ι•) + x1 x2 • ⊗B+(•ι•) + x1 ⊗ x2 +
x2

x1 ⊗ •
(by the definition of B+)

= • ⊗
x2

x1 + •x1 • ⊗B+( x2•) + •x2 • ⊗B+( x1 )

+ • x1 • x2 • ⊗B+( ) + x1 x2 • ⊗B+(•) + x1 ⊗ x2 +
x2

x1 ⊗ •
(by •ι• = • 
a • = •)

= • ⊗
x2

x1 + •x1 • ⊗
x2

+ •x2 • ⊗ x1

+ • x1 • x2 • ⊗ + x1 x2 • ⊗ + x1 ⊗ x2 +
x2

x1 ⊗ •
(by the definition of B+)

Next we give another description of the angular coproduct in compatible with the
decomposition of F in (2):

F = T1x1T2x2 · · · xk−1Tk,

for x1, · · · xk−1 ∈ X , T1, · · · Tk ∈ Fa
X . Then, a virtual subforest of F is of the form,

called a factorwise virtual subforest

F ′ = T ′
1x ′

1T ′
2x ′

2 · · · x ′
k−1T ′

k ,

where T ′
i is a virtual subforest of Ti , 1 ≤ i ≤ k, and x ′

i is either xi or ι, 1 ≤ i ≤ k.
Then, the quotient forest F/F ′ is:

F/F ′ = (T1/T ′
1)(x1/x ′

1)(T2/T ′
2)(x2/x ′

2) · · · (xk−1/x ′
k−1)(Tk/T ′

k),
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where Ti/T ′
i is the quotient tree and xi/x ′

i is ι or xi depending on x ′
i being xi or ι. It

is called as factorwise quotient forest.
Then, we have the following alternative definition of �a . For F ∈ Fa

X with the
decomposition F = T1x1T2x2 · · · xk−1Tk where T1, · · · , Tk ∈ Fa

X , and x1, · · · ,

xk−1 ∈ X . Then, with the notions above, we have

�a(F) :=
∑

F ′�F

F ′ ⊗ F/F ′. (8)

This description is particularly convenient when there are multiple tree factors in a
forest, as shown in the following example.

Example 3.3 Consider the angularly decorated forest F = x1 x2•. The following
table gives the virtual subforests, their closures and the virtual subforests given factor

by factor. We first note that x1 has three virtual subforests, • has one and x ′
2 has

two choices: x ′
2 = ι, x2. Thus altogether, there are six virtual subforests of F . Their

corresponding closures, factorwise subforests, factorwise quotients are listed in the
following table.

Virtual
subforests

• x1 x1 x2 x1x2 x1 x2

Closures • •x1• x1 •x2• •x1 • x2• x1 x2•

Factorwise
virtual
subforests

•ι • ι• •x1 • ι• x1 ι• •ι • x2• •x1 • x2• x1 x2•

Factorwise
quotient

x1 x2• ι x2• •ι • x2• x1 ι• ι ι• •ι • ι•

Reduced
quotient

x1 x2• ι x2• •x2• x1 ι •

Thus, we have the coproduct

�a( x1 x2•) = • ⊗ x1 x2 • + • x1 • ⊗ ι x2 • + x1 ⊗ •x2 • + • x2 • ⊗ x1

+(•x1 • x2•) ⊗ ι + x1 x2 • ⊗ •

= • ⊗ x1 x2 • + • x1 • ⊗B+(•ι•)x2 • + x1 ⊗ •x2 • + • x2 • ⊗ x1

+(•x1 • x2•) ⊗ B+(•ι•) + x1 x2 • ⊗ •

= • ⊗ x1 x2 • + • x1 • ⊗ x2 • + x1 ⊗ •x2 • + • x2 • ⊗ x1
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+ • x1 • x2 • ⊗ + x1 x2 • ⊗•

3.2 The bialgebra structure

Theorem 3.3 Let �a : kFa
X → kFa

X ⊗ kFa
X be the angular coproduct defined in

Eq. (7) or (8). Then, �a satisfies the following properties.

(a) �a(•) = • ⊗ •;
(b) �a(•x•) = •x • ⊗ • + • ⊗ • x•, x ∈ X;
(c) �a(B+(F)) = B+(F) ⊗ • + (id ⊗ B+)(�a(F)) for all F ∈ Fa

X ;
(d) �a(F1 
a F2) = �a(F1) 
a �a(F2) for F1, F2 ∈ Fa

X .

Proof By the definition of �a , it is direct that Items (a) and (b) hold.
(c) We verify

�a(B+(F)) = B+(F) ⊗ • + (id ⊗ B+)(�a(F)) for all F ∈ kFa
X

by the same argument for the cocycle property of the Connes–Kreimer coproduct for
rooted trees and here made possible by the combinatorial description of the angular
coproduct. Consider the coproduct

�a(B+(F)) =
∑

G�B+(F)

cl(G) ⊗ F/G.

If G � B+(F) contains the root of B+(F), then G = B+(F) and the corresponding
term in the sum is B+(F)⊗•. If G � B+(F) does not contain the root of B+(F), then
by the definition of angular subforests, we have G � F . Further, the corresponding
quotient forest is obtained from the grafting of F/G. Therefore, the corresponding
term in the sum is G ⊗ B+(F/G). In summary, we obtain

�a(B+(F)) = B+(F) ⊗ • +
∑
G�F

cl(G) ⊗ B+(F/G)

= B+(F) ⊗ • + (id ⊗ B+)

⎛
⎝ ∑

G�F

cl(G) ⊗ F/G

⎞
⎠

= B+(F) ⊗ • + (id ⊗ B+)�a(F),

as needed.
(d). We prove the desired multiplicativity by induction on the sum dep(F1)+ dep(F2)

of depths of F1 and F2 in Fa
X .

First when dep(F1) + dep(F2) = 0, then F1 = •x1 • · · · • xm and F2 = •xm+1 •
· · · • xm+n for some m, n ≥ 1. For a set I = {i1 < · · · < ir } of positive integers,
we use the notation •xI • := •xi1 • · · · • xir •. Also denote [m] = {1, · · · , m} and
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[m + 1, m + n] := {m + 1, · · · , m + n}. With these notations, we obtain

�a(F1) =
∑

I⊆[n]
(•xI •) ⊗ (•x[m]\I •),

�a(F2) =
∑

J⊆[m+1,m+n]
(•xJ •) ⊗ (•x[m+1,m+n]\J •).

Therefore,

�a(F1) 
a �a(F2) =
∑

I⊆[m],J⊆[m+1,m+n]

(
(•xI •) 
a (•xJ •)

)
⊗

(( • x[m]\I • ) 
a
( • x[m+1,m+n]\J • ))

=
∑

L⊆[m+n]
(•xL•) ⊗ (•x[m+n]\L•)

= �a(F1 
a F2).

Next assume that for k ≥ 0, Item (c) holds whenever dep(F1) + dep(F2) ≤ k.
Consider F1, F2 ∈ Fa

X with dep(F1) + dep(F2) = k + 1. We first consider the case
when the breadths of F1 and F2 are one. In this case, if further one of F1 or F2 has
depth zero and so is of the form •x•, then by the definition of 
a in Eqs. (3) and
(4), we have F1 
a F2 = •x F2 or F1 
a F2 = F1x•. Then, it is direct to check that
Item (c) holds. In the remaining case, when F1 and F2 both have positive depths, then
F1 = B+(F1) and F2 = B+(F2). Denote

F1�F2 := F1 
a F2 + F1 
a F2 + λF1 
a F2,

so that F1 
a F2 = B+(F1�F2). Then, by the cocycle condition and the induction
hypothesis, we have

�a(F1 
a F2) = �a

(
B+(F1 
a F2) + B+(F1 
a F2) + λB+(F1 
a F2)

)

= B+(F1 
a F2) ⊗ • + (id ⊗ B+)(�a(F1 
a F2)) + B+(F1 
a F2) ⊗ •
+(id ⊗ B+)(�a(F1 
a F2))

+λB+(F1 
a F2) ⊗ • + λ(id ⊗ B+)(�a(F1 
a F2))

= (F1 
a F2) ⊗ • + (id ⊗ B+)(�a(F1) 
a �a(F2))

+(id ⊗ B+)(�a(F1) 
a �a(F2)) + λ(id ⊗ B+)(�a(F1) 
a �a(F2))

= (F1 
a F2) ⊗ • + (id ⊗ B+)
(
(F1 ⊗ • + (id ⊗ B+)(�a(F1)) 
a �a(F2)

)
+(id ⊗ B+)

(
�a(F1) 
a

(
F2 ⊗ • + (id ⊗ B+)(�a(F2))

))

+λ(id ⊗ B+)(�a(F1) 
a �a(F2))

= (F1 
a F2) ⊗ • + (id ⊗ B+)
(
(F1 ⊗ •) 
a �a(F2)

)

+(id ⊗ B+)
(
(id ⊗ B+)(�a(F1)) 
a �a(F2)

)
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+(id ⊗ B+)
(
�a(F1) 
a

(
F2 ⊗ •)

)

+(id ⊗ B+)
(
�a(F1) 
a

(
(id ⊗ B+)(�a(F2))

))

+λ(id ⊗ B+)(�a(F1) 
a �a(F2))

It is a general fact that if P is a Rota–Baxter operator on an algebra R, then id⊗ P
is a Rota–Baxter algebra on the tensor product algebra R ⊗ R. Thus combining the
third, fifth and sixth terms of the above equation gives (id ⊗ B+)(�a(F1)) 
a (id ⊗
B+)(�a(F2)). Thus, from the above equation we obtain

�a(F1 
a F2) = (F1 
a F2) ⊗ • + (id ⊗ B+)
(
(F1 ⊗ •) 
a �a(F2)

)

+(id ⊗ B+)
(
�a(F1) 
a

(
F2 ⊗ •)

)

+(id ⊗ B+)(�a(F1)) 
a (id ⊗ B+)(�a(F2)).

On the other hand, we have

�a(F1) 
a �a(F2) =
(

B+(F1) ⊗ • + (id ⊗ B+)(�a(F1))
)


a(
B+(F2) ⊗ • + (id ⊗ B+)(�a(F2))

)

= (F1 
a F2) ⊗ • + (F1 ⊗ •) 
a
(
(id ⊗ B+)(�a(F2))

)
+(

(id ⊗ B+)(�a(F1))
) 
a (F2 ⊗ •)

+(
(id ⊗ B+)(�a(F1))

) 
a
(
(id ⊗ B+)(�a(F2))

)
.

Since

(id ⊗ B+)
(
(F1 ⊗ •) 
a �a(F2)

)
= (F1 ⊗ •) 
a

(
(id ⊗ B+)(�a(F2))

)
,

we find that

�a(F1 
a F2) = �a(F1) 
a �a(F2).

Finally when F1 and F2 have breadths r ≥ 1 and s ≥ 1, respectively, with standard
decompositions

F1 = F1,1 
a · · · 
a F1,r , F2 = F2,1 
a · · · 
a F2,s .

Then noting that �a is defined to be compatible with the standard decomposition (see
the alternative description) and that the standard decomposition of F1 
a F2 is

F1 
a F2 = F1,1 
a · · · 
a F1,r−1 
a (F1,r 
a F2,1) 
a F2,2 
a · · · 
a F2,s .
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Thus applying the previous case, we obtain

�a(F1 
a F2) = �a(F1,1 
a · · · 
a F1,r−1 
a (F1,r 
a F2,1) 
a F2,2 
a · · · 
a F2,s)

= �a(F1,1) 
a · · · 
a �a(F1,r−1) 
a �a(F1,r 
a F2,1)


a�a(F2,2) 
a · · · 
a �a(F2,s)

= �a(F1,1) 
a · · · 
a �a(F1,r−1) 
a �a(F1,r )


a�a(F2,1) 
a �a(F2,2) 
a · · · 
a �a(F2,s)

= �a(F1,1 
a · · · 
a �a(F1,r )) 
a �a(F2,1 
a · · · 
a F2,s).

This completes the proof of Item (d). ��
Now we verify the other conditions for kFa

X to be a bialgebra.

Theorem 3.4 The quintuple (kFa
X , m, u,�a, εa) is a bialgebra.

Proof By Theorem 3.3, the natural algebraic isomorphism between (kFa
X , m, u) and

the free Rota–Baxter algebra on X in [31] preserves the coproducts. Then, since the
coproduct in [31] is compatible with the product and gives rise to a bialgebra, the same
holds for the quintuple (kFa

X , m, u,�a, εa). ��

4 The Hopf algebra structure

We end the paper by showing that the bialgebra of angularly decorated forests obtained
in the last section is a Hopf algebra.

Definition 4.1 A coaugmented coalgebra is a quadruple (C,�, ε, u)where (C,�, ε)

is a coalgebra and u : k → C is a linear map, called the coaugmentation, such that
ε ◦ u = idk .

In Sect. 3, we have defined εa : kFa
X → k and u : k → kFa

X , so that

εa ◦ u = idk .

In other words, we have shown that (kFa
X ,�a, εa) is a coaugmented coalgebra.

Definition 4.2 ([15]) A bialgebra (H , m, u,�, ε) is called cofiltered if there are
k−submodules Hn , n ≥ 0, such that

(a) Hn ⊆ Hn+1 for all n ≥ 0;
(c) H = ∪∞

n≥0Hn for all n ≥ 0;
(c) �(Hn) ⊆ ∑

p+q=n H p ⊗ Hq , n ≥ 0;
(d) Hn = imu ⊕ (Hn ∩ ker ε), where p, q ≥ 0. H is called connected (cofiltered) if

in addition H0 = imu.

Definition 4.3 Let deg(F) denote the number of vertices of F ∈ Fa
X .

Then we have deg(F1 
a F2) = deg(F1) + deg(F2) − 1.
Now we prove
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Proposition 4.4 With the above notations, kFa
X is a connected, cofiltered coaugmented

coalgebra.

Proof First we define

an := {F ∈ Fa
X | deg(F) − 1 ≤ n} for n ≥ 0.

And we denote Hn := kan . Then, we have H0 = k = imu and kFa
X = ∪∞

n≥0Hn , so
(b) is clear.

(a) Obviously, for F ∈ Hn, deg(F) ≤ n + 1,

Hn+1 := kan+1 := k{F ∈ Fa
X | deg(F) − 1 ≤ n + 1}.

So, F ∈ Hn+1, that is, Hn ⊆ Hn+1.

(c) When n = 0, F = • ∈ H0,

�a(F) = �a(•) = • ⊗ • ⊆
∑

0+0=0

H0 ⊗ H0.

Assume that for n = k ≥ 0, �a(Hk) ⊆ ∑
p+q=k H p ⊗ Hq . Then, we consider the

case of n = k + 1. Let F ∈ Hn . We consider two cases.
Case 1. If bre(F) = 1, then we have F = B+(F) and deg(F) = k + 1. Also, we

have

�a(F) = �a(B+(F)) = F ⊗ • + (id ⊗ B+) ◦ �a(F),

so we have (id⊗ B+)◦�a(F) ∈ ∑
p+q+1=k+1 H p ⊗ Hq+1 and F ⊗• ∈ Hk+1⊗ H0.

Then,

�a(F) = �a(Hk+1) ⊆
∑

p+q+1=k+1

H p ⊗ Hq .

Case 2. If bre(F) ≥ 2,wehave F = F1
a F2, and deg(F) = deg(F1)+deg(F2)−
1 = k + 2, so we have

�a(F1) ∈
∑

p1+q1=deg(F1)−1

H p1 ⊗ Hq1, �a(F2) ∈
∑

p2+q2=deg(F2)−1

H p2 ⊗ Hq2 .

Then �a(F) = �a(F1) 
a �a(F2)

∈
⎛
⎝ ∑

p1+q1=deg(F1)−1

H p1 ⊗ Hq1

⎞
⎠ 
a

⎛
⎝ ∑

p2+q2=deg(F2)−1

H p2 ⊗ Hq2

⎞
⎠

=
∑

p1+q1=deg(F1)−1

∑
p2+q2=deg(F2)−1

(H p1 
a H p2) ⊗ (Hq1 
a Hq2)

⊆
∑

p1+q1=deg(F1)−1

∑
p2+q2=deg(F2)−1

H p1+p2 ⊗ Hq1+q2
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⊆
∑

p+q=k+1

H p ⊗ Hq .

This completes the induction.
(d) Since εa ◦ u = idk, u ◦ εa is idempotent. Further u is injective and εa is surjective.
Thus,

Hn = imu ◦ εa |Hn ⊕ ker u ◦ εa |Hn = imu ⊕ (Hn ∩ ker εa).

In summary, we have proved that (kFa
X ,�a, εa) is a connected coaugmented cofil-

tered coalgebra. ��
Lemma 4.5 [15] Let (H , m, u,�a, ε) be a bialgebra such that (H ,�a, ε, u) is a con-
nected coaugmented cofiltered coalgebra. Then H is a Hopf algebra and the antipode
S is given by

S(1H ) = 1H and S(x) = −x +
∑
n≥1

(−1)n+1mn�̄n(x) for x ∈ ker ε,

where �̄(x) := �(x) − 1H ⊗ x − x ⊗ 1H ∈ ker ε ⊗ ker ε.

Here are examples of the antipodes for some angularly decorated forests.

S( x ) = − x + x ,

S( x y ) = y x − y x .

Combining Proposition 4.4 and Lemma 4.5, we obtain

Theorem 4.6 (kFa
X ,
a, u,�a, εa, S) is a Hopf algebra.
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