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Abstract
Let G be a graph on the vertex set [n] and JG the associated binomial edge ideal
in the polynomial ring S = K[x1, . . . , xn, y1, . . . , yn]. In this paper, we investigate
the depth of binomial edge ideals. More precisely, we first establish a combinatorial
lower bound for the depth of S/JG based on some graphical invariants of G. Next,
we combinatorially characterize all binomial edge ideals JG with depth S/JG = 5.
To achieve this goal, we associate a new posetMG with the binomial edge ideal of G
and then elaborate some topological properties of certain subposets of MG in order
to compute some local cohomology modules of S/JG .

Keywords Binomial edge ideals · Depth · Diameter of a graph · Hochster-type
formula · Meet-contractible

Mathematics Subject Classification 13C15 · 05E40 · 13C70 · 13C05

1 Introduction

Over the last two decades, the study of ideals with combinatorial origins has been an
appealing trend in commutative algebra. One of the most well-studied types of such
ideals which has attracted special attention in the literature is the binomial edge ideal
of a graph.
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Let G be a graph on [n] and S = K[x1, . . . , xn, y1, . . . , yn] be the polynomial ring
over a field K. Then, the binomial edge ideal associated with G, denoted by JG , is
the ideal in S generated by all the quadratic binomials of the form fi j = xi y j − x j yi ,
where {i, j} ∈ E(G) and 1 ≤ i < j ≤ n. This class of ideals was introduced in 2010
by Herzog, Hibi, Hreinsdóttir, Kahle and Rauh in [13], and independently by Ohtani
in [21], as a natural generalization of determinantal ideals, as well as ideals generated
by adjacent 2-minors of a 2 × n-matrix of indeterminates.

Since then, many researchers have studied the algebraic properties and homological
invariants of binomial edge ideals. The main goal is to understand how the invariants
of the associated graph are reflected in the algebra of the ideal and vice versa. Indeed,
it has been proved that there exists a mutual interaction between algebraic properties
of binomial edge ideals and combinatorial properties of the underlying graphs, see,
e.g., [1,3,5–11,14,15,18,20,23–26] for some efforts in this direction.

One of the homological invariants associated with binomial edge ideals, which is
not easy to compute, is depth. Recall that

depth S/JG = min
{

i : Hi
m (S/JG) �= 0

}
,

where Hi
m(S/JG) denotes the i th local cohomology module of S/JG with support at

the maximal homogeneous ideal m = (x1, . . . , xn, y1, . . . , yn) of S.
Notice that unlike some other homological invariants associatedwith binomial edge

ideals, like the Castelnuovo–Mumford regularity, which has been studied extensively,
little is known about the depth of binomial edge ideals. Moreover, since the depth is in
general dependent on the characteristic of the base field, finding some characteristic-
free results about the depth of such homogeneous ideals is of great interest. In the
following, we briefly summarize the results in this direction.

The first important result about the depth of binomial edge ideals appeared in [7],
where the authors showed that depth S/JG = n + 1, where G is a connected block
graph. Afterward, in [30] it was shown that depth S/JG = n, where G is a cycle
with more than 3 vertices. Later, this result was generalized in [17] for the so-called
quasi-cycle graphs. Also, it was shown in [27] that the depth of the binomial edge
ideal of a unicyclic graph is either n or n + 1, and all unicyclic graphs of depth n and
n + 1 were characterized. In [19], by generalizing a formula for the depth of complete
bipartite graphs in [28], the authors gave some precise formulas for the depth of
the join product of graphs. In [3], Banerjee and Núñez-Betancourt established a nice
combinatorial upper bound for the depth of binomial edge ideals in terms of the vertex
connectivity of the underlying graph. Indeed, for a non-complete connected graph G,
they showed that

depth S/JG ≤ n − κ(G) + 2, (1)

where κ(G) denotes the vertex connectivity of G, which is the minimum number of
vertices of G whose removal makes G disconnected.

It is worth mentioning here that to the best of our knowledge, besides the above
combinatorial upper bound for the depth of binomial edge ideals, there is no combi-
natorial lower bound for the depth of S/JG . So, as the first main result of this paper,
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Fig. 1 A graph G with
depth S/JG = ξ(G) =
n − κ(G) + 2 = 12

Fig. 2 A graph G with
depth S/JG = ξ(G) = 8 <

n − κ(G) + 2 = 9

we supply the following combinatorial lower bound for the depth of binomial edge
ideals:

Theorem A (Theorem 3). Let G be a graph on [n]. Then,

depth S/JG ≥ ξ(G).

In particular, if G is connected, then

depth S/JG ≥ f (G) + diam(G).

Here, ξ(G) = f (G) + d(G) where f (G) denotes the number of free vertices (or
simplicial vertices) of the graph G, and d(G) denotes the sum of the diameters of the
connected components of G, and the number of the isolated vertices of G. Moreover,
diam(G) denotes the diameter of G.

In order to prove Theorem A, we first introduce the concept of d-compatible maps.
Such maps are defined from the set of all graphs to the set of nonnegative integers
that admit certain properties (see Definition 1). Then, we exploit this concept to estab-
lish a general lower bound for the depth of binomial edge ideals. We also provide a
combinatorial d-compatible map, which yields the above lower bound. We also show
that our lower bound is best possible in the sense that there are graphs G for which
depth S/JG = ξ(G), see Figs. 1 and 2.

Now, wewould like tomention another motivation of this paper. In [23], the authors
of the present paper provided a general lower bound for the depth of binomial edge
ideals. Indeed, they showed that depth S/JG ≥ 4, where G is a connected graph with
at least three vertices. Moreover, they gave an explicit characterization of the graphs
G for which depth S/JG = 4. More precisely, they showed that for graphs G with
more than three vertices, depth S/JG = 4 if and only if G = G ′ ∗2K1, for some graph
G ′, where G ′ ∗ 2K1 denotes the join product of a graph G ′ and two isolated vertices
denoted by 2K1.

Now, it is natural to ask about a combinatorial characterization of binomial edge
ideals of higher depths. In this paper, by using a wonderful Hochster-type formula for
the local cohomologymodules of binomial edge ideals provided byÀlvarez Montaner
in [1], we give such a characterization. Indeed, we prove the following characterization
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of the graphs G for which depth S/JG = 5, see Definition 4 for the required notation.

Theorem B (Theorem 5). Let G be a graph on [n] with n ≥ 5. Then, the following
statements are equivalent:

(a) depth S/JG = 5.
(b) G is a D5-type graph.

The proof of Theorem B involves some topological results that we obtain in this
paper about some specific subposets of a poset associated with binomial edge ideals,
which are indeed of independent interest.

The organization of this paper is as follows. In Sect. 2, we fix the notation and
review some facts and definitions that will be used throughout the paper.

In Sect. 3, toward providing some lower bounds for the depth of binomial edge
ideals, in Definition 1, we introduce a concept which is named as d-compatible maps.
Such maps are defined from the set of all graphs to the set of nonnegative integers with
some specific properties. Then, in Theorem 1, by using the aforementioned concept,
a general lower bound is given for the depth of binomial edge ideals. In addition,
after providing a combinatorial d-compatible map in Theorem 2, a combinatorial
lower bound is given for the depth of binomial edge ideals in Theorem 3. This bound,
together with a result from [23], provides a modified version of the bound given in
Theorem 3.

In Sect. 4, following the poset theoretical as well as the topological approaches
used in [1] and [23], we associate a new poset with binomial edge ideals in Definition
2. Then, we state in Theorem 4, the Hochster-type formula for the local cohomology
modules of binomial edge ideals arose from [1, Theorem 3.9].

In Sect. 5, we use the Hochster-type formula provided in Sect. 4 to characterize all
graphs G for which depth S/JG = 5, in Theorem 5. To prove our characterization, we
need to provide several auxiliary ingredients. In particular, Theorem 6, which studies
the vanishing of the zeroth and the first reduced cohomology groups of some subposets
of the associated poset with binomial edge ideals, plays a crucial role in the proof of
Theorem 5.

2 Preliminaries

In this section, we recall some notions and known facts that are used in this paper.
Graph theory Throughout the paper, all graphs are assumed to be simple (i.e.,

with no loops, directed and multiple edges). Let G be a graph on the vertex set [n] and
T ⊆ [n]. A subgraph H of G on the vertex set T is called an induced subgraph of
G, whenever for any two vertices u, v ∈ T , one has {u, v} ∈ E(H) if {u, v} ∈ E(G).
Now, by G − T , we mean the induced subgraph of G on the vertex set [n]\T . In
the special case, when T = {v}, we use the notation G − v instead of G − {v}, for
simplicity.

Let v ∈ [n]. Denoted by NG(v) is the set of all vertices of G which are adjacent to
v. We say that v is a free vertex (or simplicial vertex) of G, if the induced subgraph of
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G on the vertex set NG(v) is a complete graph. Moreover, a vertex, which is not free,
is called a non-free (or non-simplicial) vertex. We use f (G) and iv(G) to denote the
number of free vertices and the number of non-free vertices of a graph G, respectively.

A vertex v ∈ [n] is said to be a cut vertex of G whenever G −v has more connected
components than G. Moreover, we say that T has the cut point property for G, when-
ever each v ∈ T is a cut vertex of the graph G − (T \{v}). Particularly, the empty set
∅ has the cut point property for G.

Let G1 and G2 be two graphs on the disjoint vertex sets V (G1) and V (G2), respec-
tively. Then, by the join product of G1 and G2, denoted by G1 ∗ G2, we mean the
graph on the vertex set V (G1) ∪ V (G2) and with the edge set

E (G1) ∪ E (G2) ∪ {{u, v} : u ∈ V (G1) and v ∈ V (G2)} .

Primary decomposition of binomial edge ideals Let G be a graph on [n] and
T ⊆ [n]. Let also G1, . . . , GcG (T ) be the connected components of G − T and
G̃1, . . . , G̃cG (T ) be the complete graphs on the vertex sets V (G1), . . . , V (GcG (T )),
respectively. Let

PT (G) = (xv, yv)v∈T + JG̃1
+ · · · + JG̃cG (T )

.

Then, by [13, Theorem 3.2], it is known that JG = ⋂
T ⊆[n]

PT (G). Moreover, in [13,

Corollary 3.9], all the minimal prime ideals of JG were determined. Indeed, it was
shown that PT (G) ∈ Min(JG) if and only if T ∈ C (G), where

C (G) = {T ⊆ [n] : T has the cut point property for G} .

Finally, the following useful formula could be easily verified:

ht PT (G) = n − cG(T ) + |T |.

Poset topology Let � be a simplicial complex. Then, by the 1-skeleton graph of �

we mean the subcomplex of � consisting of all the faces of � which have cardinality
at most 2. The simplicial complex � is said to be connected if its 1-skeleton graph is
connected.

Let (P,�) be a poset. Recall that the order complex of P , denoted by �(P),
is the simplicial complex whose facets are the maximal chains in P . We say that P
is a connected poset if its order complex �(P) is connected. Similarly, we say that
P is contractible if �(P) is contractible. If P is an empty poset, then we consider
�(P) = {∅}, i.e., the empty simplicial complex.

Mayer–Vietoris sequence Let � be a simplicial complex and v ∈ V (�). Recall
the following three subcomplexes of � that will be used in this paper.

– star�(v) = {σ ∈ � : σ ∪ {v} ∈ �};
– del�(v) = {σ ∈ � : v /∈ σ };
– link�(v) = {σ ∈ � : v /∈ σ and σ ∪ {v} ∈ �}.
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Let �1 = star�(v) and �2 = del�(v). Then, �1 ∪ �2 = � and �1 ∩ �2 =
link�(v), and we have the Mayer–Vietoris sequence:

· · · → Hi (link�(v); K) → Hi (star�(v); K) ⊕ Hi (del�(v); K) →
Hi (�; K) → Hi−1(link�(v); K) → · · ·

Moreover, we have the reduced version

· · · → H̃0 (link�(v); K) → H̃0 (star�(v); K) ⊕ H̃0 (del�(v); K) → H̃0(�; K) → 0,

provided that �1 ∩ �2 �= {∅}.

3 A combinatorial lower bound for the depth of binomial edge ideals

Our main goal in this section is to establish some lower bounds for the depth of
binomial edge ideals. We first introduce the concept of d-compatible maps, which are
defined from the set of all graphs to the set of nonnegative integers N0 with some
desirable properties. Then, considering this concept, we give a general lower bound
for the depth of binomial edge ideals. We also provide a combinatorial d-compatible
map to obtain a combinatorial lower bound for the depth of such ideals as well.

We first introduce a graph that plays an important role in proving the main theorem
of this section. Let G be a graph on [n] and v ∈ [n]. Associated with the vertex v,
there is a graph, denoted by Gv , with the vertex set V (G) and the edge set

E(G) ∪ {{u, w} : {u, w} ⊆ NG(v)} .

Note that by the definition, it is clear that v is a free vertex of the graph Gv , and
NG(v) = NGv (v).

Now, we are ready to define the notion of a d-compatible map. In the following, by
Kt we mean the complete graph on t vertices, for every t ∈ N.

Definition 1 Let G be the set of all graphs. A map ψ : G −→ N0 is called d-
compatible, if it satisfies the following conditions:

(a) if G = ∪̇t
i=1Kni , where ni ≥ 1 for every 1 ≤ i ≤ t , then ψ(G) ≤ t + ∑t

i=1 ni ;
(b) if G �= ∪̇t

i=1Kni , then there exists a non-free vertex v ∈ V (G) such that

(1) ψ(G − v) ≥ ψ(G), and
(2) ψ(Gv) ≥ ψ(G), and
(3) ψ(Gv − v) ≥ ψ(G) − 1.

We also use the following lemma from [16]. In the following, iv(G) denotes the
number of non-free vertices of a graph G.

Lemma 1 [16, Lemma 3.4] Let G be a graph and v be a non-free vertex of G. Then,
max{iv(Gv), iv(G − v), iv(Gv − v)} < iv(G).
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The following theorem provides a general lower bound for the depth of binomial
edge ideals.

Theorem 1 Let G be a graph on [n] and ψ a d-compatible map. Then,

depth S/JG ≥ ψ(G).

Proof We prove the assertion by using induction on iv(G). If iv(G) = 0, then G
is a disjoint union of complete graphs, that is, G = ∪̇t

i=1Kni , where ni ≥ 1 for
every 1 ≤ i ≤ t . We have depth S/JG = t + ∑t

i=1 ni , by [7, Theorem 1.1]. On the
other hand, by condition (a) of Definition 1 we have ψ(G) ≤ t + ∑t

i=1 ni , so that
the assertion holds in this case. Now, we assume that iv(G) > 0. Let v ∈ [n] be a
non-free vertex with the properties of condition (b) of Definition 1.

By [21, Lemma 4.8], we have JG = JGv ∩ ((xv, yv) + JG−v). Therefore, the short
exact sequence

0 −→ S

JG
−→ S

JGv

⊕ Sv

JG−v

−→ Sv

JGv−v

−→ 0

is induced, where Sv = K[xi , yi : i ∈ [n]\{v}].
Now, the well-known depth lemma implies that

depth S/JG ≥ min{depth S/JGv , depth Sv/JG−v, depth Sv/JGv−v + 1}. (2)

Moreover, by Lemma 1, induction hypothesis and by Definition 1 part (b), we have

depth S/JGv ≥ ψ(Gv) ≥ ψ(G), (3)

depth Sv/JG−v ≥ ψ(G − v) ≥ ψ(G) (4)

and
depth Sv/JGv−v ≥ ψ(Gv − v) ≥ ψ(G) − 1. (5)

So, (2) together with (3), (4) and (5) imply the result. ��
Now, we are going to provide a combinatorial d-compatible map. Before that, we need
to recall the concept of diameter of a connected graph. Let G be a connected graph
on [n] and u and v be two vertices of G. Then, by the distance between the vertices
u and v in G, which is denoted by dG(u, v), we mean the length of a shortest path
connecting u and v in G. Now, the diameter of G, denoted by diam(G), is defined as

diam(G) = max {dG(u, v) : u, v ∈ V (G)} .

We call a shortest path between two vertices u and v of G with dG(u, v) = diam(G),
an LSP in G.

Let G be a graph on [n] with the connected components G1, . . . , Gt . Then, we set

d(G) := i(G) +
t∑

i=1

diam(Gi ),
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where i(G) denotes the number of isolated vertices of G.
Now, in the next theorem, we provide a d-compatible map given by ξ(G). Here,

f (G) denotes the number of free vertices of G.

Theorem 2 The map ξ : G −→ N0 defined by

ξ(G) = f (G) + d(G), for every G ∈ G

is d-compatible.

Proof Let G ∈ G . First, assume that G = ∪̇t
i=1Kni , where ni ≥ 1 for every 1 ≤ i ≤ t .

Clearly, we have f (G) = ∑t
i=1 ni and d(G) = t , and hence ξ(G) = t + ∑t

i=1 ni .
Therefore, we just need to show that ξ satisfies condition (b) of Definition 1. To do
so, without loss of generality we assume that G is a non-complete connected graph.
Therefore, we have d(G) = diam(G). For convenience, we set d = d(G). Notice that
d ≥ 2, since G is not a complete graph.

First, we show that there exists a non-free vertex v ∈ [n] such that ξ(G−v) ≥ ξ(G).
It is clear that for any non-free vertex v, we have f (G − v) ≥ f (G). If there exists
a non-free vertex v ∈ [n] such that v does not belong to the vertex set of some
LSP in G, then v is certainly a vertex with the desired property. So, we may assume
that every non-free vertex of G belongs to the vertex set of every LSP in G. Let
P : v1, v2, . . . , vd+1 be an arbitrary LSP in G. Notice that vi is a non-free vertex of
G for every 2 ≤ i ≤ d. Also, every vertex v of G which is not on the path P is a
free vertex of G. These imply that for every 2 ≤ j ≤ d, the vertices v j−1 and v j+1
belong to two different connected components of the graph G − v j . Indeed, assume
on contrary that there exists a path P ′ : v j−1, u1, . . . , ut , v j+1 in the graph G − v j .
Without loss of generality, we may assume that P ′ is an induced path in G − v j . This
clearly implies that {u1, . . . , ut } ⊆ V (P) \ {v j }. So, we have that u1 = v j−2, u2 =
v j−3, . . . , ut = v j−t−1. Thus, {v j−t−1, v j+1} ∈ E(G), a contradiction.

Now, let 2 ≤ j ≤ d, and {n j , v j } ∈ E(G), where n j ∈ [n] \ V (P). By a sim-
ilar argument, one could see that dG−v j+1(n j , v1) = j , if {n j , v j−1} /∈ E(G), and
dG−v j (n j , v1) = j − 1, if {n j , v j−1} ∈ E(G). Also, we have dG−v j−1(n j , vd+1) =
d − j + 2, if {n j , v j+1} /∈ E(G), and dG−v j (n j , vd+1) = d − j + 1, if {n j , v j+1} ∈
E(G). We use these facts throughout the proof.

Now, assume that there exists 2 ≤ i ≤ d such that NG(vi ) ∩ NG(vi+1) �= ∅. Let
j = min{i : 2 ≤ i ≤ d, NG(vi ) ∩ NG(vi+1) �= ∅}. We claim that v j is a vertex with
the desired property. To prove the claim, we distinguish the following cases:

First assume that j > 3. Let n j ∈ NG(v j )∩NG(v j+1).Wehave dG−v j (n j , vd+1) =
d − j + 1. Now, if v j−1 is a free vertex of G − v j , we have f (G − v j ) ≥ f (G) + 1.
On the other hand, we have that d(G −v j ) ≥ j −2+dG−v j (n j , vd+1) = d −1, since
the vertices v j−1 and v j+1 are contained in two connected components of the graph
G−v j . So, we get f (G−v j )+d(G−v j ) ≥ f (G)+1+d−1 = f (G)+d, as desired.
Now, if v j−1 is a non-free vertex of G − v j , then there exists n j−1 ∈ NG−v j (v j−1)

such that n j−1 is not on the path P . Since j − 2 ≥ 2, by the choice of j , we have
that {n j−1, v j−2} /∈ E(G). This implies that dG−v j (v1, n j−1) = j − 1, and hence,
d(G − v j ) ≥ j − 1 + dG−v j (n j , vd+1) = d, which proves the claim in this case.
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Next suppose that j = 3. Let n3 ∈ NG(v3) ∩ NG(v4). If v2 is a free vertex of
G − v3, then the claim follows by the same argument of the previous case. If v2 is
a non-free vertex of G − v3, there exists an induced path P ′′ : α, v2, β in G − v3.
Therefore, d(G − v3) ≥ 2 + dG−v3(n3, vd+1) = d. This implies the claim.

Finally, suppose that j = 2, and letn2 ∈ NG(v2)∩NG(v3). Then,dG−v2(n2, vd+1) =
d − 1. Therefore, since v1 and v3 belong to two connected components of G − v2, we
get d(G − v2) ≥ 1 + d − 1 = d, as desired.

Now, we assume that NG(vi ) ∩ NG(vi+1) = ∅, for every 2 ≤ i ≤ d. We show that
v2 is a vertex with the desired property. First, notice that either v3 is a free vertex of
G − v2, or there exists a vertex n3 such that {n3, v3} ∈ E(G) and {n3, v4} /∈ E(G).
This implies that either f (G − v2) ≥ f (G) + 1 which completes the proof in this
case or dG−v2(n3, vd+1) = d − 1.

Now, for the rest of the proof, we show that all non-free vertices of G satisfy
conditions (2) and (3) of Definition 1. Suppose that v is an arbitrary non-free vertex
of G.

First, we prove that ξ(Gv) ≥ ξ(G). Notice that f (Gv) ≥ f (G) + 1, by Lemma 1.
Therefore, the result follows if we show that d(Gv) ≥ d − 1. Let α and β be two
vertices of G with dG(α, β) = d. It suffices to show that dGv (α, β) ≥ d − 1. Assume
on contrary that there exists a path P: α = u1, u2, . . . , u	+1 = β in Gv with 	 ≤ d−2.
Without loss of generality, we may assume that P is an induced path in Gv . Now, we
consider the following cases:

First, assume that v ∈ V (P). This clearly implies that v = α or v = β, since v is
a free vertex of Gv . Therefore, P is a path in G. So, we have that dG(α, β) ≤ d − 2,
a contradiction.

Next, assume that v /∈ V (P). Now, since P is an induced path in Gv and since P is
not a path in G, we get |NGv (v)∩V (P)| = 2. Therefore, NGv (v)∩V (P) = {ui , ui+1}
for some 1 ≤ i ≤ 	. Now, the path P ′: α = u1, . . . , ui , v, ui+1, . . . , u	+1 = β is a
path in G between α and β with the length at most d − 1, which is a contradiction.

So, we have dGv (α, β) ≥ d − 1, as desired.
Finally, we show that ξ(Gv −v) ≥ ξ(G)−1. To prove this, it is enough to show that

d(Gv − v) ≥ d − 1, since f (Gv − v) ≥ f (G) by Lemma 1. Let P: v1, v2, . . . , vd+1
be an LSP in G. We consider the following cases:

First, assume that v �= v1 and v �= vd+1. We show that dGv−v(v1, vd+1) ≥ d − 1.
Suppose on contrary that dGv−v(v1, vd+1) ≤ d − 2. Therefore, there exists a path P ′
in Gv − v between the vertices v1 and vd+1 with the length at most d − 2. We may
also assume that P ′ is an induced path in Gv − v. Since v is a free vertex of Gv and
since P ′ is not a path in G, the vertex v has exactly two adjacent neighbors in G on
the path P ′. This implies that dG(v1, vd+1) ≤ d − 1, a contradiction.

Next, without loss of generality we assume that v = v1. Now, the result follows
if we show that dGv−v(v2, vd+1) ≥ d − 1. Assume on contrary that there exists an
induced path P ′′: v2, u1, . . . , ur = vd+1 in Gv − v between the vertices v2 and vd+1
with the length r , where r ≤ d − 2. Now, we have either NGv (v) ∩ V (P ′′) = {v2}
or NGv (v) ∩ V (P ′′) = {v2, u1}. Therefore, we get a path in G between v1 and vd+1,
with the length at most d − 1, and hence dG(v1, vd+1) ≤ d − 1, a contradiction.

So, we have d(Gv − v) ≥ d − 1, as desired. ��
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Fig. 3 A Cohen–Macaulay
graph G with
depth S/JG = 6 > ξ(G) = 5

Fig. 4 A D5-type graph G with
G ∈ GT , where
T = V (G) \ {u, w}

Now, combining of Theorem 1 and Theorem 2, we get the following combinatorial
lower bound for the depth of binomial edge ideals.

Theorem 3 Let G be a graph on [n]. Then,

depth S/JG ≥ ξ(G).

In particular, if G is connected, then

depth S/JG ≥ f (G) + diam(G).

We would like to remark that the lower bound in Theorem 3 could be tight. For
instance, let G be the graph illustrated in Fig. 1. Then, f (G) = 8 and diam(G) = 4,
and hence, depth S/JG ≥ ξ(G) = 12, by Theorem 3. On the other hand, the upper
bound given in (1) implies that depth S/JG ≤ |V (G)| + 1 = 12, since κ(G) = 1.
Therefore, we get depth S/JG = 12.

It is also remarkable that there are connected graphs G on [n] for which the lower
bound given in Theorem 3 is attained, while depth S/JG < n−κ(G)+2. For instance,
let G be the graph depicted in Fig. 2 with f (G) = diam(G) = 4. Then, a routine
computation with Macaulay2 [12] over the base field Q shows that depth S/JG =
ξ(G) = 8, whereas n − κ(G) + 2 = 9.

We should also remark that there are both Cohen–Macaulay and non-Cohen–
Macaulay graphs G with depth S/JG > ξ(G). For example, for the illustrated graph
G in Fig. 3 with ξ(G) = 5, a computation with Macaulay2 [12] (see also [19, Theo-
rem 3.9]) shows that S/JG is Cohen–Macaulay, which yields that depth S/JG = 6.
On the other hand, for the non-Cohen–Macaulay graph G depicted in Fig. 4, we have
depth S/JG = 5 > ξ(G) = 2, see Theorem 5. Moreover, there are Cohen–Macaulay
and non-Cohen–Macaulay graphs G with depth S/JG = ξ(G). Indeed, one could
easily see that all graphs G satisfying equivalent conditions of [7, Theorem 3.1] are
Cohen–Macaulay with depth S/JG = ξ(G). Also, the graph G depicted in Fig. 2 is
non-Cohen–Macaulay with depth S/JG = ξ(G) = 8.

Now, combining Theorem 3 together with [23, Theorem 5.2] yields the following
bound for the depth of binomial edge ideals.
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Corollary 1 Let G be a graph on [n] with n ≥ 3. Then,

depth S/JG ≥ max{4, ξ(G)}.

Moreover, in [23, Theorem 5.3], it was shown that for graphs G with more than
three vertices, depth S/JG = 4 if and only if G = G ′ ∗ 2K1 for some graph G ′.
Therefore, we have:

Corollary 2 Let G be a graph on [n] with n ≥ 4 and G �= G ′ ∗ 2K1 for every graph
G ′. Then,

depth S/JG ≥ max{5, ξ(G)}.

As we saw in Fig. 1, there are graphs G for which depth S/JG = ξ(G) > 5. There are
also graphs G for which depth S/JG = 5, while ξ(G) < 5. For instance, let G be the
graph shown in Fig. 4. We have ξ(G) = 2. However, we will see in Theorem 5 that
depth S/JG = 5. Our main goal in the rest of this paper is to characterize all graphs
G with depth S/JG = 5.

4 A poset associated with binomial edge ideals and a Hochster-type
formula

In this section, continuing the topological approach from [1] and [23], we study the
local cohomology modules of binomial edge ideals. To this end, we first associate a
new poset, adapted to our needs, with binomial edge ideals as follows.

Let I be an ideal in the polynomial ring S and I = q1 ∩ · · · ∩ qt be an arbitrary
decomposition for the ideal I . Then, by the posetRI , ordered by the reverse inclusion,
we mean the poset of all possible sums of ideals in this decomposition, defined in [2,
Example 2.1]. Now, we know that JG = ⋂

T ⊆[n]
PT (G). We use RG , instead of RJG ,

to denote the poset arose from the above decomposition of JG .
Now, we define another poset associated with the binomial edge ideal of a graph

G.

Definition 2 Let G be a graph on [n]. Associated with the decomposition JG =⋂
T ⊆[n]

PT (G), we consider the poset (MG ,�), ordered by reverse inclusion, which

is made up of the following elements:

– the prime ideals in the poset RG ,
– the prime ideals in the posets RI , arising from the following type of decomposi-
tions:

I = q1 ∩ q2 ∩ · · · ∩ qt ∩ (q1 + P∅(G)) ∩ (q2 + P∅(G)) ∩ · · · ∩ (qt + P∅(G)) ,

where I ’s are the non-prime ideals in the poset RG and q1, q2, . . . , qt are the
minimal prime ideals of I , and

123



838 Journal of Algebraic Combinatorics (2022) 55:827–846

– the prime ideals that we obtain repeatedly by this procedure every time that we
find a non-prime ideal.

Note that using the non-minimal primary decomposition JG = ⋂
T ⊆[n]

PT (G) in Defi-

nition 2 turns the poset MG to be different from the posets AG and QG , considered
by the authors in [1] and [23], respectively. We also notice that the significance of
this new definition will be demonstrated in the proof of Theorem 5 and Theorem 6.
Furthermore, the following lemma, which is a direct consequence of [23, Proposi-
tion 3.4], guarantees that the process of the construction of the poset MG terminates
after a finite number of steps just like the construction process of the posetAG as well
as the poset QG .

Lemma 2 Let G be a graph on [n]. Then, every element q of the poset MG is of the
form PT (H), for some graph H on [n] and some T ⊆ [n].

Now, by applying Lemma 2 and thanks to the flexibility for the decomposition of
the ideals in [2, Theorem 5.22], the following Hochster-type decomposition formula
for the local cohomology modules of binomial edge ideals is established by using the
same argument that was applied in the proof of [1, Theorem 3.9]. We first need to fix
a notation before stating the formula.

Let 1MG be a terminal element that we add to the poset MG . Then, recall that for
every q ∈ MG , by the interval (q, 1MG ), one means the subposet

{
z ∈ MG : q � z � 1MG

}
.

Theorem 4 (see [1, Theorem 3.9] and [23, Theorem 3.6].) Let G be a graph on [n].
Then, we have the K-isomorphism

Hi
m(S/JG) ∼=

⊕
q∈MG

H
dq
m (S/q)⊕Mi,q ,

where dq = dim S/q and Mi,q = dimK H̃ i−dq−1((q, 1MG ); K).

Note that the above theorem suggests an interesting and also a wonderful method
to study the depth of binomial edge ideals. Indeed, instead of working directly with
the minimal graded free resolution of S/JG , which is almost an intractable task, we
may elaborate the topological properties of the subposets (q, 1MG ) of MG . In this
approach, beside the algebraic tools, we also employ the topological tools.

5 Combinatorial characterization of some binomial edge ideals in
terms of their depth

At the end of Sect. 3, we provided a lower bound for the depth of binomial edge
ideals. We showed that for a graph G with more than three vertices, depth S/JG ≥
max{5, ξ(G)}, if G �= G ′ ∗2K1 for every graph G ′. Now, our main goal in this section
is to give a combinatorial characterization of graphs G with depth S/JG = 5. For this
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aim, we need to study topological properties of certain subposets of MG to compute
some local cohomology modules of S/JG .

First, we need to state the following definition.

Definition 3 Let T ⊆ [n] with |T | = n −2. Associated with T , we introduce a family
of graphs on [n], denoted by GT , such that for each G ∈ GT , there exist two non-
adjacent vertices u andw of G with u, w ∈ [n]\T , and three disjoint subsets of T , say
V0, V1 and V2 with V1, V2 �= ∅ and

⋃2
i=0 Vi = T , such that the following conditions

hold:

(1) NG(u) = V0 ∪ V1 and NG(w) = V0 ∪ V2.
(2) {v1, v2} ∈ E(G), for every v1 ∈ V1 and every v2 ∈ V2.

Remark 1 Given three arbitrary graphs G0, G1 and G2 on disjoint sets of vertices V0,
V1 and V2, respectively, where V1, V2 �= ∅, we can construct a graph in the family GT

with T = ⋃2
i=0 Vi . Note that the vertices in V0 can be adjacent to some vertices in V1

and V2.

An explicit example of a graph G for which G ∈ GT for some T ⊆ V (G) with
|T | = |V (G)| − 2 is depicted in Fig. 4.

Before stating the main theorem of this section, we need to introduce a family of
graphs that is essential in our characterization. In the following, 3K1 denotes the graph
consisting of three isolated vertices.

Definition 4 Let G be a graph on [n] with G �= G ′ ∗ 2K1 for any graph G ′. We say
that G is a D5-type graph, if one of the following conditions holds:

(1) G ∈ GT for some T ⊆ [n];
(2) G = H ∗ 3K1, for some graph H ;
(3) G = H ∗ (K1∪̇K2), for some graph H .

Now, we are ready to state the main result of this section which is an explicit
characterization of graphs G with depth S/JG = 5.

Theorem 5 Let G be a graph on [n] with n ≥ 5. Then, the following statements are
equivalent:

(a) depth S/JG = 5.
(b) G is a D5-type graph.

To prove the above theorem, we need to prepare several auxiliary ingredients. First,
we state the following lemma that follows with the same argument as in the proof of
[23, Lemma 4.1].

Lemma 3 Let G be a graph on [n]. Then, q + P∅(G) ∈ MG, for every q ∈ MG.

We also need to recall a concept from the literature of topology of posets.

Definition 5 A poset P is said to be meet-contractible if there exists an element
α ∈ P such that α has a meet with every element β ∈ P .

The following lemmaclarifies the importance of the notion ofmeet-contractible posets.
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Lemma 4 ([4, Theorem 3.2], see also [29, Proposition 2.4]) Every meet-contractible
poset is contractible.

In the following theorem that is crucial in the proof of Theorem 5, we discuss the
vanishing of the zeroth and the first reduced cohomology groups of the subposets
associated with the elements ofMG , which are of the form PT (H) for some graph H
on [n] and some T ⊆ [n] with |T | = n − 2.

Theorem 6 Let G be a graph on [n] and q ∈ MG, where q = PT (H) for some graph
H on [n] and some T ⊆ [n] with |T | = n − 2.

(a) If cH (T ) = 2, then (q, 1MG ) is connected if and only if G /∈ GT .
(b) If cH (T ) = 1, then H̃1((q, 1MG ); K) = 0 if and only if G /∈ GT .

Proof Without loss of generality, we assume that T = {1, . . . , n − 2}.
(a)Wehaveq = (x1, . . . , xn−2, y1, . . . , yn−2), since cH (T ) = 2.Also, {n−1, n} /∈

E(G). Indeed, assume on contrary that {n−1, n} ∈ E(G). Since q ∈ MG , there exists
U ∈ C (G) such that PU (G) ⊆ q. It follows that U ⊆ T . On the other hand, n −1 and
n are two adjacent vertices of G−U . So, we get fn−1,n ∈ PU (G) ⊆ q, a contradiction.

Now, assume thatG /∈ GT .We show that (q, 1MG ) is a connected poset.We proceed
in the following steps:

Let L0 = NG(n − 1) ∩ NG(n), L1 = NG(n)\NG(n − 1), and L2 = NG(n −
1)\NG(n). We also let L3 = {i ∈ T : i /∈ NG(n −1)∪ NG(n)}. Set X = {PT \{α}(G) :
α ∈ L1 ∪ L2 ∪ L3}. One has X ⊆ (q, 1MG ), since {n − 1, n} /∈ E(G) and α /∈ L0 for
every α ∈ L1 ∪ L2 ∪ L3.

Step 1: Let q ′ ∈ (q, 1MG ). We claim that there exists PT \{α}(G) ∈ X such that
there is a path between q ′ and PT \{α}(G) in the 1-skeleton graph of (q, 1MG ).

By Lemma 2, we have that q ′ = PT ′(H ′), for some graph H ′ on [n] and some
T ′ ⊆ [n]. Now, there exists U ∈ C (G) such that PU (G) ⊆ q ′. It follows that
U ⊆ T ′

� T , since q ′ ∈ (q, 1MG ). Now, we consider the following cases:
First, assume that T \ U ⊆ L3. Therefore, the vertices n − 1 and n are isolated in

G − U . This implies that PU (G) ⊆ PT \{α}(G), for every α ∈ T \ U .
Next, assume that T \ U � L3. Let α ∈ (T \ U ) \ L3. Clearly, α /∈ L0. Indeed,

otherwise we get fn−1,n ∈ PU (G), a contradiction. So, without loss of generality we
assume that α ∈ L1. It follows that there is no path between vertices α and n − 1 in
G − U . Therefore, we have that PU (G) ⊆ PT \{α}(G).

Thus, the claim follows from both above cases.
Step 2: Assume that L3 �= ∅. Let α ∈ L3 and q ′ ∈ (q, 1MG ). We show that there

exists a path between q ′ and PT \{α}(G) in the 1-skeleton graph of (q, 1MG ).
By Step 1, there exists PT \{β}(G) ∈ X such that there is a path between q ′ and

PT \{β}(G) in the 1-skeleton graph of (q, 1MG ). Moreover, since α ∈ L3, it is not diffi-
cult to see that PT \{α}(G) + PT \{α,β}(G) ∈ (q, 1MG ) and PT \{β}(G) ⊇ PT \{α,β}(G).
Therefore, we have the path

PT \{α}(G), PT \{α}(G) + PT \{α,β}(G), PT \{α,β}(G), PT \{β}(G),

in the 1-skeleton graph of (q, 1MG ). This implies that (q, 1MG ) is connected. So, for
the rest of the proof we may assume that L3 = ∅.
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Step 3: Now, assume that α, β ∈ L1, and α < β. We claim that there exists a path
in the 1-skeleton graph of (q, 1MG ) between PT \{α}(G) and PT \{β}(G). (The situation
in the case α, β ∈ L2 is similar.)

We have that

PT \{α}(G) = (xi , yi : i ∈ T \ {α}) + (
fα,n

)
,

and

PT \{β}(G) = (xi , yi : i ∈ T \ {β}) + (
fβ,n

)
.

So, we get

PT \{α,β}(G) = (xi , yi : i ∈ T \ {α, β}) + ( fα,n, fβ,n, fα,β).

Therefore, we get the path

PT \{α}(G), PT \{α,β}(G), PT \{β}(G)

in the 1-skeleton graph of (q, 1MG ), as desired.
Step 4: Let α ∈ L1 and β ∈ L2. We show that there exists a path in the 1-skeleton

graph of (q, 1MG ) between the vertices PT \{α}(G) and PT \{β}(G).
First, assume that {α, β} /∈ E(G). It follows that

PT \{α,β}(G) = (xi , yi : i ∈ T \ {α, β}) + (
fβ,n−1, fα,n

)
.

Therefore, we get the path

PT \{α}(G), PT \{α,β}(G), PT \{β}(G),

as desired.
Next, assume that {α, β} ∈ E(G). Now, there exist vertices t1 ∈ L1 and t2 ∈ L2,

such that {t1, t2} /∈ E(G). Indeed, if no such vertices exist, then by putting u = n and
w = n − 1 and also V0 = L0, V1 = L1 and V2 = L2 in Definition 3, we get G ∈ GT ,
since {n − 1, n} /∈ E(G) and L3 = ∅. Therefore, we get a contradiction. Now, by
Step 3, there is a path between PT \{α}(G) and PT \{t1}(G), and also a path between
PT \{β}(G) and PT \{t2}(G), in the underlying graph of (q, 1MG ). On the other hand,
since {t1, t2} /∈ E(G), the argument that we used in the first part of this step yields a
path between PT \{t1}(G) and PT \{t2}(G). Therefore, we get a path between PT \{α}(G)

and PT \{β}(G) in the 1-skeleton graph of (q, 1MG ), as desired.
Step 5: Now, suppose that q1, q2 ∈ (q, 1MG ) and q1 �= q2. Then, by Step 1, there

exist PT \{α}(G), PT \{β}(G) ∈ X such that there is a path between q1 and PT \{α}(G),
and a path between q2 and PT \{β}(G) in the 1-skeleton graph of (q, 1MG ). Moreover,
we have a path between PT \{α}(G) and PT \{β}(G), by Steps 3 and 4. Therefore, we
get a path between q1 and q2 in the 1-skeleton graph of (q, 1MG ). Thus, (q, 1MG ) is
connected.
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For the converse, assume that G ∈ GT . Therefore, there exist three disjoint subsets
V0, V1 and V2 of T , such that the conditions of Definition 3 hold. Now, let q1 =
PV0∪V1(G), and q2 = PV0∪V2(G). We have that q1, q2 ∈ (q, 1MG ). Now, we claim
that there is no path between q1 and q2 in the 1-skeleton graph of (q, 1MG ), and then,
we conclude the result.

Notice that {V0∪V1, V0∪V2} ⊆ C (G).Moreover, we have T ′ ∈ {V0∪V1, V0∪V2},
for every T ′ ∈ C (G) such that n − 1 /∈ T ′ and n /∈ T ′. Indeed, one could see that
T ′ ⊇ V0 ∪ V1 or T ′ ⊇ V0 ∪ V2, for every T ′ ∈ C (G) such that n −1 /∈ T ′ and n /∈ T ′.
Without loss of generality, we can assume that T ′ ⊇ V0 ∪ V1. Now, we claim that
T ′ = V0 ∪ V1. Assume on contrary that there exists v2 ∈ T ′ ∩ V2. This implies that
v2 is not a cut vertex of G − (T ′ \ {v2}), a contradiction to the fact that T ′ ∈ C (G).
Therefore, we have either q ′ ⊇ q1 or q ′ ⊇ q2, for every q ′ ∈ (q, 1MG ). Now, assume
on contrary that there exists a path 	 : q1, q ′

1, . . . , q ′
t , q2, between q1 and q2 in the

1-skeleton graph of (q, 1MG ). Moreover, we may assume that 	 is an induced path
between the vertices q1 and q2. Now, we have that t ≥ 2. Indeed, t = 1 implies that
q ′
1 ⊇ q1 and q ′

1 ⊇ q2, and hence, q ′
1 = q, a contradiction.

Now, if q ′
1 ⊆ q ′

2, then q ′
2 ⊇ q1. This clearly contradicts the minimality of the path 	.

So, we have q ′
1 ⊇ q ′

2. On the other hand, we have q ′
2 ⊇ q2, since q ′

2 � q1. Therefore,
q ′
1 ⊇ q2, a contradiction to the minimality of 	.
So, there is no path between two vertices q1 and q2 in the 1-skeleton graph of

(q, 1MG ), as desired.

(b) Clearly, we have q = (x1, . . . , xn−2, y1, . . . , yn−2)+ ( fn−1,n), since cH (T ) =
1. Let q ′ = (x1, . . . , xn−2, y1, . . . , yn−2).

First, assume that G /∈ GT . We show that H̃1((q, 1MG ); K) = 0. We consider the
following cases:

Case 1: Assume that q ′ /∈ (q, 1MG ). We claim that (q, 1MG ) is a meet-contractible
poset. Then, the result follows by Lemma 4.

Clearly, P∅(G) ∈ (q, 1MG ). Now, let q1 ∈ (q, 1MG ) such that q1 �= P∅(G). By
Lemma 2, we have that q1 = PT1(H1), for some graph H1 on [n] and some T1 ⊆ [n].
Also, we have that T1 � T , since q ′ /∈ (q, 1MG ). Therefore, q1 + P∅(G) ∈ (q, 1MG ),
by Lemma 3. Moreover, it is observed that q1 + P∅(G) is the meet of the elements q1
and P∅(G). Therefore, (q, 1MG ) is a meet-contractible poset, as desired.

Case 2: Assume that q ′ ∈ (q, 1MG ). Let � = �(q, 1MG ), �1 = star�(q ′) and
�2 = del�(q ′). One has del�(q ′) = �((q, 1MG )\{q ′}). Then, by a similar argument
as in Case 1, it follows that �2 is a contractible simplicial complex. On the other
hand, �1 ∩�2 = link�(q ′) = �(q ′, 1MG ), since q ′ is a minimal element in the poset
(q, 1MG ).

Now, first assume that �1 ∩ �2 = {∅}. So, clearly we have H0(link�(q ′); K) = 0.
Now, since �1 is a cone and �2 is contractible, the Mayer–Vietoris sequence

· · · → H1
(
star�(q ′); K

) ⊕ H1
(
del�(q ′); K

) → H1(�; K) →
H0

(
link�(q ′); K

) → · · ·

implies the result.
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Next, assume that �1 ∩ �2 �= {∅}. Hence, the reduced Mayer–Vietoris sequence

· · · → H̃1
(
star�(q ′); K

) ⊕ H̃1
(
del�(q ′); K

) → H̃1(�; K)

→ H̃0
(
link�(q ′); K

) → · · ·

is induced. On the other hand, q ′ ∈ MG . Thus, by Lemma 2, we have q ′ = PT ′(H ′),
for some graph H ′ on [n] and some T ′ ⊆ [n]. Now, it is easily seen that T ′ = T .
Also, cH ′(T ′) = 2, since otherwise we get q ′ = q, a contradiction. Therefore, since
G /∈ GT , by part (a) we have H̃0(link�(q ′); K) = H̃0(�(q ′, 1MG ); K) = 0, and
hence, by using the latter Mayer–Vietoris sequence we get the result.

Now, for the converse, assume that G ∈ GT . We show that H̃1((q, 1MG ); K) �= 0.
It is clear by Definition 3 that q ′ = PT (G), and hence, q ′ ∈ (q, 1MG ). Moreover,
Definition 3 again implies that (q ′, 1MG ) is a non-empty poset. Indeed, by the notation
of Definition 3 we have PV0∪V1(G), PV0∪V2(G) ∈ (q ′, 1MG ). Now, by keeping the
same notation and also by the same argument as in Case 2 in above, the exact sequence

0 → H̃1(�; K) → H̃0(link�(q ′); K) → 0

is induced. On the other hand, we have cG(T ) = 2, by Definition 3. Therefore, since
G ∈ GT , part (a) implies that H̃0(link�(q ′); K) �= 0, and hence, the result follows. ��

Now, we state the following lemma which is used in the proof of Theorem 5.

Lemma 5 Let G be a graph on [n] with n ≥ 4. If there exists T ′ ∈ C (G) with |T ′| =
n − 3 and cG(T ′) = 2, then either G ∈ GT for some T ⊆ [n], or G = H ∗ (K1∪̇K2)

for some graph H on n − 3 vertices.

Proof Without loss of generality assume that T ′ = {1, . . . , n−3}.Wemay also assume
that n is the isolated vertex of G − T ′, since cG(T ′) = 2. Therefore, for every i ∈ T ′
we have i ∈ NG(n), and either i ∈ NG(n − 1) or i ∈ NG(n − 2), since T ′ ∈ C (G).
Now, suppose that G �= H ∗ (K1∪̇K2), for every graph H on n − 3 vertices. We show
that G ∈ GT for some T ⊆ [n].

Clearly, there exists j ∈ {n − 2, n − 1} such that T ′
� NG( j). Let V0 = NG( j) ∩

T ′, V1 = T ′ \ NG( j) and V2 = NG( j) \ T ′. Now, by putting u = n and w = j in
Definition 3, one checks that G ∈ GT , where T = [n] \ {n, j}. ��
Finally, we need to state the following remark that will be used in the proof of Theo-
rem 5. The proof of this remark can be verified by taking a precise look at the proof
of [23, Theorem 4.4].

Remark 2 Let G be a graph on [n] with n ≥ 2. Let m̂ = PT (H), where H is a graph
on [n] with |T | = n − 1. Then, the posets (m, 1MG ) and (m̂, 1MG ) are contractible.

Now, we are ready to prove the main theorem of this section.

Proof of Theorem 5: (a) ⇒ (b) Assume that G is not a D5-type graph. We show
depth S/JG �= 5. Notice that if G = G ′ ∗ 2K1 for some graph G ′, then depth S/JG =
4, by [23, Theorem 5.3]. So, we may assume that G �= G ′ ∗ 2K1, for any graph
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G ′. Now, by the definition of depth and by Theorem 4, it is enough to show that
M5,q = dimK H̃4−dq ((q, 1MG ); K) = 0, for all q ∈ MG .

Let q be an arbitrary element of the poset MG . We have q = PT (H) for some
graph H on [n] and some T ⊆ [n], by Lemma 2. If dq ≥ 6, then obviously we have
the result. Moreover, it is easily seen that there is no q ′ ∈ MG such that dq ′ = 1.
Therefore, we assume that dq ∈ {0, 2, 3, 4, 5}. Now, we consider the following cases:

Let dq ∈ {0, 2}. So, ht q ∈ {2n−2, 2n}. This implies that |T |−cH (T ) ∈ {n−2, n}.
Therefore, without loss of generality, we assume that either q = m or q = m̂. Now, the
result follows, since the posets (m, 1MG ) and (m̂, 1MG ) are contractible by Remark
2.

Let dq = 3. Then, |T | − cH (T ) = n − 3, and hence, |T | = n − 2 and cH (T ) = 1.
Now, by Definition 4, G /∈ GT , since G is not a D5-type graph. Thus, we have
M5,q = dimK H̃1((q, 1MG ); K) = 0, by Theorem 6 part (b).

Let dq = 4. It follows that |T | − cH (T ) = n − 4. So, we have either |T | = n − 2
and cH (T ) = 2, or |T | = n − 3 and cH (T ) = 1.

First, assume that |T | = n − 2 and cH (T ) = 2. Therefore, Theorem 6 part (a)

implies that M5,q = dimK H̃0((q, 1MG ); K) = 0, since G /∈ GT .
Next, assume that |T | = n − 3 and cH (T ) = 1. Without loss of generality, we

assume that T = {1, . . . , n − 3}. Therefore,

q = (x1, . . . , xn−3, y1, . . . , yn−3) + (
fn−2,n−1, fn−2,n, fn−1,n

)
.

Let q1, q2 ∈ (q, 1MG ) and q1 �= q2. Then, there exist T1, T2 ∈ C (G) such that
q1 ⊇ PT1(G) and q2 ⊇ PT2(G). Moreover, we have T1, T2 ⊆ T , since q1, q2 ∈
(q, 1MG ). Now, we distinguish the following cases:

First, assume that T1, T2 � T . Therefore, by Lemma 3, we have that q1 + P∅(G) ∈
(q, 1MG ) and q2 + P∅(G) ∈ (q, 1MG ), since q1 + P∅(G) � q and q2 + P∅(G) � q.
So, we get the path

q1, PT1(G), PT1(G) + P∅(G), P∅(G), P∅(G) + PT2(G), PT2(G), q2

in the 1-skeleton graph of the order complex of the poset (q, 1MG ).
Next, assume that T1 = T or T2 = T . If T1 = T2, thenwe get the path q1, PT1(G) =

PT2(G), q2, as desired. So, without loss of generality, we assume that T1 = T and
T2 � T . One has cG(T1) ∈ {2, 3}, since T1 ∈ C (G). Notice that if cG(T1) = 2, then
Lemma 5 implies that G is a D5-type graph, a contradiction. So, we have cG(T1) = 3.
Furthermore, there exist two vertices α ∈ T1 and β ∈ {n − 2, n − 1, n}, such that
{α, β} /∈ E(G). Indeed, otherwise we get G = H ∗ 3K1, where H = G −{n − 2, n −
1, n}, which is a contradiction with Definition 4. Now, one could see that

PT1(G) + PT1\{α}(G) = (x1, . . . , xn−3, y1, . . . , yn−3) + ( fi, j ),

where i < j and i, j ∈ {n − 2, n − 1, n} \ {β}. Therefore, we have that PT1(G) +
PT1\{α}(G) ∈ (q, 1MG ). So, we get the path
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q1

PT1(G)

PT1(G) + PT1\{α}(G)

PT1\{α}(G)

PT1\{α}(G) + P∅(G)

P∅(G)

P∅(G) + PT2(G)

PT2(G)

q2

between q1 and q2 in the 1-skeleton graph of the order complex of the poset (q, 1MG ).
Therefore, it follows from both cases that (q, 1MG ) is connected, and hence, the

desired result follows.
Let dq = 5. It follows that |T |−cH (T ) = n−5. So, we have that either |T | = n−3

and cH (T ) = 2, or |T | = n − 4 and cH (T ) = 1. Now, the result follows once we
show that (q, 1MG ) is a non-empty poset.

First, suppose that |T | = n −3 and cH (T ) = 2. Assume on contrary that (q, 1MG )

is an empty poset, i.e., q ∈ Min(JG). Then, q = PT ′(G) for some T ′ ∈ C (G). It
follows that T ′ = T and cG(T ′) = cH (T ) = 2. Therefore, Lemma 5 implies that G
is a D5-type graph, a contradiction.

Next, suppose that |T | = n − 4 and cH (T ) = 1. Therefore, we have P∅(G) ⊆ q.
Moreover, the assumption n ≥ 5 implies that T �= ∅, and hence, P∅(G) ∈ (q, 1MG ),
as desired.

(b) ⇒ (a) Assume that G is a D5-type graph. Then, Corollary 2 implies that
depth S/JG ≥ 5. Therefore, the result follows if we show that depth S/JG ≤ 5. To do
so, we consider the following cases:

First, assume that G ∈ GT , for some T ⊆ [n] with |T | = n − 2. Let q = PT (G).
We have q ∈ MG , and by Definition 3, we have cG(T ) = 2. Thus, Theorem 6 part
(a) implies that (q, 1MG ) is not connected. Since dq = 4, we have that M5,q =
dimK H̃0((q, 1MG ); K) �= 0. Therefore, we get H5

m(S/JG) �= 0, by Theorem 4. This
yields that depth S/JG ≤ 5, as desired.

Next, assume that G = H ∗3K1, for some graph H . If H is a complete graph, then
the result follows by [19, Theorem 3.9]. If H is not complete, then it follows from
[19, Theorem 4.3] and [19, Theorem 4.4] that depth S/JG = 5, as desired.

Finally, suppose that G = H ∗ (K1∪̇K2), for some graph H . The result follows by
[19, Theorem 3.9] if H is a complete graph. If H is not complete, then it follows from
[19, Theorem 4.3] and [19, Theorem 4.4] that depth S/JG = 5, as desired. ��
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