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Abstract
LetD be a weighted oriented graph and let I (D) be its edge ideal in a polynomial ring
R. We give the formula of Castelnuovo–Mumford regularity of R/I (D) when D is
a weighted oriented path or cycle such that edges of D are oriented in one direction.
Additionally, we compute the projective dimension for this class of graphs.

Keywords Regularity · Projective dimension · Monomial ideals · Oriented graphs ·
Hypergraphs
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1 Introduction

Avertex-weighted (or simplyweighted) orientedgraph is a tripleD = (V (D), E(D), w)

where V (D) = {x1, . . . , xn} is the vertex set of the graph, E(D) is a directed edge set,
and w is a weight function w : V (D) → N

+. Specifically, E(D) consists of ordered
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pairs (xi , x j ) ∈ V (D)×V (D) where the pair (xi , x j ) represents a directed edge from
xi to x j . We consider finite simple oriented graphs, that is, graphs in which V (D) is
a finite set and there are neither loops nor multiple edges in E(D). Furthermore, we
simplify notation by setting wi = w(xi ) for each i ∈ {1, . . . , n}. If the weight of a
vertex xi is equal to one, i.e., wi = 1, we say that the graph has a trivial weight at xi .
Otherwise, we say xi has a non-trivial weight.

Given a weighted oriented graph D = (V (D), E(D), w) and R = k[x1, . . . , xn]
the polynomial ring on the vertex set V (D) over a field k, the edge ideal ofD is defined
to be

I (D) =
(
xi x

w j
j : (xi , x j ) ∈ E(D)

)
⊆ R.

The generators of I (D) are independent of the weight assigned to a source vertex.
Therefore to simplify our formulas, throughout this paper, we shall assume that source
vertices always haveweight one. Furthermore, since isolated vertices do not contribute
to the generating set of the edge ideal of weighted oriented graph, we assume that our
graphs have no isolated vertices. When all vertices have weight one, I (D) is the edge
ideal of an unweighted unoriented graph which was introduced by Villarreal in [16]
and has since been studied extensively. The study of edge ideals of weighted oriented
graphs is much more recent and consequently there are many fewer results in this
direction. The Cohen–Macaulayness of edge ideals of weighted oriented graphs has
been studied in [5,7,15]. Related to our work in this paper, the authors of [18] consider
the Castelnuovo–Mumford regularity (hereafter referred to as just regularity), and the
projective dimension of a special case of weighted oriented paths and cycles.

The interest in studying edge ideals of weighted oriented graphs has its foundation
in coding theory, specifically in the study of Reed–Muller-type codes (see [13]). Such
codes arise as the image of a degree d evaluation map of a given set of projective
points over a finite field. The regularity of the vanishing ideal provides a threshold
for the degree of the map indicating when a Reed–Muller-type code has sufficiently
large minimal distance, and is thus considered “good.” The vanishing ideal is itself a
binomial ideal whose initial ideal is exactly the edge ideal of an appropriately defined
weighted oriented graph. It is well-known that the regularity of an ideal is bounded
above by that of its initial ideal. Given that invariants of monomial ideals are generally
much easier to compute than in the binomial case, deriving formulas for the regularity
of edge ideals of vertex-weighted oriented graphs is a practical strategy for eliminating
“bad” Reed–Muller-type codes.

In this paper, we study the regularity and projective dimension of edge ideals of
weighted oriented graphs with the goal of characterizing these algebraic invariants
in terms of the combinatorial data of our weighted oriented graphs. To describe the
generators of the edge ideal of a weighted oriented graph, one needs to consider
the structure of the underlying undirected graph, the orientation of its edges, and its
weight function. Thus it is quite a difficult problem to incorporate all of these datawhen
deriving general formulas for the regularity and the projective dimension of an arbitrary
weighted oriented graph. While the characteristic of the field can add complexity to
calculating regularity and projective dimension, our formulas are combinatorial and
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independent of characteristic. As a natural first step, we consider two basic structures:
paths and cycles.We further restrict our attention toweighted oriented paths and cycles
with the natural orientation of all edges pointing in the same direction. We call these
graphs weighted naturally oriented paths and cycles.

The main results of this paper provide formulas for the regularity of weighted natu-
rally oriented paths (Theorem 7) and weighted naturally oriented cycles (Theorem 9).
Our results place no restrictions on the weight function associated with these graphs
apart from the requirement that any source vertices have weight one. The case in which
all non-source vertices have non-trivial weights was considered in [18], the results of
which are recovered in this paper.

While the majority of this paper focuses on the regularity of these edge ideals, one
can also compute their projective dimension by viewing them as the ideals of string
hypergraphs and cycle hypergraphs as studied in [12]. We translate the necessary
notions from [12] in terms of weighted oriented paths and cycles and present the
formulas for their projective dimensions (Theorem 3 and 4), thus completing the
discussion on the projective dimension of weighted naturally oriented paths and cycles
where all non-source vertices can have arbitrary weight.

Our paper is organized as follows. In Sect. 2, we collect necessary terminology
and results from the literature. In Sect. 3, we discuss the connection between edge
ideals of weighted oriented graphs and labeled hypergraphs. In particular, we present
the formulas for the projective dimension of weighted naturally oriented paths and
cycles. Section 4 focuses on Betti splittings of monomial ideals in which we give a
large class of Betti splittings of edge ideals of weighted oriented graphs to be used in
later sections. In Sect. 5, we introduce our first main result Theorem 7, which gives a
formula for the regularity of weighted naturally oriented paths. In Sect. 6, we extend
this result to weighted naturally oriented cycles in Theorem 9.

2 Preliminaries

In this section, we collect the notation and terminology that will be used throughout
the paper. We follow the convention of the standard text [17].

Let R = k[x1, . . . , xn] be a polynomial ring over a field k and M be a finitely
generated graded R module. Then, the graded minimal free resolution of M is an
exact sequence of the form

0 −→
⊕

j∈Z
R(− j)βp, j (M) −→

⊕

j∈Z
R(− j)βp−1, j (M) · · · −→

⊕

j∈Z
R(− j)β0, j (M) −→ M −→ 0.

Since the graded minimal free resolution of a module is unique up to isomorphism,
the exponents βi, j (M) are invariants of the module called the graded Betti numbers of
M . In general, computing Betti numbers explicitly is intractable so we focus instead
on coarser invariants which measure the complexity of the module. In particular,
this paper focuses on studying the (Castelnuovo–Mumford) regularity and projective
dimension of M = R/I where I is an ideal of R. These invariants are defined as
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follows:

reg(M) = max{ j − i : βi, j (M) �= 0}

and

pd(M) = max{i : βi, j (M) �= 0}.

Calculating or even estimating the regularity or projective dimension for a general
ideal is a difficult problem.Thus,we restrict our focus to edge ideals of vertex-weighted
oriented graphs where we can exploit the combinatorial structure of the graph to give
us information about the regularity and the projective dimension of the associated
ideal.

Let I be a homogeneous ideal in R and m be a monomial of degree d with the
following standard short exact sequence

0 → R/(I : m)(−d) → R/I → R/(I ,m) → 0. (2.1)

One can then obtain the following well-known regularity relationships (see, for
example [14, Section 2.18]).

Lemma 1 Let I be a homogeneous ideal in a polynomial ring R = k[x1, . . . , xn] and
let m be a monomial of degree d. Then,

reg(R/I ) ≤ max{reg(R/(I : m)) + d, reg(R/(I ,m))}
reg(R/(I : m)) + d ≤ max{reg(R/I ), reg(R/(I ,m)) + 1}

reg(R/(I ,m)) ≤ max{reg(R/I ), reg(R/(I : m) + d − 1)}.

when m is a variable, we have the following special property regarding the regularity.

Lemma 2 [2, Lemma 2.10] Let I be a monomial ideal, and x is a variable in
supp(I ). Then, reg(R/(I , x)) ≤ reg(R/I ) and reg(R/I ) ∈ {reg(R/(I : x)) +
1, reg(R/(I , x))}.

When discussing algebraic invariants of the edge ideal of a weighted oriented graph
D, we simplify notation and use reg(D) (respectively pd(D)) to refer to reg(R/I (D))

(respectively pd(R/I (D)).

The followingwell-known results will be used throughout the paper. See [9, Lemma
3.2] for the proof.

Lemma 3 Let R1 = k[x1, . . . , xn], R2 = k[y1, . . . , ym] be polynomial rings over
disjoint variables and R = k[x1 . . . , xn, y1, . . . , ym]. Suppose I ⊂ R1 and J ⊂ R2
be two nonzero homogeneous ideals. Then,

1. reg(R/(I + J )) = reg(R1/I ) + reg(R2/J ),

2. reg(R/(I J )) = reg(R1/I ) + reg(R2/J ) + 1.
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Remark 1 There are situations where wewant to consider the regularity of the quotient
of ideals of the form (I (D), x) where x /∈ supp(I (D)). The above lemma yields the
equality reg(R/(I (D), x)) = reg(R/I (D)).

In our proofs, we often deal with the underlying graphs of weighted oriented paths
and cycles. The regularity of the edge ideals of these underlying graphs is known and
we recall the formulas of regularity for paths and cycles below.

Theorem 1 [10, Corollary 7.6.28 and 7.7.34] Let P denote a path on n vertices and

C denote a cycle on n vertices. Then, reg(P) = reg(C) =
⌊
n+1
3

⌋
.

A useful tool in the study of monomial ideals is the process of polarization which
allows us to pass from a general monomial ideal to a squarefree monomial ideal. We
recall here the definition of polarization (for more information on the subject see for
example [14]).

Definition 1 [14, Construction 21.7] Let R = k[x1, . . . , xn] be a polynomial ring
over a field k. Given a n-tuple a = (a1, . . . , an) ∈ Z

n≥0, let x
a denote the monomial

xa11 · · · xann ∈ R.

1. The polarization of xa is defined to be (xa)pol, where (•)pol replaces xaii by a
product of distinct variables

∏ai
j=1 xi, j .

2. Let I = (xa1 , . . . , xar ) ⊆R be a monomial ideal. The polarization of I is defined
to be the ideal I pol = ((xa1)pol, . . . , (xar )pol) in a new polynomial ring Rpol =
k[xi, j | 1 ≤ i ≤ n, 1 ≤ j ≤ pi ], where pi is the maximum power of xi appearing
in xa1 , . . . , xar .

Note that for any monomial ideals J and K , we have (J + K )pol = J pol + K pol.

Polarization is particularly useful as the polarized ideal shares the same Betti num-
bers as the original ideal, as stated in the following lemma from [8]. This allows us
to utilize the combinatorial structure of objects associated to the squarefree polarized
ideal, such as hypergraphs and simplicial complexes, to characterize the algebraic
invariants of the original ideal.

Lemma 4 [8, Corollary 1.6.3] Let I ⊂ R be a monomial ideal and I pol ⊂ Rpol its
polarization. Then,

1. βi, j (R/I ) = βi, j (Rpol/I pol) for all i, j ≥ 0,
2. pd(R/I ) = pd(Rpol/I pol) and reg(R/I ) = reg(Rpol/I pol).

There are several ways to relate a squarefree monomial ideal I with a hypergraph.
The common association is obtained by defining the edges of the hypergraph from the
generators of the ideal so that I is the edge ideal of the hypergraph. However, in this
paper, we study the labeled hypergraph associated with a given squarefree monomial
ideal I by using the construction introduced in [11]. In this special construction,
generators of the ideal correspond to vertices of the hypergraph, and the edges of the
hypergraph correspond to variables which are obtained by the divisibility relations
between the minimal generators of the ideal. We refer an interested reader to [11] for
details on labeled hypergraphs.
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Fig. 1 Labeled hypergraph of I = (x1x2, x2x3x4, x3x4x5, x5x2)

Construction 2 [11] Let I ⊆ R = k[x1, . . . , xn] be a squarefree monomial ideal with
minimal monomial generating set { f1, · · · , fm}. The labeled hypergraph of I is the
tuple H(I ) = (V (H), E(H), X(H)). The set V (H) = {1, . . . ,m} is called the vertex
set of H. The set E(H) is called the edge set of H(I ) and is the image of the function
φ : {x1, . . . , xn} → 2V defined by φ(xi ) = { j : xi divides f j } where 2V represents
the power set of V (H). The set X(H) = {xi : φ(xi ) �= ∅}.

The label of an edge F ∈ E(H) is defined as the collection of variables xi ∈
{x1, . . . , xn} such that φ(xi ) = F . The number |X(H)| counts the number of labels
appearing in H(I ).

It should be noted that the underlying hypergraph of H(I ) is exactly the dual
hypergraph (see [1]) of the hypergraph whose edge ideal is I .

Example 1 Let I = (x1x2, x2x3x4, x3x4x5, x5x2) ⊆ k[x1, . . . , x6]. Set f1 =
x1x2, f2 = x2x3x4, f3 = x3x4x5, and f4 = x5x2. Then, V (H) = {1, 2, 3, 4},
E(H) = {{1}, {1, 2, 4}, {2, 3}, {3, 4}}, and X(H) = {x1, x2, x3, x4, x5}. See Fig. 1.

Given a weighted oriented graph D, we can associate the ideal I pol(D) with a
labeled hypergraph by using Construction 2 and denote this labeled hypergraph by
H(D).

3 Labeled hypergraphs associated to edge ideals

In this section,we employ the labeled hypergraph construction as themain tool to study
the algebraic invariants of R/I (D) for a weighted oriented graphD.We collect results
from the literature on labeled hypergraphs and provide their immediate applications
to our objects. The first part of this section presents formulas for the regularity and
projective dimension of weighted oriented paths and cycles with non-trivial weights at
all non-source vertices. The secondpart presents a formula for the projective dimension
of any weighted naturally oriented path and cycle, thus completing the investigation
into projective dimension for these classes of weighted oriented graphs. Furthermore,
we provide a corollary that presents a closed formula for the regularity and projective
dimension of a large class of weighted oriented graphs.

We begin with the following result from [11] which relates the regularity and
projective dimension of R/I (D) to the graph-theoretical invariants of the labeled
hypergraph H(D). Here, we present a translated version of the original statement of
[11, Proposition 4.1].
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Proposition 1 LetD be aweighted oriented graphwith associated labeled hypergraph
H = H(D). If {i} ∈ E(H) for all i ∈ [m] = V (H), then reg(D) = |X(H)|−|V (H)|
and pd(D) = |V (H)|.

Taking D to be a weighted oriented path or cycle in the above proposition results
in explicit expressions for the regularity and projective dimension of the weighted
oriented graph. The following corollary is a special case of the above result. Recall
that a vertex x ∈ V (D) is called a leaf in D if there is only one edge incident to x ,
and we assume the source vertices all have weight 1.

Corollary 1 LetD be a weighted oriented graph with weight functionw on the vertices
{x1, . . . , xn} with the property that there is at most one edge oriented into each vertex.
Suppose that for all non-leaf, non-source vertices, x j , either w j ≥ 2 or the unique
edge (xi , x j ) into the vertex x j has the property that xi is a leaf. Then,

reg(D) =
n∑

i=1

wi − |E(D)|,

pd(D) = |E(D)|.

Proof Let I (D) be the edge ideal of the weighted oriented graphD and letm1, . . . ,mr

be the minimal generators of its polarization I (D)pol. For all 1 ≤ s ≤ r , let ms =
xi x j

∏w j−1
�=1 y j,�. If x j is a leaf, thenms is the onlyminimal generator of I (D)pol which

is divisible by x j and therefore {s} ∈ E(H(D))with label {x j , y j,� | 1 ≤ � ≤ w j −1}.
On the other hand, if x j is not a leaf, then by assumption since x j is not a source,

either w j ≥ 2 or xi is a leaf. If xi is a leaf then as above ms is the only minimal
generator of I (D)pol which is divisible by xi and {s} is in E(H(D)). If w j ≥ 2,

then ms = xi x j
∏w j−1

�=1 y j,�. In particular, ms is divisible by y j,1. The assumption
that there is at most one edge oriented into the vertex x j means that y j,1 does not
divide any other generator of I (D)pol. Thus in this case, {s} ∈ E(H(D)) with label
{y j,� | 1 ≤ � ≤ w j − 1}.

Since {s} ∈ E(H(D)) for all 1 ≤ s ≤ r , by Proposition 1

reg(D) = |X(H(D))| − |V (H(D))| =
n∑

i=1

wi − |E(D)|

and

pd(D) = |V (H(D))| = |E(D)|.

As a direct consequence of Corollary 1, one can immediately obtain the regularity
and projective dimension of a large class of weighted oriented graphs such as naturally
oriented paths, naturally oriented cycles, rooted forests, and unicyclic graphs with a
naturally oriented unique cycle. Thus, we recover the results in [18].
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Example 2 LetP be the naturally oriented path on the vertices {x1, x2, x3, x4}with the
edge ideal I (P) = (x1x32 , x2x

4
3 , x3x

2
4 ). Since P is a path with non-trivial weights at

each non-source vertex, we have reg(P) = 1+ 3+ 4+ 2− 3 = 7 and pd(P) = 3 by
Corollary 1. However, if there exists at least one non-source vertex with trivial weight,
we cannot apply the formula given in Corollary 1. For instance, suppose instead that
vertex x3 in P has trivial weight so that I (P) = (x1x32 , x2x3, x3x

2
4 ). Computing via

Macaulay2 [6] shows that reg(P) = 3, whereas applying the formula in Corollary 1
would give a result of 4.

In light of the above example, one needs to consider the existence of trivial weights
in order to be able to provide a general formula for the regularity and projective
dimension of anyweighted oriented path and cycle. As an immediate result of applying
Construction 2 to weighted oriented paths and cycles one can see that their associated
labeled hypergraphs preserve the path and cycle structures. Following the terminology
introduced in [12], we see that the labeled hypergraph of a weighted oriented path is a
string hypergraph, and the labeled hypergraph of a weighted oriented cycle is a cycle
hypergraph (see [12, Definitions 2.13 and 4.1] for string and cycle hypergraphs).
Since formulas for the projective dimension of string and cycle hypergraphs are given
in [12], we focus on expressing their results in terms of weighted oriented graphs.
We conclude this section by giving a complete picture of the projective dimension of
weighted naturally oriented paths and cycles.

The projective dimension formulas given in [12] use the notion of modularity for
string and cycle hypergraphs. For convenience, we translate their definition of modu-
larity into the language of weighted naturally oriented paths and cycles.

Definition 2 LetP be a weighted naturally oriented path on the vertices x1, . . . , xn (in
order) with directed edges (x1, x2), (x2, x3), . . . , (xn−1, xn) such that vertex xi has
weightwi for each i ∈ {1, . . . , n}. Further suppose that 2 ≤ p1 < p2 ≤ · · · < pk ≤ n
are the positions of non-trivial weights in P for k ≥ 1. We call p = (p1, . . . , pk) the
weight sequence of P.

Definition 3 Let P be a weighted naturally oriented path on n vertices with weight
sequence p = (p1, . . . , pk) where k ≥ 1. If p1 �= 2 and/or pk �= n then extend the
sequence (p1, . . . , pk) by appending 2 to its beginning and/or n to its end. Denote
this new sequence by (q0, . . . , qs) and call it the extended weighted sequence. Note
that the extended weighted sequence is equal to the weight sequence if p1 = 2 and
pk = n. For each i ∈ {0, . . . , s − 2} let �i,� = �(qi , . . . , qi+�) denote the weighted
naturally oriented induced path of P on the vertices xqi−1, . . . , xqi+�

where � ≥ 2.
Let � be the collection of special induced paths defined by

� =
{
�i,� | 0 ≤ i ≤ s − 2, qi+1 − qi ≡ qi+� − qi+�−1 ≡ 2

(mod 3), q j+1 − q j ≡ 0 (mod 3) for i < j < i + � − 1
}
.

Note that for each i ∈ {0, . . . , s − 2} there is at most one � ≥ 2 such that �i,� ∈ �.
Thus, we may simplify notation and drop the second index �, �i = �i,� ∈ �.
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The modularity of P is the maximal number of induced paths in � that overlap in
at most one edge. Symbolically, we have

M(P) = max
i1<i2···<it

{
|{�i1 , . . . , �it }| : |E(�i j ) ∩ E(�i j+1)| ≤ 1 for 1 ≤ j < t, �i ∈ �

}
.

It follows from the definition that M(P) = 0 if � = ∅.

Example 3 Let P1 be a weighted naturally oriented path on the vertices x1, . . . , x9
with non-trivial weights at vertices x4 and x7, i.e., p1 = 4 and p2 = 7. By following
the convention of Definition 3, we set q0 = 2, q1 = 4, q2 = 7, and q3 = 9. The only
induced path ofP1 satisfying the conditions given in the definition of� is�(2, 4, 7, 9).
Thus, the modularity of P1 is 1.

Let P2 be a weighted naturally oriented path on the vertices x1, . . . , x9 with non-
trivial at vertices x3, x4, x6, i.e., p1 = 3, p2 = 4, p3 = 6. By setting q0 = 2, q1 =
3, q2 = 4, q3 = 6, and q4 = 9, one can see that there exists no induced path of P2
satisfying the conditions in the definition of �. Thus, M(P2) = 0.

Let P3 be a weighted naturally oriented path on the vertices x1, . . . , x14 with non-
trivial weights at vertices x3, x5, x7, x9, x12, i.e., p1 = 3, p2 = 5, p3 = 7, p4 =
9, p5 = 12. By setting q0 = 2, q1 = 3, q2 = 5, q3 = 7, q4 = 9, q5 = 12, and
q6 = 14, one can see that there are two induced paths ofP3 satisfying conditions in the
definition of� and sharing {x6, x7} as the commonedge:�(3, 5, 7) and�(7, 9, 12, 14).
Thus, M(P3) = 2.

The next result is obtained by rephrasing the statement of [12, Theorem 3.4] for
weighted naturally oriented paths.

Theorem 3 Let P be a weighted naturally oriented path on n vertices with the weight
sequence p = (p1, . . . , pk) where k ≥ 1. Its extended weighted sequence defined in
Definition 3 is (q0, . . . , qs). Then,

pd(P) = n − 1 −
s−1∑
i=0

⌊
qi+1 − qi + 1

3

⌋
+ M(P).

Proof Since the associated labeled hypergraph of a weighted oriented path is a string
hypergraph on n − 1 vertices, the statement holds by translating each expression
appearing in [12, Theorem 3.4] to the language of weighted oriented paths.

Definition 4 Let C be a weighted naturally oriented cycle on the vertices x1, . . . , xn
(in order) with directed edges (x1, x2), (x2, x3), . . . , (xn−1, xn), (xn, x1) such that
vertex xi has weight wi for each i ∈ {1, . . . , n}. Let 1 ≤ p1 < p2 . . . < pk ≤ n
be the positions of non-trivial weights in C. Similar to the weight-sequence definition
introduced in Definition 2, we call (p1, . . . , pk) the weight sequence of C.

In general, the modularity of the weighted naturally oriented cycle is defined sim-
ilarly to that of the path, in that we are counting the ways we can cover the cycle
with induced paths that satisfy certain conditions. We do not fully translate the results
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from [12] because it is more technical, and we encourage the interested reader to
refer to their paper for details. However, it should be noted that there are two main
differences between the modularity of the cycle and that of the path. The positions
of the non-trivial weights in C can start at any vertex with a non-trivial weight. By
reordering the vertices of the cycle, we may assume that 1 = p1 < . . . < pk ≤ n
where p1, . . . , pk are the positions of non-trivial weights in C. Secondly, when we
define the cycle analogue to � in Definition 3, it is possible that one of its elements
has overlapping initial and terminal edges. In this case, the modularity would be equal
to 1.

Now, we are ready to rephrase the projective dimension formula of cycle hyper-
graphs from [12, Theorem 4.3] in terms of weighted naturally oriented cycles.

Theorem 4 Let C be a weighted naturally oriented cycle on n vertices and 1 = p1 <

p2 < · · · < pk ≤ n be the positions of non-trivial weights in C where k ≥ 1. Then,

pd(C) = n −
(
k−1∑
i=1

⌊
pi+1 − pi + 1

3

⌋
+

⌊
n + p1 − pk

3

⌋)
+ M(C)

Proof Since the associated labeled hypergraph of a weighted naturally oriented cycle
is a cycle hypergraph on n vertices, statement holds by [12, Theorem 4.3].

Remark 2 As a consequence of the theorems above, one can obtain the depth formulas
forweightednaturally orientedpaths and cycles usingAuslander–Buchsbaumformula.
Let P be a weighted naturally oriented path and C be a weighted naturally oriented
cycle on n vertices. Then,

depth(P) = 1 +
s−1∑
i=0

⌊
qi+1 − qi + 1

3

⌋
− M(P), and

depth(C) =
k−1∑
i=1

⌊
pi+1 − pi + 1

3

⌋
+

⌊
n + p1 − pk

3

⌋
− M(C).

4 Betti splitting

A common strategy used in the study of monomial ideals I in R is to decompose the
monomial ideal into smaller ideals and recover the invariants of I using the invariants of
the smaller pieces. Eliahou and Kervaire used this strategy in [3] when they introduced
the notion of a Betti splitting of a monomial ideal. The idea was developed further
by Francisco, Hà, and Van Tuyl in [4], where the authors studied when a monomial
ideal has a Betti splitting. We recall the definition of this notion along with relevant
important results from [4]. We then provide a large class of Betti splittings of edge
ideals of weighted oriented graphs to be used in later sections.

Given a monomial ideal I , we denote by G(I ) the set of minimal monomial gener-
ators of I .
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Definition 5 Let I , J , and K be monomial ideals such that G(I ) is the disjoint union
of G(J ) and G(K ). Then, I = J + K is a Betti splitting if

βi, j (R/I ) = βi, j (R/J ) + βi, j (R/K ) + βi−1, j (R/J ∩ K )

for all i, j > 1.

Theorem 5 [4, Corollary 2.7] Suppose that I = J + K where G(J ) contains all the
generators of I divisible by some variable xi and G(K ) is a nonempty set containing
the remaining generators of I . If J has a linear resolution, then I = J + K is a Betti
splitting.

When I = J + K is a Betti splitting, important homological invariants of I are
indeed related to the corresponding invariants of the smaller ideals J , K .The following
corollary is a direct consequence of the formulas for the Betti numbers.

Corollary 2 Let I = J + K be a Betti splitting. Then,

reg(R/I ) = max{reg(R/J ), reg(R/K ), reg(R/J ∩ K ) − 1}
pd(R/I ) = max{pd(R/J ), pd(R/K ), pd(R/J ∩ K ) + 1}.

One can generalize the notion of splitting edge of a graph from [4] to splitting edge
of a weighted oriented graph. Let e = (xi , x j ) be an edge in a weighted oriented
graph D. If I (D) = J + K is a Betti splitting when J = (xi x

w j
j ) is the monomial

ideal associated with e, the edge e is called a splitting edge ofD. The edge (xi , x j ) in
Proposition 2 is a splitting edge of D.

Proposition 2 Let D be a weighted oriented graph on vertex set {x1 . . . xn}. Suppose
that w j > 1 and that (xi , x j ) is the only edge of D oriented into the vertex x j . Let
J = (xi x

w j
j ) and let K be the ideal generated by G(I (D))\{xi xw j

j }. Then, I (D) =
J + K is a Betti splitting and further

reg(D) = max
{
w j , reg(R/K ), reg(R/(J ∩ K )) − 1

}
,

pd(D) = max {pd(R/K ), pd(R/(J ∩ K )) + 1} .

Proof Let I (D) be the edge ideal of D and let I (D)pol be its polarization. The polar-

ization of the generator xi x
w j
j of I (D) is m = xi x j

∏w j−1
�=1 y j,�. Since w j ≥ 2, m is

divisible by y j,1. In particular, since (xi , x j ) is the only edge which is oriented into
x j , m is the only minimal generator of I (D)pol which is divisible by y j,1. Thus by
Theorem 5, I (D)pol = J ′ + K ′ is a Betti splitting where J ′ = (m) and K ′ is the ideal
generated byG(I (D)pol)\{m}. Note that J ′ = J pol and K ′ = K pol where J = (xi x

w j
j )

and K is the ideal generated by G(I (D))\{xi xw j
j }. Furthermore, (J ∩K )pol = J ′ ∩K ′

as both J and K are monomial ideals. Since polarization preserves Betti numbers by
Lemma 4, this implies that I = J + K is a Betti splitting.

The formulas for regularity and projective dimension are a direct application of
Corollary 2 since reg(R/J ) = w j and pd(R/J ) = 1.
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Corollary 3 Let D be a weighted naturally oriented path or cycle on vertex set
{x1 . . . xn}. Let xi be a vertex in D with wi > 1. Let J = (xi−1x

wi
i ) and K be

the ideal generated by G(I (D))\{xi−1x
wi
i }. Then, I (D) = J + K is a Betti splitting

and

reg(D) = max {wi , reg(R/K ), reg(R/(J ∩ K )) − 1} .

Proof This follows immediately from Proposition 2 since (xi−1, xi ) is the only edge
oriented into the vertex xi in a weighted naturally oriented path or cycle.

Remark 3 If J ∩ K = J L for some ideal L such that J and L have disjoint supports,
then, by Lemma 3, reg(R/J ∩ K ) − 1 = reg(R/J ) + reg(R/L).

5 Weighted oriented paths

In this section, we focus on computing the regularity of weighted naturally oriented
paths. If the weight of each vertex is trivial, the edge ideal of a weighted naturally
oriented path is the same as the edge ideal of an unweighted path and its regularity is
given in Theorem 1. At the other extreme, if the weight of each vertex is non-trivial,
the regularity and projective dimension of a path P can be computed explicitly via the
labeled hypergraph of P as observed in Corollary 1. Our main result in this section is
Theorem 7 which gives a formula for the regularity of a weighted naturally oriented
path with any combination of trivial and non-trivial weights. This formula depends
both on the weights of the vertices and the distances between successive non-trivial
weights.

Before proving our main result, we introduce two lemmas which give the regularity
of naturally oriented paths with special arrangements of non-trivial weights.

Lemma 5 Let P denote the weighted naturally oriented path on n vertices x1, . . . , xn
such that wp = w ≥ 2 for some p ∈ {2, . . . , n} and wi = 1 for i �= p, 1 ≤ i ≤ n.

Then

reg(P) = w +
⌊n − p

3

⌋
+

⌊ p + 1

3

⌋
− 1.

Proof By Corollary 3, J = (xp−1xw
p ) and K = (x1x2, . . . , xp−2xp−1, xpxp+1, . . . ,

xn−1xn) is a Betti splitting of I (P). We can view the ideal K as the edge ideal of the
disjoint union of two paths with trivial weights. Thus by Theorem 1, we have

reg(R/K ) =
⌊ p − 1 + 1

3

⌋
+

⌊n − (p − 1) + 1

3

⌋
=

⌊ p

3

⌋
+

⌊n − p + 2

3

⌋
.

Let L = (x1x2, . . . , xp−4xp−3, xp−2, xp+1, xp+2xp+3, . . . , xn−1xn), then J ∩
K = J L . Since L can be viewed as the sum of an edge ideal of the disjoint union
of two paths and an ideal generated by variables not in those paths, by Remark 1, we
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have

reg(R/L) =
⌊ p − 3 + 1

3

⌋
+

⌊n − (p + 1) + 1

3

⌋
=

⌊ p − 2

3

⌋
+

⌊n − p

3

⌋
.

Thus by Remark 3, reg(R/(J ∩ K )) − 1 = w +
⌊ p − 2

3

⌋
+

⌊n − p

3

⌋
since

reg(R/J ) = w. Observe that

reg(R/J ∩ K ) − 1 = w +
⌊ p − 2

3

⌋
+

⌊n − p

3

⌋

≥
⌊ p

3

⌋
+

⌊n − p + 2

3

⌋
= reg(R/K ).

Therefore, reg(P) = reg(R/J∩K )−1 = w+
⌊ p − 2

3

⌋
+

⌊n − p

3

⌋
byCorollary 3.

Sincew+
⌊ p − 2

3

⌋
+

⌊n − p

3

⌋
= w+

⌊ p + 1

3

⌋
+

⌊n − p

3

⌋
−1, the lemma is proved.

Lemma 6 Let P be a weighted naturally oriented path on n-vertices with w1 = w2 =
· · · = w�−1 = 1 and w j > 1 for all � ≤ j ≤ n − 1. Then,

reg(P) =
⌊� + 1

3

⌋
+

n∑
i=�

wi − (n − l + 1).

Proof The edge ideal of P is I (P) = (x1x2, . . . , x�−2x�−1, x�−1x
w�

� , x�x
w�+1
�+1 , . . . ,

xn−1x
wn
n ). Let J = (x�−1x

w�

� ) and and K = (x1x2, . . . , x�−2x�−1, x�x
w�+1
�+1 ,

. . . , xn−1x
wn
n ). By Corollary 3, one can see that I (P) = J + K is a Betti splitting and

therefore reg(P) = max{reg(R/J ), reg(R/K ), reg(R/(J ∩ K )) − 1}.
The ideal K is the sum of the edge ideal of a path on (� − 1) vertices with trivial

weights and a weighted naturally oriented path on (n − � + 1) vertices where the
weights of all non-leaf vertices are non-trivial. Then, by Lemma 3, Theorem 1, and
Corollary 1, we get

reg(R/K ) =
⌊�

3

⌋
+ 1 +

n∑
i=�+1

wi − (n − �).

Let L = (x1x2, . . . , x�−4x�−3, x�−2, x
w�+1
�+1 , x�+1x

w�+2
�+2 , . . . , xn−1x

wn
n ), then J ∩

K = J L .
The ideal L is the sum of the ideal L1 = (xw�+1

�+1 , x�+1x
w�+2
�+2 , . . . , xn−1x

wn
n ), the

edge ideal of a path on (� − 3) vertices with trivial weights which has no variables
in common with L1, and a variable x�−2. Further, the generator x�−2 does not effect
the regularity of R/L by Remark 1. The ideal L1 has the same polarization as the
ideal (x�x

w�+1−1
�+1 , x�+1x

w�+2
�+2 , . . . , xn−1x

wn
n ) after a relabeling of the variables. The

regularity of this latter ideal can be computed using Corollary 1 and thus reg(R/L1) =
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∑n
i=�+1 wpi − (n − �). It follows from Lemma 3 that

reg(R/L) =
⌊� − 2

3

⌋
+

n∑
i=�+1

wpi − (n − �).

By Remark 3, we have

reg(R/(J ∩ K )) − 1 = w� +
⌊� − 2

3

⌋
+

n∑
i=�+1

wi − (n − �)

=
⌊� − 2

3

⌋
+ 1 − 1 + w� +

n∑
i=�+1

wi − (n − �)

=
⌊� + 1

3

⌋
+ (w� − 1) +

n∑
i=�+1

wi − (n − �)

≥
⌊�

3

⌋
+ 1 +

n∑
i=�+1

wi − (n − �)

= reg(R/K )

where the last inequality follows from the assumption that w� ≥ 2. One can see that
reg(R/(J ∩ K )) − 1 ≥ reg(R/J ) = w�. Therefore, reg(P) = reg(R/(J ∩ K )) − 1
by Corollary 3, and the desired equality holds.

Our next result is general in the sense that we consider weighted naturally oriented
paths with arbitrary numbers of non-trivial weights. Both the values of the weights
and their positions factor into our formula for the regularity of a path, motivating the
following definition.

Notation 6 Let P be a weighted naturally oriented path on n-vertices with the
weight sequence (p1, . . . , pk). In what follows we will abuse notation and write
(q1, . . . , qt ) ⊆ (p1, . . . , pk) to mean that (q1, . . . , qt ) is a subsequence of
(p1, . . . , pk).

Let S be the collection of subsequences of the weight sequence (p1, . . . , pk) where
the difference between any consecutive elements of the subsequence is not equal to
two, i.e.,

S = {(q1, . . . , qt ) ⊆ (p1, . . . , pk) : qi+1 − qi �= 2 for each i ∈ {1, . . . , t − 1}} .

Example 4 Let P1 be a path on the vertices x1, . . . , x7 and (2, 3, 5, 6) be the weight
sequence of P1, i.e., w2, w3, w5, w6 ≥ 2 and w4, w7 = 1. In what follows, we are
interested in the elements of S which are maximal with respect to inclusion. The
maximal elements of S are

{(2, 3, 6) , (2, 5, 6)} .
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Let P2 be a path on the vertices x1, . . . , x7 and (2, 4, 6, 7) be the weight sequence
of P2, i.e., w2, w4, w6, w7 ≥ 2 and w3, w5 = 1. Then, the maximal elements of S
are

{(2, 6, 7) , (4, 7)} .

As the previous example illustrates, the maximal elements of the set S always begin
with p1 or p1 + 2 with the latter only occuring if p2 = p1 + 2.

Definition 6 For a weighted naturally oriented path P on n-vertices with the weight
sequence (p1, . . . , pk), we define weight-position sum of q = (q1, . . . , qt ) ∈ S as
follows:

∑
q =

∑
(q1, . . . , qt ) :=

t∑
i=1

wqi +
t−1∑
i=1

⌊qi+1 − qi
3

⌋
− t .

We will be interested in the largest element of the set
{∑

q +
⌊
n−qt
3

⌋
+

⌊
q1+1
3

⌋

| q ∈ S}. To simplify the proof of our main result Theorem 7, we present the following
lemma which states that the maximum element of this set always occurs at a maximal
(with respect to inclusion) element of S.
Lemma 7 If P is a weighted naturally oriented path with weight sequence p and
q ⊆ q′ are elements of S, then

∑
q +

⌊ n − qt
3

⌋
+

⌊q1 + 1

3

⌋
≤

∑
q′ +

⌊ n − q ′
t ′

3

⌋
+

⌊q ′
1 + 1

3

⌋
.

Moreover,

max
q∈S

{∑
q +

⌊n − qt
3

⌋
+

⌊q1 + 1

3

⌋}
= max

q∈S
q1=p1,p1+2

{∑
q +

⌊n − qt
3

⌋
+

⌊q1 + 1

3

⌋}
.

Proof First note that if q = (q1, . . . , qt ) ⊆ q′ = (q1, . . . , q j , r , q j+1, . . . , qt ) ⊆ p
then since r is a position of a non-trivial weight ofP , we havewr−1 ≥ 1. In addition, it

follows from the properties of floor functions that
⌊
q j+1−q j

3

⌋
≤

⌊
q j+1−r

3

⌋
+

⌊
r−q j
3

⌋
+

1. Therefore

∑
q =

t∑
i=1

wqi +
j−1∑
i=1

⌊qi+1 − qi
3

⌋
+

⌊q j+1 − q j
3

⌋
+

t−1∑
i= j+1

⌊qi+1 − qi
3

⌋
− t

≤
t∑

i=1

wqi + wr − 1 +
j−1∑
i=1

⌊qi+1 − qi
3

⌋
+

⌊q j+1 − r

3

⌋
+

⌊ r − q j
3

⌋
+

t−1∑
i= j+1

⌊qi+1 − qi
3

⌋
− t

=
t∑

i=1

wqi +wr+
j−1∑
i=1

⌊qi+1−qi
3

⌋
+

⌊q j+1 − r

3

⌋
+

⌊ r − q j
3

⌋
+

t−1∑
i= j+1

⌊qi+1 − qi
3

⌋
− (t + 1)
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Fig. 2 Same weight sequence, different weight functions

=
∑

q′

Then, for any such q,q′ ∈ S, we have

∑
q +

⌊n − qt
3

⌋
+

⌊q1 + 1

3

⌋
≤

∑
q′ +

⌊n − qt
3

⌋
+

⌊q1 + 1

3

⌋
.

Similar arguments can be made when q′ = (r , q1, . . . , qt ) and when q′ =
(q1, . . . , qt , r).

Extending this idea we can see that if q = (q1, . . . , qt ) and q′ = (q ′
1, . . . , q

′
s) are

any elements of S with q ⊆ q′ then

∑
q +

⌊n − qt
3

⌋
+

⌊q1 + 1

3

⌋
≤

∑
q′ +

⌊n − q ′
s

3

⌋
+

⌊q ′
1 + 1

3

⌋
.

The final part of the lemma follows from the above inequality and the observation
that the maximal elements of the set S begin with p1 or p1 +2 where the latter occurs
if p2 = p1 + 2.

Example 5 Let P1 and P2 be as shown in Fig. 2.
These graphs have the same weight sequence (2, 4, 5, 8) and the same total weight

sum. Note that since the two graphs have the same weight sequence, the set S as
defined in Notation 6 will be the same for both graphs.

Given q ∈ S define f (q) = ∑
q +

⌊
n−qt
3

⌋
+

⌊
q1+1
3

⌋
, the expression introduced

in Lemma 7. For each of the graphsP1 andP2, the following tables provides the value
of f (q) for each maximal element q ∈ S.

P1 : q (2, 5, 8) (4, 5, 8)
f (q) 10 7

P2 : q (2, 5, 8) (4, 5, 8)
f (q) 8 9

Here, we see that the maximum of value of
∑

q +
⌊
n−qt
3

⌋
+

⌊
q1+1
3

⌋
could come

from q1 = p1 = 2 as in P1 or from q1 = p1 + 2 = 4 as in P2.
Furthermore, using Macaulay 2 [6], we see that reg(P1) = 10 and reg(P2) = 9,

providing evidence that the regularity of the graphs is given by f (q) which, in turn,
depends on both the positions of weighted sequence and the values of the weights.
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Fig. 3 Two weighted oriented paths with the same non-trivial weight values and different weight sequences

Theorem 7 LetP be a weighted naturally oriented path on n-vertices x1, . . . , xn with
the weight sequence (p1, . . . , pk). Then

reg(P) = max
q∈S

{∑
(q1, . . . , qt ) +

⌊n − qt
3

⌋
+

⌊q1 + 1

3

⌋}
.

Before we proceed to the proof of the main theorem, we present examples to show
that the formula of regularity depends not only on the weights of the vertices but also
on the weight sequence.

Example 6 Let P1 and P2 as shown in Fig. 3. These two paths each have four
vertices with the same weight values 5, 4, 3, 4, but at different positions. Their
weight sequences are (2, 5, 9, 12) and (2, 4, 8, 12), respectively. Define f (q) =
f (q1, . . . , qt ) as in Example 5. UsingMacaulay 2 [6], one can calculate reg(P1) = 16
and reg(P2) = 13. We can see that 16 = f (2, 5, 9, 12), i.e., the regularity for P1
comes from the entire weight sequence. On the other hand, regularity for P2 is given
by 13 = f (2, 8, 12) where (2, 8, 12) and (4, 8, 12) are the maximal elements of S for
P2 with values f (2, 8, 12) = 13 ≥ f (4, 8, 12) = 11.

Proof of Theorem 7
We proceed by induction on the number of non-trivial weights k. The base case

k = 1 is proved in Lemma 5. Recall that by Lemma 7 that the maximal element of the
set {∑

(q1, . . . , qt ) +
⌊n − qt

3

⌋
+

⌊q1 + 1

3

⌋}

will occur at a maximal (with respect to inclusion) element of S. Suppose k > 1.
If wi ≥ 2 for each i ∈ {2, . . . , n}, the statement holds by Corollary 1. If wi = 1
for all 1 ≤ i ≤ m and wi ≥ 2 for all m + 1 ≤ i ≤ n − 1, the statement holds by
Lemma 6. Thus, we may assume that there exists a non-trivial weight at position p j

for some j ∈ {1, . . . , k} such that wp j+1 = 1. Let p� be the smallest such position in
the weight sequence. Note that it is possible that � = 1. These assumptions imply that
p�+1 ≥ p� + 2 if � �= k and p�−i = p� − i for each i ∈ {1, . . . , � − 1}.

Under these assumptions, the edge ideal of P is

I (P) = (x1x
w2
2 , . . . , xp�−1x

wp�
p�

, xp�
xp�+1, xp�+1x

wp�+2

p�+2 , . . . , xn−1x
wn
n )

where w2, . . . , wp�
≥ 2 and wp�+2 , . . . , wpn may be anything.
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By Lemma 1 and 2, we can bound reg(P) from above and below with the following
inequalities

max{reg(R/(I (P), xp�
)), reg(R/(I (P), xp�+1))} ≤ reg(P)

≤ max{reg(R/(I (P), xp�
)), reg(R/(I (P) : xp�

)) + 1}.

The remainder of the proofwill consist of proving that these upper and lower bounds
coincide by showing that reg(R/(I (P), xp�+1)) = reg(R/(I (P) : xp�

)) + 1. We will
then conclude by showing that max{reg(R/(I (P), xp�

)), reg(R/(I (P), xp�+1))} has
the desired form.

To see that reg(R/(I (P), xp�+1)) = reg(R/(I (P) : xp�
)) + 1 note that

(I (P), xp�+1) = (x1x
w2
2 , . . . , xp�−1x

wp�
p�

) + (xp�+1) + (xp�+2x
wp�+3

p�+3 , . . . , xn−1x
wn
n )

and

I (P) : xp�
= (x1x

w2
2 , . . . , xp�−1x

wp�−1
p�

) + (xp�+1) + (xp�+2x
wp�+3

p�+3 , . . . , xn−1x
wn
n ).

Since each of these ideals is the sum of three ideals whose generators have
disjoint supports, we can calculate their regularities by summing the regularities
of the component ideals by Lemma 3. The regularity of (x1x

w2
2 , . . . , xp�−1x

wp�
p�

)

and (x1x
w2
2 , . . . , xp�−1x

wp�−1
p�

) can be calculated using Lemma 6, and since the
only difference between these ideals is the exponent of xp�

, it is easy to see that
reg(R/(I (P), xp�+1)) = reg(R/(I (P) : xp�

))+1.Thus, reg(P) = max{reg(R/(I (P),

xp�
)), reg(R/(I (P), xp�+1))}. It remains to show that this maximum is of the form

given in the statement of the theorem. To do this we must consider several cases.
Case 1First suppose that � = k. In this case, by our assumptions on �, pi+1− pi = 1

for all 1 ≤ i ≤ k−1and it is clear thatmax
q∈S

{∑
(q1, . . . , qt ) +

⌊n − qt
3

⌋
+

⌊q1 + 1

3

⌋}

will occur when (q1, . . . , qt ) = (p1, . . . pk). Thus we wish to show that reg(P) =
k∑

i=1

wpi +
k−1∑
i=1

⌊ pi+1 − pi
3

⌋
− k +

⌊n − pk
3

⌋
+

⌊ p1 + 1

3

⌋
.

Note that the ideals

(I , xpk ) = (x1x
w2
2 , . . . , xpk−2x

wpk−1

pk−1 ) + (xpk ) + (xpk+1xpk+2, . . . , xn−1xn)

and

(I , xpk+1) = (x1x
w2
2 , . . . , xpk−1x

wpk
pk ) + (xpk+1) + (xpk+2xpk+3, . . . , xn−1xn)

are both written as the sum of the edge ideal of a weighted naturally oriented path as
in Lemma 6, the edge ideal of a path with trivial weights, and the ideal generated by a
variable where the supports of all three ideals are disjoint. We can then use Remark 1,
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Lemma 6 and Theorem 1 to obtain

reg(R/(I , xpk )) =
k−1∑
i=1

wpi +
⌊ p1 + 1

3

⌋
− (k − 1) +

⌊n − pk + 1

3

⌋

≤
k−1∑
i=1

wpi +
⌊ p1 + 1

3

⌋
− k + 1 +

⌊n − pk
3

⌋
+ 1

≤
k−1∑
i=1

wpi +
⌊ p1 + 1

3

⌋
− k +

⌊n − pk
3

⌋
+ wpk

= reg(R/(I , xpk+1)).

Therefore, reg(P) = reg(R/(I , xpk+1)) =
k∑

i=1

wpi +
⌊ p1 + 1

3

⌋
− k +

⌊n − pk
3

⌋

as desired.
Case 2 Now suppose that 1 < � < k. Then, this means that p2 = p1 + 1 and

therefore every maximal element of S has p1 as it’s first element. In this case,

(I (P), xp�
) = (x1x

w2
2 , . . . , xp�−2x

wp�−1

p�−1 ) + (xp�
) + (xp�+1x

wp�+2

p�+2 , . . . , xn−1x
wn
n )

is the sum of an ideal of the form of Lemma 6 and the edge ideal of a naturally oriented
path with fewer than k non-trivial weights. By Lemma 6 and the induction hypothesis,
we have

reg(R/(I (P), xp�
)) =

�−1∑
i=1

wpi +
⌊ p1 + 1

3

⌋
− (� − 1)

+ max
q∈S

q1≥p�+2

{∑
(q1, . . . , qt ) +

⌊ n − qt
3

⌋
+

⌊q1 − pl + 1

3

⌋}

= max
q∈S

q1≥p�+2

{∑
(p1, . . . , p� − 1, q1, . . . , qt ) +

⌊n − qt
3

⌋
+

⌊ p1 + 1

3

⌋}

= max
q∈S

q1≥p�+2

{∑
(p1, . . . , p�−1, q1, . . . , qt ) +

⌊n − qt
3

⌋
+

⌊ p1 + 1

3

⌋}
,

where the equalities use the fact that p�−1 = p� − 1 Similarly,

(I (P), xp�+1) = (x1x
w2
2 , . . . , xp�−1x

wp�
p�

) + (xp�+1) + (xp�+2x
wp�+3

p�+3 , . . . , xn−1x
wn
n )

is also the sum of an ideal of the type in Lemma 6 and the edge ideal of a naturally
oriented path with fewer than k non-trivial weights. Thus, again by Lemma 6 and the
induction hypothesis,
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reg(R/(I (P), xpl+1))

=
l∑

i=1

wpi +
⌊ p1 + 1

3

⌋
− l

+ max
q∈S

q1≥p�+3

{∑
(q1, . . . , qt ) +

⌊n − qt
3

⌋
+

⌊q1 − pl − 1 + 1

3

⌋}

=
l∑

i=1

wpi +
⌊ p1 + 1

3

⌋
− l + max

q∈S
q1≥p�+3

{∑
(q1, . . . , qt ) +

⌊n − qt
3

⌋
+

⌊q1 − pl
3

⌋}

= max
q∈S

q1≥p�+3

{∑
(p1, . . . , pl , q1, . . . , qt ) +

⌊n − qt
3

⌋
+

⌊ p1 + 1

3

⌋}
.

Observe that for any q ∈ S, we must have qi = pi for each 1 ≤ i ≤ � − 1 and
either q� = p� (which implies that q�+1 ≥ p� + 3 since our choice of � implies that
q�+1 �= p� +1 and the definition of S then implies that q�+1 �= p� +2) or q� ≥ p� +2.
Hence, the maximal elements of the set S are contained in the set

{(p1, . . . , p�, q1, . . . , qt ) : q ∈ S, q1 ≥ p� + 3}
∪ {(p1, . . . , p�−1, q1, . . . , qt ) : q ∈ S, q1 ≥ p� + 2}

and we deduce that

max{reg(R/(I (P), xp�
)), reg(R/(I (P), xp�+1))}

= max
q∈S

{∑
(q1, . . . qt ) +

⌊n − qt
3

⌋
+

⌊ p1 + 1

3

⌋}
.

Case 3 Suppose finally that � = 1. Then, p2 ≥ p1 + 2 by our assumptions. Then,

(I (P), xp1) = (x1x2, . . . , xp1−2xp1−1, xp1 , xp1+1x
wp1+2

p1+2 , . . . , xn−1x
wn
n )

and by Lemma 3 and the induction hypothesis

reg(R/(I (P), xp1))

=
⌊ p1 − 1 + 1

3

⌋
+ max

q∈S
q1≥p1+2

{∑
(q1, . . . , qt ) +

⌊n − qt
3

⌋
+

⌊q1 − p1 + 1

3

⌋}

=
⌊ p1
3

⌋
+ max

q∈S
q1≥p1+2

{∑
(q1, . . . , qt ) +

⌊n − qt
3

⌋
+

⌊q1 − p1 + 1

3

⌋}
.

Similarly, for the ideal

(I (P), xp1+1) = (x1x2, . . . , xp1−2xp1−1, xp1−1x
wp1
p1 , xp1+1, xp1+2x

wp1+3
p1+3 , . . . , xn−1x

wn
n )
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again by Lemma 3, 5, and the induction hypothesis, we have

reg(R/(I (P), xp1+1)) = wp1 +
⌊ p1 + 1

3

⌋
− 1

+ max
q∈S

q1≥p1+3

{∑
(q1, . . . , qt ) +

⌊n − qt
3

⌋
+

⌊q1 − p1 − 1 + 1

3

⌋}

= max
q∈S

q1≥p1+3

{∑
(p1, q1, . . . , qt ) +

⌊n − qt
3

⌋
+

⌊ p1 + 1

3

⌋}
.

Since p2 ≥ p1 + 2, observe that any maximal element q of S with q1 = p1 must
have q2 ≥ p1 + 3. Thus, we get

reg(R/(I (P), xp1+1)) = max
q∈S
q1=p1

{∑
(q1, . . . , qt ) +

⌊n − qt
3

⌋
+

⌊q1 + 1

3

⌋}
.

Our goal is to show that the maximum of the above expressions obtained for
reg(R/(I (P), xp1+1)) and reg(R/(I (P), xp1)) is of the desired form. We make
the following useful observations to achieve this goal. If p2 = p1 + 2, for any
q = (q1, . . . , qt ) ∈ S where q1 = p2, observe that

⌊ p1
3

⌋
+

∑
q +

⌊n − qt
3

⌋
+

⌊q1 − p1 + 1

3

⌋

=
⌊ p2 − 2

3

⌋
+

∑
(p2, q2, . . . , qt ) +

⌊n − qt
3

⌋
+

⌊ p2 − p1 + 1

3

⌋

=
⌊ p2 − 2

3

⌋
+

∑
(p2, q2, . . . , qt ) +

⌊n − qt
3

⌋
+ 1

=
∑

(p2, q2, . . . , qt ) +
⌊n − qt

3

⌋
+

⌊ p2 + 1

3

⌋
.

If p2 > p1 + 2, then for any (q1, . . . , qt ) ∈ S where q1 > p1 + 2, we have

⌊ p1
3

⌋
+

∑
q +

⌊n − qt
3

⌋
+

⌊q1 − p1 + 1

3

⌋

≤ wp1 +
⌊ p1 + 1

3

⌋
− 1 +

∑
q +

⌊n − qt
3

⌋
+

⌊q1 − p1
3

⌋

=
∑

(p1, q1, . . . , qt ) +
⌊n − qt

3

⌋
+

⌊ p1 + 1

3

⌋

since wp1 ≥ 2. Therefore, by putting all of the observations together, we see that

reg(P) = max
{
reg(R/(I (P), xp1+1)), reg(R/(I (P), xp1 ))

}

= max

⎧⎪⎨
⎪⎩

max
q∈S
q1=p1

{∑
q +

⌊ n − qt
3

⌋
+

⌊q1 + 1

3

⌋}
,
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Fig. 4 Two paths with the same total weights but different weight sequences

max
q∈S
q1≥p2

{⌊ p1
3

⌋
+

∑
q +

⌊ n − qt
3

⌋
+

⌊q1 − p1 + 1

3

⌋}
⎫⎪⎬
⎪⎭

= max

⎧⎪⎨
⎪⎩

max
q∈S
q1=p1

{∑
q +

⌊ n − qt
3

⌋
+

⌊q1 + 1

3

⌋}
, max

q∈S
q1=p2

{∑
q +

⌊n − qt
3

⌋
+

⌊q1 + 1

3

⌋}
⎫⎪⎬
⎪⎭

= max
q∈S

q1=p1,p2

{∑
q +

⌊ n − qt
3

⌋
+

⌊ p1 + 1

3

⌋}

where q1 = p2 occurs only when p2 = p1 + 2.

Corollary 4 Let P be a weighted naturally oriented path on vertices x1, . . . , xn with
the weight sequence (p1, . . . , pk). If pi+1− pi �= 2 for each i ∈ {1, . . . , k − 1} , then

reg(P) =
k∑

i=1

wpi +
k−1∑
i=1

⌊ pi+1 − pi
3

⌋
+

⌊n − pk
3

⌋
+

⌊ p1 + 1

3

⌋
− k

where k ≥ 1.

Proof Since pi+1 − pi �= 2 for each i ∈ {1, . . . , k − 1} , the maximal element under
containment of sets in S is (p1, . . . , pk) and the statement holds by Theorem 7.

Example 7 This example serves to illustrate that changing the positions of the nontriv-
ial weights can change the regularity of the graph. LetP3,P4 be the weighted oriented
paths pictured below in Fig. 4 where the two graphs each have three vertices with the
same nontrivial weight values but in different positions in the graphs.

By using the formula in Corollary 4, we can compute reg(P3) = 7, while reg(P4) =
8.Here, the added distance between the nontrivialweights inP4 results in the regularity
going up by one.

The following lemma is a consequence of the previous theorem and will be used in
Section 6. In this lemma, our objects are ideals obtained by taking the sum of an edge
ideal of a weighted naturally oriented path on n vertices x1, . . . , xn and monomial
ideal (xw1

1 ) where w1 > 1. Even though we introduce the term weight sequence for
weighted oriented paths, we can adopt this notion for these special ideals as they can be
seen as an extension of edge ideals of weighted oriented paths. Let I = (xw1

1 )+ I (P)

be a monomial ideal where w1 > 1 and P is a weighted naturally oriented path. We
call (1 = p1, p2, . . . , pk) the weight sequence of the ideal I where (p2, . . . , pk) is
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the weight sequence of P. By abusing notation, we can define the set S in a similar
way for these type of ideals. In the next lemma, we again take q = (q1, . . . , qt ) to be
a subsequence of (1 = p1, p2, . . . , pk) in S.

Lemma 8 Let L = (xw1
1 , x1x

w2
2 , . . . , xn−1x

wn
n ) be an ideal in R with the weight

sequence (1 = p1, . . . , pk). Then, we have

reg(R/L) = max
q1=1,3

{∑
(q1, . . . , qt ) +

⌊n − qt
3

⌋
+

⌊q1
3

⌋}
.

Proof Let L ′ = (x0x
w1−1
1 , x1x

w2
2 , . . . , xn−1x

wn
n ). Note that L and L ′ have the same

polarization (up to a relabeling vertices) and thus have the same Betti numbers. In
particular, reg(R/L) = reg(R/L ′) andwecanuseTheorem7 to calculate the regularity
of R/L ′. The ideal L ′ is the edge ideal of a weighted naturally oriented path on n + 1
vertices with weight sequence p1+1, . . . , pk+1 ifw1 �= 2, and with weight sequence
p2 + 1, . . . , pk + 1 if w1 = 2. We therefore have two cases to consider.

Case 1 Suppose first that w1 �= 2. Then by Theorem 7, we have

reg(R/L ′) = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
q1=3

{∑
q +

⌊ n − qt
3

⌋
+

⌊ q1 + 2

3

⌋}
,

max
q1=1

{
w1 − 1 +

t∑
i=2

wqi +
t−1∑
i=1

⌊ qi+1 − qi
3

⌋
+

⌊ n − qt
3

⌋
+

⌊ q1 + 2

3

⌋
− t

}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
q1=3

{∑
q +

⌊ n − qt
3

⌋
+

⌊ q1 + 2

3

⌋}
,

max
q1=1

{
t∑

i=1

wqi +
t−1∑
i=1

⌊ qi+1 − qi
3

⌋
+

⌊ n − qt
3

⌋
+

⌊ q1 − 1

3

⌋
− t

}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= max

{
max
q1=3

{∑
q +

⌊ n − qt
3

⌋
+

⌊ q1 + 2

3

⌋}
,max
q1=1

{∑
q +

⌊ n − qt
3

⌋
+

⌊ q1 − 1

3

⌋}}

Note that if q1 = 1 then
⌊
q1−1
3

⌋
=

⌊
q1
3

⌋
and if q1 = 3 then

⌊
q1+2
3

⌋
=

⌊
q1
3

⌋
. So

reg(R/L ′) = max
q1=1,3

{∑
q +

⌊n − qt
3

⌋
+

⌊q1
3

⌋}
.

Case 2 Suppose now that w1 = 2. Then, L ′ is a path of length n + 1 with weighted
sequence p2 + 1, . . . , pk + 1. By Theorem 7

reg(R/L ′) = max
q1=p2,p2+2

{∑
q +

⌊n − qt
3

⌋
+

⌊q1 + 2

3

⌋}

If (q1, . . . , qt ) ∈ S with q1 �= 3 then (1, q1, . . . , qt ) is in S also. Recalling that in
this case w1 = 2, we have

t∑
i=1

wqi +
t−1∑
i=1

⌊qi+1 − q1
3

⌋
− t +

⌊n − qt
3

⌋
+

⌊q1 + 2

3

⌋

123



484 Journal of Algebraic Combinatorics (2022) 55:461–491

=
t∑

i=1

wqi +
t−1∑
i=1

⌊qi+1 − q1
3

⌋
− t +

⌊n − qt
3

⌋
+

⌊q1 + 2

3

⌋
+ w1 − 2

= w1 +
t∑

i=1

wqi +
t−1∑
i=1

⌊qi+1 − q1
3

⌋
− t +

⌊n − qt
3

⌋
+

⌊q1 − 1

3

⌋
− 1

= w1 +
t∑

i=1

wqi +
t−1∑
i=1

⌊qi+1 − q1
3

⌋
+

⌊q1 − 1

3

⌋
− (t + 1) +

⌊n − qt
3

⌋
+

⌊1
3

⌋
.

Further, if q1 = 3 then, as before,
⌊
q1+2
3

⌋
=

⌊
q1
3

⌋
. Therefore, we have

reg(R/L ′) = max
q1=p2,p2+2

{∑
q +

⌊n − qt
3

⌋
+

⌊q1 + 2

3

⌋}

= max
q1=1,3

{∑
q +

⌊n − qt
3

⌋
+

⌊q1
3

⌋}
.

6 Weighted oriented cycles

Our main theorem of this section calculates the regularity of the edge ideal of a
weighted naturally oriented cycle and presents a formula similar to the one obtained
for weighted naturally oriented paths in Theorem 7.We begin with an analogous setup
as in the weighted naturally oriented path case.

Let C be a weighted naturally oriented cycle on the vertices x1, . . . , xn (in order)
with directed edges (x1, x2), (x2, x3), . . . , (xn−1, xn), (xn, x1) such that vertex xi has
weight wi for each i ∈ {1, . . . , n}. If all the weights of C are trivial, i.e., wi = 1 for
each i ∈ {1, . . . , n}, then studying I (C) is the same as studying the edge ideal of the
unoriented cycle I (C) for which the regularity is known, as discussed in Theorem 1.
Thus, we shall assume that wi ≥ 2 for some i .

In contrast to the path case, one has more freedom when it comes to determining
the positions of non-trivial weights of a weighted oriented cycle as one can reorder
the vertices of the cycle without changing the structure of the graph. Thus, without
loss of generality, when the cycle contains at least one non-trivial weight, we assume
that p1 = 1 for the remainder of the paper.

Notation 8 Similar to the path case, our formula for the regularity of the cycle will be
given in terms of subsequences of the weight sequence in which no two consecutive
entries are distance two apart. Due to the structure of the cycle, we modify the set we
previously called S as follows:

Ṡ = {(q1, . . . , qt ) ⊆ (p1, . . . , pk) : qi+1 − qi �= 2 for each i ∈ {1, . . . , t − 1},
and qt − q1 �= n − 2}.

We are again using the subset symbol to denote the subsequence relation.
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Fig. 5 Two naturally oriented weighted cycles on 10 vertices

The formula for the regularity of the cycle will be quite similar to that of the path
and will include the weight-position sum defined in Definition 6 where instead we take
q ∈ Ṡ:

∑
q =

∑
(q1, . . . , qt ) :=

t∑
i=1

wqi +
t−1∑
i=1

⌊qi+1 − qi
3

⌋
− t . (6.1)

The formula for the regularity of the weighted oriented cycle will differ from the
weighted oriented path as one needs to take into account the difference between the
positions of the first and last non-trivial weights for weighted oriented cycles.

Example 8 Let C1 and C2 be weighted oriented cycles as shown in Fig. 5, with the
weight sequences (1, 3, 4, 6, 7, 9) and (1, 2, 4, 6, 7, 9), respectively. Denote by Ṡ1
and Ṡ2 their corresponding sets as defined in Notation 8.

Then, the maximal elements with respect to inclusion of C1 in Ṡ1 are

{(1, 4, 7), (1, 6, 7), (3, 4, 7), (3, 4, 9), (3, 6, 7), (3, 6, 9)}.

Note that each of the maximal elements satisfy either q1 = 1, or q1 = 3. On the
other hand, the maximal elements of C2 in Ṡ2 are

{(1, 2, 6, 7), (1, 4, 7), (2, 6, 9), (4, 9)}.

Here, we see that each of the maximal elements satisfies either q1 = 1 or qt = 9.
Furthermore, we see how different Ṡ1 is from Ṡ2 although their weight sequences
differ by only one entry.

Theorem 9 Let C be a weighted naturally oriented cycle on n-vertices x1, . . . , xn with
the weight sequence (p1, . . . , pk). Then,

reg(C) = max
q∈Ṡ

{∑
(q1, . . . , qt ) +

⌊n + q1 − qt
3

⌋}
.

Before we prove the theorem, we begin with a lemma analogous to Lemma 7.
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Lemma 9 If C is a weighted naturally oriented cycle with weight sequence p and
q ⊆ q′ ∈ Ṡ then

∑
q +

⌊n + q1 − qt
3

⌋
≤

∑
q′ +

⌊n + q ′
1 − q ′

t

3

⌋
.

Moreover, we have

max
q∈Ṡ

{∑
q +

⌊n + q1 − qt
3

⌋}
= max

q∈Ṡ
q1=1 or q1=3
or qt=n−1

{∑
q +

⌊n + q1 − qt
3

⌋}
. (6.2)

Proof We again first consider the situation with q = (q1, . . . , qt ) ⊆ (q1, . . . , q j , r ,
q j+1, . . . , qt ) ∈ Ṡ. If q1 < r < qt , then the proof proceeds exactly as in the proof of
Lemma 7 so that

∑
q +

⌊n + q1 − qt
3

⌋
≤

∑
q′ +

⌊n + q1 − qt
3

⌋
.

For the case where r < q1 the proof follows from the fact that
⌊
n+q1−qt

3

⌋
≤⌊

n+r−qt
3

⌋
+

⌊
q1−r
3

⌋
+ 1. Similarly, when r > qt , we have

⌊
n+q1−qt

3

⌋
≤

⌊
n+q1−r

3

⌋
+⌊

r−qt
3

⌋
+ 1.

Extending this idea, we again see that the maximum element of{∑
q +

⌊
n+q1−qt

3

⌋
| q ∈ Ṡ

}
will be attained at an element of Ṡ of maximal length.

Let us now consider when (q1, . . . , qt ) ∈ Ṡ is of maximal length. Suppose qt �= n−1
and q1 �= 3 then we have (1, q1, . . . , qt ) ∈ Ṡ as q1 − 1 �= 2 and qt − 1 �= n − 2.
Thus, we see that sequence q ∈ Ṡ of maximal length will satisfy q1 = 1, q1 = 3, or
qt = n − 1.

Example 9 Let C1 and C2 be weighted oriented cycles with corresponding sequence
sets Ṡ1 and Ṡ2 as defined in Example 8. These cycles have the same number of vertices,
orientation, and total weight sum with their only difference being that the weight of
vertex x3 in C1 is moved to vertex x2 in C2.

Given q = (q1, . . . , qt ) ∈ Ṡi for i = 1, 2, define g(q) = ∑
q +

⌊
n+q1−qt

3

⌋
, the

expression introduced in Lemma 9. For each of the graphs C1 and C2, the following
tables provides the value of g(q) for each maximal element of q ∈ Si for i = 1, 2.

C1 : q (1, 4, 7) (1, 6, 7) (3,4,7) (3,4,9) (3, 6, 7) (3, 6, 9)
g(q) 11 7 12 12 9 10

C2 : q (1, 2, 6, 7) (1,4,7) (2, 6, 9) (4, 9)
g(q) 10 11 10 9
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Here, we see that the maximum value of
∑

q +
⌊
n+q1−qt

3

⌋
for C1 comes from

two maximal subsequences, namely (3, 4, 7) and (3, 4, 9). The maximum value of
g(q) comes from the subsequence (1, 4, 7) for C2. Using Macaulay 2 [6], we see that
reg(C1) = 12 and reg(C2) = 11, providing evidence that the regularity of the graphs
is given by g(q) which, as in the path case, depends on both the weight sequence and
the values of the weights.

We now prove the main theorem of this section.

Proof of Theorem 9 If wi ≥ 2 for all 1 ≤ i ≤ n, then the statement holds from
Corollary 1. Suppose that there exists at least one j ∈ {2, . . . , n} such that w j = 1.
Since k ≥ 1, we can always find at least one pair of consecutive vertices on the cycle
such that one has trivial weight, and the other has nontrivial weight. Without loss of
generality, let xn, and x1 be such a pair with wn = 1, and w1 ≥ 2.

We proceed by using a Betti splitting to calculate the regularity of the cycle. Taking
i = 1 in the statement of Corollary 3 results with a Betti splitting where J = (xnx

w1
1 )

and K = (x1x
w2
2 , . . . , xn−2x

wn−1
n−1 , xn−1xn). Then,

reg(C) = max{w1, reg(R/K ), reg(R/(J ∩ K )) − 1}.

Our goal is to show that maximum of w1, reg(R/K ), and reg(R/(J ∩ K )) − 1 is
equal to

max
q∈Ṡ

q1=1 or q1=3
or qt=n−1

{∑
q +

⌊n + q1 − qt
3

⌋}
.

It can be immediately verified that J ∩ K = J L where

L =
{

(xw2
2 , x2x

w3
3 , . . . , xn−3x

wn−2
n−2 , xn−1) if w2 �= 1

(x2, x3x
w4
4 , . . . , xn−3x

wn−2
n−2 , xn−1) if w2 = 1

.

By Lemma 3, we have

reg(R/(J ∩ K )) − 1 = w1 + reg(R/L). (6.3)

Note at this point we have that reg(R/(J ∩ K )) − 1 ≥ w1 and thus

reg(C) = max{reg(R/K ), reg(R/(J ∩ K ) − 1}.

We first focus on reg(R/(J ∩ K )) − 1. By Remark 1, we can ignore the single
variable generators and compute reg(R/L) by Lemma 8 when w2 �= 1, i.e., p2 = 2,
and by Theorem 7 when w2 = 1, i.e., p2 ≥ 3. Then, by Eq. 6.3, we have
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reg(R/(J ∩ K )) − 1

= w1 +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
(q1...,qt )∈Ṡ

q1≥p2 and qt �=n−1

{∑
q +

⌊n − 3 − (qt − 1)

3

⌋
+

⌊q1 − 1

3

⌋}
if p2 = 2

max
(q1,...,qt )∈Ṡ

q1≥p2 and qt �=n−1

{∑
q +

⌊n − 4 − (qt − 2)

3

⌋
+

⌊q1 − 2 + 1

3

⌋}
if p2 > 3

max
(q1,...,qt )∈Ṡ

q1≥p3 and qt �=n−1

{∑
q +

⌊n − 4 − (qt − 2)

3

⌋
+

⌊q1 − 2 + 1

3

⌋}
if p2 = 3

=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max
(q1,...,qt )∈Ṡ

q1≥p2 and qt �=n−1

{
w1 +

∑
q +

⌊n − 2 − qt
3

⌋
+

⌊qt − 1

3

⌋}
if p2 �= 3

max
(q1,...,qt )∈Ṡ

q1≥p3 and qt �=n−1

{
w1 +

∑
q +

⌊n − 2 − qt
3

⌋
+

⌊qt − 1

3

⌋}
if p2 = 3

Note that above expressions of which the maximums are taken are identical. Fur-
thermore, none of the (q1, . . . , qt ) ∈ Ṡ over which the maximums are taken can have
q1 = 3 nor can they have qt = n−1,which is equivalent to saying (1, q1, . . . , qt ) ∈ Ṡ.
By expanding the weight-sum formula in Equation 6.1 for any (q1, . . . , qt ) ∈ Ṡ where
q1 �= 3 and qt �= n − 1 (so that (1, q1, . . . , qt ) ∈ Ṡ), one can verify the following
equality.

w1 +
∑

(q1, . . . , qt ) +
⌊n − 2 − qt

3

⌋
+

⌊q1 − 1

3

⌋

=
∑

(1, q1, . . . , qt ) +
⌊n + 1 − qt

3

⌋
(6.4)

Thus, we can simplify reg(R/(J ∩ K )) − 1 to the following desired form

reg(R/(J ∩ K )) − 1 = max
q∈Ṡ
q1=1

{∑
q +

⌊n + 1 − qt
3

⌋}
.

We now consider reg(R/K ). Since K is the edge ideal of a weighted oriented path
on n vertices with the weight sequence (p2, . . . , pk), by Theorem 7, we get

reg(R/K ) = max
q∈Ṡ

q1≥p2

{∑
(q1, . . . , qt ) +

⌊n − qt
3

⌋
+

⌊q1 + 1

3

⌋}
(6.5)

where qt = n − 1 is possible.
Next, we show that maximums of the expressions computing reg(R/K ) and

reg(R/(J ∩ K )) − 1 yield the desired form as in the statement of the theorem. In
order to do that we consider the following expressions:
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∑
q +

⌊n + q1 − qt
3

⌋
with q1 = 1, and

∑
q +

⌊n − qt
3

⌋
+

⌊q1 + 1

3

⌋
with q1 ≥ p2

where q ∈ Ṡ and qt = n − 1 is possible in the second form. Again note that the
first expression is already of the desired form. If q1 ≥ p2 but qt �= n − 1 then it is
possible that (1, q1, . . . , qt ) ∈ Ṡ as long as p2 �= 3. In this case, Case 2(a) below,
we can directly compare the two expressions and show that the larger of the two is
of the desired form. In each of the other cases where the expressions are not directly
comparable (Case 1 being qt = n − 1 and Case 2(b) being p2 = 3 with qt �= n − 1),
we show that the second expression can also be written in the desired form.

Case 1 Suppose q ∈ Ṡ such that qt = n − 1. In this case, we see that⌊n + q1 − qt
3

⌋
=

⌊q1 + 1

3

⌋
and

⌊n − qt
3

⌋
= 0 giving us

∑
q +

⌊n − qt
3

⌋
+

⌊q1 + 1

3

⌋
=

∑
q +

⌊n + q1 − qt
3

⌋
.

Case 2 Suppose q ∈ Ṡ such that qt �= n − 1.
Case 2(a) We first consider the subcase p2 �= 3.
Note that (q1, . . . , qt ) ∈ Ṡ where q1 ≥ p2 and qt �= n − 1 is equivalent to

(1, q1, . . . , qt ) ∈ Ṡ and

∑
q +

⌊n − qt
3

⌋
+

⌊q1 + 1

3

⌋
≤

∑
q +

⌊n − qt + 1

3

⌋
+

⌊q1 + 2

3

⌋

=
∑

q +
⌊n + 1 − qt

3

⌋
+

⌊q1 − 1

3

⌋
+ 1

≤
∑

q +
⌊n + 1 − qt

3

⌋
+

⌊q1 − 1

3

⌋
+ w1 − 1

=
∑

(1, q1, . . . , qt ) +
⌊n + 1 − qt

3

⌋

where the last inequality follows from the assumption that w1 ≥ 2.
Case 2(b)We next consider the subcase p2 = 3. Then, for (q1, . . . , qt ) ∈ Ṡ where

q1 = p2 = 3, we have

∑
(q1, . . . , qt ) +

⌊n − qt
3

⌋
+

⌊q1 + 1

3

⌋
=

∑
(q1, . . . , qt ) +

⌊n + 3 − qt
3

⌋
.
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All the cases are now completed and we conclude the following:

reg(C) = max{reg(R/K ), reg(R/(J ∩ K )) − 1}

= max

⎧⎪⎨
⎪⎩
max
q∈Ṡ
q1=1

{∑
q +

⌊ n + 1 − qt
3

⌋}
, max

q∈Ṡ
q1≥p2

{∑
(q1, . . . , qt ) +

⌊ n − qt
3

⌋
+

⌊ q1 + 1

3

⌋}
⎫⎪⎬
⎪⎭

= max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
max
q∈Ṡ
q1=1

{∑
q +

⌊ n + 1 − qt
3

⌋}
, max

q∈Ṡ
qt=n−1

{∑
q +

⌊ n + q1 − qt
3

⌋}
, max

q∈Ṡ
q1=3

qt �=n−1

{∑
q +

⌊ n + 3 − qt
3

⌋}
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= max
q∈Ṡ

q1=1 or q1=3
or qt=n−1

{∑
q +

⌊ n + q1 − qt
3

⌋}
,

thus completing the proof.

Computer experiments suggest that it is a difficult task to provide a closed formula
for the regularity and projective dimension of the edge ideal for an arbitrary weighted
oriented graph. All evidence indicates that the positions of the non-trivial weights
and the orientation of the graph play essential roles in obtaining formulas for these
invariants. Even if we restrict to weighted oriented paths and cycles, but allow any
orientation, the problem remains a difficult one.
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