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Abstract
Recently, Skjelnes and Smith classified which Hilbert schemes on projective space are
smooth in terms of integer partitions λ = (λ1, . . . , λr ) with r = 0, λ = (n + 1), or
n ≥ λ1 ≥ · · · ≥ λr ≥ 1. In particular, they found there to be seven families of smooth
Hilbert schemes: one with r = 0 or λ = (n + 1), one with Hilbert schemes on the
projective line or plane, 4 families with λr = 1, and one with λr ≥ 2. In this paper,
we compute the sum of the Betti numbers for all of these families of smooth Hilbert
schemes over projective space except the case λr ≥ 2.

Keywords Hilbert scheme · Cohomology · Homology

1 Introduction

Hilbert schemes are one of the classic families of varieties. In particular, Hilbert
schemes of points on surfaces have been extensively studied; so extensively studied
that any reasonable list of example literature would take several pages, see [6,14,15]
for introductions to the area. This study was at least in part due to these being one
of the only sets of Hilbert schemes which were known to be smooth. Recent work
[17] has characterized exactly which Hilbert schemes on projective spaces are smooth
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by giving seven “families” of smooth Hilbert schemes in terms of integer partitions
λ = (λ1, . . . , λr ) satisfying λ = (n + 1), r = 0, or n ≥ λ1 ≥ · · · ≥ λr ≥ 1. Note,
a Hilbert scheme on projective space is nonempty if and only if the corresponding
Hilbert polynomial can be written as p(t) = ∑r

i=1

(t+λi−i
λi−1

)
for some integer partition

λ.
One of the most fundamental topological properties of an algebraic variety is its

homology. The homology of Hilbert schemes of points has been extensively studied,
e.g., [2,3,7,8,11,12]. It is an immediate consequence of [1] that the smooth Hilbert
schemes over C have freely generated even homology groups and zero odd homology
groups. This was used to compute the Betti numbers of Hilbert schemes of points
on the plane in [2]. A natural follow-up question then is what are the ranks of the
homology groups for all of the smooth Hilbert schemes? In this paper, we compute
the sum of the Betti numbers for six of the seven families of smooth Hilbert schemes.
Since these Hilbert schemes are smooth, this is equivalent to computing the dimension
of the cohomology ring as a vector space over C. Note, in this case, the cohomology
and the Chow rings are isomorphic.

In order to state the theorem, recall that Macaulay proved that the Hilbert scheme
of subschemes of Pn with Hilbert polynomial p, denoted P

n[p], is nonempty if and
only if p can be written in the form p(t) = ∑r

i=1

(t+λi−i
λi−1

)
for some integer partition

λ = (λ1, . . . , λr ) of integers satisfying λ = (n+1), r = 0, or n ≥ λ1 ≥ · · · ≥ λr ≥ 1.
Recently Skjelnes and Smith extended this work by classifying which of these Hilbert
schemes were smooth

Theorem 1.1 [17] Let p be a polynomial in a single variable with some sequence
λ = (λ1, ..., λr ) with n ≥ λ1 ≥ ... ≥ λr ≥ 1 or with λ = (n + 1). Then, the Hilbert
scheme Pn[p] on projective space is smooth if and only if:

1. n ≤ 2,
2. λr ≥ 2,
3. λ = (1)orλ = (nr−2, λ1r−1, 1

1) for all r ≥ 2,

4. λ = (nr−s−3, λs+2
r−s−2, 2

0, 11) for all r ≥ 2,
5. λ = (nr−s−5, 2s+4, 11) for all 0 ≤ s ≤ r − 5 and all r ≥ 5,
6. λ = (nr−3, 13) for all r ≥ 3, or
7. r = 0 or (n + 1)

Our main theorem computes the sum of the Betti numbers for six of those seven
families.

Theorem 1.2 Let Hn,λ be the sum of the Betti numbers for P
n[pλ] where pλ cor-

responds to the integer partition λ = (λ1, . . . , λr ). Explicit formulas for Hn,λ in
terms of only n and λ for families 1, 3, 4, 5, 6, and 7 are given in Propositions (3.2
& 4.4), 5.5, 5.7, 5.8, 5.9, and 5.1, respectively.

The proofs of these results work by translating the computation of the ranks of the
homology groups into counting saturated monomial ideals and then translating that
into counting choices of orthants in an (n + 1)-dimensional lattice.

There are countless future directions for work on the now classified smooth Hilbert
schemes. In particular, building on this work, ongoingwork aims to complete the count
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in the remaining case and to refine the computation to compute the Betti numbers for
the smoothHilbert schemes.Going further, onewould hope to understand the geometry
of the cycles such as the stable base locus decomposition on smooth Hilbert schemes
in terms of the integer partition and the geometry of the parametrized varieties.

The organization of the paper is as follows. In Sect. 2, the necessary background
is given. In Sect. 3, the case of Hilbert schemes over the projective line is worked out
as an example case. In Sect. 4, the case of Hilbert schemes over the projective plane
is worked out, which proves finishes the first part of Theorem 1.2. Finally, in Sect. 5,
we prove cases 3–7 of Theorem 1.2.

The authors would like to thank Harry Bray, who directed the Laboratory of Geom-
etry at Michigan when this work was carried out there, and Zhan Jiang, for many
enlightening conversations. The authors would also like to thank the referees; in par-
ticular, one of whom pointed out that Theorem 2.4 could be used to streamline many
of the proofs of later theorems.

2 Background

In this section, we review the necessary background material.
Let I ⊂ C[x0, . . . , xn] be a homogeneous ideal. As the quotient ring R/I is a

graded ring, it comes equipped with a Hilbert function, hI : Z≥0 → Z≥0, which
sends d to the dimension of the degree d graded piece. By Hilbert [10], this function
agrees with a polynomial HI for d >> 0. This is the Hilbert polynomial of I ; note,
this is more properly the Hilbert polynomial of R/I , but no confusion will arise by
this usage.

The degree of this polynomial is the dimension of V (I ), and the other coefficients
include other geometric information such as the degree. As the polynomial captures
a lot of the geometry of the subvariety cut out by I , a natural definition of equiva-
lence on algebraic subvarieties of Pn is those with the same Hilbert polynomial. By
Grothendieck [9], the set of subvarieties of Pn with the same Hilbert polynomial p
forms an algebraic scheme called the Hilbert scheme, denoted Hilbp(Pn) or Pn[p].
The first question one can ask about these Hilbert schemes is when are they nonempty.
This was answered by Macaulay.

Theorem 2.1 [13] Given R = C[x0, . . . , xn] and nonzero polynomial p(d) in one
variable, there exists ideals in RwithHilbert polynomial p(d) if and only if p(d) can be
written in the form �m

i=1

(d+λi−i
λi−1

)
for some integer partition n ≥ λ1 ≥ · · · ≥ λm ≥ 1.

Further, the zero polynomial corresponds to the integer partition (n + 1).

This theorem means any λ-sequence defines a Hilbert polynomial, and we can
also get a λ-sequence from any Hilbert polynomial written in the form shown in
Theorem 3.2. For example, if λ = (3, 2), then the corresponding Hilbert polynomial
is

(d+3−1
3−1

) + (d+2−2
2−1

) = (d+2
2

) + (d
1

) = (d+2)(d+1)
2! + d = 1

2d
2 + 5

2d + 1. We will
abuse notation and refer interchangeably to λ and pλ.
It is a natural question to ask about the homology of a Hilbert scheme, but this question
ismost interesting for the smoothHilbert schemeswhere Poincare duality holds,which
makes the homology dual to the cohomology. That naturally leads one to ask which
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Hilbert schemes are smooth. This was recently answered by Skjelnes and Smith [17].
Note, the λ′s in the following theorem are exactly the same as the λ′s mentioned in
the previous theorem.

Theorem 2.2 [17] Let p = pλ be a polynomial in a single variable corresponding to
the integer partition λ = (λ1, ..., λr ) with n ≥ λ1 ≥ ... ≥ λr ≥ 1 or λ = (n + 1).
Then, the Hilbert scheme Pn[p] on projective space is smooth if and only if:

1. n ≤ 2,
2. λr ≥ 2,
3. λ = (1)orλ = (nr−2, λ1r−1, 1

1) for all r ≥ 2,

4. λ = (nr−s−3, λs+2
r−s−2, 2

0, 11) for all r ≥ 2,
5. λ = (nr−s−5, 2s+4, 11) for all 0 ≤ s ≤ r − 5 and all r ≥ 5,
6. λ = (nr−3, 13) for all r ≥ 3, or
7. r = 0 or (n + 1).

Using this classification is simplified by a special case of Theorem 1.4 of [4], which
we restate in our notation, that allows one to treat the nk part of the partition separately.

Theorem 2.3 [4] Let p = pλ with λ = (nk, λ′) = (nk, λk+1, ..., λk+r ) with n − 1 ≥
λk+1 ≥ · · · ≥ λk+r ≥ 1. Then, the Hilbert scheme Pn[p] splits into the product

P
n[p] = P

n[q] × P
n[r ]

where q and r correspond to the partitions nk and λ′, respectively.
The Hilbert schemes over Pn inherit the PGL(n + 1) action from projective space

itself. In particular, this restricts to a C
∗-action; actually it restricts to many C

∗-
actions, any of which suffices for what follows. The fixed points of this action are
points corresponding to the finitely many saturated monomial ideals with that Hilbert
polynomial. That lets us apply the following theorem of Bialynicki-Birula to smooth
Hilbert schemes.

Theorem 2.4 [1] Let X be a smooth projective variety with an action of C∗. Suppose
that the fixpoint set {p1, . . . , pm} is finite, and let Xi = {x ∈ X : limt→0 t x = pi }.
Then, X has a cellular decomposition with cells Xi .

Pairing this theoremwith the following result of Fulton shows that a smooth Hilbert
scheme has freely generated even cohomology groups and no odd cohomology groups.

Theorem 2.5 [5] Let X be a scheme with a cellular decomposition. Then for 0 ≤ i ≤
dim(X),

(1) H2i+1(X) = 0,
(2) H2i (X) is a Z-module freely generated by the classes of the closures of the i-

dimensional cells, and
(3) The cycle map cl : A∗(X) → H∗(X) is an isomorphism.

Thus, in order to count the sum of the Betti numbers of a smooth Hilbert scheme it
suffices to count the number of saturatedmonomial idealswith thatHilbert polynomial.
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3 The projective line

We first consider the case where n = 1; equivalently, this is the case where the
polynomial ring is R = C[x0, x1]. In this case, the only possible partitions are λ =
(1m) or (2)which are equivalent to the constant Hilbert polynomialm or t+1. It is well
known that P1[m] = P

m and P
1[t+1] is a reduced point so Theorem 1.2 is immediate

in these cases. However, for completeness and clarity, we will give a basic argument
in the case of P1[m] = P

m which will illuminate the argument which is somewhat
obscured by indexing in the later sections.

3.1 Translation for the two variable case

Monomials in the variables x0 and x1 are of the form xa0 x
b
1 where a, b ∈ Z≥0.

Monomials in two variables are equivalent to points in the lattice Z2≥0 by pairing the

point (a, b) with the monomial xa0 x
b
1 . By a ray or 1-orthant in this lattice, we will

mean the points corresponding to the monomials in a set of the form (Fig. 1)

Pi0
a = {xai0xbi1 | b ∈ Z≥0} for some fixed a ∈ Z≥0.

We want to see how a set of rays/1-orthants corresponds to (the complement of) a
monomial ideal. Since all saturated ideals in two variables are principal, consider the
monomial ideal I = (xa0 x

b
1 ). Every monomial x = xc0x

d
1 /∈ I either has that c < a or

that d < b. That can be rephrased as

x /∈ I if and only if x ∈
(
b−1⋃

i=0

P1
i

)
⋃

⎛

⎝
a−1⋃

j=0

P0
j

⎞

⎠ .

This shows that the Hilbert polynomial of I = (xa0 x
b
1 ) is a + b, which gives the

following lemma.

Lemma 3.1 The number of saturated monomial ideals in two variables with Hilbert
polynomial d, which corresponds to the partition (1d), is the same as the number of
ways to choose d rays/1-orthants in the lattice Z2≥0 in stacks along the two axes.

The next proposition uses this lemma to count the number of saturated monomial
ideals.

Proposition 3.2 Given the ring R = C[x0, x1] and the partition λ = (1m), there are
exactly m + 1 saturated monomial ideals of R with Hilbert polynomial pλ = m.

Proof By the previous lemma, the problem of finding the number of saturated mono-
mial ideals boils down to finding the number of ways of choosing m rays/1-orthants
along either the x0-axis or x1-axis, which is clearly equal to m + 1. 	
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Fig. 1 A visualization of the sets P1
3 (in blue) and P0

2 (in maize) in the Z2≥0 (x0,x1) lattice

4 The projective plane

In this section, we prove the remainder of the first case of Theorem 1.2, which is the
case of Hilbert schemes on the projective plane. We note that this is known, at least
implicitly by [2]. We include this case at least in part to exemplify some of the more
difficult counting arguments which did not appear in the case of Hilbert schemes on
the projective line. To prove this case, we first show the correspondence of saturated
monomial ideals in 3 variables and the choice of rays and quadrants in Z

3≥0 similarly
to the correspondence in Sect. 3.
The three-variable case In the three-dimensional lattice, we have rays of the form

Pi0,i1
a,b = {xai0xbi1xci2 |c ∈ Z≥0} for some fixed a, b ∈ Z≥0.

On the other hand, we have quadrants of the form
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Pi0
a = {xai0xbi1xci2 |b, c ∈ Z≥0} for some fixed a ∈ Z≥0.

We want to see how the complement of a monomial ideal in this case is the union of
quadrants and rays; that is the content of the following lemma.

Lemma 4.1 Given the ring R = C[x0, x1, x2] and a saturated monomial ideal

I = (x
α1
0

0 x
α1
1

1 x
α1
2

2 , ..., x
αm
0

0 x
αm
1

1 x
αm
2

2 ), then the set of monomials not in I is of the form
(⋃k

i=0 P
ci1,c

i
2

pi1,p
i
2

) ⋃ (⋃�
j=0 P

c j1
p j
1

)
where

Pi0,i1
a,b = {xai0xbi1xci2 | c ∈ Z≥0} for some fixed a, b ∈ Z≥0 and

Pi0
a = {xai0xbi1xci2 | b, c ∈ Z≥0} for some fixed a ∈ Z≥0.

These are equivalent to quadrants/2-orthants and rays/1-orthants, respectively, in the
Z
3≥0 lattice where each point in our lattice (y0, y1, y2) corresponds to the monomial

x y00 x y11 x y22 .

Proof First consider the monomial ideal generated by a single monomial I =
(xα

0 x
β
1 x

γ
2 ). A monomial x = xa0 x

b
1 x

c
2 is not in I if and only if a < α, b < β, or

c < γ . In other words,

x /∈ I if and only if x ∈
(

α−1⋃

i=0

P0
i

)

∪
⎛

⎝
β−1⋃

j=0

P1
j

⎞

⎠ ∪
⎛

⎝
γ−1⋃

k=0

P2
k

⎞

⎠ .

Now let us consider a general monomial ideal, which we denote I = (xα1
0 xβ1

1 xγ1
2 , ...,

xαm
0 xβm

1 xγm
2 ) where α�, β�, γ� ∈ Z≥0 , ∀� ∈ {1, ...,m}. Defining I� = (xα�

0 xβ�

1 xγ�

2 )

for � ∈ {1, ..,m}, we notice that I = ⋃m
�=1 I�. By De Morgan’s Law, we see that

x /∈ I if and only if x ∈
m⋂

�=1

⎡

⎣

(
α�−1⋃

i=0

P0
i

)

∪
⎛

⎝
β�−1⋃

j=0

P1
j

⎞

⎠ ∪
⎛

⎝
γ�−1⋃

k=0

P2
k

⎞

⎠

⎤

⎦ .

To make set manipulation simpler, we define

A� =
α�−1⋃

i=0

P0
i , B� =

β�−1⋃

j=0

P1
j , and C� =

γ�−1⋃

k=0

P2
k .

Using this, we can rewrite the compliment of I as

x /∈ I if and only if x ∈
m⋂

�=1

(A� ∪ B� ∪ C�) .
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Recall that this intersection is equivalent to a union of 3m intersections of size m by
the distributive property of set intersections over unions.

In order to formally write this, we need some notation. Recall the symmetric group
on m letters, denoted Sm , is the set of permutations of the set {1, . . . ,m}. Define the
subset G2,m of Sm as the set of permutations σ of {1, . . . ,m} such that σ1 < · · · < σk ,
σk+1 < · · · < σ�, and σ�+1 < · · · < σm for some 1 ≤ k ≤ � ≤ m, i.e., permutations
which decrease at most twice. With this notation, we can write the complement of I
as

x /∈ I if and only if x ∈
⋃

g∈G2,m

⎛

⎝

⎛

⎝
k⋂

j=1

Ag( j)

⎞

⎠
⋂

⎛

⎝
�⋂

j=k+1

Bg( j)

⎞

⎠
⋂

⎛

⎝
m⋂

j=�+1

Cg( j)

⎞

⎠

⎞

⎠ .

We must consider 3 possible cases for our m sized intersections depending on the
values of k and �.
Case I: Consider the case where 0 < k < � < m. An intersection of such a form will
contain finitely many monomials. Since we are interested only in saturated ideals, we
can ignore this case since the Hilbert polynomial HI (d) does not consider the elements
in this intersection.
Case II: Next, consider any m-intersection of the form 0 = k < � < m, 0 < k = � <

m, or 0 < k < � = m. If 0 < k < � = m, the intersection is of the following form:

Ai1 ∩ Ai2 ∩ · · · ∩ Aik ∩ Bik+1 ∩ · · · ∩ Bim−1 ∩ Bim .

Let θg,0 = min{αi1, ..., αik } and θg,1 = min{βik+1, ..., βim }. The above intersection is
now equivalent to

⎛

⎝
θg,0−1⋃

i=0

P0
i

⎞

⎠ ∩
⎛

⎝
θg,1−1⋃

j=0

P1
j

⎞

⎠ =
⋃

0≤i≤θg,0−1 , 0≤ j≤θg,1−1

P0,1
i, j .

Similarly, if 0 < k = � < m and θg,0 = min{αi1, ..., αik } and θg,2 =
min{γik+1, ..., γim }, then the intersection above is now equivalent to

⎛

⎝
θg,0−1⋃

i=0

P0
i

⎞

⎠ ∩
⎛

⎝
θg,2−1⋃

j=0

P2
j

⎞

⎠ =
⋃

0≤i≤θg,0−1 , 0≤ j≤θg,2−1

P0,2
i, j .

Finally, if 0 = k < � < m and θg,1 = min{βi1 , ..., βik } and θg,2 = min{γik+1, ..., γim },
then the intersection above is now equivalent to

⎛

⎝
θg,1−1⋃

i=0

P1
i

⎞

⎠ ∩
⎛

⎝
θg,2−1⋃

j=0

P2
j

⎞

⎠ =
⋃

0≤i≤θg,1−1 , 0≤ j≤θg,2−1

P1,2
i, j .
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Case III: Lastly, consider any m-intersection with 0 < k = � = m, 0 = k < � = m,
or 0 = k = � < m. If 0 < k = � = m, we have the intersection

A1 ∩ · · · ∩ Am

Now, let θ0 = min{α1, . . . , αn}, and note that

A1 ∩ · · · ∩ Am =
θ0−1⋃

i=0

P0
i .

Similarly, if 0 = k < � = m and θ1 = min{β1, . . . , βn}, then

B1 ∩ · · · ∩ Bm =
θ1−1⋃

i=0

P1
i .

Finally, if 0 = k = � < m and θ2 = min{γ1, . . . , γn}, then

C1 ∩ · · · ∩ Cm =
θ2−1⋃

i=0

P2
i .

Since every intersection is one of those three cases, the result follows. 	

This lemma means that counting saturated monomial ideals on the plane with fixed

Hilbert polynomial is equivalent to counting quadrants and rays whose complement is
the monomials of an ideal with that Hilbert polynomial. We want to bound the exact
number of quadrants and rays that will give the correct Hilbert polynomial, but first
we need to know some more information about Hilbert polynomials when n = 2.

Proposition 4.2 Suppose p(d) is a polynomial in d such that p(d) = Md−r for some
M, r ∈ R, then p(d) is a Hilbert polynomial if and only if M ∈ Z≥0, r ∈ Z, and

r ≤ M2 − 3M

2
and therefore λ = (2M , 1

M2−3M
2 −r ).

Proof We first prove the forward direction. Assume p(d) is a Hilbert polynomial. By
Macaulay [13], this implies that there exists a lambda sequence, say λ = (2A, 1B),
where A, B ∈ Z≥0 such that

p(d) =
A∑

i=1

(
d + 2 − i

1

)

+
A+B∑

i=A+1

(
d + 1 − i

0

)

Simplifying the expression for p(d), we get

p(d) = Ad −
(
A2 − 3A

2
− B

)

= Md − r
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Thus, we see here that M = A and r = A2−3A
2 − B. Since A, B ∈ Z≥0 and p(d) is a

Hilbert polynomial, we have that M ∈ Z≥0 and r = B − A(A−3)
2 ∈ Z. Since B ≥ 0,

we get that M2−3M
2 ≥ r .

Now, we proceed with the reverse direction. Let p(d) = Md − r , M ∈ Z≥0,

r ∈ Z, and r ≤ M2−3M
2 . Then, p(d) is a Hilbert polynomial because we can choose

λ = (2M , 1
M2−3M

2 −r ). With that choice, we get that

Hλ(d) =
M2−3M

2 −r+M∑

i=1

(
d + λi − i

λi − 1

)

=
M∑

i=1

(d + 2 − i)

+
M2−3M

2 −r+M∑

i=M+1

(1) = Md − r = p(d).

	

Next, we know from Lemma 4.1 that the number of saturated monomial ideals in

three variables for a given Hilbert polynomial p(d) is equivalent to the number of
ways of choosing some number of quadrants and rays in the Z3≥0 lattice. So, now we
establish the connection between a given Hilbert polynomial and the exact number of
quadrants and rays that will be chosen in the Z3≥0 lattice.

Lemma 4.3 In R = C[x0, x1, x2], given a Hilbert polynomial pλ with associated
lambda partition λ = (2A, 1B), the number of saturated monomial ideals in R with
associated Hilbert polynomial pλ is equivalent to the number of ways of choosing A
quadrants and B rays in Z3≥0 (none of which are contained in another).

Proof Consider a Hilbert polynomial pλ. By Theorem 4.2, we note that this Hilbert
polynomial must take the form pλ(d) = Md − r where A = M ∈ Z≥0, r ∈ Z, and

B = M2−3M
2 − r ≥ 0.

Any quadrant inZ3≥0, say Pi0
a , represents all monomials of the form xai0x

ρ
i1
xη
i2
where

a is fixed and ρ, η ∈ Z≥0 are variable. We choose the quadrants in order, subject to

listing P
i j
a before P

i j
a+1 for all a and j . Thus, the number of monomials of degree d in

which xi0 has degree a is
(d−a+1

1

) = d − a + 1. However, if P
i j
a is the i-th quadrant

we list, then it has i − a monomials of degree d in common with previously listed
quadrants (one for each quadrant which is not parallel to it). Putting this together, the
i-th listed quadrant contributes d − a − (i − 1 − a) + 1 = d + 2 − i to the Hilbert
polynomial; by the contribution of a (k-)orthant we mean the number of monomials
of degree d for d >> 0 in that (k-)orthant not in a previously listed (k-)-orthant. This
implies that in order for the linear term of the Hilbert polynomial pλ(x) to have a
coefficient of M , there must be M distinct quadrants in the complement of the ideal
as the rays do not contribute to the linear term. Thus, the contribution of all of the
quadrants to the Hilbert polynomial is

∑M
i=1

(t+2−i
2−1

)
.

Then, the rays must contribute the remaining part of the constant term which is
easily seen to be B. Since rays in Z

3≥0 contain only one point in the Z3≥0 lattice for
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each d > 0, they each contribute 1 to the Hilbert polynomial. Thus, the monomials
not in the ideal consist of exactly A quadrants and B rays. 	


Thus, given aHilbert polynomial pλ with associated lambda partitionλ = (2A, 1B),
A, B ∈ Z≥0 we note that the number of saturated monomial ideals for this Hilbert
polynomial in R = C[x0, x1, x2] is equivalent to number of ways of choosing A
quadrants and B rays in Z

3≥0. Finally, we can establish the following proposition,
which is part of Theorem 1.2.

Proposition 4.4 Given the ring R = C[x0, x1, x2] and the partition λ = (2m, 1r ), the
number of saturated monomial ideals of R with Hilbert polynomial pλ is exactly

(
m + 2

2

)

·
∑

c1+c2+c3=r

[
f1(c1) · f1(c2) · f1(c3)

]

where c1, c2, c3 ∈ Z≥0 and f1 : Z≥0 → Z>0 is the function which maps an integer c
to the number of integer partitions of c.

Proof First, consider the case where r = 0. In that case, the lambda partition of
pλ is of the form λ = (2m). By the previous lemma, we know that the number of
saturated ideals I ∈ R = C[x0, x1, x2] is equivalent to the number of ways to choose
m quadrants in Z3≥0, or in other words, the number of unique sets

(
α−1⋃

i=0

P0
i

)

∪
⎛

⎝
β−1⋃

j=0

P0
j

⎞

⎠ ∪
⎛

⎝
γ−1⋃

k=0

P0
k

⎞

⎠

where α + β + γ = m.
Clearly, the uniqueness of each set is determined by the assignment of α, β and γ .
Thus, for the case where r = 0, we get that the number of saturated monomial ideals
for pλ for n = 2 is

(m+2
2

)
.

Next, consider whenm = 0, i.e., when λ = (1r ). By the previous lemma, the num-
ber of saturated monomial ideals with Hilbert polynomial pλ for n = 2 is equivalent
to the number of ways to choose r rays in Z

3≥0. Much like for the case where r = 0,
we note that there are only 3 forms of which these rays can be; for a fixed a, b ∈ Z≥0
these are

Pi0,i1
a,b = {xai0xbi1xci2 |c ∈ Z≥0}, Pi0,i2

a,b = {xai0xci1xbi2 |c ∈ Z≥0}, or Pi1,i2
a,b

= {xci0xai1xbi2 |c ∈ Z≥0}.

Visually, these r rays can only extend in one of 3 directions in the Z3≥0 lattice: the xi0 ,
the xi1 , or the xi2 direction. In order to count the number of ways to pick r rays, we
first count the ways to divide the rays into one of the 3 directions, and then count the
number of ways to orient the rays in each direction. These two counts are independent
of each other. It is easy to see that there are

(r+2
2

)
unique distributions of these r rays

into the xi0 , xi1 and xi2 directions.
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If P
i j ,ik
a,b is in the complement of a saturated ideal then so are P

i j ,ik
a−1,b or P

i j
a−1 unless

a = 0. Similarly, if P
i j ,ik
a,b is in the complement of a saturated ideal then so are P

i j ,ik
a,b−1

or Pik
b−1 unless b = 0. Given the previous facts and that we have already picked which

quadrants are included, any valid choice of a set of rays in one direction is such that the
lattice points of fixed degree in the rays form (the centers of the squares of) a Young
diagram. In other words, the number of valid arrangement of k rays in one direction
is the number of integer partitions of k.

If we do this for each distinct distribution of rays then the number of ways to choose
r rays in Z3≥0 is given by

∑

c0+c1+c2=r

[
f1(c0) · f1(c1) · f1(c2)

]

Lastly, whenm and r are both nonzero, we find that the choice of them quadrants will
not affect the number of choices possible for the r rays. To see this, recall that a given
choice of the m quadrants in Z3≥0 is of the form

( α−1⋃

i=0

P0
i

)

∪
( β−1⋃

j=0

P0
j

)

∪
( γ−1⋃

k=0

P0
k

)

where α + β + γ = m.
This choice “shifts” the region in which the remaining r rays can be chosen.We can

think about choosing the remaining r rays in the Z3≥0 lattice in which the coordinate
axes are defined by x0 − α, x1 − β and x2 − γ . Thus, the number of ways to choose
the r rays in this region is exactly the same as choosing r rays when m = 0 so the
choice of the m quadrants is independent of the choice of the r rays. Thus, combining
the earlier two cases, we have that there are

(
m + 2

2

)

·
∑

c1+c2+c3=r

[
f1(c1) · f1(c2) · f1(c3)

]

many ways to choose m quadrants and r rays in Z
3≥0 where c1, c2, c3 ∈ Z≥0. Along

with Lemma 4.3, this concludes the proof. 	


5 General case

In this section, we prove the remaining cases of Theorem 1.2.
We first note that one case of Theorem 1.2 is immediate as the relevant Hilbert

schemes are each a single reduced point.

Proposition 5.1 If r = 0 or λ = (n + 1), then Hn,λ = 1.

For the rest of the cases,wemust first show that a saturatedmonomial ideal corresponds
to a union of 1-orthants, 2-orthants, 3-orthants, etc., in the lattice Zn+1

≥0 .
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Proposition 5.2 Given the ring R = C[x0, x1, . . . , xn] and a saturated monomial
ideal

I = (x
α1
0

0 . . . x
α1
n

n , . . . , x
αm
0

0 . . . x
αm
n

n ), then the set of monomials not in I is of the form
⋃M

i=1 P
ci1,...,c

i
ri

pi1,...,p
i
ri

for some positive integer M and for some fixed p1, . . . , pn+1−k ∈ Z≥0

where

Pc1,...,cn+1−k
p1,...,pn+1−k = {x p1

c1 . . . x pn+1−k
cn+1−k x

pn+2−k
cn+2−k . . . x pn

cn | pn+2−k, . . . , pn ∈ Z≥0}

is a k-orthant in an+1-dimensional latticewhere eachpoint in our lattice (p0, . . . , pn)
corresponds to the monomial x p0

0 . . . x pn
n .

Proof Utilizing the same approach as before gives us that a k-orthant in the n + 1-
dimensional lattice would be of the form

Pc1,...,cn+1−k
p1,...,pn+1−k = {x p1

c1 . . . x pn+1−k
cn+1−k x

pn+2−k
cn+2−k . . . x pn

cn | pn+2−k, .., pn ∈ Z≥0}
for some fixed p1, . . . , pn+1−k ∈ Z≥0

Aswith the previous approach, let us begin by considering amonomial ideal generated
by a single element (xα0

0 . . . xαn
n ). Then, the set of monomials in the compliment of I

is
⎛

⎝
α0−1⋃

i0=1

P0
i0

⎞

⎠ ∪ · · · ∪
⎛

⎝
αn−1⋃

in=1

Pn
in

⎞

⎠ .

Now, let us consider amonomial idealwithm generators I = (x
α1
0

0 . . . x
α1
n

n , . . . , x
αm
0

0 . . .

x
αm
n

n ) and let I� = (x
α�
0

0 . . . x
α�
n

n )which then gives us that I = ⋃m
�=1 I�. ByDeMorgan’s

laws, we have that

x /∈ I if and only if x̄ ∈
m⋂

�=1

⎡

⎣

⎛

⎝
α�
0−1⋃

i0=1

P0
i0

⎞

⎠ ∪ · · · ∪
⎛

⎝
α�
n−1⋃

in=1

Pn
in

⎞

⎠

⎤

⎦

From here, let us simplify our notation by setting

A j
� =

α�
j−1
⋃

i j=1

P j
i j
.

Using this, we can rewrite the compliment of I as

x /∈ I if and only if x ∈
m⋂

�=1

⎛

⎝
n⋃

j=1

A j
�

⎞

⎠ .
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The intersection above then simplifies into a (n + 1)m sized union of m sized inter-
sections.

In order to formally write this, we need some notation. Recall the symmetric group
on m letters, denoted Sm , is the set of permutations of the set {1, . . . ,m}. Define the
subsetGn,m of Sm as the set of permutations σ of {1, . . . ,m} such that σ1 < · · · < σk1 ,
. . . , and σkn−1+1 < · · · < σn for some 1 ≤ k1 ≤ · · · ≤ kn−1 ≤ n, i.e., permutations
which decrease at most n times. With this notation, we can write the complement of
I as

x /∈ I if and only if x ∈
⋃

g∈Gn,m

⎛

⎝

⎛

⎝
k1⋂

j=1

A1
g( j)

⎞

⎠
⋂

· · ·
⋂

⎛

⎝
n⋂

j=kn−1+1

An
g( j)

⎞

⎠

⎞

⎠ .

Now as before, we observe that if a single one of these intersections has all possible
Ai , then it contains finitely many monomials. Hence, we can ignore this case since
for d >> 0 the Hilbert polynomial HI (d) would not count these. Next, consider an
intersection of the form

(A0
1 ∩ · · · ∩ A0

j1) ∩ (A1
j1+1 ∩ · · · ∩ A1

j2) ∩ . . . · · · ∩ (Ah
jh+1 ∩ · · · ∩ Ah

jh+1
)

with h < n. If we let θ0 = min{α1
0, . . . , α

j1
0 }, θ1 = min{α j1+1

1 , . . . , α
j2
1 }, . . . , θh =

min{α jh+1
h , . . . , α

jh+1
h } then our intersection above is equivalent to

⎛

⎝
θ0−1⋃

l0=0

P j0
l0

⎞

⎠ ∩ · · · ∩
⎛

⎝
θh−1⋃

lh=0

P jh
lh

⎞

⎠ =
⋃

0≤l0≤θ0−1,...,0≤lh≤θh−1

P j0,.., jh
l0,...,lh

.

Thus, the intersections of this form correspond to an n − h-orthant. Since any inter-
section in the union has this form for some 1 ≤ h ≤ n − 1 (or is irrelevant to the
saturation), the result follows. 	

Based on the case of the line, one may naively expect that any arrangement of (k-
)orthants giving the Hilbert polynomial pλ where λ = (nkn , . . . , 1k1) consists of ki
many i-orthants, but this is incorrect.

Example 5.1 Consider the Hilbert polynomial p(d) = 2d + 1 with lambda sequence
λ = (22) and n ≥ 3. If the naive correspondence holds true for all n ≥ 3, then
we should expect that every choice of two quadrants in Z

n+1
≥0 will result in a Hilbert

function h(d) such that h(d) = p(d) for some d >> 0. However, consider the
following two quadrants in Zn+1

≥0

P1 = P2,3,4,...,n
0,0,0,...,0 and P2 = P0,1,4,...,n

0,0,0,...,0

Note that P1 and P2 do not intersect other than at the origin since recall that the
elements of P1 and P2 are
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P1 = {1, x0, x1, x0x1, ..., xa0 xb1 , ...} for some a, b ∈ Z≥0

P2 = {1, x2, x3, x2x3, ..., xc2xd3 , ...} for some c, d ∈ Z≥0

Thus, P1 and P2 each contribute d + 1 to the Hilbert polynomial for this specific
monomial ideal h(d). Thus, the Hilbert polynomial of the corresponding ideal must
be h(d) = (d + 1) + (d + 1) = 2d + 2. Thus, the naive correspondence fails.

In order to study the case where the naive correspondence does hold, or where we
can salvage an adapted version of it, we first need a general remark

Remark 5.3 Consider a k-orthant K in the complement of a saturatedmonomial ideal I
such that every (k+1)-orthant containing it intersects the ideal. The number of degree
d monomials in K is

(d+k−1
k−1

)
so K ’s contribution to the Hilbert polynomial only

effects the coefficients of the terms with degree at most k − 1 and adds nonnegatively
to the degree k − 1 coefficient.

Using this remark, we can show that the naive correspondence does hold for the
n-orthants in the arrangement and the nk in the partition, which splits off as a product
by 2.3.

Lemma 5.4 Let pλ be the Hilbert polynomial corresponding to the partition λ = (nk).
Then, the complement of any saturated monomial ideal in n+1 variables with Hilbert
polynomial pλ is exactly k many n-orthants and

Hn,λ =
(
n + k

k

)

.

Proof We first show that the complement of any monomial with Hilbert polynomial
pλ contains exactly k many n-orthants. Given λ, the corresponding Hilbert polynomial∑m

i=1

(t+λi−i
λi−1

)
has degree n−1. Since there are no terms of degree greater than n−1,

the complement of the ideal cannot contain the entire n+1-dimensional lattice so only
the n-orthants contained in the complement of I contribute to the leading coefficient.
Since the n-orthants overlap with other (k-)orthants in lower-dimensional spaces, each
n-orthant contributes 1

(n−1)! to the leading coefficient. Since the leading coefficient of
pλ is k

(n−1)! , the complement of I contains exactly k many n-orthants.
We now exclude the possibility of any other k-orthants being in the complement

of the ideal. If we think of choosing those n-orthants in order by the amount which
they are shifted away from the axes, consider the i-th chosen n-orthant, K . It is
parallel to j previously chosen n-orthants for some 0 ≤ j ≤ i − 1. Then, there are(d+n− j

n−1

)
monomials of degree d in K . Similarly, it overlaps each of the k-th previously

chosen nonparallel n-orthants (of the i − 1 − j previously n-orthants) in
(d+n−1−k

n−2

)

many monomials of degree d. Thus, the contribution of the i-th chosen n-orthant is
(d+n− j

n−1

)−∑i− j
k=1

(d+n−k− j
n−2

) = (d+n−i
n−1

)
. Thus, the contribution of all of the n-orthants

to the Hilbert polynomial is
∑k

i=1

(d+n−i
n−1

)
so there are no other k-orthants in the

complement of the ideal.
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Finally, we count Hn,λ. By the proof so far, a saturated monomial with this Hilbert
polynomial is equivalent to the choice of k many n-orthants so there are

(n+k
k

)
ways

to choose k of them. 	

These lemmas form the basis for proving the remaining cases of Theorem 1.2, in

the following there propositions.

Proposition 5.5 If λ = (nk, 1), then Hn,λ = (n+k
k

)
(n + 1).

If λ = (nk, 12), then Hn,λ = 3
(n+k

k

)(n+1
2

)
.

If λ = (nr−2, λr−1, 1) where r ≥ 2 and n − 1 ≥ λr−1 ≥ 2, then Hn,λ =
(n+r−2

r−2

)(n+1
λr−1

)
(n + 1 − λr−1)(λr−1 + 1), respectively.

Proof In the case λ = (1), the Hilbert polynomial is pλ = 1. Then, the Hilbert scheme
is Pn so the result is immediate. Similarly, the case of λ = (nk, 12) is immediate by
Lemma 5.4, Theorem 2.3, and Lemma 2.1 of [16].

In the last case, it suffices to show that Hn,λ = (n+1
λr−1

)
(n+1)where λ corresponds to

the partition (λ1, 1)with n−1 ≥ λ1 ≥ 2 by Lemma 5.4 and Theorem 2.3. The Hilbert
polynomial in this case is pλ = (d+λ1

λ1−1

) + 1 which has degree λ1 − 1, the complement
of the ideal must contain at least 1 λ1-orthant. The first λ1-orthant chosen contributes(d+λ1
λ1−1

)
to the Hilbert polynomial. After having chosen this, there is only a remaining 1

to be contributed to the Hilbert polynomial, which again must be contributed by a ray.
Thus, a saturated monomial ideal with Hilbert polynomial pλ is equivalent to picking
a λ1-orthant and a ray.

There is
(n+1

λ1

)
ways to choose the λ1-orthant, and there are then n + 1 − λ1 ways

to choose the ray not parallel to the λ1 orthant and λ1(n + 1− λ1) ways to choose the
ray parallel to it given the previous choice. Putting these together gives

Hn,λ =
(
n + 1

λ1

)

(n + 1 − λ1)(λ1 + 1).

	

Lemma 5.6 If λ = (nr , λsr+1, 1) where r , s ≥ 0 and n − 1 ≥ λr+1 ≥ 1 and P

n[pλ] is
smooth, then

Hn,λ =
(
n + r

r

)(
n + 1

λr+1 + 1

) ((
λr+1 + 1 + s

s

)

(n − λr+1)(λr+1 + 2) − (λr+1 + 1)(n − 1 − 2λr+1)) .

Proof By Lemma 5.4 and Theorem 2.3, it suffices to show that

Hn,λ =
((

n + 1

λr+1 + 1

) ((
λr+1 + 1 + s

s

)

− (λr+1 + 1)

)

+
(
n + 1

λr+1

))

(n + 1)

where λ corresponds to the partition (λs1, 1). Arguing analogously to the previous cases
using the coefficients of the Hilbert polynomials, we see the complement must also
contain exactly s many λ1-orthants. However, not all choices of s many λ1-orthants
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live in the complement some ideal with the correct Hilbert polynomial. In particular,
a generalization of Example 5.1 to 6 variables (choosing two 3-orthants such that they
all only intersect at the origin) shows that not all choices of s quadrants live in the
complement some ideal with the correct Hilbert polynomial. We now characterize
those that do.

If the λ1-orthants are not all contained in any (λ1 + 1)-orthant, then we claim that
they do not give the correct Hilbert polynomial. In particular, choose the first two of
them to not lie in the same (λ1 + 1)-orthant, then they contribute at least

(
d + λ1 − 1

λ1 − 1

)

+
(
d + λ1 − 2

λ1 − 1

)

+
((

d + λ1 − 2

λ1 − 2

)

−
(
d + λ1 − 2

λ1 − 3

))

and all of the subsequently chosen ones contribute at least the expected amount. In
either case, this would force a negative number of (λ1 − 1)-orthants in order to have
the correct Hilbert polynomial, which is obviously impossible.

On the other hand, if all of them are chosen within a (λ1 + 1)-orthant, then the k-th
chosen one contributes

(d+λ1−k
λ1−1

)
to the Hilbert polynomial as expected.

Finally, given a choice of s many λ1-orthants in some (λ1 + 1)-orthant, there is a
remaining one in the Hilbert polynomial which must be contributed by a single addi-
tional ray. Thus, a saturated monomial ideal with Hilbert polynomial pλ is equivalent
to the choice of s many λ1-orthants in some (λ1 + 1)-orthant and a single ray.

There at
( n+1
λ1+1

)
ways to choose the (λ1 +1)-orthant containing the λ1-orthants. We

count the case where all of the λ1-orthants are parallel separately as the number of
choices of ray depends on that difference. Given a chosen (λ1 + 1)-orthant, there are(
λ1+1+s

s

) − (λ1 + 1) ways to choose the λ1-orthants such that they are not all parallel
and (λ1 + 1) ways to choose them all parallel. If the λ1-orthants are not all parallel,
then there are (n + 1 − (λ1 + 1))(λ1 + 2) = (n − λ1)(λ1 + 2) ways to choose a ray.
If the λ1-orthants are all parallel, then there are (n + 1− λ1)(λ1 + 1) ways to choose
a ray.

Putting this together gives

Hn,λ =
(
n + 1

λ1 + 1

)( ((
λ1 + 1 + s

s

)

− (λ1 + 1)

)

(n − λ1)(λ1 + 2)

+(n + 1 − λ1)(λ1 + 1)2
)

=
(
n + 1

λ1 + 1

) ((
λ1 + 1 + s

s

)

(n − λ1)(λ1 + 2) − (λ1 + 1)(n − 1 − 2λ1)

)

.

	

When λr+1 ≥ 3, replacing r and s with r − s−3 and s+2, respectively, immediately
gives the following corollary.
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Proposition 5.7 If λ = (nr−s−3, λs+2
r−s−2, 1) where r − 3 ≥ s ≥ 0 and n − 1 ≥

λr−s−2 ≥ 3, then

Hn,λ =
(
n + r − s − 3

r − s − 3

)(
n + 1

λr−s−2 + 1

)

∗
((

λr−s−2 + s + 3

s + 2

)

(n − λr−s−2)(λr−s−2 + 2) − (λr−s−2 + 1)(n − 1 − 2λr−s−2)

)

.

Similarly, when λr+1 = 2, replacing r and s with r − s − 5 and s + 4, respectively,
immediately gives the following corollary.

Proposition 5.8 If λ = (nr−s−5, 2s+4, 1) where r − 5 ≥ s ≥ 0, then

Hn,λ =
(
n + r − s − 5

r − s − 5

)(
n + 1

3

) (

4

(
s + 7

s + 4

)

(n − 2) − 3(n − 5)

)

.

Proposition 5.9 If λ = (nk, 13), then Hn,λ = (k+n
n

) n(n+1)(5n+1)
3 .

Proof By Lemma 5.4 and Theorem 2.3, it suffices to show that Hn,λ = n(n+1)(5n+1)
3

where λ corresponds to the partition (13). Since rays contribute 1 each and any k-
orthant for k ≥ 2 would change higher order terms, this means that there are 3 rays to
be chosen. Thus, a saturated monomial with this Hilbert polynomial is equivalent to
the choice of 3 rays.

There are
(n+1

3

)
ways to choose the rays in distinct directions. There are 2n

(n+1
2

)

ways to choose the rays in only two directions. Finally, there are (n + 1)
(
n + (n

2

))

ways to choose the three rays in the same direction. In total, there are

[(
n + 1

3

)

+ 2n

(
n + 1

2

)

+ (
n + 1

)(
n + n(n − 1)

2

)]

saturated monomial ideals in n + 1 variables with Hilbert polynomial pλ. This count
simplifies to

Hn,λ =
(
n(n + 1)(5n + 1)

3

)

.
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