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Abstract
We study several consequences of the packing problem, a conjecture from combina-
torial optimization, using algebraic invariants of square-free monomial ideals. While
the packing problem is currently unresolved, we successfully settle the validity of
its consequences. Our work prompts additional questions and conjectures, which are
presented together with their motivation.
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1 Introduction

The packing problem introduced by Conforti and Cornuéjols [5] is a conjecture origi-
nating from combinatorial optimization in the context of max-flowmin-cut properties.
It has been brought into commutative algebra through the inspiring paper [21] ofGitler,
Valencia and Villarreal. A comprehensive account of this problem from an algebraic
perspective can be found in the monograph [30, §14.3] as well as in the surveys [18]
and [11]. We state an algebraic version of this problem in Conjecture 1.2 as well as a
more combinatorial version that is closer to the roots of the problem in combinatorial
optimization in Conjecture 2.15.
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Our contribution in this paper is to study several consequences of the packing
problem. Since the packing problem is at the moment of this writing still a conjecture,
we believe that it is useful to approach it gradually by establishing the truth for at
least some of its consequences. We also make connections between the circle of ideas
related to the packing problem andAlexander duality for square-freemonomial ideals.

To state the packing problem and our main results, we need to introduce some of the
main characters of this writing. A square-free monomial ideal is an ideal generated by
square-free monomials in a polynomial ring. This class of ideals encodes numerous
combinatorial objects, chief among which are simplicial complexes and hypergraphs.
In this paper, we focus on the correspondence between square-free monomial ideals
and hypergraphs.

A square-free monomial ideal I has a unique irredundant decomposition into
prime ideals which takes the form I = P1 ∩ · · · ∩ Ps with Pi = (x j1, . . . , x js j

)

for j = 1, . . . , s. Furthermore, one defines the height of I , ht(I ) to be the minimum
of the number of minimal generators of the prime components Pi . Based on the above
decomposition, for each positive integer m one defines the m-th symbolic power of I
to be the monomial ideal

I (m) = Pm
1 ∩ · · · ∩ Pm

s .

Symbolic power ideals are important in algebraic geometry where they encode poly-
nomial functions vanishing to high order on a given algebraic variety. They are also
relevant in combinatorics. For example, if I is the edge ideal of a (hyper)graph, the
m-th symbolic power of I encodes the m-covers of the (hyper)graph.

We single out a class of square-free monomial ideals which is important to this
project.

Definition 1.1 A square-free monomial ideal I is König if there is a set of pairwise
coprime monomials in I of cardinality ht(I ).

The ideal I has the packing property if every ideal obtained from I by setting a
(possibly empty) subset of the variables equal to 0 and a disjoint (possibly empty)
subset of the variables equal to 1 is König.

The terminology König is best explained by the connection to König’s theorem
on bipartite graphs; see the discussion preceding Theorem 2.10, and the terminology
packed is explained by the relationship to edge packings in hypergraphs. See Conjec-
ture 2.15 for a combinatorial formulation of the packing problem which clarifies this
perspective.

Conjecture 1.2 (The packing problem—[21, Conjecture 3.10], [19, Theorem 4.6])
The symbolic and ordinary powers of a square-free monomial ideal I coincide, i.e.,
I (m) = I m for all positive integers m, if and only if I has the packing property.

While the direct implication of Conjecture 1.2 is known to hold, cf. [19, Theorem
4.6, Corollary 4.14]; see also [11, p. 422], the converse implication is at the time of this
writing a long-standing conjecture. For the case of graphs, Conjecture 2.15 holds by
[19, Proposition 4.27, Theorem 4.6]. Previous work on the packing problem includes
[1,8,9,14,22,26,27].
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Our work establishes that three consequences of the converse implication in the
packing problem hold. The first consequence gives a numerical shadow of the equality
of the ordinary and symbolic powers of an ideal in the form of an equality between the
initial degree and theWaldschmidt constant. The initial degree α(I ) of a homogeneous
ideal I is the least degree of a nonzero element of I . The Waldschmidt constant of I
can be viewed as an asymptotic initial degree for the family of symbolic powers of I .

This invariant is defined as α̂(I ) = limm→∞ α(I (m))
m ; see Definition 3.7 for details.

The second consequence gives a shadow of the equality of the ordinary and sym-
bolic powers of an ideal in convex geometric terms. In detail, there are two convex
bodies that can be associated with the families of ordinary and symbolic powers of a
monomial ideal I , respectively, see [6]. These are termed the Newton polyhedron of
I , N P(I ), and the symbolic polyhedron of I , S P(I ) cf. Definitions 3.1 and 3.3. We
show that these two polyhedra are equal for ideals which have the packing property.
Equivalently linear programs having these two convex bodies as feasible sets have the
same solutions.

Our main results on consequences of the packing problem are summarized below:

Theorem (Theorem 4.1, Conjectures 4.2, 4.3) If I is a square-free monomial ideal
which satisfies the packing property, then there are equalities α(I ) = α̂(I ) and
N P(I ) = S P(I ), as predicted by the packing problem. Moreover, the optimal solution
for any linear program with feasible set N P(I ) coincides with the optimal solution
for the linear program with the same objective function and feasible set S P(I ).

We also study the relationship between the packing property and Alexander duality,
with the following conclusion.

Theorem (Corollary 5.12) Let I be an equidimensional square-free monomial ideals
I such that I ∨ is also equidimensional. Then, I and I ∨ satisfy the packing property
simultaneously, that is, I satisfies the packing property if and only if I ∨ does.

Our paper is organized as follows: Sect. 2 provides a dictionary between square-
free monomial ideals and hypergraphs, presents several combinatorial optimization
invariants of hypergraphs and restates the packing problem in combinatorial language.
Section 3 introduces several convex bodies and combinatorial optimization invariants
for monomial ideals. Three consequences of the packing problem are introduced and
proven in Sect. 4 as Theorem 4.1, Conjectures 4.2, 4.3. In Sect. 5, we discuss the
irreversibility of the consequences of the packing problem formulated in this paper,
single out the class of uniform hypergraphs as a possible candidate for which the
converses of our resultsmay apply, and prove Corollary 5.12 regarding the relationship
between the packing property and Alexander duality.

2 Square-freemonomial ideals and hypergraphs

In this section, we present the fundamental dictionary relating square-free monomial
ideals to hypergraphs, also known as clutters. We supplement this dictionary by inter-
preting somehypergraph and ideal theoretic invariants bymeans of linear optimization.
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An excellent reference for this theory is [30]. We do not make any claims of novelty
for the contents of this section. Much of it can be found in [24].

We denote by N the set of non-negative integers and by [n] the set {1, . . . , n}.

2.1 Square-freemonomial ideals as edge ideals of hypergraphs

An ideal of the polynomial ring R = K [x1, . . . , xn] with coefficients in a field K is a
monomial ideal if it is generated by monomials. It is a square-free monomial ideal if
it is generated by square-free monomials, i.e., every generator has the form xi1 · · · xit

with i j ∈ [n]. A square-freemonomial ideal I has a unique irredundant decomposition
into prime ideals which takes the form:

I = P1 ∩ · · · ∩ Ps with Pi = (x j1 , . . . , x js j
) for j ∈ [s].

The prime ideals Pj appearing in this decomposition are called the associated primes
of I and form a set denoted Ass(I ). The height of a square-free monomial ideal I is
the least number of variables needed to generate any of its associated primes, i.e.,

ht(I ) = min
P∈Ass(I )

ht(P) = min
j∈[s] s j .

A hypergraph is an ordered pair H = (V , E) where V = {x1, . . . , xn} is the set
of vertices, and E consists of subsets of V such that if ei ⊆ e j , then ei = e j . The
elements of E are called edges. When the cardinality of each edge is |ei | = 2, H is a
graph.

There is a bijective correspondence between hypergraphs H on n vertices and
square-free monomial ideals of R = K [x1, . . . , xn] by means of the following con-
struction.

Definition 2.1 Given any hypergraph H = (V , E), one can associate with H a square-
free monomial ideal I (H) called the edge ideal of H . Precisely, we define

I (H) = (xi1xi2 · · · xit | {i1, i2, . . . , it } ∈ E).

The correspondence between hypergraphs H and square-free monomial ideals
I (H) extends to a dictionary relating combinatorial invariants of H to algebraic invari-
ants of I (H). For example, the associated primes of I (H) are related to the maximal
independent sets and minimal vertex covers of the hypergraph H . We say that A ⊆ V
is an independent set of H if e � A whenever e ∈ E . It is maximal if it is maximal
with respect to inclusion among all independent sets of H .

A subset U ⊆ V is a vertex cover or transversal of a hypergraph if e ∩ U �= ∅

whenever e ∈ E . A vertex cover is minimal if it is so with respect to containment. A
minimum vertex cover is a vertex cover of smallest cardinality. Note that a minimum
vertex cover is minimal, but the converse need not be true. The cardinality of any
minimum vertex cover for a hypergraph H is denoted τ(H) and termed the transversal
number of the hypergraph H .
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The following lemma gives a formal description of the relationship between asso-
ciated primes of I (H) and minimal vertex covers and maximal independent sets of
H .

Lemma 2.2 Suppose that H = (V , E) is a hypergraph with E �= ∅ and let I = I (H).
Let I = P1 ∩ · · · ∩ Ps be the irredundant prime decomposition of I , and set P ′

i =
{x j | x j /∈ Pi } for i ∈ [s]. Then, identifying the set of generators for each of these
ideals with the set of corresponding vertices in V , yields

(1) P1, . . . , Ps are the minimal vertex covers of H
(2) P ′

1, . . . , P ′
s are the maximal independent sets of H,

(3) ht(I (H)) = τ(H).

Proof The first statement is proven in [30, Lemma 6.3.37]. The last statement follows
from the first and the definitions for height and τ(H). For the second statement, any
P ′

i is a maximal independent set if and only if V \Pi is a minimal vertex cover. We
now use the first claim to finish the proof. ��

2.2 Linear optimization invariants of hypergraphs

The transversal number of a hypergraph introduced above can be described as the
solution of an integer optimization problem. To formulate the problem, we introduce
incidence matrices.

Definition 2.3 The incidence matrix of the hypergraph H = (V , E) with V =
{v1, . . . , vn} and E = {e1, . . . , et } is the n × t matrix given by

Bi, j =
{

1 if vi ∈ e j

0 if vi /∈ e j .
(2.1)

The following lemma utilizes the notation z = [

z1 · · · zn
]T for a column vector in

R
n , 0 for the zero vector in R

n , and 1 for the vector in R
n with all entries equal to 1.

Moreover, inequalities between vectors are understood componentwise.

Lemma 2.4 The transversal number τ(H) of a hypergraph H is the optimum value of
the following integer program:

minimize z1 + · · · + zn

subject to BT z ≥ 1andz ∈ N
n .

(2.2)

Proof A vector z ∈ Z
n satisfies the inequality BT z ≥ 1 if and only if for each edge

ei ∈ E there is some j ∈ [n] such that v j ∈ ei and z j ≥ 1 if and only if the set
v(z) = {v j | z j ≥ 1} is a vertex cover for H . The linear program (2.2) seeks to
minimize the cardinality of the vertex cover v(z), in accordance with the definition of
the transversal number. ��
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An edge packing or matching of a hypergraph H = (V , E) is a subset of disjoint
edges, i.e., D ⊆ E such that no two elements of D share a vertex. Since the edges
of H are in bijection with the minimal monomial generators of the edge ideal I (H)

and two edges are disjoint if and only if the monomials representing them in I (H) are
coprime, we have the following description for edge packing in algebraic terms:

Remark 2.5 Edge packings of a hypergraph H are in bijection with subsets of the
minimal monomial generators of I (H) in which the elements are pairwise coprime.

Maximal and maximum edge packings are defined to be the edge packings that
are maximal with respect to containment and to cardinality, respectively. The size
of a maximum edge packing is called the packing number of H , denoted π(H). The
packing number of a hypergraph is also the solution to an integer optimization problem
with constraints given by the incidence matrix (2.1), which we now describe.

Lemma 2.6 The packing number of a hypergraph π(H) is the optimum value of the
following integer linear program

maximize y1 + · · · + yt

subject to By ≤ 1andy ∈ N
t .

(2.3)

Proof A vector y ∈ N
t satisfies the inequality By ≤ 1 if and only if for each vertex

vi ∈ V there at most one j ∈ [n] such that vi ∈ e j and y j ≥ 1 if and only if the set
e(y) = {ei | yi ≥ 1} is a packing for H . The linear program (2.3) seeks to maximize
the cardinality of the packing e(y), in accordance with the definition of the packing
number. ��

Solving integer optimization problems is much harder than solving linear opti-
mization problems in R

n because the simplex algorithm solves the latter problem
efficiently, while there are no efficient algorithms to solve the former. Therefore, a
standard practice is to consider the real relaxation of an integer program. The relax-
ations of the integer programs in (2.2) and (2.3) are described below. This follows a
well-established trend to study fractional invariants of combinatorial structures; see
[28] for an overview of this method.

Definition 2.7 Define the fractional transversal number τ f (H), of a hypergraph H to
be the optimum solution for the following linear program

minimize z1 + · · · + zn

subject to BT z ≥ 1 and z ≥ 0.
(2.4)

The feasible set of the linear program above is termed the set covering polyhedron
in [30]. This polyhedron is defined as follows:

Q(H) = {z ∈ R
n | BT z ≥ 1, z ≥ 0}. (2.5)

If Q(H) is an integer polyhedron, meaning that its vertices have integer coordinates,
then the hypergraph H is called Fulkersonian or ideal. Any Fulkersonian hypergraph
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H satisfies τ f (H) = τ(H). This class of hypergraphs is analyzed from an algebraic
perspective in [16,29] .

Definition 2.8 Define the fractional packing number of a hypergraph H , π f (H), to
be the optimum solution for the relaxation of packing problem, namely

maximize y1 + · · · + yt

subject to By ≤ 1 and y ≥ 0.
(2.6)

An important tool in linear programming is linear program duality. This is exem-
plified by the linear programs (2.4) and (2.6), which are dual to each other. A core
aspect of linear optimization is that (real) dual linear programs have the same optimum
value; hence, there is an equalityπ f (H) = τ f (H). In fact, based on linear programing
duality, Lemmas 2.4, and 2.6 we deduce the following inequalities

π(H) ≤ π f (H) = τ f (H) ≤ τ(H). (2.7)

It is natural to ask under what circumstances there is equality among the four
invariants involved in Eq. (2.7). In combinatorial optimization, one considers more
generally pairs of dual integer programs with arbitrary objective function. When these
pairs have equal optimumvalues, the hypergraph is said to satisfy themax-flow min-cut
property.

We note that the equality π(H) = τ(H) is equivalent to asking for the edge ideal
I (H) to be König cf. Definition 1.1.

Remark 2.9 A hypergraph H satisfies the equality π(H) = τ(H) if and only if I (H)

is König. Indeed, by Remark 2.5, π(H) is the cardinality of the largest set of pairwise
coprime monomials among the generators of I , whereas by Lemma 2.2 τ(H) =
ht(I (H)).

The following celebrated theorem of König and Egerváry provides a context in
which the equality π(H) = τ(H) is achieved for graphs. Together with the preceding
remark, this shows that edge ideals of bipartite hypergraphs are König.

Theorem 2.10 (König, Egerváry—see, e.g., [13, Theorem 2.1.1, p.30]) In any bipar-
tite graph G, the number of edges in a maximum matching equals the number of
vertices in a minimum vertex cover, i.e., τ(G) = π(G).

2.3 The packing problem as a combinatorial optimization problem

In this section, we reformulate the packing problem Conjecture 2.15 in terms of the
linear optimization invariants of hypergraphs introduced above.

Remark 2.9 suggests the following definition:

Definition 2.11 A hypergraph H is König if it satisfies the equality τ(H) = π(H).

Following the convention in [9,18], we define two operations on hypergraphs to get
smaller hypergraphs.
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Definition 2.12 A deletion in a hypergraph is the removal of a vertex v from the vertex
set and the removal of any edges that contain it from the edge set. A contraction in
a hypergraph is the removal of a vertex from the vertex set and from any edges that
contain it.

A minor of a hypergraph H = (V , E) is a hypergraph obtained through a sequence
of deletions and contractions. More precisely, it is a hypergraph

h = (V \(V ′ ∪ V "), {e\V ′′ | e ∈ E, e ∩ V ′ = ∅}

obtained by fixing disjoint (possibly empty) sets V ′, V ′′ ⊆ V , deleting all vertices in
V ′ and contracting all vertices in V ′′.

We translate Definition 2.12 into algebraic language as follows.

Lemma 2.13 If h is a minor of H, then I (h) is obtained from I (H) by setting the
variables corresponding to v ∈ V ′ equal to 0 and the variables corresponding to
v′′ ∈ V ′′ equal to 1.

Proof This follows from the description of the edge set of the minor h in Defini-
tion 2.12. ��

Based on Definition 2.11 and Lemma 2.13, we can translate the packing prop-
erty of square-free monomial ideals Definition 1.1 into an equivalent definition for
hypergraphs.

Definition 2.14 A hypergraph H is said to have the packing property if every minor
h of H is König, that is, satisfies τ(h) = π(h).

Finally, we can restate the packing problem in combinatorial language:

Conjecture 2.15 (The packing problem—hypergraph version) A hypergraph H sat-
isfies I (H)(m) = I (H)m for all m ∈ N if and only if H has the packing property.

3 Linear optimization invariants of monomial ideals

In this section, we introduce some algebraic invariants of monomial ideals which can
be realized as solutions of linear optimization problems and we expand upon their
relationship to the combinatorial optimization invariants from the previous section.

3.1 Convex bodies associated tomonomial ideals

For a homogeneous ideal I the initial degree, denoted α(I ), is the least degree of a
nonzero element of I . We show that the initial degree of a monomial ideal can be
expressed as the solution of a linear program. For this, we first define the feasible
region of the program.
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Definition 3.1 The Newton polyhedron of a monomial ideal I is the convex hull of the
exponent vectors of all monomials in I , namely

N P(I ) = convexhull{(a1, . . . , an) ∈ N
n | xa1

1 · · · xan
n ∈ I }.

Newton polyhedra of monomial ideals I are integer (or lattice) polyhedra, meaning
that their vertices have integer coordinates. Indeed, the vertices of N P(I ) are the
exponent vectors for a subset of the minimal generators of I .

With this notation, the initial degree of a monomial ideal I can be expressed as the
solution of a linear program as follows.

Lemma 3.2 If I is a monomial ideal, then the initial degree α(I ) is the solution of the
following linear program

minimize a1 + · · · + an

subject to a = (a1, . . . , an) ∈ N P(I ).
(3.1)

Proof This follows because the optimal solution is attained at a vertex of N P(I )
and, as remarked above, the vertices of N P(I ) correspond to a subset of the minimal
generators of I . Thus, the optimum value of the linear program (3.1) corresponds to
a minimal generator of I of least degree. ��

While the vertices of the Newton polyhedron are easy to understand, the dual
description in terms of bounding inequalities is often difficult to come by. Below we
describe a different polyhedron obtained from a square-free monomial ideal which has
the advantage that its bounding inequalities can be read off the prime decomposition
of the ideal.

Definition 3.3 The symbolic polyhedron of a square-free monomial ideal I with prime
decomposition I = P1 ∩ · · · ∩ Ps such that Pj = (x j1 , . . . , x js j

) for j ∈ [s] is defined
to be the intersection of the Newton polyhedra of the prime components

S P(I ) = N P(P1) ∩ · · · ∩ N P(Ps)

Equivalently, y = (y1, . . . , yn) ∈ R
n is a point in S P(I ) if and only if it satisfies

{

y j1 + · · · + y js j
≥ 1 for 1 ≤ j ≤ s

yi ≥ 0 for 1 ≤ i ≤ n.

In contrast to the Newton polyhedron, the symbolic polyhedron is a rational poly-
hedron, meaning that its vertices have rational coordinates. For applications of the
symbolic polyhedron, including relationships to combinatorics, see [2,7].

The following result elucidates the relationship between the Newton and symbolic
polyhedra of a monomial ideal.
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Proposition 3.4 Let I be a square-free monomial ideal. Then, there is a containment
N P(I ) ⊆ S P(I ) and the two polyhedra have the same lattice points, that is,

N P(I ) ∩ N
n = S P(I ) ∩ N

n .

Proof Let I be a square-freemonomial ideal,with decomposition into primemonomial
ideals given by I = P1 ∩ · · · ∩ Ps for some s ∈ N. The containment N P(I ) ⊆ S P(I )
follows from the considering the containments I ⊆ Pi which yield N P(I ) ⊆ N P(Pi )

for i ∈ [s]. Therefore, we conclude N P(I ) ⊆ ⋂s
i=1 N P(Pi ) = S P(I ).

The previous containment implies N P(I ) ∩ N
n ⊆ S P(I ) ∩ N

n . Let a =
(a1, . . . , an) ∈ S P(I )∩N

n be a lattice point in S P(I ). It follows that for all i ∈ [s]we
have a ∈ N P(Pi ). It is well known that the lattice points in the Newton polyhedron
of a monomial ideal correspond to monomials in the integral closure of the ideal [23,
Proposition 1.6]; hence, xa := xa1

1 · · · xan
n ∈ Pi , where Pi denotes the integral closure

of Pi . Since monomial prime ideals are integrally closed, we conclude that xa ∈ Pi

for all i ∈ [s], thus xa ∈ I and a ∈ N P(I ) ∩ N
n , as desired. ��

We can now give an alternate description for the initial degree of a square-free
monomial ideal. To do this,we need to associate amatrixwith the prime decomposition
of a monomial ideal.

Definition 3.5 For a square-free monomial ideal I with prime decomposition I =
P1 ∩ · · · ∩ Ps such that Pj = (x j1 , · · · , x js j

) for j ∈ [s], we define a s × n prime
decomposition matrix with entries

Ai, j =
{

1 if x j ∈ Pi

0 if x j /∈ Pi .
(3.2)

In the following statement a = [

a1 · · · an
]T denotes a vector in R

n .

Lemma 3.6 If I is a square-free monomial ideal, then the initial degree α(I ) is the
optimal solution of the following equivalent linear programs:

minimize a1 + · · · + an minimize a1 + · · · + an

subject to a ∈ S P(I ) ∩ N
n subject to Aa ≥ 1anda ∈ N

n .
(3.3)

Proof That α(I ) is the optimal solution of the leftmost linear program follows from
Lemma 3.2, Proposition 3.4 and the fact that N P(I ) is an integer polyhedron. It
remains to show the equivalence of the two linear programs in the statement. This
reduces to showing they have the same feasible region. Comparing the bounding
inequalities for S P(I ) provided in Definition 3.3 to the inequalities in the rightmost
linear program defined using the prime decomposition matrix (3.2), one concludes
that they coincide. ��

Wenow turn to the relaxation of the linear program in (3.1),which yields a fractional
version of the initial degree. It turns out that this algebraic invariant has first appeared
in the literature under a different guise, which we now recall.
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Definition 3.7 [4] The Waldschmidt constant of a homogeneous ideal I is the value
of the following limit

α̂(I ) = lim
m→∞

α(I (m))

m
.

It turns out that the sequence {α(I (m))}m∈N is subadditive as shownby the containments
I (m) I (m′) ⊆ I (m+m′) for all m, m′ ∈ N. Farkas’ lemma [17] thus applies to show that
the limit in Definition 3.7 exists and is equal to the infimum of the respective sequence.

The following theorem shows that theWaldschmidt constant of a square-freemono-
mial ideal is the optimum value of the relaxation of the linear program (3.1).

Theorem 3.8 ([7, Corollary 6.3]) For a square-free monomial ideal I with prime
decomposition matrix A as in (3.2), the Waldschmidt constant α̂(I ) is the optimum
value of the following equivalent linear programs:

minimize a1 + · · · + an minimize a1 + · · · + an

subject to a ∈ S P(I ) subject to Aa ≥ 1anda ≥ 0.
(3.4)

3.2 Alexander duality

To relate the algebraic invariants for monomial ideals introduced in Sect. 3 to the
combinatorial invariants for hypergraphs encountered in Sect. 2.2, it is convenient to
introduce the notion of Alexander duality.

Definition 3.9 Let I be a square-free monomial ideal with prime decomposition I =
P1 ∩ · · · ∩ Ps , where Pj = (x j1, . . . , x js j

) for j ∈ [s]. The Alexander dual of I is the
square-free monomial ideal

I ∨ = (x j1x j2 · · · x js j
| j ∈ [s]).

If H is the hypergraph with edge ideal I = I (H), we define the dual hypergraph
of H as the hypergraph H∨ whose edge ideal is I (H)∨, i.e., I (H∨) = I (H)∨. In the
combinatorial optimization literature, H∨ is called the blocker of H .

The importance of Alexander duality in our setting is that it interchanges the prime
decomposition matrix (3.2) and the (transpose of the) incidence matrix (2.1). The
following observation arises from comparing Definition 3.5, Definition 2.3, and Def-
inition 3.9.

Lemma 3.10 If I is a square-free monomial ideal, H is the hypergraph satisfying I =
I (H), A and A∨ denote the prime decomposition matrices of I and I ∨, respectively,
and B and B∨ denote the incidence matrices of H and H∨, respectively, then

A∨ = BT and B∨ = AT .
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This simple observation shows how the algebraic invariants of monomial ideals
relate to combinatorial invariants of hypergraphs.

Corollary 3.11 If I is a square-free monomial ideal and H is the hypergraph satisfying
I = I (H), then the initial degree and Waldschmidt constant of I can be expressed in
terms of the (fractional) transversal number of the dual hypergraph H∨ as follows:

α(I ) = τ(H∨), α̂(I ) = τ f (H∨) and τ(H) = α(I ∨), τ f (H) = α̂(I ∨).

We now turn to convex geometric relationships between the symbolic polyhedron
of a square-free monomial ideal, and the set covering polyhedra Q(H) and Q(H∨)

for the corresponding hypergraph and its dual.

Corollary 3.12 Let I be a square-free monomial ideal and let H be the hypergraph
satisfying I = I (H). The following are equivalent

(1) the symbolic polyhedron of I is an integer polyhedron,
(2) the hypergraph H is Fulkersonian,
(3) the dual hypergraph H∨ is Fulkersonian,
(4) the symbolic polyhedron of I ∨ is an integer polyhedron.

Proof FromDefinition 3.3, Eq. (2.5), and the previous lemma, it follows that S P(I ) =
Q(H∨). The latter is an integer polyhedron if and only if H∨ is Fulkersonian, estab-
lishing the equivalence of (1) and (2). The equivalence of (2) and (3) follows from [3,
Corollary, p. 210]. The equivalence of (3) and (4) follows from the equivalence of (1)
and (2) by duality. ��

Using Lemma 2.13, one can express contraction and deletion as dual operations
through the lens of Alexander duality.

Lemma 3.13 If I is a square-free monomial ideal, H is the hypergraph satisfying
I = I (H), V ′, V ′′ are subsets of the vertex set of H, and H ′ and H ′′ are the minors
of H obtained by deleting V ′ and contracting V ′′, respectively, then

(1) (I (H ′))∨ = (I |{x ′
v=0|v′∈V ′})∨ = I ∨|{x ′

v=1|v′∈V ′} and
(2) (I (H ′′))∨ = I ∨|{x ′′

v =0|v′′∈V ′′} = (I |{x ′′
v =1|v′′∈V ′′})∨.

In particular, (H ′)∨ is obtained from H∨ by contracting V ′ and (H ′′)∨ is obtained
from H∨ by deleting V ′′.

Proof Lemma 2.13 yields I (H ′) = I |{x ′
v=0|v′∈V ′} and I (H ′′) = I |{x ′′

v =1|v′′∈V ′′}.
Suppose I = P1 ∩ · · · ∩ Ps is the irredundant prime decomposition of I and that
Pi ∩ V ′′ = ∅ if and only if i ∈ [t]. Set P ′

i = (xv | xv ∈ Pi\V ′), mi = ∏

xv∈Pi
xv and

m′
i = ∏

xv∈P ′
i

xv = mi |{x ′
v=1|v′∈V ′} . Then, a prime decomposition of I (H ′) is

I (H ′) =
s

⋂

i=1

Pi |{x ′
v=0|v′∈V ′} =

s
⋂

i=1

P ′
i ,
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whichyields I (H ′)∨ = (m′
1, . . . , m′

s) = (m1, . . . , ms)|{x ′
v=1|v′∈V ′} = I ∨|{x ′

v=1|v′∈V ′}.
Moreover, a prime decomposition of I (H ′′) is I (H ′′) = ⋂t

i=1 Pi which yields

I (H ′′)∨ = (m1, . . . , mt ) = (m1, . . . , ms)|{x ′′
v =0|v′′∈V ′′} = I ∨|{x ′′

v =0|v′′∈V ′′}.

��

4 Consequences of the packing problem

We now turn our attention to establishing some consequences of the packing problem.
These are recorded in Theorem 4.1, Conjectures 4.2, and 4.3, which constitute the
main results of this section. Their interconnections are summarized in the following
sequence of implications elaborated upon in below

T heorem 4.1

Conjecture 2.15 (packing problem) T heorem 4.3

T heorem 4.2

(4.1)

We note that the horizontal implications are non-reversible in Sect. 5.
We now state three consequences of the packing problem. We will prove their

validity in the remainder of the section.
The first is a convex geometric shadow of Conjecture 1.2.

Theorem 4.1 If I is a square-free monomial ideal which satisfies the packing property,
then S P(I ) = N P(I ).

The second is a linear optimization shadow of Conjecture 1.2.

Theorem 4.2 If I is a square-free monomial ideal which satisfies the packing property
and f (a) = c1a1 + · · · + cdad is any linear function with ci ≥ 0 for each i , then the
following two linear programs have equal optimum values:

minimize c1a1 + · · · + cdad minimize c1a1 + · · · + cdad

subject to a ∈ S P(I ) subject to a ∈ N P(I ).
(4.2)

The restriction ci ≥ 0 for each i insures that the optimum values of the linear
programs in (4.2) are real numbers. If this is not satisfied, then the optimum values of
both programs are−∞. This is because both the Newton and the symbolic polyhedron
are closed under increasing coordinates.

The third consequence is a numerical shadow of Conjecture 1.2.

Theorem 4.3 If I is a square-free monomial ideal which satisfies the packing property,
then there is an equality

α̂(I ) = α(I ).
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We start by showing that the validity of each of the above theorems follows from
the validity of the packing problem Conjecture 1.2. For this purpose, we recall the
following result regarding points with rational coordinates in symbolic polyhedra.

Lemma 4.4 ([7, Proposition 6.1]) Let I be a monomial ideal with symbolic polyhedron
S P(I ). For any a ∈ S P(I )∩Q

d , there exists a positive integer b such that xma ∈ I (m)

whenever m is divisible by b.

Armed with this result, we are now ready to prove a general result regarding the
equality of the symbolic and Newton polyhedra.

Proposition 4.5 Let I be a monomial ideal such that I (n) = I n for all n ≥ 1. Then,
there is an equality N P(I ) = S P(I ).

Proof To prove the claim, it suffices to show that every vertex of S P(I ) lies in N P(I ).
By convexity of N P(I ) and S P(I ), this would imply S P(I ) ⊆ N P(I ). Let a =
(a1, . . . , ad) ∈ S P(I ) be a vertex. Since the bounding hyperplanes of S P(I ) are
given by equations with integer coefficients by Definition 3.3, we have that a ∈ Q

n .
By Lemma 4.4, we can choose some positive integer b such that xba ∈ I (b) = I b. This
implies that ba ∈ N P(I b) = b · N P(I ), which allows us to conclude that a ∈ N P(I )
as required.

The argument above shows that S P(I ) ⊆ N P(I ). Since the reverse inclusion holds
in general (see Proposition 3.4), we obtain the desired equality. ��

The preceding result allows us to show Conjecture 1.2 implies Theorem 4.1.

Proposition 4.6 Assume that the assertion of the packing problem, Conjecture 1.2, is
true. Then, any square-free monomial ideal I which has the packing property satisfies
the equality N P(I ) = S P(I ).

Proof Let I be a square-free monomial ideal which satisfies the packing property.
Assuming that the statement of the packing problem is true, the hypothesis implies
that the equalities I (n) = I n hold for all n ∈ N. By Proposition 4.5, it follows that
S P(I ) = N P(I ). ��

We next show the equivalence of Theorem 4.1 and Conjecture 4.2 connecting the
equality of theNewton and symbolic polyhedra and the equivalence of linear programs
with nonnegative coefficients for the objective function.

Proposition 4.7 Let I be a monomial ideal. Then, there is an equality of polyhedra
S P(I ) = N P(I ) if and only if the following linear programs have the same optimal
solution for all objective functions f (a) = c1a1 + · · · + cnan with ci ≥ 0 for each
i ∈ [n]

minimize c1a1 + · · · + cnan minimize c1a1 + · · · + cnan

subject to a ∈ S P(I ) subject to a ∈ N P(I ).
(4.3)

Proof The forward implication is clear. We now focus on the converse.
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Consider the symbolic polyhedron S P(I ) and the Newton polyhedron N P(I ) of
I and recall from Proposition 3.4 that N P(I ) ⊆ S P(I ). To show that N P(I ) =
S P(I ), it suffices to show that the vertices of S P(I ) are contained in N P(I ). Let
p = (p1, . . . , pd) be a vertex of S P(I ). Note that p is in fact the intersection point of n
distinct bounding hyperplanes H1, . . . , Hn for N P(I ). ByDefinition 3.3, these bound-
ing hyperplanes have non-negative (with entries 0 and 1) normal vectors c1, . . . , cn ,
respectively. Taking their arithmetic mean

c = 1

n
(c1 + · · · + cn) = (c1, . . . , cn) ∈ R

n≥0,

we obtain a hyperplane Hp with equation c1(a1 − p1)+· · ·+ cn(an − pn) = 0 which
intersects S P(I ) only at p. This is because the equation of Hp is the arithmetic mean
of the equations of H1, . . . , Hn and for each point of S P(I ) other than p the result of
substituting it into the equations of H1, . . . , Hn is always non-negative, with at least
one positive value. Since Hp ∩ S P(I ) = {p}, the optimal value of the linear program

minimize f (a) = c1a1 + · · · + cdad

subject to a ∈ S P(I )

is attained at p. Since c ≥ 0, the hypothesis implies that f (p) is the optimal value of the
linear program with objective function f and feasible set N P(I ). Since f (a) > f (p)

for all points a ∈ S P(I )\{p} and since N P(I ) ⊆ S P(I ), it follows that f (a) > f (p)

for all points a ∈ N P(I )\{p}. We conclude that the point pmust belong to N P(I ) in
order for f (p) to be the minimum value of the second linear program in (4.3). Since
p was an arbitrary vertex of S P(I ), it follows that S P(I ) ⊆ N P(I ), as desired. ��

The final implication needed to complete diagram (4.1) is the following.

Lemma 4.8 Conjecture 4.2 implies Conjecture 4.3.

Proof Setting ci = 1 for i ∈ [n] in the linear programs (4.2) yields the linear programs
(3.4) and (3.1), respectively. By Lemma 3.6 and Theorem 3.8, the optimal values of
these programs are α(I ) and α̂(I ). Thus, the conclusion of Conjecture 4.2 implies that
α(I ) = α̂(I ), i.e., the conclusion of Conjecture 4.3. ��

Finally, we prove Conjecture 4.3, Theorem 4.1, and Conjecture 4.2 independent of
the (not yet established) validity of the packing problem. Due to the implications in
diagram (4.1), it suffices to prove the validity of Theorem 4.1, since this result implies
the other two. Toward this end, we use a celebrated result of Lehman.

Theorem 4.9 ([25], [5, Theorem 1.8]) If a hypergraph H has the packing property,
then the polyhedron Q(H) defined in Eq. (2.5) is an integer polyhedron.

We are now ready to prove our main results.

Proof (Proof of Theorem 4.1)
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Let H and H∨ be the hypergraphs determined by I (H) = I and I (H∨) = I ∨,
respectively. Since I and hence H satisfy the packing property by hypothesis, Theo-
rem 4.9 yields that the set covering polyhedronQ(H) is an integer polyhedron; thus, H
is Fulkersonian. Corollary 3.12 now yields that I has an integer symbolic polyhedron.
Since the vertices of S P(I ) are lattice points, they belong to N P(I ) by Proposition 3.4,
thus inducing a containment S P(I ) ⊆ N P(I ). Since the opposite containment always
holds (see Proposition 3.4), we conclude the desired equality S P(I ) = N P(I ). ��

As previously remarked, the lattice points in the Newton polyhedron N P(I ) of any
monomial ideal I correspond to monomials in the integral closure I of the ideal I ;
see [23, Proposition 1.6]). Thus, the Newton polyhedra N P(I ) and N P(I ) coincide.
Thus, the equality S P(I ) = N P(I ) can be rewritten as S P(I ) = N P(I ) and thought
of as capturing the equality of symbolic powers and integral closures of powers of I .
We present an alternate proof of Theorem 4.1 based on this intuition. For this purpose,
we recall an alternate description of the symbolic polyhedron from [6].

Lemma 4.10 ([6, Corollary 3.12]) Let I be a monomial ideal. Then, the symbolic
polyhedron of I can be described as:

S P(I ) =
⋃

m≥1

1

m
N P(I (m)).

Proof (Alternate proof of Theorem 4.1) As in the previous proof of this result, the
hypothesis that I satisfies the packing property implies that H is Fulkersonian. By
[29, Theorem 2.3] or [16, Proposition 3.4], this guarantees equality of the symbolic
powers and integral closures of ordinary powers, namely I (m) = I m for each m ≥ 1.
Passing to the respective convex bodies yields the identities

N P(I (m)) = N P(I m) = N P(I m) = m N P(I )

and taking the convex limit of the above family of polyhedra yields the desired equality

S P(I ) =
⋃

m≥1

1

m
N P(I (m)) =

⋃

m≥1

1

m
· m N P(I ) =

⋃

m≥1

N P(I ) = N P(I ).

��

5 Further questions and conjectures

In this section, we consider the implications that our results have on the packing
problem. This amounts to reversing the implications in diagram (4.1). While we show
below that in general these implications are not reversible, this line of reasoning leads
us to some related conjectures that have a bearing on the packing problem.
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5.1 Uniform hypergraphs

In Proposition 4.6, we showed that the packing problem implies the validity of The-
orem 4.1. We note that Theorem 4.1, not imply the validity of Conjecture 2.15 (the
packing problem) and neither do Conjectures 4.2 or 4.3, as illustrated by Example 5.1.
This is closely related to the irreversibility of Theorem 4.9 also demonstrated by this
example. We first learned of Example 5.1 from [10, Remark 5.4]. In combinatorial
optimization, the corresponding hypergraph has gained some recognition under the
name Q6, see [30, Example 14.2.9]. It is a forbidden minor of any hypergraph that
satisfies the max-flow min-cut property.

Example 5.1 Consider the square-free monomial ideal

I = (abc, ae f , cde, bd f ) ⊆ K [a, b, c, d, e, f ]

with prime decomposition

I = (a, d) ∩ (b, e) ∩ (c, f ) ∩ (a, b, c) ∩ (a, e, f ) ∩ (b, d, f ) ∩ (c, d, e),

which implies that ht(I ) = 2. It can be verified using a computer algebra system such
as Macaulay2 [20] that there is an equality N P(I ) = S P(I ) and consequently S P(I )
is an integer polyhedron and α(I ) = α̂(I ).

However, the ideal I does not satisfy the packing property. In particular, we see
that the ideal I itself is not König as any ht(I ) = 2 monomials in I have non-trivial
common divisor. This ideal fails to satisfy the packing property in a minimal way,
since it is only the full ideal I that is not König. All other minors obtained by setting
any number of variables equal to 1 or 0 are König.

Definition 5.2 A hypergraph H is uniform if every edge of H has the same number
of vertices, equivalently if the edge ideal I (H) is equigenerated. An ideal is equidi-
mensional if all its associated primes have the same height.

The two notions above are related by Alexander duality: If I is the edge ideal of
a hypergraph H , then I is equidimensional if and only if H∨ is uniform and H is
uniform if and only if I ∨ is equidimensional.

To establish Conjecture 1.2 for all uniform hypergraphs, it suffices to prove it for
those that have Cohen–Macaulay edge ideals; see [15, Theorem 3.3]. The Cohen–
Macaulay property forces the edge ideal to be equidimensional. Hence, to establish
Conjecture 1.2 for all uniform hypergraphs, it suffices to prove it for uniform hyper-
graphs that have equidimensional edge ideals. See Corollary 5.12 for a result regarding
this family of ideals.

We note that the ideal in Example 5.1 is not equidimensional. We do not know
whether Theorem 4.1 and Conjecture 1.2 (the packing problem) are equivalent for
equidimensional ideals. This motivates the following question.

Question 5.3 Is there an equidimensional square-free monomial ideal I so that there
is an equality of polyhedra S P(I ) = N P(I ) (equivalently, S P(I ) is an integer poly-
hedron), but I is not packed or I m �= I (m) for some n?
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If the answer to Question 5.3 is negative, then this means Theorem 4.1 and the
packing problem are equivalent for equidimensional ideals. Since we have proven
Theorem4.1, thiswould imply the validity of the packing problem for equidimensional
ideals.

5.2 Partite hypergraphs

Recall that a graph satisfies the packing property if and only if it is bipartite. In
this section, we investigate notions of partite hypergraphs and their relationship to
Waldschmidt constants of edge ideals. We make a conjecture in this regard, which
would provide a new bridge from Conjectures 2.15 to 4.3.

Notation 5.4 Let A be a set, and k be a positive integer. We denote by
(A

k

)

the set of k

element subsets of A, i.e.,
(A

k

) = {S ⊆ A : |S| = k}.
Definition 5.5 Let H = (V , E) be a hypergraph and let a and b be positive integers
with a ≥ b. A function f : V → ([a]

b

)

is called an (a : b)—partition or (a : b)—
rainbow coloring of H if for each edge e and for each color i , there is a vertex v ∈ e
such that i ∈ f (v). A hypergraph H is said to be (a : b)—partite or (a : b)—rainbow
colorable if it has an (a : b)—rainbow coloring.

We say that H is a-partite or a-colorable if H has an (a : 1)—coloring.

We show below how the property of a graph of being (a : b)—partite imposes a
lower bound on the Waldschmidt constant of its edge ideal. Toward this end, we first
introduce a useful property of partite hypergraphs.

Lemma 5.6 Let H be an (a : b)—partite hypergraph. Then, there exist disjoint minimal
vertex covers C1, . . . , Ca such that no vertex appears in more than b of the vertex
covers.

Proof Fix an (a : b)—rainbow coloring f of H = (V , E), and consider the a color
classes of this coloring, i.e., the sets Ai = {v ∈ V | i ∈ f (v)}. Since f is an (a : b)—
rainbow coloring of H , every color appears at least once in each edge, and thus the
color classes are vertex covers. Thus, each Ai contains a minimal vertex cover Ci . No
vertex appears in more than b of the Ci , since if it did, that would mean that there is a
vertex with more than b colors, which is a contradiction. ��

The proof of the following result uses the description of the Waldschmidt constant
as the solution of a linear optimization problem in Theorem 3.8.

Proposition 5.7 Let H be a hypergraph with edge ideal I = I (H), and let a and b
be positive integers with a ≥ b. If H is (a : b)—partite, then the inequality α̂(I ) ≥ a

b
holds.

Proof Let I = P1 ∩ · · · ∩ Ps be the irredundant prime decomposition of I . Since H
is (a : b)—partite, by Proposition 5.6 there is a set of a minimal vertex covers of H
such that no vertex appears in more than b of the covers. Minimal vertex covers of
H correspond to associated primes of I by Lemma 2.2. Without loss of generality
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let P1, . . . , Pa be the primes corresponding to these minimal vertex covers. From
Definition 3.3, we have

S P(I ) = N P(P1) ∩ · · · ∩ N P(Pa) ∩ · · · ∩ N P(Ps).

where for Pj = (x j1 , . . . , x js j
) one has

N P(Pj ) =
{

y | y j1 + · · · + y js j
≥ 1, y j1 , . . . , y js j

≥ 0
}

.

In particular, any point c = (c1, . . . , cn) ∈ S P(I ) satisfies the set of a inequalities:

s j
∑

k=1

c jk ≥ 1 for j ∈ [a].

Adding up these inequalities, one obtains for αi = |{ j ∈ [a] | xi ∈ Pj }| the equation
n

∑

i=1

αi ci ≥ a.

Since no vertex appears in more than b of the a minimal vertex covers corresponding
to P1, . . . , Pa , we have that αi ≤ b for each i , leading to the inequality

n
∑

i=1

bci ≥
n

∑

i=1

αi ci ≥ a.

It follows that c1 + c2 + · · · + cn ≥ a
b . As c was arbitrary, minimizing the sum of

coordinates over S P(I ) as in Theorem 3.8, we reach the conclusion α̂(I ) ≥ a
b . ��

We show in Sect. 4 that the validity of the packing problem for an ideal I implies the
equality α̂(I ) = α(I ). In general, for arbitrary ideals I , the inequality α̂(I ) ≤ α(I )
holds; thus, to have equality, it suffices to show the converse inequality. Our next
conjecture is inspired by the lower bound given by Lemma 5.7. We conjecture that in
the presence of the packing property, the inequality in Lemma 5.7 yields an inequality
α̂(I ) ≥ α(I ) by means of a specific partite structure on the corresponding hypergraph.

Conjecture 5.8 Let H be a hypergraph with the packing property, and let I = I (H)

be its edge ideal. Then, H is (α(I ) ht(I ) : ht(I ))—partite.

5.3 Packing and Alexander duality

Satisfying the packing property need not be preserved under taking the Alexander
dual. In fact the Alexander dual of an ideal I that satisfies the packing property can
fail to satisfy this property, even in the case when I is equidimensional and hence, the
hypergraph corresponding to I ∨ is uniform.
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Example 5.9 Consider Example 5.1 again where we introduced the ideal

I = (abc, ae f , cde, bd f )

= (a, d) ∩ (b, e) ∩ (c, f ) ∩ (a, b, c) ∩ (a, e, f ) ∩ (b, d, f ) ∩ (c, d, e).

Its Alexander dual is

I ∨ = (ad, be, c f , abc, ae f , bd f , cde) = (a, b, c) ∩ (a, e, f ) ∩ (c, d, e) ∩ (b, d, f ).

Using the computer algebra system Macaulay2 [20] equipped with the package Sym-
bolicPowers [12], one can check that I does not satisfy the packing property, while I ∨
does. Notice also that the ideal I ∨ is equidimensional, while I is not equidimensional.

This example leads to the following task.

Question 5.10 Give an algebraic or combinatorial description for the class of square-
free monomial ideals I such that I satisfies the packing property if and only if I ∨ does.

In Corollary 5.12, we give a partial answer by showing that equidimensional ideals
I which have equidimensional duals I ∨ are part of the class of ideals singled out
in Question 5.10. Note that the family of equidimensional ideals I such that I ∨ is
also equidimensional corresponds bijectively to uniform hypergraphs H which have
a uniform blocker H∨.

We begin our inquiry by studying properties of uniform hypergraphs which have
the packing property.

Theorem 5.11 Let H be a uniform hypergraph which satisfies the packing property
and let I = I (H). Then,

(1) H has an exact cover, meaning a vertex cover which meets every edge in exactly
one vertex,

(2) H is α(I )—partite,
(3) I ∨ and H∨ satisfy the packing property.

Proof Because H satisfies the packing property, the polyhedron Q(H) is integral by
Theorem 4.9. A uniform hypergraph with integral set covering polyhedron has an
exact cover by [19, Lemma 5.6 and Proposition 3.13], see also [30, Lemma 14.4.1].

We now show that H is α(I )—partite by induction on α(I ). If α(I ) = 1 the claim
follows since every hypergraph is 1-partite. Otherwise, let C be an exact cover of H
and denote h the minor of H obtained by deleting the vertices in C . The monomial
ideal I (h) satisfies the packing property and α(I (h)) = α(I ) − 1; therefore, h is
(α(I ) − 1)—partite by induction. Extending the coloring of h to H by coloring the
vertices in C with a new color, yields that H is α(I )—partite, as desired.

Let Ai denote the set of vertices colored by color i ∈ [α(I )]. Then, each set Ai is
a vertex cover and thus contains a minimal vertex cover Ci of H . Since the sets Ai

are disjoint, so are the minimal vertex covers Ci . Consequently, I ∨ contains a regular
sequence of α(I ) monomial generators mi = ∏

v∈Ci
xv . Since ht(I ∨) = α(I ) by

definition, it follows that I ∨ is König according to Definition 1.1.
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To show that I ∨ has the packing property, consider subsets V ′, V ′′ of the vertices
of H . Since H is uniform, the minor H ′ of H obtained by deleting the vertices in V ′
is a uniform hypergraph. Its edge ideal is I (H ′) = I |{x ′

v=0|v′∈V ′}. The identity from
Lemma 3.13

(I (H ′))∨ = (I |{x ′
v=0|v′∈V ′})∨ = I ∨|{x ′

v=1|v′∈V ′}

reveals that the ideal I ∨|{x ′
v=1|v′∈V ′} is König, because we have shown above that the

duals of uniform hypergraphs that satisfy the packing property are König.
Now consider the minor H ′′ obtained from H by contracting the vertices in V ′′.

This need not be a uniform hypergraph. Its edge ideal is I (H ′′) = I |{x ′′
v =1|v′′∈V ′′}. Let

v = |{i | Ci ⊆ V ′′}|.

We claim that H ′′ is (α(I ) − v)—partite. Indeed, H ′′ can be colored with α(I ) − v

colors using the color assignments v �→ i if v ∈ Ci\V ′′. Since the color sets are
disjoint, the monomials mi = ∏

v∈Ci
xv form a regular sequence in I (H ′′)∨ of length

α(I ) − v.
Consider the ideal discussed in Lemma 3.13

I ′′ := (I (H ′′))∨ = (I |{x ′′
v =1|v′′∈V ′′})∨ = I ∨|{x ′′

v =0|v′′∈V ′′}

and let ht(I ′′) = α(I (H ′′)) = u. To establish the claim that I ′′ is König, it suffices
to show that u ≤ α(I ) − v. (In fact this will force u = α(I ) − v.) Note that the
inequality u ≤ α(I ) − v is equivalent to v ≤ α(I ) − α(I (H ′′)). Let m′′ be a minimal
generator of I (H ′′) with deg(m′′) = α(I (H ′′). Then, there is a minimal generator m
of I such that deg(m) = α(I ) and m/m′′ is a product of α(I ) − α(I (H ′′)) variables
corresponding to vertices in V ′′. Since the sets Ci are vertex covers, each Ci ⊆ V ′′
must contain at least one vertex corresponding to a variable dividing the monomial
m/m′′. Since the sets Ci are disjoint, this observation yields the desired conclusion
v ≤ α(I ) − α(I (H ′′)). ��

Corollary 5.12 Let I be an equidimensional square-free monomial ideals I such that
I ∨ is also equidimensional. Then, I and I ∨ satisfy the packing property simultane-
ously, that is, I satisfies the packing property if and only if I ∨ does.

Proof The hypothesis implies that the hypergraphs H and H∨ corresponding to I and
I ∨, respectively, are uniform. Suppose that anyone of I or I ∨ satisfies the packing
property. Then, part (5) of Proposition 5.11 shows that the dual ideal satisfies the
packing property as well. ��

Data availability statement Data sharing not applicable to this article as no datasets were generated or
analyzed during the current study.

123



1116 Journal of Algebraic Combinatorics (2021) 54:1095–1117

References

1. Alilooee, A., Banerjee, A.: Packing properties of cubic squarefreemonomial ideals. J. Algebraic Comb.
https://doi.org/10.1007/s10801-021-01020-2 (2021)

2. Bocci, C., Cooper, S., Guardo, E., Harbourne, B., Janssen, M., Nagel, U., Seceleanu, A., Van Tuyl,
A., Vu, T.: The Waldschmidt constant for squarefree monomial ideals. J. Algebraic Combin. 44(4),
875–904 (2016)

3. Berge, C.: Hypergraphs, North-HollandMathematical Library, vol. 45, North-Holland Publishing Co.,
Amsterdam (1989). Combinatorics of finite sets, Translated from the French

4. Bocci, C., Harbourne, B.: Comparing powers and symbolic powers of ideals. J. Algebraic Geom. 19(3),
399–417 (2010)

5. Conforti, M., Cornuéjols, G.: A decomposition theorem for balanced matrices. In: Proceedings of the
1st Integer Programming and Combinatorial Optimization Conference, pp. 147–169 (1990)

6. Camarneiro, J., Drabkin, B., Fragoso, D., Frendreiss, W., Hoffman, D., Seceleanu, A., Tang, T., Yang,
S.: Convex bodies and asymptotic invariants for powers of monomial ideals (2020) (preprint)

7. Cooper, S.M., Embree, R.J.D., Hà, H.T., Hoefel, A.H.: Symbolic powers of monomial ideals. Proc.
Edinb. Math. Soc. 60(1), 39–55 (2017)

8. Cornuéjols, G., Guenin, B., Margot, F.: The packing property, Integer programming and combinatorial
optimization (Houston, TX, 1998). Lecture Notes in Computer Science, vol. 1412. Springer, Berlin,
pp. 1–8 (1998)

9. Cornuéjols, G.: Combinatorial optimization. In: CBMS-NSF Regional Conference Series in Applied
Mathematics, vol. 74. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA
(2001). Packing and covering

10. DiPasquale, M., Drabkin, B.: On resurgence via asymptotic resurgence (2020). arXiv:2003.06980
11. Dao, H., De Stefani, A., Grifo, E., Huneke, C., Núñez-Betancourt, L.: Symbolic powers of ideals. In:

Springer Proceedings in Mathematics & Statistics. Springer (2017)
12. Drabkin, B., Grifo, E., Seceleanu, A., Stone, B.: Computations involving symbolic powers. J. Softw.

Algebra Geom. 9, 71–80 (2019)
13. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 5th edn. Springer, Berlin (2017)
14. Dupont, L.A.,Villarreal, R.H.:Algebraic and combinatorial properties of ideals and algebras of uniform

clutters of TDI systems. J. Comb. Optim. 21(3), 269–292 (2011)
15. Dupont, L.A., Villarreal, R.H., Reyes, E.: Cohen–Macaulay clutters with combinatorial optimization

properties and parallelizations of normal edge ideals. São Paulo J. Math. Sci. 3(1), 61–75 (2009)
16. Escobar, C.A., Villarreal, R.H., Yoshino, Y.: Torsion Freeness and Normality of Blowup Rings of

Monomial Ideals. Commutative Algebra. Lecture Notes in Pure and Applied Mathematics, vol. 244,
pp. 69–84. Chapman & Hall/CRC, Boca Raton (2006)

17. Farkas, J.: Theorie der einfachen Ungleichungen. J. Reine Angew. Math. 124, 1–27 (1902)
18. Francisco, C.A., Hà, H.T., Mermin, J.: Powers of square-free monomial ideals and combinatorics. In:

Peeva, I. (eds.) Commutative Algebra, pp. 373–392. Springer, Berlin (2013)
19. Gitler, I., Reyes, E., Villarreal, R.H.: Blowup algebras of square-free monomial ideals and some links

to combinatorial optimization problems. Rocky Mountain J. Math. 39(1), 71–102 (2009)
20. Grayson, D.R., Stillman, M.E.: Macaulay2, A Software System for Research in Algebraic Geometry.

http://www.math.uiuc.edu/Macaulay2/
21. Gitler, I., Valencia, C.E., Villarreal, R.H.: A note on Rees algebras and the MFMC property. Beiträge

Algebra Geom. 48(1), 141–150 (2007)
22. Hà, H.T., Morey, S.: Embedded associated primes of powers of square-free monomial ideals. J. Pure

Appl. Algebra 214(4), 301–308 (2010)
23. Huneke, C., Swanson, I.: Integral Closure of Ideals, Rings, andModules, vol. 13. CambridgeUniversity

Press, Cambridge (2006)
24. Hà, H.T., Trung, N.V.: Membership criteria and containments of powers of monomial ideals. Acta

Math. Vietnam. 44(1), 117–139 (2019)
25. Lehman,A.:On thewidth-length inequality and degenerate projective planes. In: Cook,W., Seymour, P.

(eds.) Polyhedral Combinatorics. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 1, pp. 101–105. Amer. Math. Soc., Providence (1990)

26. Montaño, J., Betancourt, L.N.: Splittings and symbolic powers of square-free monomial ideals. Int.
Math. Res. Not. IMRN 3, 2304–2320 (2021)

123

https://doi.org/10.1007/s10801-021-01020-2
http://arxiv.org/abs/2003.06980
http://www.math.uiuc.edu/Macaulay2/


Journal of Algebraic Combinatorics (2021) 54:1095–1117 1117

27. Morey, S., Villarreal, R.H.: Edge Ideals: Algebraic and Combinatorial Properties, Progress in Com-
mutative Algebra 1, pp. 85–126. de Gruyter, Berlin (2012)

28. Scheinerman, E.R., Ullman, D.H.: Fractional Graph Theory. Dover Publications, Inc., Mineola, NY,
(2011). A rational approach to the theory of graphs, With a foreword by Claude Berge, Reprint of the
1997 original

29. Trung, N.V.: Integral closures of monomial ideals and Fulkersonian hypergraphs. Vietnam J. Math.
34(4), 489–494 (2006)

30. Villarreal, R.H.: Monomial Algebras. Monographs and Research Notes inMathematics, 2nd edn. CRC
Press, Boca Raton (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Hrishikesh Bodas1 · Benjamin Drabkin2 · Caleb Fong3 · Su Jin4 · Justin Kim5 ·
Wenxuan Li6 · Alexandra Seceleanu2 · Tingting Tang7 · Brendan Williams8

B Alexandra Seceleanu
aseceleanu@unl.edu

Hrishikesh Bodas
hbodas@andrew.cmu.edu

Benjamin Drabkin
benjamin.drabkin@huskers.unl.edu

Caleb Fong
cjxf@st-andrews.ac.uk

Su Jin
sujin2@illinois.edu

Justin Kim
hanbin919@gmail.com

Wenxuan Li
wenxuanli@ucsb.edu

Tingting Tang
ttang2@sdsu.edu

Brendan Williams
brendwil@umich.edu

1 Carnegie Mellon University, Pittsburgh, USA

2 University of Nebraska–Lincoln, Lincoln, USA

3 University of St Andrews, St. Andrews, UK

4 University of Illinois, Urbana-Champaign, Champaign, USA

5 Vanderbilt University, Nashville, USA

6 University of California, Santa Barbara, Santa Barbara, USA

7 San Diego State University, San Diego, USA

8 University of Michigan–Dearborn, Dearborn, USA

123

http://orcid.org/0000-0002-7929-5424

	Consequences of the packing problem
	Abstract
	1 Introduction
	2 Square-free monomial ideals and hypergraphs
	2.1 Square-free monomial ideals as edge ideals of hypergraphs
	2.2 Linear optimization invariants of hypergraphs
	2.3 The packing problem as a combinatorial optimization problem

	3 Linear optimization invariants of monomial ideals
	3.1 Convex bodies associated to monomial ideals
	3.2 Alexander duality

	4 Consequences of the packing problem
	5 Further questions and conjectures
	5.1 Uniform hypergraphs
	5.2 Partite hypergraphs
	5.3 Packing and Alexander duality

	References




