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Abstract
A graph is said to be distance-integral if every eigenvalue of its distance matrix is an
integer. In this paper, we study the distance spectrum of abelian Cayley graphs and
a class of non-abelian Cayley graphs, namely Cayley graphs over the dicyclic group
T4n = 〈a, b | a2n = 1, an = b2, b−1ab = a−1〉 of order 4n. Based on the representa-
tion theory of finite groups, we first show that an abelian Cayley graph is integral if
and only if it is distance-integral, which naturally contains a main result obtained in
[Electron. J. Comb. 19(4) (2012) paper 25, 8 pp]. Then, we display a necessary and
sufficient condition for a Cayley graph over T4n to be distance-integral; some simple
necessary (or sufficient) conditions for the distance integrality of a Cayley graph over
T4n in terms of the Boolean algebra of 〈a〉 are provided as well. Consequently, some
infinite families of distance-integral Cayley graphs over T4n are constructed. Finally,
for a prime p ≥ 3, all the distance-integral Cayley graphs over T4p are completely
characterized.
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1 Introduction

Throughout this paper, we only consider simple connected graphs � = (V�, E�)with
vertex set V� and edge set E� . The distance between two vertices x, y ∈ V� , written
as d�(x, y), is the length of a shortest path connecting them.

The adjacency matrix A� of � is a 0-1 ν × ν matrix whose (x, y)-entry equals to 1
if and only if vertices x and y are adjacent, whereas the distance matrix D� of � is a
ν×ν matrixwhose (x, y)-entry equals to d�(x, y), where ν := |V�|. Since A� and D�

are real and symmetric, all the eigenvalues of A� and D� are real. The eigenvalues
of A� (resp. D�) are called the eigenvalues (resp. distance eigenvalues) of �. The
spectrum of A� (resp. D�) is called the adjacency spectrum (resp. distance spectrum)
of �. Graph � is said to be integral (resp. distance-integral) if every eigenvalue of its
adjacency matrix (resp. distance matrix) is integer.

Let G be a finite group and let S be a subset of G such that 1G /∈ S and S−1 = S;
here, we use 1G to denote the identity element ofG, andwe omit the subscriptG for our
notation when there is no danger of confusion. The Cayley graph Cay(G, S) over G
with respect to S is the graph with vertex set VCay(G,S) = G and edge set ECay(G,S) ={{g, h} | gh−1 ∈ S, g, h ∈ G

}
. It is well known that Cay(G, S) is connected if and

only if 〈S〉 = G.

The concept of integral graphs was proposed by Harary and Schwenk [13] in 1974.
They also proposed the following interesting question: “Which graphs have inte-
gral spectra?” Since then, classifying and constructing integral graphs have become
important research topics in algebraic graph theory. However, for a general graph,
giving a systemic and complete solution to the aforementioned problem turns out to
be extremely difficult, and the problem is yet far from being solved. Many researchers
then tried to obtain some progress by studying the integrality of some special classes
of graphs (see, for example, [7] and [26]). One of the most popular among them is the
research on the integrality of Cayley graphs.

In 1979, Babai [4] used character theory of finite groupsG to give an expression for
the spectrum of a Cayley graphCay(G, S), which is a remarkable achievement on the
spectra of Cayley graphs. Bridges and Mena [6] derived a complete characterization
of integral Cayley graphs over abelian groups. Alperin and Peterson [3] presented
a necessary and sufficient condition for the integrality of Cayley graphs Cay(G, S)

on abelian groups G by characterizing the structure of S. Recently, Lu, Huang and
Huang [21] obtained a necessary and sufficient condition for the integrality of Cayley
graphs over dihedral group Dn by analyzing the irreducible characters of the dihedral
group Dn , which is defined as Dn = 〈

a, b
∣∣ an = b2 = 1, bab = a−1

〉
. Cheng, Feng

and Huang [8] gave a necessary and sufficient condition for the integrality of Cayley
graphs over the dicyclic group T4n (see [17]), which is defined as

T4n = 〈a, b
∣∣ a2n = 1, an = b2, b−1ab = a−1〉

= {1, a, . . . , a2n−1, b, ba, . . . , ba2n−1}. (1.1)

For more results on integral Cayley graphs, one may refer to [1,2,10,12,18,19,22,23]
and the references with in.
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Thedistancematrix has numerous applications in chemistry andother branches. The
information contained in it is immensely useful for computing topological indices such
as the Wiener index, Harary index and so on. What’s more, multiple applications of
the distance matrix and its eigenvalues have been found in a large variety of problems,
including those in ornithology, molecular biology, psychology and archeology. One
may be referred to [5] and the references therein. For such reasons, it is important to
study some properties of distance eigenvalues. In this paper, we focus on the distance
integrality ofCayleygraphs.However, comparingwith the extensive studies on integral
Cayley graphs, there are few results on the distance integrality of Cayley graphs,
which is due to being more difficult to obtain the distance spectrum. In 2010, Ilić [15]
proved that all the distance eigenvalues of integral Cayley graphs over cyclic groups
are integers. Two years later, Klotz and Sander [20] extended the above result from
cyclic groups to abelian groups. Renteln [24] showed that the distance spectrum of a
Cayley graph over a real reflection group with respect to the set of all reflections is
integral and provided a combinatorial formula for such spectrum. Foster-Greenwood
and Kriloff [11] proved that the eigenvalues and distance eigenvalues of a Cayley
graphs on a complex reflection group with connection sets consisting of all reflections
are integers.

Inspired by [3,8,11,15,20,21,24], we are interested in considering the distance inte-
grality of Cayley graphs over abelian groups and dicyclic groups. Our first main result
characterizes the equivalence of integrality and distance integrality of Cayley graphs
over abelian groups, which reads as

Theorem 1.1 Let G be an abelian group. Choose S ⊆ G such that 1 /∈ S = S−1 and
〈S〉 = G. Then, Cay(G, S) is integral if and only if Cay(G, S) is distance-integral.

By virtue of Theorem 1.1, we can immediately get the following corollary, which
is a main result of [20].

Corollary 1.2 ([20])All the distance eigenvalues of integralCayley graphsover abelian
groups are integers.

Define C(G) =
{⋃

[g]∈B̃(G) mg[g] |mg ∈ N

}
, where N is the set of natural num-

bers. For simplicity, we use C(a) to denote C(〈a〉) in rest of the paper.
Our second main result presents a necessary and sufficient condition for the

Cay(T4n, S) to be distance-integral, where S is any subset of T4n satisfying 1 /∈
S, S = S−1 and 〈S〉 = T4n , which reads as

Theorem 1.3 Let T4n be the dicyclic group as given in (1.1). Choose S ⊆ T4n such
that 1 /∈ S = S−1 and 〈S〉 = T4n. Then, Cay(T4n, S) is distance-integral if and only
if
∑2n−1

k=1 d(1, ak)ak ∈ C(a) and
∑2n−1

k=0 d(1, bak)ω2kh ·∑2n−1
k=0 d(1, bak)ω−2kh is a

square number for all 1 ≤ h ≤ ⌊ n−1
2

⌋
, where ω = e

π i
n is a primitive 2n-th root of

unity.

Our next main result completely characterizes all distance-integral Cayley graphs
over T4p for a prime p ≥ 3, which reads as

Theorem 1.4 Let T4p = 〈a, b | a2p = 1, a p = b2, b−1ab = a−1〉 with prime
p ≥ 3. Choose S ⊆ T4p such that 1 /∈ S, S−1 = S and 〈S〉 = T4p. If S can be
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partitioned as S := S1 ∪ bS2 ⊆ T4p with S1, S2 ⊆ 〈a〉, then Cay(T4p, S) is distance-
integral if and only if either S1 ∈ {∅, {a p}} and S2 ∈ {〈a〉\{ak, a p+k}, 〈a〉} or S1 ∈{[a], [a2], [a] ∪ {a p}, [a2] ∪ {a p}, 〈a〉\{1, a p}, 〈a〉\{1}} and S2 ∈ {{ak, a p+k}, 〈a〉
\{ak, a p+k}, 〈a〉} for 0 ≤ k ≤ p − 1.

The remainder of this paper is organized as follows. In Sect. 2 we give some
preliminary results. In Sect. 3 we give a proof of Theorem 1.1, whereas a proof of
Theorem 1.3 is presented in Sect. 4. In the last section, we give the proof of Theorem
1.4.

2 Preliminary results

We first restate some basic results on representation theory of finite groups. We follow
the notations and terminologies in [25] except if otherwise stated. Let G be a finite
group and let V be a finite-dimensional vector space over the complex fieldC. Denote
by GL(V ) the group of all bijective linear maps T : V → V . A representation of G
on V is a group homomorphism ρ : G → GL(V ). The degree of ρ, denoted by dρ ,
is the dimension of V . Suppose that V is a unitary space, that is, it is endowed with
a Hermitian scalar product 〈·, ·〉V . A representation ρ : G �→ GL(V ) is unitary if
〈ρ(g)v1, ρ(g)v2〉V = 〈v1, v2〉V for all g ∈ G and v1, v2 ∈ V . It is well known that
any finite-dimensional representation of a finite group can be unitarizable. Therefore,
we consider only unitary representations.

Fix an orthonormal basis of V over C. For each g ∈ G, the matrix X(g) of ρ(g)
with respect to the orthonormal basis is a unitary matrix, and X : g �→ X(g) defines a
matrix representation ofG called amatrix representation afforded by ρ. The character
χρ : G → C of ρ is defined as χρ(g) = Tr(ρ(g)) for g ∈ G, where Tr(ρ(g)) is
the trace of the matrix representation of ρ(g). A subspace W ≤ V is G-invariant if
ρ(g)w ∈ W for all g ∈ G and w ∈ W . The trivial subspaces V and {0} are always
invariant. We say that a representation ρ : G → GL(V ) is irreducible if V has no
non-trivial invariant subspaces; otherwise, we say that it is reducible.

Let C[G] denote the set of formal sums
∑

g∈G agg, where ag ∈ C and G is
any (not necessarily abelian) finite group. Obviously, C[G] is a complex algebra
having a basis consisting of the elements of G. If D = ∑

g∈G agg ∈ C[G], define
D−1 =∑g∈G agg−1; if D is a subset of G, we identify D with

∑
d∈D d ∈ C[G].

Given a finite abelian group G, let FG be the set consisting of all subgroups of
G. The Boolean algebra B(G) is the set whose elements are obtained by arbitrary
finite intersections, unions, and complements of the elements in FG . The minimal
elements of B(G) are called atoms. Denote by B̃(G) the set of all different atoms.
A muti-subset S of G is called integral if χ(S) = ∑

s∈S χ(s) is an integer for every
irreducible character χ of G. Alperin and Peterson [3] not only showed that each
element of B(G) is the union of some atoms and each atom of B(G) has the form
[g] = {x |〈x〉 = 〈g〉, x ∈ G} but also determined the integrality of Cayley graphs over
abelian groups, which is listed in the following lemma.

Lemma 2.1 ([3]) Let G be a finite abelian group and S ⊆ G. Then, the following
statements are equivalent:
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Table 1 Inequivalent irreducible representation table of T4n for odd n

ak (0 ≤ k ≤ 2n − 1) bak (0 ≤ k ≤ 2n − 1)

ψ1 1 1

ψ2 1 −1

ψ3 (−1)k (−1)k i

ψ4 (−1)k (−1)k+1i

φ j (1 ≤ j ≤ n − 1, j is odd)

(
ωk j 0
0 ω−k j

) (
0 ω−k j

−ωk j 0

)

ζh (1 ≤ h ≤ n−1
2 )

(
ω2kh 0
0 ω−2kh

) (
0 ω−2kh

ω2kh 0

)

Table 2 Inequivalent irreducible representation table of T4n for even n

ak (0 ≤ k ≤ 2n − 1) bak (0 ≤ k ≤ 2n − 1)

ψ1 1 1

ψ2 1 −1

ψ3 (−1)k (−1)k

ψ4 (−1)k (−1)k+1

φ j (1 ≤ j ≤ n − 1, j is odd)

(
ωk j 0
0 ω−k j

) (
0 ω−k j

−ωk j 0

)

ζh (1 ≤ h ≤ n−2
2 )

(
ω2kh 0
0 ω−2kh

) (
0 ω−2kh

ω2kh 0

)

(i) Cay(G, S) is integral;
(ii) S is integral;
(iii) S ∈ B(G).

DeVos et al. [9] used an approach similar to those given in [3] to extend parts of
the above lemma to multi-sets.

Lemma 2.2 ([9]) Let G be a finite abelian group and let T be a multi-subset of G.
Then, T is integral if and only if T ∈ C(G).

The irreducible representations of T4n have been completely characterized, and we
list them in the following lemma.

Lemma 2.3 ([16]) The irreducible representations of T4n are given in Table 1 if n is

odd and in Table 2 otherwise, where i is the imaginary unit and ω = e
π i
n is a primitive

2n-th root of unity.

Let Cay(G, S) be a connected Cayley graph with 1 /∈ S and S−1 = S. In
correspondence with the orthonormal basis {vρ

1 , v
ρ
2 , . . . , v

ρ
dρ

}, we define ϕ
ρ
s,t (g) =

〈ρ(g)vρ
t , v

ρ
s 〉Wρ , where Wρ denotes the vector space corresponding to the represen-

tation ρ. With the above notations, it has been proved that the distance matrices of
Cayley graphs over any finite groups satisfy the following decomposed formula.
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Lemma 2.4 ([14]) Let G be a finite group with S ⊆ G, where 1G /∈ S = S−1 and
〈S〉 = G. Let ρ1, ρ2, . . . , ρh be all inequivalent irreducible unitary representations
of G with d1, d2, . . . , dh as their degrees, respectively. Then, there exists an invertible
matrix Q such that

QDCay(G,S)Q
−1 = d1�(ρ1)

⊕
d2�(ρ2)

⊕
· · ·
⊕

dh�(ρh),

where �(ρk) denotes the dk × dk matrix whose (s, t)-entry is equal to
∑

g∈G d(1, g)
ϕ

ρk
s,t (g) for s, t = 1, 2, . . . , dk and k = 1, 2, . . . , h.

The following properties about the dicyclic group T4n immediately follow from the
relations a2n = 1, an = b2 and b−1ab = a−1, which can be found in [8].

Lemma 2.5 ([8]) Let T4n be the dicyclic group as defined in (1.1). Then, for all 0 ≤
k,m ≤ 2n − 1, one has

(i) bak = a−kb, akb = ba−k;
(ii) bakbam = an−k+m;
(iii) (bak)−1 = ban+k .

The following lemma is simple, but useful for the proofs of our main results.

Lemma 2.6 Let T4n be the dicyclic group as defined in (1.1) and let S ⊆ T4n with
S−1 = S and 〈S〉 = T4n. Then, d(1, bak) = d(1, ban+k) for 0 ≤ k ≤ n − 1.

Proof Note that for any g1, g2, h ∈ T4n , {g1, g2} ∈ ECay(T4n ,S) if and only if
{hg1, hg2} ∈ ECay(T4n ,S). Then, d(g1, g2) = d(hg1, hg2). Together with Lemma
2.5, we have

d(1, bak) = d(ban+k, ban+kbak) = d(1, ban+k),

as desired. �


3 The proof of Theorem 1.1

In this section, we prove Theorem 1.1, which characterizes the equivalence of inte-
grality and distance integrality of Cayley graphs over abelian groups.

The proof of Theorem 1.1 Let ρ be an irreducible representation of G, then dρ = 1.
In view of Lemma 2.4, one has �(ρ) = ∑

g∈G d(1, g)ρ(g). Thus, it follows from
Lemma 2.2 thatCay(G, S) is distance-integral if and only if

∑
g∈G d(1, g)g ∈ C(G).

Consequently, by Lemma 2.1, it suffices to show that S ∈ B(G) if and only if∑
g∈G d(1, g)g ∈ C(G).
Note that S = {g ∈ G | d(1, g) = 1}. The sufficiency is thus obvious. Suppose

conversely that B̃(G) = {[h1], [h2], . . . , [hk]} for some integer k. Let 〈g1〉 = 〈g2〉 ∈
B̃(G) with d(1, g1) = q and ord(g1) = t . Then, g2 = gl1 for some integer l, which
leads to gcd(l, t) = 1. Assume that the order of G is n, then t is a divisor of n
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(abbreviated t | n). Thus, there exists a surjective group homomorphism f : Z∗
n → Z

∗
t

such that f (x (mod n)) = x (mod t), where Z∗
n = {n′| gcd(n′, n) = 1}.

Recall that l ∈ Z
∗
t . Then, there exists y ∈ Z

∗
n such that f (y (mod n)) = l

(mod t) = y (mod t). Therefore, t | (l − y), which gives g2 = gl1 = gy1 . Note
that g1 can be expressed as g1 = z1z2 · · · zq , where zi ∈ S for 1 ≤ i ≤ q. Then,
g2 = zy1 z

y
2 · · · zyq . Recall that gcd(y, n) = 1, we thus have gcd(y, ord(zi )) = 1, lead-

ing to zyi ∈ 〈zi 〉 ⊆ S for all 1 ≤ i ≤ q. Therefore, d(1, g2) ≤ d(1, g1). In a similar
way, d(1, g1) ≤ d(1, g2). Consequently, d(1, g1) = d(1, g2) whenever 〈g1〉 = 〈g2〉
and therefore we conclude that

∑
g∈G d(1, g)g ∈ C(G) as desired.

This completes the proof. �


4 The proof of Theorem 1.3

In this section, we prove Theorem 1.3, which studies the distance integrality of
Cay(T4n, S). A necessary and sufficient condition for the distance integrality of
Cay(T4n, S) is derived and some infinite families of distance-integral Cayley graphs
over dicyclic groups are constructed.

The proof of Theorem 1.3 Let ρ be an irreducible representation of T4n . Then, dρ = 1
or dρ = 2. In order to complete the proof, it suffices to consider the following two
cases.

Case 1. dρ = 1. In this case, assume that Wρ = {αv
ρ
1 |α ∈ C}. Then, it follows

from Lemma 2.4 that

�(ρ) =
2n−1∑

k=1

d(1, ak)ϕρ
1,1(a

k) +
2n−1∑

k=0

d(1, bak)ϕρ
1,1(ba

k)

=
2n−1∑

k=1

d(1, ak)〈ρ(ak)vρ
1 , v

ρ
1 〉 +

2n−1∑

k=0

d(1, bak)〈ρ(bak)vρ
1 , v

ρ
1 〉

=
2n−1∑

k=1

d(1, ak)ρ(ak) +
2n−1∑

k=0

d(1, bak)ρ(bak). (4.1)

ByLemma2.3, bothd(1, ak) andρ(ak) are integers,which implies that
∑2n−1

k=1 d(1, ak)
ρ(ak) is an integer. Therefore, only

∑2n−1
k=0 d(1, bak)ρ(bak) requires further consid-

erations. If n is even, then both d(1, bak) and ρ(bak) are integers, and thus, �(ρ) is
an integer by (4.1). If n is odd, then k and n+ k have different parity. Combining with
Lemmas 2.3 and 2.6, we have

∑2n−1
k=0 d(1, bak)ρ(bak) = 0. Consequently, �(ρ) is

also an integer in this case.
Case 2. dρ = 2. By Lemma 2.3, we have ρ ∈ {φ j | 1 ≤ j ≤ n −

1, j is odd}⋃{ζh | 1 ≤ h ≤ ⌊ n−1
2

⌋}
. Then, we proceed by distinguishing the follow-

ing two possible subcases to complete the proof.
Subcase 2.1. ρ ∈ {φ j | 1 ≤ j ≤ n − 1, j is odd}. Assume that Wρ ={

βv
ρ
1 + γ v

ρ
2 | β, γ ∈ C

}
, where

{
v

ρ
1 , v

ρ
2

}
is an orthonormal basis corresponding to
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ρ. Then, it follows from Lemma 2.3 that there exists an odd j ∈ [1, n] such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ(ak)vρ
1 = ωk jv

ρ
1 ,

ρ(ak)vρ
2 = ω−k jv

ρ
2 ,

ρ(bak)vρ
1 = −ωk jv

ρ
2 ,

ρ(bak)vρ
2 = ω−k jv

ρ
1

for all 0 ≤ k ≤ 2n − 1. This gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ
ρ
1,1(a

k) = 〈ρ(ak)vρ
1 , v

ρ
1 〉 = 〈ωk jv

ρ
1 , v

ρ
1 〉 = ωk j ,

ϕ
ρ
1,1(ba

k) = 〈ρ(bak)vρ
1 , v

ρ
1 〉 = 〈−ωk jv

ρ
2 , v

ρ
1 〉 = 0,

ϕ
ρ
1,2(a

k) = 〈ρ(ak)vρ
2 , v

ρ
1 〉 = 〈ω−k jv

ρ
2 , v

ρ
1 〉 = 0,

ϕ
ρ
1,2(ba

k) = 〈ρ(bak)vρ
2 , v

ρ
1 〉 = 〈ω−k jv

ρ
1 , v

ρ
1 〉 = ω−k j ,

ϕ
ρ
2,1(a

k) = 〈ρ(ak)vρ
1 , v

ρ
2 〉 = 〈ωk jv

ρ
1 , v

ρ
2 〉 = 0,

ϕ
ρ
2,1(ba

k) = 〈ρ(bak)vρ
1 , v

ρ
2 〉 = 〈−ωk jv

ρ
2 , v

ρ
2 〉 = −ωk j ,

ϕ
ρ
2,2(a

k) = 〈ρ(ak)vρ
2 , v

ρ
2 〉 = 〈ω−k jv

ρ
2 , v

ρ
2 〉 = ω−k j ,

ϕ
ρ
2,2(ba

k) = 〈ρ(bak)vρ
2 , v

ρ
2 〉 = 〈ω−k jv

ρ
1 , v

ρ
2 〉 = 0

(4.2)

for k = 0, 1, . . . , 2n − 1. Combining Lemma 2.4 with (4.2) yields that

�(ρ) =
(∑

g∈T4n d(1, g)ϕρ
1,1(g)

∑
g∈T4n d(1, g)ϕρ

1,2(g)∑
g∈T4n d(1, g)ϕρ

2,1(g)
∑

g∈T4n d(1, g)ϕρ
2,2(g)

)

=
(∑2n−1

k=1 d(1, ak)ωk j ∑2n−1
k=0 d(1, bak)ω−k j

−∑2n−1
k=0 d(1, bak)ωk j ∑2n−1

k=1 d(1, ak)ω−k j

)

. (4.3)

Note that d(1, ak) = d(1, a−k) for all 0 ≤ k ≤ 2n − 1. Hence, we have

2n−1∑

k=1

d(1, ak)ω−k j =
2n−1∑

k=1

d(1, a−k)ωk j =
2n−1∑

k=1

d(1, ak)ωk j . (4.4)

It follows from Lemma 2.6 that

2n−1∑

k=0

d(1, bak)ωk j =
n−1∑

k=0

[
d(1, bak)ωk j + d(1, ban+k)ω(n+k) j

]

=
n−1∑

k=0

d(1, bak)ωk j (1 + ωnj )

=
n−1∑

k=0

d(1, bak)ωk j
[
1 + (−1) j

]
= 0. (4.5)
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Substituting (4.4) and (4.5) into (4.3) yields that

�(ρ) =
(∑2n−1

k=1 d(1, ak)ωk j 0
0

∑2n−1
k=1 d(1, ak)ωk j

)
.

Therefore, the eigenvalues of �(ρ) are x1 = x2 =∑2n−1
k=1 d(1, ak)ωk j , which means

that both x1 and x2 are integers if and only if
∑2n−1

k=1 d(1, ak)ωk j is an integer.
Subcase2.2.ρ ∈ {ζh | 1 ≤ h ≤ ⌊ n−1

2

⌋}
.Assume thatWρ = {ηuρ

1 + θuρ
2 | η, θ ∈ C

}
,

where
{
uρ
1 , u

ρ
2

}
is an orthonormal basis corresponding to ρ. Then, in view of Lemma

2.3, there exists h ∈ [1, ⌊ n−1
2

⌋]
such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ(ak)uρ
1 = ω2khuρ

1 ,

ρ(ak)uρ
2 = ω−2khuρ

2 ,

ρ(bak)uρ
1 = ω2khuρ

2 ,

ρ(bak)uρ
2 = ω−2khuρ

1

for all 0 ≤ k ≤ 2n − 1. Thus, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ
ρ
1,1(a

k) = 〈ρ(ak)uρ
1 , u

ρ
1 〉 = 〈ω2khuρ

1 , u
ρ
1 〉 = ω2kh,

ϕ
ρ
1,1(ba

k) = 〈ρ(bak)uρ
1 , u

ρ
1 〉 = 〈ω2khuρ

2 , u
ρ
1 〉 = 0,

ϕ
ρ
1,2(a

k) = 〈ρ(ak)uρ
2 , u

ρ
1 〉 = 〈ω−2khuρ

2 , u
ρ
1 〉 = 0,

ϕ
ρ
1,2(ba

k) = 〈ρ(bak)uρ
2 , u

ρ
1 〉 = 〈ω−2khuρ

1 , u
ρ
1 〉 = ω−2kh,

ϕ
ρ
2,1(a

k) = 〈ρ(ak)uρ
1 , u

ρ
2 〉 = 〈ω2khuρ

1 , u
ρ
2 〉 = 0,

ϕ
ρ
2,1(ba

k) = 〈ρ(bak)uρ
1 , u

ρ
2 〉 = 〈ω2khuρ

2 , u
ρ
2 〉 = ω2kh,

ϕ
ρ
2,2(a

k) = 〈ρ(ak)uρ
2 , u

ρ
2 〉 = 〈ω−2khuρ

2 , u
ρ
2 〉 = ω−2kh,

ϕ
ρ
2,2(ba

k) = 〈ρ(bak)uρ
2 , u

ρ
2 〉 = 〈ω−2khuρ

1 , u
ρ
2 〉 = 0

(4.6)

for k = 0, 1, . . . , 2n − 1. By Lemma 2.4 and (4.6), one has

�(ρ) =
(∑

g∈T4n d(1, g)ϕρ
1,1(g)

∑
g∈T4n d(1, g)ϕρ

1,2(g)∑
g∈T4n d(1, g)ϕρ

2,1(g)
∑

g∈T4n d(1, g)ϕρ
2,2(g)

)

=
(∑2n−1

k=1 d(1, ak)ω2kh ∑2n−1
k=0 d(1, bak)ω−2kh

∑2n−1
k=0 d(1, bak)ω2kh ∑2n−1

k=1 d(1, ak)ω−2kh

)

=
(∑2n−1

k=1 d(1, ak)ω2kh ∑2n−1
k=0 d(1, bak)ω−2kh

∑2n−1
k=0 d(1, bak)ω2kh ∑2n−1

k=1 d(1, ak)ω2kh

)

,
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where the last equality follows from (4.4). Therefore,

det (x I2 − �(ρ)) =
∣∣∣∣∣
x −∑2n−1

k=1 d(1, ak)ω2kh −∑2n−1
k=0 d(1, bak)ω−2kh

−∑2n−1
k=0 d(1, bak)ω2kh x −∑2n−1

k=1 d(1, ak)ω2kh

∣∣∣∣∣

=
(

x −
2n−1∑

k=1

d(1, ak)ω2kh

)2

−
2n−1∑

k=0

d(1, bak)ω2kh ·
2n−1∑

k=0

d(1, bak)ω−2kh .

Consequently, the eigenvalues of �(ρ) are

x ′
1 =

2n−1∑

k=1

d(1, ak)ω2kh +
√√√√

2n−1∑

k=0

d(1, bak)ω2kh ·
2n−1∑

k=0

d(1, bak)ω−2kh, (4.7)

x ′
2 =

2n−1∑

k=1

d(1, ak)ω2kh −
√√√√

2n−1∑

k=0

d(1, bak)ω2kh ·
2n−1∑

k=0

d(1, bak)ω−2kh . (4.8)

If both x ′
1 and x ′

2 are integers, then by (4.7)–(4.8),
∑2n−1

k=1 d(1, ak)ω2kh = x ′
1+x ′

2
2

is a rational number. Note that
∑2n−1

k=1 d(1, ak)ω2kh is an algebraic integer. Hence,
∑2n−1

k=1 d(1, ak)ω2kh is thus forced to be an integer. By (4.7)
∑2n−1

k=0 d(1, bak)ω2kh ·
∑2n−1

k=0 d(1, bak)ω−2kh is a square number. Conversely, if
∑2n−1

k=1 d(1, ak)ω2kh is an
integer and

∑2n−1
k=0 d(1, bak)ω2kh ·∑2n−1

k=0 d(1, bak)ω−2kh is a square number, then
both x ′

1 and x ′
2 are integers (based on (4.7)–(4.8)).

Therefore, both x ′
1 and x ′

2 are integers if and only if
∑2n−1

k=1 d(1, ak)ω2kh is an
integer and

∑2n−1
k=0 d(1, bak)ω2kh ·∑2n−1

k=0 d(1, bak)ω−2kh is a square number.
Consequently, by Cases 1 and 2, Lemma 2.2 and with the arbitrariness of ρ, we

obtain that Cay(T4n, S) is distance-integral if and only if
∑2n−1

k=1 d(1, ak)ak ∈ C(a)

and

2n−1∑

k=0

d(1, bak)ω2kh ·
2n−1∑

k=0

d(1, bak)ω−2kh

is a square number for all 1 ≤ h ≤ ⌊ n−1
2

⌋
.

This completes the proof. �

Example 4.1 Let T16 = 〈

a, b
∣∣ a8 = 1, a4 = b2, b−1ab = a−1

〉 = {
1, a, . . . , a7, b,

ba, . . . , ba7
}
be the dicyclic group of order 16 and S = {a, a3, a5, a7, b, ba4}. Then,

B̃(〈a〉) =
{
{1}, {a, a3, a5, a7}, {a2, a6}, {a4}

}
. (4.9)

Note that for any g ∈ G,

d(1, g) =
{
min {k | g = s1s2 · · · sk, {s1, s2, . . . , sk} ⊆ S} , if g �= 1;
0, if g = 1.
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Then, by a direct calculation, one has

d(1, a) = d(1, a3) = d(1, a5) = d(1, a7) = 1,

d(1, ba) = d(1, ba3) = d(1, ba5) = d(1, ba7) = 2,

d(1, b) = d(1, ba4) = 1, d(1, a2) = d(1, a4) = d(1, a6) = 2,

d(1, ba2) = d(1, ba6) = 3.

Then, in view of (4.9), we obtain

7∑

k=1

d(1, ak)ak = a + a3 + a5 + a7 + 2(a2 + a6) + 2a4 ∈ C(a)

and

7∑

k=0

d(1, bak)ω2k ·
7∑

k=0

d(1, bak)ω−2k = (1+2ω2+3ω4+2ω6+ω8+2ω10+3ω12+2ω14)

(1 + 2ω−2 + 3ω−4 + 2ω−6 + ω−8 + 2ω−10 + 3ω−12 + 2ω−14)

= 16

is a square number. Therefore, by Theorem 1.3, Cay(T16, S) is distance-integral. In
fact, it is routine to check that

DCay(T16,S) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 2 1 2 1 2 1 1 2 3 2 1 2 3 2
1 0 1 2 1 2 1 2 2 3 2 1 2 3 2 1
2 1 0 1 2 1 2 1 3 2 1 2 3 2 1 2
1 2 1 0 1 2 1 2 2 1 2 3 2 1 2 3
2 1 2 1 0 1 2 1 1 2 3 2 1 2 3 2
1 2 1 2 1 0 1 2 2 3 2 1 2 3 2 1
2 1 2 1 2 1 0 1 3 2 1 2 3 2 1 2
1 2 1 2 1 2 1 0 2 1 2 3 2 1 2 3
1 2 3 2 1 2 3 2 0 1 2 1 2 1 2 1
2 3 2 1 2 3 2 1 1 0 1 2 1 2 1 2
3 2 1 2 3 2 1 2 2 1 0 1 2 1 2 1
2 1 2 3 2 1 2 3 1 2 1 0 1 2 1 2
1 2 3 2 1 2 3 2 2 1 2 1 0 1 2 1
2 3 2 1 2 3 2 1 1 2 1 2 1 0 1 2
3 2 1 2 3 2 1 2 2 1 2 1 2 1 0 1
2 1 2 3 2 1 2 3 1 2 1 2 1 2 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Then, the distance spectrum of Cay(T16, S) is
{
26, 2[4], (−2)[8], (−6)[3]

}
, where

superscripts denote multiplicities. Thus, Cay(T16, S) is distance-integral.

By Theorem 1.3, we can obtain infinite families of distance-integral Cayley graphs
over dicyclic groups according to the following corollary.

123



1058 Journal of Algebraic Combinatorics (2021) 54:1047–1063

Corollary 4.2 Let T4n be the dicyclic group as defined in (1.1). Choose S ⊆ T4n such
that 1 /∈ S, S−1 = S and 〈S〉 = T4n. If S can be partitioned as S := S1 ∪ bS2 ⊆ T4n
with S1, S2 ⊆ 〈a〉 and S−1

2 = S2, then Cay(T4n, S) is distance-integral if and only if
∑2n−1

k=1 d(1, ak)ak ∈ C(a) and
∑2n−1

k=0 d(1, bak)ω2kh ∈ C
(
a2
)
.

Proof First note that S−1 = S if and only if S−1
1 = S1 and S2 = anS2. Then, we

show that d(1, bak) = d(1, ba−k) for all 0 ≤ k ≤ 2n − 1. Assume that bak can be
expressed as bak = x1x2 · · · xr , where x j ∈ S1 or x j = bs j ∈ bS2 for 1 ≤ j ≤ r .
Then, by Lemma 2.5 one has

ba−k = b3(bak)b = b3x1x2 · · · xrb =
{

(b3x1x2 · · · xr−1b)x−1
r , if xr ∈ S1;

(b3x1x2 · · · xr−1b)bs−1
r , if xr = bsr ∈ bS2.

Iterating the above argument yields

ba−k = x ′
1x

′
2 · · · x ′

r , where x ′
j =

{
x−1
j , if x j ∈ S1;

bs−1
j , if x j = bs j ∈ bS2

for j = 1, 2, . . . , r .

Note that S−1
1 = S1 and S−1

2 = S2. Then, x ′
j ∈ S for all 1 ≤ j ≤ r . Recall that

d(1, g) =
{
min {k | g = s1s2 · · · sk, {s1, s2, . . . , sk} ⊆ S} , if g �= 1;
0, if g = 1.

Hence d(1, ba−k) ≤ d(1, bak). Similarly, d(1, bak) ≤ d(1, ba−k). Therefore,
d(1, ba−k) = d(1, bak), which implies that

2n−1∑

k=0

d(1, bak)ω−2kh =
2n−1∑

k=0

d(1, ba−k)ω2kh =
2n−1∑

k=0

d(1, bak)ω2kh .

The desired result then follows from Theorem 1.3 and Lemma 2.2. �

The following corollary gives a necessary condition forCay(T4n, S) to be distance-

integral.

Corollary 4.3 Let T4n be the dicyclic group as defined in (1.1). Choose S ⊆ T4n
such that 1 /∈ S, S−1 = S and 〈S〉 = T4n. If Cay(T4n, S) is distance-integral, then∑2n−1

k=1 d(1, ak)ak ∈ C(a) and
∑2n−1

k=0 d(1, bak)a2k ·∑2n−1
k=0 d(1, bak)a−2k ∈ C

(
a2
)
.

5 The proof of Theorem 1.4

In this section, we prove Theorem 1.4. In the following, we discuss the distance
integrality of Cayley graphs over dicyclic groups T4p for primes p ≥ 3. All distance-
integral Cayley graphs over T4p for a prime p ≥ 3 are completely determined.
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Proof of Theorem 1.4 Assume that S1 and S2 satisfy the sufficient conditions of our
result and we aim to show that Cay(T4p, S) is distance-integral. By Theorem 1.3,

Cay(T4p, S) is distance-integral if and only if
∑2p−1

k=1 d
(
1, ak

)
ωk j is an integer for

all 1 ≤ j ≤ p and
∑2p−1

k=0 d
(
1, bak

)
ω2kh · ∑2p−1

k=0 d
(
1, bak

)
ω−2kh is a square

number for all 1 ≤ h ≤ p−1
2 .

If S1 = ∅ and S2 = 〈a〉, then d
(
1, al

) = 2 for 1 ≤ l ≤ 2p − 1, d
(
1, bal

′) = 1

for 0 ≤ l ′ ≤ 2p − 1, and thus,

2p−1∑

k=1

d
(
1, ak

)
ωk j = 2

2p−1∑

k=1

ωk j = −2,
2p−1∑

k=0

d
(
1, bak

)
ω2kh

·
2p−1∑

k=0

d
(
1, bak

)
ω−2kh = 0.

If S1 = ∅ and S2 = 〈a〉\ {ak, a p+k
}
for some 0 ≤ k ≤ p − 1, then it is direct to

verify that d(1, al) = 2 for 1 ≤ l ≤ 2p − 1, d(1, bal
′
) = 1 for l ′ /∈ {k, p + k} and

d(1, bak) = d(1, ba p+k) = 3, which leads to

2p−1∑

k=1

d
(
1, ak

)
ωk j = 2

2p−1∑

k=1

ωk j = −2

and

2p−1∑

k=0

d
(
1, bak

)
ω2kh ·

2p−1∑

k=0

d
(
1, bak

)
ω−2kh = 4ω2kh · 4ω−2kh = 16.

In a similar way, if S1 = {a p} and S2 ∈ {〈a〉\{ak, a p+k}, 〈a〉}, then
∑2p−1

k=1 d(1, ak)ωk j ∈{0,−2} is an integer and∑2p−1
k=0 d(1, bak)ω2kh ·∑2p−1

k=0 d(1, bak)
ω−2kh ∈ {0, 4} is a square number.

If

S1 ∈
{
[a], [a2], [a] ∪ {a p}, [a2] ∪ {a p}, 〈a〉\{1, a p}, 〈a〉\{1}

}

and

S2 ∈
{
{ak, a p+k}, 〈a〉\{ak, a p+k}, 〈a〉

}
,

then
∑2p−1

k=1 d(1, ak)ωk j ∈ {−4,−2,−1, 0} is an integer and

2p−1∑

k=0

d
(
1, bak

)
ω2kh ·

2p−1∑

k=0

d
(
1, bak

)
ω−2kh ∈ {0, 1, 4}
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is a square number.
Now assume conversely that Cay(T4p, S) is distance-integral. Since p ≥ 3 is a

prime number, we have

B̃ (〈a〉) =
{
{1}, {a p} ,

{
a, a3, . . . , a p−2, . . . , a p+2, . . . , a2p−1

}
,

{
a2, a4, . . . , a p−1, . . . , a p+1, . . . , a2p−2

}}
.

It follows from Corollary 4.3 that

2p−1∑

k=1

d(1, ak)ak ∈ C(a),

2p−1∑

k=0

d
(
1, bak

)
a2k ·

2p−1∑

k=0

d
(
1, bak

)
a−2k ∈ C

(
a2
)

.

Then, we have

{
d(1, a) = d

(
1, a3

) = · · · = d
(
1, a p−2

) = d
(
1, a p+2

) = · · · = d
(
1, a2p−1

) ;
d(1, a2) = d

(
1, a4

) = · · · = d
(
1, a p−1

) = d
(
1, a p+1

) = · · · = d
(
1, a2p−2

)

(5.10)

and
⎡

⎣
2p−1∑

k=0

d
(
1, bak

)
a2k

⎤

⎦

⎡

⎣
2p−1∑

k=0

d
(
1, bak

)
a−2k

⎤

⎦

= 2
2p−1∑

k=0

[
d
(
1, bak

)]2 + m
(
a2 + a4 + · · · + a2p−2

)
, (5.11)

where m is a non-negative integer. Taking the trivial representation of 〈a2〉 on both
sides of (5.11) yields

⎡

⎣
2p−1∑

k=0

d
(
1, bak

)
⎤

⎦

2

= 2
2p−1∑

k=0

[
d
(
1, bak

)]2 + (p − 1)m. (5.12)

Recall that χh

[∑2p−1
k=0 d(1, bak)a2k ·∑2p−1

k=0 d(1, bak)a−2k
]
is a square number for

all 1 ≤ h ≤ p−1
2 . Hence, there exists an integer t such that

t2 = 2
2p−1∑

k=0

[
d
(
1, bak

)]2 − m. (5.13)

Note that S = S−1 if and only if S1 = S−1
1 and S2 = a pS2. Then, ak ∈ S2 if and only

if a p+k ∈ S2 for all 0 ≤ k ≤ p − 1. In the following, we proceed by distinguishing
the following two cases to show our result.
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Case 1. {a, a2}⋂ S1 �= ∅. It follows from (5.10) that

S1 ∈
{
[a], [a2], [a] ∪ {a p}, [a2] ∪ {a p}, 〈a〉\{1, a p}, 〈a〉\{1}

}
.

Then, it is routine to check that

d(1, bak) =
{
1, if ak ∈ S2;
2, if ak /∈ S2.

(5.14)

Assume that |S2| = 2x , then 1 ≤ x ≤ p by the fact that 〈S〉 = T4n . Substituting (5.14)
into (5.12) and (5.13) yields

[2x+2(2p−2x)]2=2[2x+4(2p−2x)]+(p−1)m, t2 = 2[2x + 4(2p − 2x)] − m.

Then, we obtain p(x − t2) = (x + t)(x − t). Therefore, p | (x + t) or p | (x − t).
Note that t2 ≤ 4(4p − 3x) ≤ 4p2, we have x + t, x − t ∈ {−p, 0, p, 2p, 3p}. If
x + t = −p, then x − t2 = t − x . Thus, x2 + (2p − 3)x + p(p − 1) = 0 has no real
roots, which is impossible. Similarly, all the possible cases lead to x ∈ {1, p − 1, p},
implying that S2 ∈ {{ak, a p+k}, 〈a〉\{ak, a p+k}, 〈a〉} for 0 ≤ k ≤ p − 1, as desired.

Case 2. {a, a2}⋂ S1 = ∅. In this case, S1 = ∅or S1 = {a p} (based on (5.10)). Then,
we have |S2| ≥ 4 due to S−1 = S and 〈S〉 = G. Assume that ak = x1x2 · · · xt with
x j ∈ S for all 1 ≤ j ≤ t . Then, there exists xl (1 ≤ l ≤ t) such that xl = bsl ∈ bS2.
Together with Lemma 2.5, one has

a p+k = (x1x2 · · · xt )a p = x1 · · · xl−1(ba
psl)xl+1 · · · xt

Note that S = S−1 if and only if S1 = S−1
1 and S2 = a pS2. Hence, for sl ∈ S2, we

have a psl ∈ S2. Recall that

d(1, g) =
{
min

{
q | g = s1s2 · · · sk, {s1, s2, . . . , sq} ⊆ S

}
, if g �= 1;

0, if g = 1.

Then, d
(
1, a p+k

) ≤ d
(
1, ak

)
. Similarly, d (1, a p) ≤ d

(
1, a p+k

)
. Therefore, for all

0 ≤ k ≤ n − 1, one has d(1, ak) = d(1, a p+k). Combining with (5.10) we have

d(1, a) = d
(
1, a2

)
= · · · = d

(
1, a p−1

)
= d

(
1, a p+1

)
= · · · = d

(
1, a2p−1

)
.

(5.15)

Assume that {a j1, a j2 , a p+ j1 , a p+ j2} ⊆ S2 with 0 ≤ j1 < j2 ≤ p − 1. Then,
d(1, a j2− j1) = d(1, ba j1 · ba p+ j2) = 2. In view of (5.15), one has d(1, a) =
d
(
1, a2

) = · · · = d
(
1, a p−1

) = d
(
1, a p+1

) = · · · = d
(
1, a2p−1

) = 2, which
implies that

d
(
1, ba j

)
=
{
1, if a j ∈ S2;
3, if a j /∈ S2.

(5.16)
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Assume that |S2| = 2y, then 2 ≤ y ≤ p. Substituting (5.16) into (5.12) and (5.13)
yields

[2y+3(2p−2y)]2=2[2y+9(2p−2y)]+(p − 1)m, t2 = 2[2y + 9(2p − 2y)] − m.

Then, we obtain p(16y − t2) = (4y + t)(4y − t). Therefore, p | (4y + t) or
p | (4y − t). Note that t2 ≤ 4(9p − 8y) ≤ 4(p + 1)2, we have 4y + t, 4y − t ∈
{−p, 0, p, 2p, 3p, 4p, 5p, 6p}. If 4y + t = −p, then 4y − t = t2 − 16y. Thus,
16y2+8(p−3)y+ p(p−1) = 0 has no real roots, which is impossible. Similarly, all
the possible cases lead to y ∈ {p − 1, p}, implying that S2 ∈ {〈a〉\{ak, a p+k}, 〈a〉}
for 0 ≤ k ≤ p − 1.

This completes the proof. �

Acknowledgements The authors would like to express their sincere gratitude to both of the referees for a
very careful reading of this paper and for all their insightful comments, which led to a number of improve-
ments.

References

1. Abdollahi, A., Jazaeri, M.: Groups all of whose undirected Cayley graphs are integral. Europ. J.
Combin. 38, 102–109 (2014)

2. Ahmady, A., Bell, J.P., Mohar, B.: Integral Cayley graphs and groups. SIAM J. Discrete Math. 28,
685–701 (2014)

3. Alperin, R.C., Peterson, B.L.: Integral sets and Cayley graphs of finite groups. Electron. J. Combin.
19, 12 (2012)

4. Babai, L.: Spectra of Cayley graphs. J. Combin. Theory Ser. B 27, 180–189 (1979)
5. Balasubramanian, K.: Computer generation of distance polynomials of graphs. J. Comput. Chem. 11,

829–836 (1990)
6. Bridges, W.G., Mena, R.A.: Rational G-matrices with rational eigenvalues. J. Combin. Theory Ser. A

32, 264–280 (1982)
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