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Abstract

A chiral polytope with Schlifli symbol {p1, ..., p,—1} has atleast 2py - - - p,—_; flags,
and it is called fight if the number of flags meets this lower bound. The Schlifli symbols
of tight chiral polyhedra were classified in an earlier paper, and another paper proved
that there are no tight chiral n-polytopes with n > 6. Here we prove that there are
no tight chiral 5-polytopes, describe 11 families of tight chiral 4-polytopes, and show
that every tight chiral 4-polytope covers a polytope from one of those families.

Mathematics subject Classification (2010) 52B05 (20B25, 52B15)

1 Introduction

An abstract n-polytope is a partially ordered set that satisfies many of the proper-
ties of the face lattices of convex n-polytopes. The maximal chains (called flags)
are analogous to the simplices in the barycentric subdivision of a convex polytope.
Automorphisms are order-preserving bijections and are the combinatorial analogue of
symmetries of convex polytopes.

The group of automorphisms of an abstract polytope acts semiregularly on the set
of flags, and if the action is transitive (and thus regular), then the polytope is said to be
regular. These polytopes are regarded as the most symmetric and have been extensively
studied. The automorphism group of a regular polytope has a standard generating set,
and it is possible to recover the polytope from a group in this form, making it possible
to study regular polytopes completely in terms of their groups.

An abstract polytope is chiral whenever the automorphism group has two orbits
on the flags such that flags that differ in only one element are in opposite orbits.
This is the combinatorial analogue to having all symmetry by rotations but none by
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reflections. As with regular polytopes, the automorphism group of a chiral polytope
has a standard form, and we can build a chiral polytope out of such a group. The study
of chiral polytopes grew out from the study of chiral maps and twisted honeycombs
(see [7,8]), and while chiral 3-polytopes and chiral 4-polytopes are nowadays plentiful,
constructing chiral n-polytopes with n > 5 seems to be much harder. To date, there is
no known natural family of chiral n-polytopes with one polytope for each n (whereas
there are many examples of families of regular n-polytopes, such as n-cubes). There is
a construction, described in [21], that takes a chiral n-polytope as input and produces
a chiral (n + 1)-polytope, but the polytopes constructed this way are so large that their
individual study is out of reach with the current computational means available.

How can we find small examples of chiral polytopes? One strategy is to specify
part of the local structure (such as what kind of sub-units the polytope is built from)
and then use that local structure to put a lower bound on the number of flags. This
idea was used in [3] to find the smallest regular polytopes of each rank and in [11] to
explore bounds in the size of chiral polytopes. A polytope is called tight if its number
of flags is equal to some lower bound. For example, a chiral polyhedron (3-polytope)
with p-gonal faces and g edges at each vertex must have at least 2 pqg flags, and so a
tight chiral polyhedron has exactly 2 pqg flags (see [10]).

In [12], the first author determined the pairs (p, g) such that there is a tight chiral
polyhedron with p-gonal faces and g edges at each vertex. Furthermore, the first author
showed in [11] that there are no tight chiral n-polytopes with n > 6. In this work, we
exhibit 11 families of tight chiral 4-polytopes (see Table 4) and show that every tight
chiral 4-polytope covers one of the polytopes in these families. Furthermore, we prove
the following theorem.

Theorem 1 There are no tight chiral 5-polytopes.

2 Background

In this section, we summarize relevant definitions and results.

2.1 Abstract polytopes

Regular abstract polytopes are a combinatorial generalization of the notion of (geomet-
ric) polyhedra explored by Petrie, Coxeter, Grilnbaum and Dress in the 20th Century
(see [6,15,16,18]). In what follows, we recall the basic definitions. For further details
see [19].

An abstract polytope (P, <) of rank n is a partially ordered set satisfying the
following four axioms.

(D It has a unique minimal element F_; and a unique maximal element F,,.

(II) All maximal chains have precisely n + 2 faces, including F_; and F,. This
induces a strictly increasing rank function rank : P — {—1,...,n} where
rank(F_1) = —1 and rank(F},,) = n.
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(IIT) Diamond condition: Given two elements F, G with rank(G) = rank(F) + 2,
there exist precisely two elements H; and H, with rank(H;) = rank(H,) =
rank(F) 4+ 1 such that F < H; < G fori € {1, 2}.

(IV) Strong connectivity: For any pair of incident elements {F,G} < P with
rank(G) — rank(F) > 3, the incidence graph of the open interval (F, G) is
connected. (The incidence graph of a partially ordered set has the elements as
vertices, and two are adjacent if and only if the corresponding elements are
incident.)

Throughout this paper, we will encounter only abstract polytopes and we shall refer
to them simply as ‘polytopes.” Rank 2 and 3 polytopes are also called poylgons and
polyhedra, respectively. For convenience, we refer to the polytope (P, <) simply as
P. Two elements F, G of P are said to be incident if either F < Gor G < F.

The elements of P are called faces. Those of rank i are called i-faces. Following the
tradition, the O- 1- and (n — 1)-faces are called vertices, edges and facets, respectively.
Fori € {l1,...,n — 2}, we define the i-skeleton of P as the partially ordered set
consisting of all the j-faces for j < i.If Fy is a vertex and F,,_ is an incident facet,
we say that the closed interval [ Fy, F,,—1] is a medial section of P.

The closed intervals of a polytope (also called sections) satisfy the axioms of abstract
polytopes. In particular, any medial section of a polytope is a polytope. The section
[Fo, F,], where Fy is a vertex, is called the vertex-figure at Fy. Every face F' may
be identified with the section [F_j, F], and in this way it may be considered as an

abstract polytope.
The maximal chains of P are called flags. Due to the diamond condition, for any
flag @ and any rank i € {0, ..., n — 1} there exists a unique flag @' that differs from

@ precisely in the element of rank i. The flag @ is called the i-adjacent flag of &.
We extend this notation recursively in such a way that if w is a word on the alphabet
0,....,n—1}andi € {0,...,n — 1} then (@¥)' = @i,

The dual P? of a polytope P consists of the same elements as PP with the partial order
reversed. In this way, if F is an i-face of an n-polytope P, then itis an (n —i — 1)-face
of P?.

An n-polytope is said to be flat whenever every vertex is incident to every facet.
Given 0 < k < m < n, we say that it is (k, m)-flat if every k-face is incident to every
m-face.

There is a unique polytope of rank 0 and a unique polytope of rank 1. They corre-
spond to the face lattices of a single point and of a line segment (with its two endpoints).
For each integer k > 2, there is a unique polygon with k vertices, that corresponds
to the face lattice of a convex k-gon. There is also a unique apeirogon with infinitely
many vertices, corresponding to the face lattice of the tiling of the real line by unit
intervals. Therefore the rank 2 sections of a polytope are all isomorphic to k-gons for
some k or to apeirogons.

We say that a polytope is equivelar if, for every i € {1,...,n — 1}, all sections
between an (i — 2)-face and an incident (i 4 1)-face are p;-gons for some numbers p;,
regardless of the choice of (i —2)-face and (i + 1)-face. Regular and chiral polytopes
defined below are examples of equivelar polytopes. The Schldfli type (or type for short)
of an equivelar polytope is {p1, ..., pn—1}-
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We say that an n-polytope Q is a quotient of a polytope P whenever there exists
a rank and adjacency preserving mapping from the faces of P to the faces of Q. (We
say that two i-faces are adjacent if they are incident to a common (i — 1)-face and
(i 4+ 1)-face.) In such cases, we say that P covers Q.

An automorphism of ‘P is an order-preserving bijection of its faces. The automor-
phism group is denoted by I"(P) and acts freely on the set of flags. It follows from
the strong connectivity of P that all orbits of flags have the same size |I"(P)]|.

2.2 Regularity and chirality

In this subsection, we provide a general background on regular and chiral polytopes.

Our main interest in this paper is on chiral polytopes; hence, we shall follow the
approach given in [22] to the study of the automorphism groups of these two classes
of objects, and not the one in [19] for regular polytopes.

We say that an n-polytope P is regular whenever I" (P) acts transitively on the set
of flags, and it is chiral whenever I" (P) induces two orbits on the flags in such a way
that adjacent flags belong to distinct orbits. If P is regular or chiral we say that it is
rotary.

For every i € {0,...,n — 1} the automorphism group of a rotary polytope acts
transitively on the i-faces. As a consequence, rotary polytopes are equivelar.

Itis well-known that for every integers py, ..., p,—1 > 2 thereis aregular polytope
withtype {p1, ..., pn—1} (see [19, Chapter 3]. This is not the case for chiral polytopes,
as shown by the following lemma.

Lemma 1 Ifthe last entry of the type of a polytope P is 2 then P is not chiral.

Proof If P is an n-polytope with a 2 as the last entry of its type then all (n — 3)-faces
belong to precisely two facets. By the diamond condition, also the (n —2)-faces belong
to two facets. The connectivity of the (n — 2)-skeleton shows that P has precisely two
facets and all i-faces are incident to them fori <n — 2.

The function that fixes every i-face fori < n — 2 and interchanges the two (n — 1)-
faces is then an automorphism, and it maps every flag to its (n — 1)-adjacent. Hence
‘P is not chiral. O

Every finite polygon is isomorphic to the face lattice of some convex regular poly-
gon, and hence it is regular. Also the unique infinite 2-polytope is regular. Hence the
rank of a non-regular polytope must be at least 3. Chiral polytopes exist in ranks 3 and
higher (see [21]).

All sections of regular polytopes are regular. The facets and vertex-figures of a
chiral n-polytope may be either regular or chiral; however, the (n — 2)-faces must be
regular (see [22, Proposition 9]). Note that chiral polytopes with chiral facets must
have rank at least 4.

Much of the work on chiral polytopes has been done through a particular presenta-
tion of their automorphism groups that we explain next. For another useful presentation
see for example [5].

Given a fixed base flag @ of a rotary n-polytope P there exist o; € I'(P) for
i ef{l,...,n—1}suchthat ®o; = @'(=1 We shall denote the group (o1, ..., 0p—1)
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by 't (P) and call it the rotation group of P. The automorphisms o; are called standard
generators of ' (P). If P has type {p1, ..., pa_1}, then the order of o; is p; and
therefore I"T(P) is a suitable quotient of the even subgroup [p1, ..., p,—1]" of the
Coxeter group [p1, ..., pn—1] (see for example [19, Chapter 3]).

If P is chiral then I'(P) = I'*(P). Whenever P is regular, I"*(P) has index at
most 2 in P; if the index is 2 we say that P is orientably regular, and it is non-orientably
regularif I' (P) = I'"(P).Inany of these cases, if F is ani-face and G is a j-face such
that F < G and their ranks differ in at least 3 then ' " ([F, G]) = (012, ..., oj-1)-

For a rotary polytope P, the standard generators of I (P) satisfy

(ai...oj)zzid foreveryl <i < j<n-—1, (D)
as well as the intersection condition
AjNAy=Apyy foreveryl,J C{0,...,n— 1}, 2)

where for I € {0,...,n — 1} the set A; denotes the stabilizer in I"T(P) of those
faces F; of the base flag withranks i € I.If I ={l,...,n — 1} \{i,i +1,...,j}
withi < j then A; = (0j41,...,0;), which allows us to state the following lemma.
For other sets, I the generating sets X7 of these stabilizers are more complicated (see
[22, Sect. 3]).

Lemma?2 Let P be a rotary polytope with T ™ (P) = (o1, ..., 04 1). If j <i+1 <k
then
(o1,...,00)N{0j,...,0%) = (0),...,00). (3)

If P is chiral, we may choose the base flag in one or in the other flag orbit. These
two choices produce non-equivalent sets of standard generators o;, in the sense that
the defining relations for I"* () will not be the same for the two sets. One may think
of these two ways of looking at P as a left and right form of the same object; we can
go from one to the other just by ‘reflecting’ our setting from the base flag into any of
its adjacent flags. When doing this, we may take {01_1 , 01202, 03,04, ...,0,_1} as the
new set of standard generators for I"(/P). For a chiral polyhedron, another convenient
new set of generators is {0} ! oy 1}. The enantiomorph of a chiral polytope P (with
an implicit base flag chosen) consists of the same polytope but where we change the
base flag to any of its adjacent flags. We denote the enantiomorph of P by P*. For
more details about these forms see [23].

We mentioned that the rotation group of a rotary polytope is a group with a gener-
ating set satisfying (1) and the intersection condition (2). Conversely, a group with a
generating set satisfying (1) and a suitable version of (2) is the rotation group of an
orientable rotary polytope (that is, orientably regular or chiral).

The construction of the polytope from a group I" = (o071, ..., 0,—1) is detailed in
[22, Sect. 5]. It defines the i-face of the base flag as the subgroup of I" generated by
the elements A};y of A(;; mentioned before Lemma 2. The remaining i-faces are the
cosets of the base i-face under the right action of I". It also establishes that two faces
are incident if they have non-empty intersection. In particular, the sets of facets may be
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identified with the right cosets of (o1, ..., 0,—2) under I". Note that this construction
can be performed even if the group does not satisfy the intersection condition. The
output will still have well-defined flags, and it is possible to talk about regularity
through the action of its automorphism group.

If P is non-orientably regular then that construction will produce the orientable
double cover of P. It follows that there is a one-to-one correspondence between ori-
entable rotary polytopes and groups satisfying (1) together with some version of (2).
For our purposes, we find convenient the following version of (2) that can be easily
deduced from [22, Lemma 10].

Lemma3 Let I' = (o1,...,0,—1) be a group where each o; is nontrivial and the

order of o; ...0j is 2, forevery 1 <i < j <n — 1. Then I" satisfies the intersection
condition (2) if and only if

(01,...,001) N (0}, ...,0i41) = (0j,...,0), “4)

forevery2 < j <i+1<n—1,whereif j =i+ 1 then we interpret the right-hand
side as being the trivial group.

If P is orientably regular (resp. chiral) with '™ (P) = (o1, ..., 0,_1) then Pl is

also orientably regular (resp. chiral) and, with respect to some flag, the i-th standard

generator of 't (P?%) is on_fl]fi, fori e{l,...,n—1}.

In upcoming sections, we will be interested in normal subgroups contained in {(o;)
for some i. In those situations the following result will prove useful.

Lemma4 Let P be a rotary 4-polytope, and let I' T (P) = (o1, 02, 03).

(a) For every k, 0301]‘03_1 = az_lal_koz.
(b) If K is a subgroup of (o1), then Uz_lKaz = K if and only if03_1K03 =K.

Proof We start with

— 2 2 _ 2 _ 2

0301 = (0102)70301(0203)” = 0102(010203)70203 = 0105 03. (5)
It follows that
oga{‘ = (o1 022)k03.
Then
-1 —1_—1 —1_—k

0301]‘63 = (0'10'22)k = (0, 0, oz)k =0, 0, 02

That proves part (a). Part (b) follows since K = (Ulk) for some k. O
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2.3 Covers and quotients

From the definition of cover, we know that if P and Q are orientable rotary n-polytopes
such that P covers Q, then the flags of P in one orbit under "'t () are mapped by the
covering to the flags of Q in one orbit under I"*(Q). As a consequence, there exists
N <« I't(P) such that Q = P/N. In other words, the faces of Q can be taken as the
orbits of faces of P under the action of N, and two of them are incident whenever
an element in the orbit of one face is incident to some element in the orbit of the
other face. (See [20, Example 2.15] for an example of a cover of polytopes that is not
induced by the action of a group of automorphisms.)

Conversely, given N <« '™ (P), the quotient P/N is a polytope if and only if
't (P/N) satisfies (1) and the intersection condition (4) with respect to the generators
{0iNYicqt,..n—1)-

Whenever P is chiral, there exists a normal subgroup X (P) of I"(P) satisfying
that P/ X (P) is a regular structure (in the sense that all flags belong to the same orbit
under I"(P/X(P)) and that if N < I"(P) is such that P/N is a regular structure then
N > X(P). The group X (P) is called the chirality group of P. Note that P is regular
if and only if X (P) is trivial.

Elsewhere the chirality group has been introduced in other terms (see for example [ 1,
2] and [9]), but for our purposes the universal property of the chirality group mentioned
here is more convenient.

The mix of two polytopes P and Q with base flags @p and @, respectively, is the
smallest structure PO Q (which itself may or may not be a polytope) with well-defined
ranks and adjacencies that covers simultaneously P and Q, while mapping the base
flag of POQ to @p and @ g, respectively. As noted in [14, Section 3], the choice of
base flags may be relevant when performing the mix of two chiral polytopes. This is
often taken into account by choosing a base flag from which to construct the standard
generators of the automorphism group.

If P and Q are orientable rotary polytopes with 't (P) = (o1, ...,0,_1) and
Q) = (of.....0)_) then I (POQ) = (11.....1u—1) < TH(P) x I'(Q),
where 7; = (0;, 0/). For convenience, we also denote I' T (PO Q) by I' T (P)OI T (Q).

The mix of two orientably regular polytopes is orientably regular. However, the
mix of an orientable rotary polytope with a chiral polytope may be either orientably
regular or chiral.

The next lemma relates the notions of quotient and mix of orientable rotary poly-
topes.

Lemma5 Let P be an orientable rotary polytope with base flag @y and let K, N be
normal subgroups of I'* (P). Then

P/(KNN)=(P/K)O(P/N),

where the base flags of P/K and P/N are taken as @ - K and @ - N, respectively.

Proof The regular structure P/(K N N) (which may or may not be a polytope) covers
‘P/K mapping a face F - (K N N) to the face F - K. Similarly, it covers P/N. Hence
P/(K N N) covers the mix (P/K)O(P/N).
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Let 't (P) = (o1,...,0,4—1). Then there is a group epimorphism from
I'*(P/(K NN))to I'*((P/K)O(P/N)) mapping o; - (K N N) to (0; - K,0; - N)
fori € {1,...,n — 1}. This epimorphism sends the element o;, - - - 5, - (K N N) to
(0i, -+ 0i, - K, 04, - -0, - N). The latter is trivial if and only if 0}, ---0;, € K N N.
Since the kernel of the epimorphism is trivial, the isomorphism holds. O

Given a chiral polytope P, there exists a smallest regular structure R with well-
defined ranks and adjacencies of flags that covers P (even if this structure is not a
polytope itself), in the sense that every regular polytope that covers P also covers K.
We shall call this structure the smallest regular cover of P.

Sometimes the smallest regular cover of P is a polytope itself; for example, when
the facets or the vertex-figures are regular (see [20, Corollary 7.5]). If the smallest
regular cover of P is a polytope then it is elsewhere also called the minimal regular
cover of P; otherwise, P may have multiple polytopal regular covers that are minimal
in the partial order given by the covering relation.

The smallest regular cover R of a chiral polytope P is the regular structure
constructed (in the sense of [22]) from the group I'(P)O I (P*), where P* is the
enantiomorph of P (see [20, Sect. 7]). We may assume that if I"(P) = (o1, ..., 0n-1)
then

I'*(R) = (01,07 "), (02, 0}, (03,03), . .., (Gu—1, Ou—1)).

We next relate the chirality group of a chiral polytope with its smallest regular
cover. This is a direct consequence of [20, Remark 7.3].

Lemma 6 Let P be a chiral polytope and R its smallest regular cover. Then X (P) is
isomorphic to the kernel of the quotient from I'" (R) to I' (P).

The following result relates the smallest regular covers of chiral polytopes with that
of one of its facets.

Lemma7 Let P be a chiral polytope with chiral facets isomorphic to Q. Then the
facets of the smallest regular cover of P are isomorphic to the smallest regular cover

of Q.

Proof Since the facets of P are chiral, P has rank n > 4.

Let I'(P) = (o1,...,04—1), let Rp be the smallest regular cover of P and
let Ro be the smallest regular cover of Q. Then I'"(Rp) = (o1, ...,0,-1)0
(01_1, 01202, 03,...,0,_1)and F+(RQ) = (o1,..., Jn_z)Q(afl, 01202, 03, ...,0,-2).
Since the orientation preserving automorphism group of the facet of Rp is ' (R o),
the lemma holds. O

We conclude this section with a result that relates the chirality group of a chiral
polytope P with that of its facets.

Lemma 8 Let P be a chiral polytope with chiral facets isomorphic to Q. Then X (Q) <
X(P).
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Proof Let Rp be the smallest regular cover of P, and let R g be the smallest regular
cover of Q. Then, by Lemma 7, the facets of Rp are isomorphic to Rg. By Lemma 6,
X (Q) is the kernel of the natural covering ng from I'"(Rg) to I't(Q), whereas
X(P) is the kernel of the natural covering np from I't (Rp) to I' T (P). Since the
kernel of ng is contained in the kernel of 7p, the result follows. O

2.4 Tight polytopes

For the rest of the paper, all polytopes we deal with will be finite. A polytope of type
{p1, P2, .-, pn—1} has at least 2p; ps - - - p,—1 flags, and if it has exactly that many
flags, we say it is tight [10, Prop. 3.3].

The first mention of the property of tightness occured in [3], while searching for
the smallest regular polytopes of each rank. There it was proven that for n > 4, the
regular n-polytopes with fewest flags are always tight. Their study was extended in
[10] to equivelar polytopes that may not be regular. In particular, it was proven there
that an equivelar polytope is tight if and only if every section of rank 3 is flat. It follows
that every section of a tight polytope is itself tight. The following lemma is a natural
consequence of this fact.

Lemma9 Let P and Q be tight rotary polytopes with types {p,q} and {q,r},
respectively. Suppose that '™ (P) = [p,q]T /Ny and I'™(Q) = [q, r]* /N, where
Ny <lp,qlT and N, < [q, r]T are subgroups induced by the sets of relations R\ and
Ry, respectively. Then a rotary 4-polytope with facets isomorphic to P and vertex-
figures isomorphic to Q exists ifand only if the group [p, q, 17/ N3 has order pgr and
satisfies the intersection condition (4), where N3 is the subgroup induced by the rela-
tions in Ry in the first two generators and the relations R; in the last two generators.
Moreover, such a 4-polytope must be unique.

Tight regular and chiral polyhedra were studied more deeply in [4,12] and [13].
We summarize relevant results on these polyhedra in Sect. 3. Some results on regular
polytopes of higher ranks can be found in [4].

The next proposition summarizes Corollary 3.4 and Theorem 3.5 of [11].

Proposition1 (a) If P is a tight chiral 4-polytope then it has chiral facets or chiral
vertex-figures (or both).
(b) If P is a tight chiral 5-polytope then it has chiral facets, vertex-figures, and
medial sections.
(c) There are no tight chiral n-polytopes for n > 6.

Since we shall work with the automorphism groups of chiral polytopes in place
of the polytopes themselves, it is useful to have a characterization of tightness that is
entirely group-theoretic.

Proposition 2 Suppose that P is an orientable rotary n-polytope of type {p1, . . ., Pu—1},
with 'Y (P) = (o1, ..., 0n,_1). Then the following are equivalent:

(a) P is tight.
(b) |ITT(P) = p1--- pu-1.
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(c) I'"(P)=(o1) - (on-1).

Proof The equivalence of (a) and (b) follows from the fact that |I"*(P)| is equal to
half the number of flags.
Next we show that (b) and (c) are equivalent. Foreach 1 <i <n — 1, let

Si = {oi) -+ (on-1).
Then |S,—1| = pn—1,and fori <n — 1,
Si = (0i)Si+1.

Therefore,

I5i] = [{oi)| - |Si+1]

I — 7, \ ~ a

[{oi) N Sit1]

and since I" " (P) satisfies the intersection condition (4), the intersection on bottom is
trivial, and so

ISil = pi - Siq1l.

It follows that |S1| = p1 - -+ pn—1. This shows that (c) implies (b).
Conversely, if [I'T(P)| = p1 - - - pu_1, then '™ (P) has the same order as its subset
S1, which implies that 't (P) = S. O

Note that (b) and (c) are equivalent only in the presence of the intersection condition.

In light of Proposition 2, we will say that the group I" = (o1, ..., 0,—1) is tight
provided that I" = (o) - - - (0,—1). Then I" is the rotation group of a tight orientable
rotary polytope if and only if I is tight, and it satisfies the intersection condition (4).
The following result is immediate:

Proposition 3 If I' is tight, then any quotient of I is tight. If P is a tight orientable
rotary polytope then any quotient of P is tight.

Proposition 3 imposes a restriction on the quotients of tight orientable rotary
polytopes. The contrapositive of the next proposition imposes another restriction to
quotients of tight orientably regular polytopes, namely that tight regular polytopes do
not have chiral quotients.

Proposition 4 If P is a tight orientable rotary n-polytope that covers a chiral n-
polytope then P itself is chiral.

Proof Let Q be a chiral quotient of P. We proceed by induction over n. By Proposi-
tion 1 (c), it is only necessary to show the statement for n € {3, 4, 5}.

The case whenn = 3 was provenin[12, Prop.2.5].If n € 4, 5, then by Proposition 1
either the facets or the vertex-figures of Q are chiral (n — 1)-polytopes. Since the facets
and vertex-figures of Q are quotients of the facets and vertex-figures of P, the inductive
hypothesis implies that the facets or vertex-figures of P must be chiral. Hence P is
chiral. O
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Propositions 3 and 4 have the following consequence. When taking polytopal quo-
tients of a tight chiral polytope 7 by normal subgroups of I"T(P), we obtain tight
orientably regular or chiral polytopes, and if P is orientably regular then the quotients
are tight and regular. This suggests to try to find successive proper quotients of tight
chiral polytopes until we obtain tight regular polytopes. As we shall see, this is always
possible. Proposition 6 gives a condition for such quotients to exist. Other conditions
will be given in Sects. 4 and 5.

The chiral polytopes we will be interested in typically have a cyclic chirality group,
generated by a power of some o;. The following result describes circumstances where
this property is preserved when taking quotients.

Lemma 10 Let P be a tight chiral polytope with I' (P) = (o1, ..., 0,) and Q a chiral
quotient of P with I'(Q) = (0}, ..., 0,). If X(P) < (02) then X(Q) < (0}).

Proof Let K < I'(P) such that @ = P/K, and let R = P/KX(P). Then R is a
quotient of P/ X (P), and since the latter is regular, Propositions 3 and 4 imply that R
is regular as well. Now, R is the quotient of Q by K X (P)/K, and since R is regular,
that implies that X (Q) is contained in K X (P)/K, which is the image of X(P) in
I'(Q), and thus contained in (o). O

Next, we describe useful structural properties of the normal subgroups of the rota-
tion group of tight orientable rotary polytopes.

Lemma 11 Let P be atight orientable rotary n-polytope with ' (P) = (o1, ..., 04_1)
and let K <« 'Y (P) such that P /K is a tight orientable rotary n-polytope. Then there
exist nonnegative integers oy, . .., d,—1 such that

K =(o1")(03") -+ (0,"7").
Moreover, P/K has type {1, ..., 0n—1}.

Proof For 1 <i < n — 1, let ; be the smallest positive integer such that Ul.“ ek,
and let H = (o a‘) e ((r:fll ). Then clearly H € K. To show the reverse inclusion,
let y € K. By Proposition 2, we may write y as alﬁ i ’3 " 1 for some exponents ;.
Since y € K, we have that for every i,

KU{B] 13 — K(Ul/itjil . ﬁn l) 1

Then, writing o7 for the image of o; in ' (P)/K, we get that

PP

O_ (0,/31+| . ,Bn 1) 1

i+1

Since 't (P)/K is the rotation group of a rotary polytope, Equation (3) implies that

’51 e oiﬁi = 1, which means that alﬂl -0 Pi ¢ K for every i. In particular, Jfgl ek,

B2 B _B

from which it follows that 05~ € K (since o) 0, € K), and continuing in this way
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it follows that each crl.’3 " € K. By our choice of exponents «;, that means that each B;
is divisible by «;, and so y € H.

The type of P/K follows from Proposition 3 since K has order pp--- p,—1/
o] - 0p—1. m}

Proposition 5 Suppose that P is a tight orientable rotary n-polytope with I't (P) =

(01, ..., 0n—1), and let N = (0{")(052) - - - (o:"') be a normal subgroup of I * (P).

If N does not contain any generator o;, then I'*(P)/ N is the rotation group of a tight
orientable rotary polytope.

Proof Let I'T(P)/N = (o7, ..., 0,_1). Since no generator o; is in N, it follows that
each ; has order at least 2. Then to prove that I""(P)/N is the rotation group of an
orientable rotary polytope, by Lemma 3 it suffices to show that
<U_1"-~70_—i>m<6_j5'-~’0i+1> = (avvaL
foralli and j suchthat2 < j < i+ 1 < n — 1. (In fact, it suffices to show that
the subgroup on the left is included in the subgroup on the right, since the reverse
inclusion is obvious.) Tightness will then follow from Proposition 3.
Consider an element of I"*(P)/N that lies in
©1,...,01) N (0], ..., 0i¢1).
We may write this element as @1 = @5, where
g1 € (o1, ..., 0i)
and
@ €(0),...,0i41).
Then ¢1 = y ¢, for some y € N. Since P is tight, Proposition 2(c) says that we may

. by— . bj_ bj by—
ertey:of" ---0,"". Setting y; :olbl oo andyy =0, 0!

i j w1 » We have
that by definition y; and y» both lie in N. Now,

vi o1 = v
and it follows that
)/l_ltpl €(o1,...,0,)N{0j,...,0n-1).
Then since I"* (P) satisfies the intersection condition, it follows from Lemma 2 that
yfl(pl € {0}, ...,0i). And since y; € N, this implies that g1 € (05, ..., 0;), which

is what we wanted to show. O
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When considering I't (P) as a group acting on the set of i-faces of P for some i,
the kernel of this action is a natural normal subgroup of P to consider. (Recall that the
kernel of the action of a group I" on a set X is the subgroup of I" fixing X pointwise.)
The next results give sufficient conditions for the kernel of the action on the vertex set
to be nontrivial.

Lemma 12 Let P be a tight orientable rotary polyhedron. If y € I'V(P) fixes a vertex
and one of its neighbors then it fixes all vertices of P.

Proof Let ug be the base vertex of P. Let ' (P) = (o1, 02), and let y € I'"(P)
such that it fixes u¢ and one of its neighbors vg.

Since the stabilizer of ug is (02) then y = o for some a. Now, if o5 fixes vy then
it must fix all neighbors of ug, since all of them are images of vg under (o»). Since the
choice of base vertex is arbitrary, we have proven that if y fixes a vertex « and one of
its neighbors then it fixes all neighbors of u.

The result then follows from the connectivity of the 1-skeleton of P. O

The fact that the base facet of a tight polytope P contains all vertices of P implies
the following corollary.

Corollary 1 Let P be atight orientable rotary n-polytope with 'Y (P) = (o1, ..., Gu_1).
If o' fixes a neighbor of the base vertex, then it fixes all vertices of P.

Corollary 2 Let P be a tight orientable rotary n-polytope with type {p1, ..., Pn—1}
with p1 < pa. Then the kernel of the action of I'T(P) on the vertex set is nontrivial.

Proof If P is a tight polytope of type {p1, ..., pp—1}, then it has p; vertices. The
automorphism o7 fixes the base vertex while permuting the remaining p; — 1. If
p1 < p2, then each neighbor of the base vertex must have a nontrivial stabilizer under
(02), since the group has order p», which is larger than the largest possible orbit. O

Now we are ready to exhibit a proper normal subgroup N of I"*(P) that is a key
element in discussions in Sects. 4 and 5.

Proposition 6 Let P be a tight orientable rotary n-polytope with n > 3 with type
{P1s ..., pn_1)}satisfying that py > p>, and rotation group ' " (P) = (o1, ..., op_1).
Then there exists an integer k such that (Ulk Y is a nontrivial normal subgroup of 't (P).

Proof By the dual version of Corollary 2 the group (o1, 02) has a nontrivial kernel
when acting on the 2-faces of the base 3-face of P. These 2-faces correspond to cosets
of (o1) in (01, 02). Then there exists k € {1, ..., p; — 1} such that (01)02‘501]‘ = (01>J2Z
for every £. In particular, when £ = —1 this implies that o, lalk 07 € (o1). Since the
latter group is cyclic, we have that (olk) is normal in (o7, 02). The result follows from

Lemma 4 and commutativity of crf‘ with o; for every i > 4. O

3 Tight orientable rotary polyhedra and 4-polytopes
Much of the discussion on tight chiral n-polytopes for n > 4 in Sects. 4, 5 and 6 is

based on what we know about tight orientable rotary polyhedra. In this section, we
summarize some important facts about them.
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We start with a simple result related to Lemma 1, and one of its consequences for
tight orientable rotary polyhedra.

Lemma 13 For every p > 2, there is a unique polyhedron of type {p, 2} and it is
regular.

Proof Let P be a polyhedron with type {p, 2}. Then every vertex of P is incident
with precisely two edges and precisely two facets. Since adjacent vertices belong to
the same two facets, the connectivity of P forces P itself to have only two facets.
It follows that P is isomorphic to the face lattice of the map on the sphere whose
1-skeleton is an equatorial p-gon, and its two facets are the northern and southern
hemispheres. Clearly P is regular. O

Lemma 14 If P is an orientable rotary polyhedron with '™ (P) = (o1, 02) and (o1) <
'Y (P), then P has type {p, 2} for some p. In particular, P is regular.

Proof If 02_1(01)02 = (o1) then 02_101 oy = alk for some k. Now, 0'2_10'10'2 =
o,y 102_ 101_ h implying that o, 2= le+1. The intersection condition (4) tells us that
o has order 2, and hence, the type of P is {p, 2} for some p. Lemma 13 implies the
regularity of P. O

The rotation groups of tight orientable rotary polyhedra have many normal sub-
groups contained in the vertex or facet stabilizer. In the next result, we describe some
of these normal subgroups.

Proposition 7 Suppose P is a chiral or orientable rotary polyhedron of type {p, q},
with I't(P) = (o1, 02). If (0§) « Tt (P), then 6§01 = o105* for some s such that
s2=1 (mod q/a). In particular, 012 commutes with 02“, and if p is odd, then (72“ is
central.

Proof Without loss of generality, we may assume that a is a positive divisor of g. The
subgroup (o5') is normal if and only if o 105‘01 = 05" for some s. Furthermore, we
note that

0§ = (0102) 204 (0102)*
= (0‘2_10‘1_10‘2_1)0‘5“(0‘20’10’2)
= 02_101_102”0102
= 02_1652“02

2
sTa
= 0'2 ,

so that a = s2a (mod ¢), and thus s2 = 1 (mod ¢/a). It is now clear then that 012
commutes with o5, and if p is odd, then (012) = (o1) so that o1 commutes with o' as

well. O

Lemma 15 Let P be a tight regular polyhedron with 't (P) = (o1, 02) and {03)
core-free. Then (012) < It (P).
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Proof First, [13, Theorem 3.3] says that I" T (P) is the quotient of [p, ¢]™ by the extra
relz}tion oy o) = of azj for some i and j. By [13, Proposition 3.2(a)], the subgroup
(02/ _1) is normal, so since we are supposing that (o7) is core-free, we need j = 1.

Then taking the relation o, lo) = ofaz and multiplying on the left by o ! and then

rewriting o lo{ as 0201 gives us 02012 = 0{7102. Furthermore, i must be odd;

Sect. 4 of [13] uses a parameter k which is shown at the end of the section to satisfy
i =1 —k,and k and p are both even by [13, Lemma 4.8]. (Note that Lemma 4.8
requires the polyhedron to have no multiple edges; this is equivalent to asking for
(02) to be core-free, by [13, Proposition 4.6].) Thus o, normalizes (012) and thus this
subgroup is normal. O

Tight orientably regular polyhedra with no multiple edges were classified in [13,
Theorem 4.13]. The next theorem is a direct consequence.

Theorem 2 The types of the tight orientably regular polyhedra with no multiple edges
are:

(a) {p, 2} for some p > 2,

®) {2q, q} for some odd integer g > 3,

(©) {p.q} with p = 2“1 PJ* ... PX* for some ay > 0, some distinct odd primes
Py, ..., Py, and q a proper even divisor of p satisfying that

— the maximal power of 2 dividing q is either 2, 4 or 2*'~1, and if it is 4 then
o) >3,
— fori € {2,...,k}, either Pl-ai divides q or P; is coprime with q.

In [12], an atomic chiral polyhedron was defined as a tight chiral polyhedron with
type {p, g} that covers no chiral polyhedron of type {p’, g} or of type {p, ¢’} for p’
a proper divisor of p and ¢’ a proper divisor of g. It is easy to see that every tight
chiral polyhedron covers an atomic chiral polyhedron. Furthermore, we will see in
Corollary 4 that a stronger condition is true: atomic chiral polyhedra do not cover any
chiral polyhedra.

The atomic chiral polyhedra were classifiedin[12, Lemma4.10, Theorem4.11, The-
orem 4.14]. Here we summarize and slightly simplify this classification (see [12,
Theorem 4.15]).

Theorem 3 Every atomic chiral polyhedron P is one of the polyhedra in Table 1, with
chirality group X (P) and enantiomorph P* as described in the table.

Proof First we will prove the claim for atomic chiral polyhedra of type {2m, m“} and

{m%, 2m}. We start by noting that for any rotation group (o1, o2) and for all ¢, the

relation o, 101 = 01305 is equivalent to 02012 = 01205, since:

oy 'o1 = oios Multiply both sides by o, on the left
0'1_10'2_10'1 = 01205 Useal_laz_1 = 0701

02012 = alzoé.
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Similarly, for all ¢, the relation o207 1 o 302’ is equivalent to 01202 =0, ! 612, since:

-3t

0201*1 =070, Multiply both sides by ojon the left
010201_1 =0 202 Use 010y = 02_101_1
oy 101_2 =0, 202’ Invert both sides
~152.

Now, suppose that P is the atomic chiral polyhedron of type {2m, m®} whose group

. . . _ -1 _
is the quotrent of [2m, m*]™ by the relations o, lol = (713 21+km and 00, T

o, (72 = Lkm®™ . (See [12, Theorem 4.11].) Then the above discussion shows that this

. . . . a—1
group is equivalent to the quotient of [2m, m*]* by the relations 02012 = 012021 Hhm

and al o) = 021 km™ 012 Furthermore, the second of those relations is superfluous,

since if 0201 =0 621+k’" then

a—1 1 a—1yq a—1
021 —km 0_12_0_1 (A=km*™ ) (14+km*~") 0_102

So I' (P) may be written in the form as it appears in Table 1.

Next, the proof of [12, Theorem 3.6] shows that (02’"0171) is normal and that the
quotient of P by this normal subgroup is regular. Thus X (P) is a nontrivial subgroup
a—1

of ((rﬁ”WI ), and since the latter has prime order m, this implies that X (P) = (03" ).

To find a presentation for I"(P*), we may change the defining relations of I"(P)
by replacing o1 with o "and replacing o, with o, ! This yields:

_ _ _ 1 a—1 .
0, 101 - o, ’a o, 1—km Invert both sides
2 14+km*=! 2
. . a—1 1+k a—1 1—k a—1
From this, we obtain 012021 —km = 02( Hom®= ) (1—km )012 = 02012. Thus, the enan-

tiomorph replaces the parameter k with —k (or equivalently, m — k).
A presentation for the dual of P (with respect to the same base flag as P) is
obtained by changing each defining relation, replacing o1 with oy !and o, with o !
14+km*~

Applying this to the relation 0201 = 01 0, " and then inverting both sides yields
02201 = 011 k™ 022, matching the second row of Table 1.

This finishes the proof for atomic chiral polyhedra of type {2m, m®} and their
duals. The proof for the remaining polyhedra is analogous (referencing [12, Theo-
rems 3.7 and 3.8]), except that for type {26!, 28} and its dual, it is not possible to
simplify the presentation in the same way that we can for the other two cases. O

Corollary 3 Let P be an atomic chiral polyhedron with type {p, q} and p > q. Then
p is a prime power.

It turns out that the atomic chiral polyhedra satisfy a stronger condition than their
definition would seem to imply.
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Corollary 4 If P is an atomic chiral polyhedron, then it does not properly cover any
chiral polyhedron.

Proof Suppose that P is an atomic chiral polyhedron of type {p, ¢}, and without loss
of generality, assume that p > ¢ so that p is a prime power m* (where we could have
m = 2). By the definition of atomic, P does not properly cover any chiral polyhedra
of type {p, g’} or {p’, q}. Furthermore, if Q is an orientable rotary polyhedron of type
{p’,q'} where p’ is a proper divisor of p, then the kernel of the natural map from
I'(P) to I' (Q) contains (61’"%1) (see Table 1), and since that is the chirality group of
P, it follows that Q is regular. O

In light of Corollary 4, let us now make a (harmless) redefinition of what it means
to be atomic, while simultaneously generalizing the definition to higher rank.

Definition 1 A chiral polytope is atomic if it is tight and it does not properly cover
any chiral polytopes.

The following result is an immediate consequence of the definition of atomicity
and [12, Corollary 4.3], which states that every tight chiral polyhedron of type {p, ¢}
covers a tight orientable rotary polyhedron of type {p’, g} or {p, q¢'}.

Proposition 8 If P is a tight chiral polyhedron of type {p, q} that is not atomic, then
it covers a tight chiral polyhedron of type {p’, q} or {p, q'}.

When mixing tight orientable rotary polyhedra we may not get a tight structure, as
shown next.

Proposition 9 Let P and Q be distinct atomic chiral polyhedra of types {p, q} and
{p, q'}, respectively, with q' a divisor of q (not necessarily proper). Then PO Q is not
tight, regardless of the choice of base flags.

Proof The mix of P and Q with respect to any choice of base flags must have type
{p, q}, and if it were tight then it should be isomorphic to P and have Q as a proper
quotient. This is not possible since P is atomic. O

We conclude this section with some technical lemmas that allow us to find polytopal
quotients of tight orientable rotary 4-polytopes.

Lemma 16 Let P be a tight chiral polyhedron with type {p, q} and I (P) = (o1, 02).
Then (al-z) is not normal in I" (P).

Proof Let Q be an atomic chiral polyhedron covered by P with automorphism group
(11, 12). If we assume that (crl.z) < I"(P), then by the correspondence theorem in group
theory we must also have that (rl.z) < I'(Q).

It was proven in [12, Proposition 4.1] that if Q has type {p’, ¢’} and p’ > ¢’ then
(t1) has a proper subgroup normal in I"(Q). On the other hand, it is shown in [12,
Proposition 4.5] that either (1) or (1) is core-free in I"(Q). Up to duality, we may
assume that p’ > ¢’, and hence, we only need to show that (112) is not normal in I"(Q).

Now, using the classification of atomic chiral polyhedra we see that if {p, ¢} =
{m“, 2m} then (rlz) = (11) and this is not normal in I"(Q) (see Lemma 14). On the
other hand, if p and g are powers of 2, the dual version of [12, Lemma 4.13] tells us

that the core of (ty) is (r14 ). Hence, (1'12) is not normal in " (Q). O
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Lemma 17 Let P be a chiral 4-polytope with chiral facets and let K be the kernel of
the action of I' (P) on the vertex set. Then o; ¢ K fori € {1, 2, 3}.

Proof The group K is a normal subgroup of I"(P) that is contained in (o2, 03) since
it fixes the base vertex. The intersection condition (3) implies that o1 ¢ K.

If oo € K, then also 010201_1 € K, which implies that 0'2_10'1_2 € K and so
012 € K.Since (o7) has trivial intersection with K (again by the intersection condition),
this implies that 012 = id, which contradicts Lemma 1.

Similarly, if o3 € K, then also 0203051 € K, which implies that 051052 e K
and so 0'22 € K. It follows that o 10'220‘1 € K. Theno| 102201 lies in the intersection
of (o1, o) with (02, 03), and so it must lie in (o»). This implies that (022) is normal
in (o1, 07), contradicting Lemma 16. |

Lemma 18 Let P be a tight orientable rotary 4-polytope, with 't (P) = (o1, 02, 03).
Let K be the kernel of the action of I'*(P) on the vertex set. Then:

(a) There are integers a and b such that K = (o3') (01’)
(b) P/K is a tight orientable rotary 4-polytope.

Proof Let a be the smallest positive integer such that o € K, and let b be the smallest
positive integer such that aé’ € K. (We allow the possibility that 05 = id or af =id.)
LetN = (o§) (03}’ ). Then clearly N is contained in K . To prove the first part, it remains
to show that K is contained in N.

Let H = (02, 03), and suppose that the order of o7 is p. Since P is tight, it has p
vertices, which we can identify with the cosets H, Hoy, ..., H alp _1. The action of
each automorphism on the vertices is by multiplication on the right. Now, suppose that
¢ € K, which in particular implies that ¢ € (02, 03). Since P is tight, Proposition 2
implies that we may write ¢ = o5 a3d . Since o5 03”1 fixes all vertices, it follows that the
action of o5 on vertices is the same as the action of o5  on vertices. Note that o3 !
fixes the neighbor of the base vertex in the base edge, namely,

Hcrl_la3_1 = H(c73(71)71 = H(0102203)71 = Hol_l.

It follows that o5~ 4 fixes that vertex, and thus so does O‘ZC . However, by Corollary 1, if
a power of o7 fixes a neighbor of the base vertex, then it fixes all vertices. Therefore,
o5 € K, from which it follows that 03‘1 € K. Then by our choice of a and b, it follows
that ¢ € N.

The second part follows from the first along with Lemma 17. O

4 Atomic chiral 4-polytopes with chiral facets and vertex-figures

To understand the structure of tight chiral 4-polytopes, we use a strategy similar to
what was done with tight chiral polyhedra. Recall that a tight chiral 4-polytope is
atomic if it does not properly cover any chiral polytopes. It is clear that every tight
chiral polytope covers an atomic chiral polytope. Our goal will be to classify the atomic
chiral 4-polytopes.
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By Proposition 1 (a), the facets or the vertex-figures of an atomic chiral 4-polytope
must be chiral. In this section, we classify all atomic chiral 4-polytopes that have chiral
facets and chiral vertex-figures, leaving the case when one of them is regular for Sect. 5.
We will show in Theorem 4 that an atomic chiral 4-polytope with chiral facets and
chiral vertex-figures must have atomic chiral facets and atomic chiral vertex-figures.
The classification of atomic chiral polyhedra will be then used to find all atomic chiral
4-polytopes with chiral facets and vertex-figures.

4.1 The structure of atomic chiral 4-polytopes with chiral facets and vertex-figures

Now we study atomic chiral 4-polytopes with chiral facets and chiral vertex-figures.
We find several restrictions on atomic chiral 4-polytopes, culminating in Theorem 4.

Proposition 10 Let P be an atomic chiral 4-polytope of type {p, q,r}, with chiral
facets and vertex-figures, and with I'(P) = (o1, 02, 03). Then:

(a) (o1) and (03) are core-free in I" (P).
(b) g > pandq >r.

Proof By duality, for the first part it suffices to prove that (o) is core-free. Suppose
that P is a tight chiral 4-polytope with chiral facets and vertex-figures and suppose that
(o) is not core-free. In other words, there is a nontrivial normal subgroup N = (o}')
of I'(P). If o1 € N, then (o7) is normal in (o1, 02), and by Lemma 14, this implies
that the facets are regular, contradicting our assumptions. So o1 ¢ N. Then the dual
of Proposition 5 shows that I"(P)/N is the rotation group of a tight rotary polytope
Q. Since (07, 03) has trivial intersection with N, the vertex-figures of Q must be
isomorphic to the vertex-figures of P, which are chiral. Thus Q is chiral, which means
that P is not atomic. This proves part (a).

By Proposition 6, if p > g then there exists a proper divisor k of p such that
(alk) < I'(P) contradicting part (a). A dual argument follows if r > g. O

Proposition 11 Let P be an atomic chiral 4-polytope of type {p, q,r}, with chiral
facets and vertex-figures, and with I'(P) = (o1, 02, 03). Then:

(a) The chirality group X (P) is (Ug/)for some q' with q/q’ prime,
(b) The chirality groups of the base facet and vertex-figure are isomorphic to X (P).

Proof Let H and K be the kernels of the actions of I"(P) on the vertices and on the
facets of P, respectively. By Proposition 10(b) together with Corollary 2 and its dual
form, H < (03,03) and K < (o1, 02) are nontrivial normal subgroups of I"(P).
Therefore H N K is a normal subgroup of I"(P) that by the intersection condition is
contained in {(07).

Now, Lemma 18 and its dual show that P/H and P/K are polytopes, and since
H and K are nontrivial and P is atomic, P/H and P/K are regular. Moreover, by
Lemma5,P/(HNK) = P/H{OP/K is alsoregular, implying that H N K is nontrivial.

Since P/(H N K) is regular, X(P) < H N K = (0,") for some m. If g/m is not
prime, then (oﬁ"k) < I'(P) for any k, in particular, for some k such that g /mk is prime.
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By atomicity of P, its quotient by (5" ky is regular and, since it is a maximal quotient,
X(P) = (o ”’k> This concludes part (a)
Part (b) follows from Part (a) and Lemma 8. O

Proposition 12 Let P be an atomic chiral 4-polytope of type {p, q,r} with chiral
facets and vertex-figures. If q is a prime power then the facets and vertex-figures of P
are atomic chiral polyhedra.

Proof Suppose P has facets isomorphic to Q; and vertex-figures isomorphic to Q».
By Proposition 11, X(P) = X(Q1) = X(Q2), and these groups are cyclic of prime
order. If ¢ is a prime power then X (P) is contained in all proper subgroups of (o2},
and so Q; does not cover any tight chiral polyhedra of type {p, ¢’} with ¢’ a proper
divisor of ¢. Proposition 10 says that (o) is core-free, and so also Q; does not cover
any tight chiral polyhedra of type {p’, ¢} with p’ a proper divisor of p. It follows that
Q) is atomic, and a dual argument proves that Q, is atomic as well. O

We are now ready to prove the main necessary condition for a tight chiral 4-polytope
with chiral facets and chiral vertex-figures to be atomic.

Theorem 4 [f P is an atomic chiral 4-polytope with chiral facets and chiral vertex-
figures, then the facets and vertex-figures are atomic chiral polyhedra.

Proof Assume that P has type {p, g, r}. The facets and vertex-figures of P are iso-
morphic to some chiral polyhedra Q and Q», respectively. Proposition 11 (b) tells us
that X (P) = (ag,) with g/q’ prime and that X (P) = X(Q1) = X(Q»).

Assume to the contrary that Q; is not atomic for some i € {1, 2}. Then, by Proposi-
tion 12, ¢ must have at least two distinct prime factors, which by Corollary 3 implies
that neither @ nor Q; is atomic. Let m = g/q’, which is prime (but not necessarily
odd). Then ¢ = m®t for some « and some ¢ not divisible by m.

Since Q) is not atomic there exists N| < (o}, 02) such that Q1 /N is an atomic
chiral polyhedron. By Lemma 11, there exist a and b such that N| = (ol“)(oé’ )} and
Q1/Nj has type {a, b}.

Now X (Q1) = X(P), and therefore, ag/ ¢ N.Itfollows that ¢ /b divides ¢t and m®
divides b. Lemma 10 implies that X (Q1/N) is contained in the subgroup generated by
the second standard generator of I"(Q;/Ny). Since Q1 /N is atomic, we can conclude
that a < b by the classification of atomic chiral polyhedra. Corollary 3 now tells us
that b = m®.

We proceed in a dual manner to observe that there exists N, = (ozb ,> (
such that Q,/N, is an atomic chiral polyhedron with type {#’, ¢}
particular, b = b'.

Let K = (o) (02!’)(636). We claim that K < I"(P). To see this, note that

03) < (02, 03)
= {m¥ c}. In

( kia kzb k3C 1 _kia

)02 = (05 010y 02) (05 L0y 02) € (o) (0¥)) ((07)(05)).
and as noted in the proof of Lemma 4,

kia _kyb _ksc

k
o3(0, "0, 0y )03 = (0, ((7l 14

)02) (03052 03 057 ) € (o) od)) ((02) (05)).
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A dual argument shows that K is invariant under conjugation by o7.

Now, Lemma 17 and Proposition 5 imply that P/K is a polytope, and since P is
atomic this polytope must be regular of type {a, b, c}. In particular, this implies that
the facets are regular polyhedra of type {a, b}. On the other hand, the facets must be
a quotient of Q;/Nj, which is a tight chiral polyhedron of type {a, b}. But no tight
polyhedron properly covers another polyhedron of the same type, and so we have a
contradiction. O

Now let us show that the conditions in Proposition 10 and Theorem 4 suffice if we
want to build an atomic chiral 4-polytope.

Corollary 5 A tight chiral 4-polytope P with chiral facets and vertex-figures is atomic
if and only if

(a) The facets and vertex-figures are atomic, and

(b) (o1) and {(o3) are core-free in I" (P).

Proof Theorem 4 and Proposition 10 prove that the conditions are necessary. Now,
suppose that P satisfies the conditions. If Q is a proper chiral quotient of P, then Q is
still tight, and so Proposition 1 says that either the facets or vertex-figures are chiral.
Without loss of generality, suppose that the facets of Q are chiral. The facets of P
cover the facets of Q, and since the facets of P are atomic, this implies that Q has the
same facets. In particular, if P has type {p, ¢, r}, then Q has type {p, g, r'} for some
r’ dividing r. By tightness, |I"(P)| = pqr and |I"'(Q)| = pqr’, and so since Q is a
proper quotient of P, we have r’ # r. Furthermore, I'(Q) = I'(P)/ (o3 /). But this
contradicts that {o3) is core-free in I" (P). O

4.2 Classification of atomic chiral 4-polytopes with chiral facets and vertex-figures

In light of Lemma 9, once we know the possible types of facets and vertex-figures of
an atomic chiral 4-polytope, all we need to do is try amalgamating the compatible pairs
and see which ones give us a group of the proper size that satisfies the intersection
condition. Theorem 4 implies that the facets and vertex-figures must appear on Table 1.
Combined with Proposition 10, we find that the automorphism group of an atomic
chiral 4-polytope with chiral facets and vertex-figures must be one of the groups in
Table 2. For simplicity, we avoid including the various parameters (such as m, «, and
k1) in the names of the groups. The “extra relations” show how to define the group as
a quotient of the given parent group.

Using GAP [17], we verified that >, I'3, and 4 have the correct order and satisfy
the intersection condition for 8 = 5 and 8 = 6, and for all four choices of (e, €2).
Thus, for these parameter values, the group is the automorphism group of a tight chiral
polytope. We similarly verified that Iy is the automorphism group of a tight chiral
polytope form = 3, € {2,3},k; = ko € {l,2} andform = 5,0 =2,k; = ky €
{1, ..., 4}. Furthermore, for these values of m and «, we verified that I'; does not have
the proper order when k; # kj, and so does not define the automorphism group of a
tight chiral polytope.

For the group I'1, we will show that we do in fact need k; = k5. Then, for each group
we will describe a permutation representation of the group. There is a standard strategy
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that we used to determine the permutation representation, based on the following facts.
If P is a tight chiral 4-polytope of type {p, g, r}, then the cosets of (o) are of the form

(o1 )aé’ o5, and I"(P) acts on the set of cosets by right multiplication. Furthermore,

since I"(P) is tight, then for every i we can rewrite (o )cré’ 050; as (0] )af/og/ for some
b’ and ¢'. So for each i, we determined how b’ and ¢’ depend on b and c. We then
encode the coset (al)azb o5 as the pair (b, ¢) € Z; x Z, and write down a description
of the multiplication.

Once we have a permutation representation, the following lemma will show that
we indeed have found the group of a tight chiral polytope.

Lemma 19 Suppose that P is a tight orientable rotary polyhedron and that Q is a
tight chiral polyhedron. Let I’ = (01,02, 03) = [p, q,r]" /N3, the amalgamation
of ' (P) with 'Y (Q) as defined in Lemma 9. Suppose that there is a permutation
group G = (w1, w2, m3) on Ly X Z, such that the function that sends each o; to m;
determines a group epimorphism. Further, suppose that:

(a) m fixes (0, 0).
(b) There is some point (b, ¢) such that the smallest power of w1 that fixes (b, ¢) is
P
Ty
(c) (b,0)my = (b+1,0) forall b.
(d) (b,c)n3 = (b,c+1) forall band c.

Then I' = G, and I is the rotation group of a tight chiral polytope of type {p, q, r}.

Proof First, note that since G is a quotient of I', then n{ = nj = 7§ = id. The
given conditions then imply that no smaller powers of any 7r; will equal the identity.
Now, since I is a tight quotient of [p, ¢, r]t, it follows that |G| < |I"| < pqr. If we
can show that G satisfies the intersection condition, then Proposition 2 will imply that
|G| = pgr and thus that G = I" and that I" is the rotation group of a tight orientable
rotary polytope of type { p, ¢, r}. Furthermore, by Lemma 9, such a polytope will have
chiral vertex-figures isomorphic to Q and thus it will be chiral itself.
To show that G satisfies the intersection condition, we first need to show that

(1) N (m2) = {id} = (m2) N (73).
Ifo=n{ = nf, then
(0.0) = (0,0){ = (0,0)75 = (1. 0),
and so b = 0 (mod ¢), which implies that ¢ is trivial. Similarly, if ¢ = y'rzb = 713C , then
(b,0) = (0,0)7% = (0, 0)75 = (0, ¢),
which implies that ¢ is trivial. Finally, we need to show that

(1, m2) N (2, 73).
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Consider ¢ in this intersection. Since G is a quotient of the tight group I", we may

. / ~
write ¢ = nfné’ = nf w5 for some a, b, b’, c. We have

0,077l = (0,074 = (b,0)
and
0,07l 7§ = @, 07§ = (¥, ¢).

It follows that ¢ = 0 (mod r) and thus that 75 = id. So ¢ = né’/ € (m), as desired. O

Theorem 5 The group Iy is the automorphism group of an atomic chiral 4-polytope
of type {2m, m®, 2m} if and only if ki = ky.

Proof First let us show that k1 = k». Note that

kyme=l —1 _14kyme!
0‘10'2 = 0‘10'2 0'2
_ a—1 a—1
— 0_21 kim O_l?)azl-‘y-k]m
]7k|n'lo’71 —1
=0, 0, 0]
—klm"‘*l

a—1
Thus, conjugation by o inverts af " and since 1 < k; <m — 1 and m is prime,
.. . . . . a—1 I
this implies that conjugation by o7 inverts 05" . A similar argument shows that
. . . oa—1 .

conjugation by o3 inverts 05" . Then, using Lemma 4(a) we see that

a—1

030, Loy = 0301302]+k‘m

_ —-1_-3 kym®=!
=0, 0 0’20’30’202

-1 _ =3 _—1 _kym*!
=0, 01 03 0y

—1 3

_ _ _klma—l -1
=0, 0 0y 03

1 1=2km*t
—O'l 0'2 0'3 .

On the other hand,

-1 1+kom®™! 3
030, 0] =0, 0301

a—1 _ _
= O’zkzm 0’2010’20’3 30’2 !

kzm""l 1

_ -1 _-3 -1
=0, 01 03 0y
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_ -1 —kom®*~' 3
=0 0y 03 0y

1 _1=2kpm*
—O’l 0’2 0'3 .

o— a—1
Thus 021 —2Zam®=l 021 —2kam""and since k; and ky are defined modulo m (which is
an odd prime), it follows that k| = k. B
Now, fix ki = ko = k. Let D = km®~'. For b € Z,.0, we define b = —b +

bb—1
%D. Then we define permutations of Z,,e X Zy,, as follows:

(b. ey = (b+ 5D, —o), if ¢ is even,

T B +2-5ED,2-0), ifcis odd,
(b+1+5D,0), if ¢ is even,

b, Ty =

b {(b— — D, c-2), ifcisodd,

(b, )ty = (b,c+1).

We want to show that (71, 772, 73) satisfies the defining relations of I"]. Here are several
intermediate calculations; the first three formulas help verify the fourth and fifth.

(a) ED = —bD

(b) b+tD=5b—1tD

() b=b(1+ D)

(d (b,c)mmy = Bb+1,—0)

© (b, on2 = |GAFTD)—cD.c) ifeiseven,
(b(1 = D) +cD,c) ifcisodd.

(b+m,c), ifciseven,

0 b, o)y = {(b—m,c), if ¢ is odd.

From the above, it is straightforward to show that

(b(1 +tD) —tcD,c) ifciseven,

(b, o)mi’ = L
(b(1 —tD)+tcD,c) ifcisodd.

Then (b, c)nlz’" = (b, ¢) since mD = 0 (mod m*). We note that the action of 7r; on
the second coordinate makes it clear that 771 has even order, and for 1 <t <m —1 we
have (1, 0)7112’ = (141D, 0) # (1,0). So 71 has order 2m (and not a proper divisor).
From the sixth calculation above, it is clear that né”a = id. It’s also clear that 3
has order 2m.
Next, we want to show that (mm)2 = (mmm3)? = id. Since (b, c)mimr =
(E + 1, —c), we have:
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(b, c)(mm)* = (b + 1, —c)mima

=b+1+1,0),

and

B+1+1=—(5+1)+@D+1

E+(_”+2”("’)D

b_b(b—l)D_I_ (—b+1)(—b)D
2 2

=b.

So (b, ¢)(m172)% = (b, ¢). Essentially the same proof shows that (b, c) (mimam3)? =
(b, ¢). Veritying that (b, o) (mm3)? = (b, ¢) is straightforward.
Finally, verifying that 7'[27112 = 71127121”) and 7132712 = JTZHD 7132 isrelatively straight-

forward with the hints above. Lemma 19 and Corollary 5 then finish the proof. O

Theorem 6 The group I is the automorphism group of an atomic chiral 4-polytope
of type {8, 2P 8} for all four choices of (€1, €2) and for every B > 5.

Proof Let D = 28—3 . Forb e Zyp, we define b = —b+b(b— 1)De;. Then we define
permutations of Z,s x Zg as follows:

(b + Deye, —c), if ¢ is even,
b, 0w =1 — .
(b+2—Dey(c—1),2—c), ifcisodd,
(b+ 1+ Deje, c), if ¢ is even,
(b, o) = .
(b—1—Dey(c—1),c—2), ifcisodd,

(b, c)my = (b,c+1).

The following intermediate calculations can be used to verify that there is a well-
defined epimorphism from I to (1, 2, 73) sending each o; to ;.
(a) 4D =21 and 8D = 0 (mod 2P)
(b) If 8 = 5, then D? = 2~! (mod 2#), and if B > 6 then D? = 0 (mod 2P).
(c) bD = —bD
(d) b+2tD=0b—2tDforall t
(e) b=b(1+2De))
() (b, o)ymimy = (b+1,—c)
5 (b(1 4+ 2De€1) — 2Desc, ) if ¢ is even,
(&) (b,o)my = .
(b(1 —2De€1) +2Dey +2Der(c — 1),¢) if cis odd.
M b, c)ng _ {(b + 8, ¢), %fc %s even,
(b—28,c), ifcisodd.
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We omit the details of showing that (1, 2, 73) satisfies the defining relations of I>.
Lemma 19 and Corollary 5 then finish the proof. O

Theorem 7 The group I3 is the automorphism group of an atomic chiral 4-polytope
of type {281, 28 28—} for all four choices of (€1, €2) and for every B > 5.

Proof Let D = 2P=3. For b € Z,5, we define

75— b(1 + Dey) if b is even,
(b — 1)1 — Dey) — 1 if bis odd.

Then we define permutations of Z,s X Zyp-1 as follows:

(b, o) & + 2¢ + Deye, (D + 1)) if ¢ is even,
, O =14 — e
"T ) B+2¢— Des(c —1),¢(D + 1) — D) ifcisodd,
b+ 1—2c+ Dere,c(D —1)) if ¢ is even,
(b, )y = e
(b+1—2c—Dey(c—1),c(D—1)— D) ifcisodd,

(b, c)ms = (b,c+1).

The following intermediate calculations can be used to verify that there is a well-

defined epimorphism from I3 to (1, 2, 7w3) sending each o; to ;.

(a) 4D =21 and 8D = 0 (mod 2#)

(b) If 8 = 5, then D? = 2~! (mod 2#), and if B > 6 then D? = 0 (mod 27).

© (b,o)mm = (b+1,—c)

db+1=b-1
b+4,c) if ¢ is even
(b+4+4D,c) ifcisodd.
() (b, )78 = (b +38,0).

(e) (b, o)y =

@ (. c)nlz _ (b(1 +2De€1) 4+ 2¢(2 4+ Dey), ¢) if b is even,
(b(1 —2De€1) +2c(2 — Dey) +4D —4,c) ifbisodd.
(b+c(4D +8),c¢) if b is even,

(h) (b, o)} =

b+ (c—1)@AD+38),c) ifbisodd.
() (b, n¥ " = (b+4Db+c),c) =

(b, ¢) if b and ¢ have the same parity,

{(b +4D, c) if b and c have opposite parity.

Here we give more details on how to verify that (mq, w2, 73) satisfies the extra
714’2’3727_[—3-'1-612/572

relations from Table 2. To verify the relation m, In = T 2 , we
rewrite it:
- 14282 p-2 . _
T, In = T 142 T, a2 Multiply by 7, ! on the left
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—l_—1_ 2422 34e2f? 11 _
Tom, W= T, Ty T, =MW
2422 p-2 . .
7'[27'[12 =, 22 T 3+ei2 Multiply by 7'[12 on the left and rc; on the right
20 4 _ 0B 1+4e2f2

Then we can show that both sides send (b, ¢) to

(b+4Db+2De; + 1 —2¢c + Dexc,c(D — 1)) if ¢ is even,
(b4+4Db —2D€1 + 1 —2¢ — Dey(c — 1), ¢(D — 1) — D) if cis odd.

After showing that that relation holds, we can use it to rewrite the second relation into
a form that is easier to verify:

— B2 p-2 . —
mon = a T e Multiply by 77; " on the left
— — B2 B2 . . .
T 1712711 = n? n; e12 Rewrite using first relation
32072 =2 262 3+4€12P72 - :
5 T, =m; m Multiply by > on the left and right
—e2P2__op2 p-2 p-2
T[; €12 ™ 2 Ty = 7_[27_[12 n§+612

Then we can show that both sides send (b, ¢) to

(b4+4Db —2De€1 + 5 — 2¢ + Deze, c(D — 1)) if ¢ is even,
(b+4Db —2De; +5—2c — Dex(c — 1), ¢(D —1) — D) if cis odd.

To verify the third relation, we rewrite it as w75 1712 = ng 2D,

show that both sides send (b, ¢) to

31+2D. Then we can

(b+4+4+2¢D,c+1+2D) ifciseven,
b+4—-2eD,c+1+2D) ifcisodd.

To verify the fourth relation, we multiply both sides by n§ on the left and 7 on the

1+2€2D7_[3—1+2D

right to obtain 7[5‘ T3 =TT, 7>. Then we can show that both sides send

(b,c) to
b+4,c+1) if ¢ is even,
b+4+4D,c+ 1) ifcisodd.
Lemma 19 and Corollary 5 then finish the proof. O

Theorem 8 The group Iy is the automorphism group of an atomic chiral 4-polytope
of type {8, 28, 28=1} for all four choices of (e1, €2) and for every B > 5.
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Proof We use the same permutation representation as Theorem 7, except that we now
define b = —b + b(b — 1)De; as in Theorem 6. Note that since the relations of I
that involve only o7 and o3 are the same as the relations in I3, and the permutation
representation for those two elements is the same, the only relations that need to be
verified are those that include ;. Here are some intermediate calculations:

2 (b(1 4+ 2De€y), ¢) if ¢ is even,
(@ (b,o)my = .
(b(1 —2De€1) +2De€;, ¢) if cis odd.
(b(1 +4D¢y), c) if ¢ is even,

4_
() (b, o)) = :(b(l —4Dey) — 4D, c) if cis odd.

(©) (b, c)mma = (b + 1, —c). (Note that since this calculation and the definition of
b is the same as in Theorem 6, it follows at once that 771775 and 77273 have
order 2.)

(d) (b, c)yr28 = (b + 8, ¢). (This follows from the same calculation in Theorem 7.)

Lemma 19 and Corollary 5 then finish the proof. O

Table 4 includes information on all of the atomic chiral 4-polytopes with chiral
facets and vertex-figures.

5 Atomic chiral 4-polytopes with regular facets and chiral
vertex-figures

Now we switch our attention to atomic chiral 4-polytopes with regular facets and chiral
vertex-figures. The goal is to show that the vertex-figures are atomic chiral polyhedra
and then use the classifications in Sect. 3 to find all atomic chiral 4-polytopes with
regular facets.

5.1 The structure of atomic chiral 4-polytopes with regular facets and chiral
vertex-figures

As in the previous section, we start by studying normal subgroups of the rotation group
of atomic chiral 4-polytopes, in this case with regular facets.

Lemma 20 Let P be an atomic chiral 4-polytope with regular facets, chiral vertex-
figures and type {p, q,r}. If ' (P) = (o1, 02, 03) then

(a) (o1) is core-free,
(b) q is even,
© p<gq

Proof If (olk) < I"(P), then by Proposition 5, P/ (G]k) is a tight polytope with vertex-
figures isomorphic to those of P. The chirality of the vertex-figures of P contradicts
atomicity, proving part (a).

To prove part (b), assume to the contrary that g is odd. Since (o7) is core-free, the
type of the facets of P must be the dual of one of the types listed in Theorem 2. The
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only possibility for g being odd is if the facets of P have type {2, ¢}. This contradicts
Lemma 1.
Part (c) follows from part (1) and Proposition 6. O

Lemma 21 Let P be an atomic chiral 4-polytope with regular facets and chiral vertex-
figures. If P has type {p, q, r}, then the vertex-figures of P do not cover a chiral
polyhedron with type {q, r'} forr’ < r.

Proof Assume to the contrary that the vert/ex-ﬁgures of P cover a chiral polyhedr(/)n
Q with type {g, 7'} with ¥’ < r. Then (0} ) < (02, 03), and I'(Q) = (02, 03)/(0} ).
In particular, (o3 /) is normalized by conjugation by o>. The dual version of Lemma 4
implies that it is also normalized by conjugation by o1 and hence (o} Y<T(P).

By Proposition 5, P /(o3 /) is a 4-polytope. Furthermore, its vertex-figures are iso-
morphic to Q, which is chiral. This contradicts the atomicity of P. O

Lemma 22 Let P be an atomic chiral 4-polytope with type {p, q, r}, regular facets
and chiral vertex-figures. Then the vertex-figures of P do not cover a chiral polyhedron
with type {q’, r} with either q' an even divisor of q or q' < q/2.

Proof Let I'(P) = (01, 02, 03).
Assume first that the vertex-figures of P cover a chiral polyhedron Q with type

{q’, r} with ¢ even. Then (aqu) < (02, 03). By the dual version of Lemma 15, (0’22> <
(o1, 02). Since <02q,> < (022) and the latter is cyclic, we have that (02{]/) < I'(P). Then

Proposition 5 shows that P/ (ozq ,) is a4-polytope whose vertex-figures are isomorphic
to Q, contradicting atomicity of P.

Now, if ¢’ is odd and ¢’ < ¢/2 then (0’22 ql) is invariant under conjugation by
all generators o; and hence it is a proper normal subgroup of I"(P). It follows that

P/ (022 1) is a proper quotient of 7P whose vertex-figures cover Q. Proposition 4 implies

that P/ (022 7} is a chiral quotient of P, again contradicting atomicity of P. O

We are now ready to prove the main necessary condition for a tight chiral 4-polytope
with regular facets and chiral vertex-figures to be atomic.

Theorem 9 If P is an atomic chiral 4-polytope with regular facets and chiral vertex-
figures then the vertex-figures are atomic chiral polyhedra.

Proof Let I'(P) = (o1, 02, 03) and assume that the facets and vertex-figures of P are
isomorphic to Q; and Q,, respectively. We shall abuse notation and write I' T (Q;) =
(o1, 02) and I'(Q3) = (02, 03).

Assume to the contrary that Q) is not atomic. Lemmas 21 and 22 imply that Q»
covers no chiral polyhedron with type {g, r’} with ¥’ < r and that the only chiral
polyhedron covered by Q, with type {q’,r} for ¢’ < ¢q is such that ¢’ = ¢/2.
Furthermore, ¢ /2 must be odd.

First, we show that Q;/ (Uzq / 2) is atomic. Note that since crzq /? has order 2 and

(08%) < I'(Qy), 0§/ is central in I'(Qa). Let I'(Qa/(0§/%)) = (62,83). By
Lemma 22, Q,/ (ag / 2) does not cover a chiral polyhedron with type {g”, r} for
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q” < g/2. On the other hand, if Q>/(0y /%y covers a chiral polyhedron with type
{q/2,r"} for r’ < r then 6, 163’ "6y = &3”/ for some integer a. Lifting this relation
to I'(Q3), we have that a{lag/crz = crzeq/zcré”/ for some € € {0, 1}; however, by
Lemma 21 (o3 /) is not normal in I"(Q>) and hence ¢ = 1. Then, conjugation by o>

interchanges the subgroups (o3 'y and (O’2q / 203’,), implying that o, Zag/af € (o3 "y if
and only if £ is even. It follows that 03’, = 02‘] / 203’,051/ 2 ¢ (03’,), a contradiction.

Therefore Q,/ (o5 /2y is atomic.

Since Qz/(ozq/z) is atomic and has type {¢/2, r} with ¢ /2 odd, we have that g /2 =
mP and r = 2m for some odd prime m and positive integer 8. In particular ¢ =
2mP and, by Theorem 2, p must be the odd prime power m#. Furthermore, by [12,
Prop. 3.2 and Thm. 3.6], the atomic chiral polyhedron of type {m?, 2m} covers a tight
regular polyhedron of type {m, 2m}, and so (03") is normal in (07, 03)/ (02q / 2) and
indeed in {07, 03) itself. Then, since the dual version of Lemma 15 tells us that (022)
is normal in (o7, 02), it follows that (022’") is normal in " (P).

Abusing notation let F*(Qz/(ozm)) = (03, 03). Since m is odd and Q/(c}") is
regular, Proposition 7 and the dual version of Lemma 15 imply that 032 is central in
r*(Q/(o"). M I (P/(03™) = (01,07 03) then

02”(732(0‘2”)71 — 032(02// em
for some ¢ € {0, 1}. Now, (o))" generates a normal subgroup of order 2, and is thus
central. Then

2 2
id = 05/032171(02//)7] — (U%(Ué’)em)m — 032;n(02//)sm — (aé/)sm .

Since 62” has order 2m and m? is odd, it follows that ¢ = 0, so in fact, 032 commutes
with o}'. Then, by (5) we have that

-1 _2 11\2 2 1 =2, _1\—1 -2
0 03012((02) 03)" = 203 ((72) =03,

and so conjugation by o inverts 032. Since p = m? is odd, this implies that 032 = 03_2,
and so 2m (the order of 03) divides 4, which is impossible. O

Corollary 6 A tight chiral 4-polytope P of type {p, q, r} with regular facets and vertex-
figures is atomic if and only if

(a) The vertex-figures are atomic,
(b) q is even, and
(c) (o1) is core-free in I" (P).

Proof Theorem 9 and Lemma 20 prove that the conditions are necessary. To prove that
they suffice, suppose that P satisfies the three conditions and suppose that P properly
covers a chiral 4-polytope Q. Then the facets of Q are covered by the regular facets of
‘P, and by Proposition 4, the facets of Q are regular. Then by Proposition 1, the vertex-
figures of Q are chiral. These vertex-figures are covered by the vertex-figures of P,
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which are atomic, and so Q has the same vertex-figures as P. In particular, Q has type
{p’, q,r} for some p’ dividing p. By tightness, |I"(Q)| = p’qr and |I"(P)| = pqr,
and since Q is a proper quotient of P, we have p’ < p. Now, the kernel of the natural
epimorphism from I"(P) to I"(Q) includes alp /. On the other hand, |(c71’7 /)| = p/p

so that |[I"'(P)| = |I'(Q)] - |(alp /) |. Tt follows that alp / generates a nontrivial normal
subgroup of I"(P), contradicting that (o) is core-free. So P must be atomic. O

5.2 Classification of atomic chiral 4-polytopes with regular facets and chiral
vertex-figures

If P is an atomic chiral 4-polytope with regular facets and chiral vertex-figures, then
Lemma 20 implies that the facets must be the dual of one of the polyhedra in Theo-
rem 2, and Theorem 9 implies that the vertex-figures must be one of the polyhedra in
Theorem 3 or its dual. The dual of Lemma 1 implies that the facets cannot be type
{2, ¢}. Then, after some manipulation of the relations in [13, Sect. 4] we have the
following lemma:

Lemma 23 The facets of an atomic chiral 4-polytope with regular facets must be one
of the following:

(a) Type{m,2m} for an odd prime m, with rotation group [m, 2m]+/(02201 = 01022).
(b) Type {4, 8}, with rotation group [4, 8]*/(02201 = 01022).
(c) Type {4,2P} for some B > 5, with rotation group [4, 2ﬁ]+/(02_101 =

—1 _1+42f-1
o, 0, ).

(d) Type {2P=1, 2P} for some B = 5, with rotation group [2871, 2’3]+/(<7201_1 =
o103, with € € {0, 1).
Now there are eight possibilities for the automorphism group of an atomic chiral
4-polytope with regular facets and chiral vertex-figures; see Table 3.

We will show that the first three groups do correspond to atomic chiral 4-polytopes,
whereas the remaining groups do not.

Theorem 10 The group Ay is the automorphism group of an atomic chiral polytope
of type {m, 2m, m®}, for each k satisfying 1 <k <m — 1.

Proof Let D = km®~!. Then we define permutations of Zo,, X Ze as follows:

b, ) (b +2c,c+ < p) if b is even,
7C = (c—
Tl 420 -2, ¢+ 950Dy ifbis odd,
—1
(b, 0m = (b +1-2¢,— + L),

(b, )3 = (b, c+ 1).
Here are a few intermediate calculations.
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Table 3 The candidate groups of atomic chiral 4-polytopes with regular facets and chiral vertex-figures

Group name Parent group Extra relations Notes

Aq [m, 2m, m*]T, (722(71 = alnzz m odd prime, o > 2,

a—1
03 022 = 022031 Fkm

l<k<m-—1

A [4,8,281+ o}oy = 0107 B>5e==l
03022 = 02203]+€2ﬂ_2

A3 [4,26=1 287+ oy lor = oy )T B=5€==%l
03—1 oy = 02—1+2/3*2 U3-3+ezﬁ*2

- B2 B2
030, 1 _ 0,21+2 033+52

—1
Ay (4,28 81F oyl or = oy Lo} B=5€==%l

p—2
0'20'32 = 0'320'21+62

As [4’2/3’2/3—1]—0— 02_]0‘] =O’l_102]+2ﬂ_1 B=>5€==1
05102 = 023+52ﬂ72a3172ﬁ72
030_2—1 _ 02—3+ezﬂ*263—1+2/3*2
Ag 261 2F g+ ooy = (710;_6]2/3_1 B =5,
(72032 = 032021+€22ﬁ_2 €1 €{0,1},ep = %1
Ag [26-1,28 2B-11+ oyl = olaf*lzﬁ_] g =5,
03_10'2 = 023+622ﬂ_2031_2ﬂ_2 €1 €{0,1},ep = %1
USU{] = 0273+522ﬂ_2037]+2ﬂ_2
Ag [28—2, 281 2B+ Jzafl = awrffelzﬂi2 B >5,
oiloy = oy WY 0 1) e =41
0302*1 _ 021+2ﬂ*2633+e225*2
(b +2nc, c+ n@D) if b is even,

a) Forall n, (b, c)7' = (e
® b (b +2nc —2n, ¢ +n<FUD) if bis odd.

(b) (b, )} = (b+2,¢(1+ D))
(b+1,—c) ifbiseven,

b, =
© (b, o)mm (b—1,—c) ifbisodd.

From these, it is routine to show that there is a well-defined epimorphism from A to
(1, 2, 3) sending each o; to ;. Lemma 19 and Corollary 6 then finish the proof. O

Theorem 11 The group A; is the automorphism group of an atomic chiral polytope
of type {4, 8, 2P},
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Proof Let D = 2873 For b € Zg, we define

75— b if b is even,
“|b—2 ifbisodd.

Then we define permutations of Zg x Z,s as follows:

(b —2c, c(1 4+ De)) if ¢ is even,
b, o)m =4 - .
(b—2c+4,c(l1 — De)+ De) ifcisodd,
(b+1—2c,c(—1+ De)) if ¢ is even,
(b, )y = e
(b+1—2c,c(—1— De)+ De) if cisodd,

(b, )3 = (b, c+ 1).
We note that

2 (b+2,c(1 —2D¢€) ifciseven,
(b, )5 = e .
(b+2,c(14+2D¢) ifcisodd.

Then it is routine to show that there is a well-defined epimorphism from Aj to
(1, 2, 3) sending each o; to ;. Lemma 19 and Corollary 6 then finish the proof. O

Theorem 12 The group Aj is the automorphism group of an atomic chiral polytope
of type {4,28=1 28},

Proof Let D = 2873 For b € Z,p-1, we define

5o b(—1—-D) if b is even,
~ |b(=1—=D)+ D ifbisodd.

Then we define permutations of Z,s—1 x Z,s as follows:

(b, o) (E —cD, c(—1+ De)) if ¢ is even,
,C =1 _
: b—(c—1DD+2,(1—-c)(1+ De)+ 1) ifcisodd,
(b+1+cD,c(1+ De)) if ¢ is even,
(b, )y = .
b—-—14—-1)D,(c—1)({1—De)—1 ifcisodd,

(b, c)ms = (b,c+1).

Here are some intermediate calculations:
(a) I_fa iseven,thena + b =a + b.
(b) b =b(1 +2D) (mod 25~ 1).
)@ +2D), c(1 —2De)) if ¢ is even,

2
© (b, onf = (b(1+2D) —2D, (c — (1 +2De) + 1) if cis odd,
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(b+38,c), if ¢ is even,
(b —8,c—16), ifcisodd.
) (b.omm=(b+1,—c)

Let us rewrite the first extra relation of A3 as 02012 = 012021+2D (see the proof of
Theorem 3, noting that o 1 013 ). Similarly, we rewrite the second extra relation
by multiplying both sides on the left by o>, and the third relation by multiplying both
sides on the right by 07. Then one can check that there is a well-defined epimorphism
from A3 to (7, w2, m3) sending each o; to ;. Lemma 19 and Corollary 6 then finish
the proof. O

) b, 0nf =

In order to rule out the remaining cases, we will use the following lemma.

Lemma 24 Suppose that A is a quotient of [p, q, r1" satisfying

2 2
oy01 =010y,
—1

oy 03 = 0503,

0302_1 = 05’03_0,
and suppose that b is odd. Then

2t+2 —t(b+1)—1+a
05 703 = 030, .

Proof First, we note that

o, 10220301 = 017102201 02203 = 022'+203.

On the other hand,

0{10220301 = 0171020371027101

_ =1 _c_—-b-1
=0, 0350, 0]

-1 —t(b+1)
=0, 03010,

_ Gza;caz—z(bﬂ)—l

_ 0_30_27t(b+1)71+a.

Proposition 13 The groups A4 and Ag satisfy

-1 _ _  _—1-e2f2 __3
03 02 =0, 03
and
_ _enb2
030, - 021 2 033.
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Proof First:

p-2 . -
0'20‘3 =03 021+62 Rewrite 0203 as o5 102 !
_ p-2 .
03 102 loy = 032021 +e2 Multiply on the left by o3
p-2 .
0y o3 = 050y T2 Invert both sides
— _ _—1-e2f2 __3
o3 loy = o, o3
Next, we note that since 0203 = 03 21+€2 , it follows that
1-e2f2 2 2 (1-e2P"2)(1+e2P72) _ 2
Finally:
2 _ 1-e2f2 2 Rewrit -1_-—1
0302 =0, 03 ewrite 0302 as 0, 05
1 - B2 . .
030, 103 I = 21 g2 Multiply on the right by o3
_ -2
030, =0, o3,

]

Theorem 13 The groups A4 and As are not the automorphism groups of tight chiral
4-polytopes.
Proof In A4 and As, the relation a{lal = 0, -1 21+2ﬂ is equivalent to ozcrfl =

_142p-1 .. . . 1 -
010, 1+2 (see [13, Proposition 3.1]), and this implies that 02201 = 020, 102 1=

010 2( 14277 . Then Proposition 13 and Lemma 24 prove that both groups satisfy

022& o3 = 03, and so0 o7 does not have order 27 as required. O
Theorem 14 The groups Ag and A7 are not the automorphism groups of tight chiral
4-polytopes.

Proof If either group is the automorphism group of a tight chiral 4-polytope, then
Proposition 6 implies that (o1, 02) and (o2, 03) both have a normal subgroup of the
form (O’2 ). It follows that <02ﬂ—1 ) is normal in (o7, 02, 03), which means that ozzﬁ_] is
central. . 52
Now, the relation o0, ' = 01023 <127 implies that 001 = 01022(1+512 ).
Proposition 13 implies that we may use Lemma 24, which then implies that in

-1 _ B-1 B-1
As, U;sz 03 = 030, 4=a2 g0 conjugation by o3 inverts a4+€]2 , and

. B-1 . .
since 022 is central, this implies that conjugation by o3 inverts 02. Now, 03202 =
1 - p=2 . B—
030, 103 1 021 +e2 032, and it follows that 03 0y = 021 +e22 034 . Then 034 022 =
p—1 .
(722 (I+e2 )04 = 0226;} , and since o3 has order 8, this implies that 022 = ag‘ (7220;‘ So:
03051 = 02_103_102022
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_ -2 _
=0, 24672 o 3.2

3 9
_ p—2
=0, 2+€2 0_30_220§1
242t 246202 3 4
= 0'2 0'2 0'3 0'3
_ p-1
— 02 44672 o
. . . . C A1 .
Since we also have that conjugation by o3 inverts Uf , this implies that 022 =id,
and so o, does not have the desired order.
o A1 B-1 . B-1 .
In A7, Lemma 24 implies that o; a2 = 030; +a2 Since o5 is central,

this implies that o3 commutes with 05‘ . However,

—4—¢)2F2 —1 _—3—e2F2
030, = 030, 0,
34er2B2 {1082 _3_crb2
=0, 3+e o; 142 o, 3—ex
_ B2
=0, 44-€22 o3
_9p-2 282 . . . 2B-1 . :
Then o, =05 ,whichimplies that o5 = id, and again o7 does not have the
desired order. O

Theorem 15 The group Ag is not the automorphism group of tight chiral 4-polytope.

Proof If Ag were the automorphism group of a tight chiral 4-polytope, then (o, ) would
be core-free in (02, 03) (see Proposition 6 and [12, Proposition 4.5]). We will show
that in fact, o3 normalizes a nontrivial subgroup of (07).

From the relation 0201_1 = 01023_6,2/’—2’ it follows that 022(71 = 01022_612/3_2, and
thus, for each £, 022]‘01 = 0102(1_612’373)2]‘. Then
-1__ 2 —1 2-€272
0] 030501 =0 03010,
= 02203022_612ﬂ_2.
On the other hand,
01—103_0220] _ Ul—102—2+2/H63—3+622/3-201
— Ul—1UZ—2+2/’—201020337522/3*202_1
_ 02—1+2ﬂ_2+612ﬁ_203:))—622ﬂ_20_2—1
_ 0;1+2ﬁ*2+e12ﬂ*2 0337622/9*2 o 21—213—2 02—2+2f‘—2
_ 02—1+2ﬂ*2+e12ﬁ*2 02—1 0302—2+2ﬁ*2'
Putting these together, we find that o, 4+2ﬂ72+€‘2ﬂ7203 = 673651 _2572_612,572’ and so
o3 normalizes a nontrivial subgroup of (02). O
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Table 4 summarizes the atomic chiral 4-polytopes with chiral vertex figures. The
duals of the first three rows yield atomic chiral 4-polytopes with regular vertex-figures,
and the last two rows correspond to a dual pair of chiral 4-polytopes. In total, there
are 11 families of atomic chiral 4-polytopes. Thus we have shown:

Theorem 16 Every tight chiral 4-polytope covers one of the polytopes in Table 4 or
its dual.

Proposition 14 If P is an atomic chiral 4-polytope with regular facets, then X (P) is
contained in {03).

Proof An atomic chiral 4-polytope P with regular facets has automorphism group
A1, Az, or Az. In each case, the chirality group of the vertex-figures is a cyclic group
of prime order of the form (o5) that is normal in (0, 03) (see Table 1), and thus in
I'(P) (by the dual of Lemma 4). The quotient of I"(P) by this normal subgroup
is a polytope, by Proposition 5, and thus, it is regular (by atomicity). Therefore, the
chirality group of the vertex-figures contains the chirality group of P, and since the
former has prime order and the latter is nontrivial, it follows that the two coincide,
proving the claim. O

6 Tight chiral 5-polytopes

Recall that a tight chiral 5-polytope must have chiral facets and chiral vertex-figures
(see Proposition 1 (c)). In this section, we prove Theorem 1, that is, that no such
polytope exists.

Recall that a tight chiral 5-polytope P with I"(P) = (o1, 02, 03, 04) is atomic if it
does not properly cover any tight chiral polytope. Clearly, every tight chiral 5-polytope
covers an atomic chiral S5-polytope.

We start by giving properties that atomic chiral 5-polytopes must satisfy, should
they exist.

Lemma 25 Let P be a tight chiral 5-polytope with type {p, q, r, s} where g > r. Then
the kernel of the action of I'(P) on the chains containing a 3-face and a facet is
nontrivial.

Proof The stabilizer of the chain containing the base 3-face and the base facetis A =
(01, 02). The remaining chains can be associated to right cosets of A. Proposition 6
implies that there is a nontrivial subgroup (cré‘) that is normal in (07, 03, 04). Then it

follows that for all a and b we have ({071, az)ofaf)af = (o1, 02)03“@{’, and so oé‘
fixes all chains containing a 3-face and a facet. O

Lemma 26 Let P be an atomic chiral 5-polytope with I' (P) = (o1, 02, 03, 04) and
type {p.q.r,s}. If g = r then

(a) X(P)is (051/) for some q’ satisfying that q/q’ is prime,

(b) The chirality groups of the base facet and the base vertex-figure are also (ozq ).
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Proof Let H and K be the kernels of the actions of I"(P) on the vertices and on the
chains consisting of a 3-face and a 4-face, respectively. By Corollary 2 and Lemma 25,
H and K are nontrivial. Therefore H N K is a normal subgroup of I"(/P) that by the
intersection condition is contained in (07 ). The rest of the proof is as in Proposition 11.

O

Now we can prove Theorem 1.

Proof of Theorem 1 1t suffices to show that there are no atomic chiral 5 polytopes.
Suppose to the contrary that P is an atomic chiral 5-polytope. Up to duality, we may
assume that ¢ > r. Let K be the base facet. It must be a tight chiral 4-polytope,
by Proposition 1(b), and since the facets of the facets of a chiral polytope are always
regular, K has regular facets. Now, Lemma 26 says that X has chirality group contained
in (07). Let K’ be an atomic chiral 4-polytope that is covered by K, with I'(K') =
(01, 05, 0%). Then Lemma 10 says that X (K') is contained in (03), which contradicts
Proposition 14. O

7 Concluding remarks

The study of tight chiral polytopes was originated in the search for chiral polytopes
with a small number of flags. In ranks 3 and 4, the atomic chiral polytopes are now
classified; this constitutes the first step for a full classification of tight chiral 3- and
4-polytopes. However, the techniques used to classify tight regular polyhedra fail in
the chiral setting, and the full classification seems to require several more steps.

The nonexistence of tight chiral n-polytopes for n > 5 strengthens the general belief
that foreach n > 5 the chiral n-polytopes with the fewest flags have considerably more
flags than the regular n-polytopes with the fewest flags. See also [11, Theorem 5.5].

Acknowledgements The authors would like to thank the anonymous referees for their helpful comments.
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