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Abstract
We find an upper bound on the reflection or absolute length of Coxeter group elements
as a function of the number of generators and the standard length. For any universal
Coxeter group, we show that there are elements which achieve the bound for any given
standard length.

1 Background and statement of results

The purpose of this paper is to establish an upper bound on the reflection length of
elements in any Coxeter group. The reflection length has appeared in a few contexts,
including as a generalization of a permutation formula [5] and in the study of reflec-
tion subgroups [6]. It has been given a geometric interpretation for the finite [2] and
affine [7] groups. The first nontrivial upper bound on reflection length was a constant
bound for any affine group [8]. No general nontrivial upper bound has been previously
established, although Duszenko proved [3] that no constant bound exists except in the
finite and affine cases.

We let (W , S) be a Coxeter system. Any elementw ∈ W can be written as a product
of the generators w = s1s2 · · · sp. If p is the minimum among all such expressions,
then we say that p is the length of w, denoted l(w) = p, and we say that s1s2 · · · sp is
a reduced expression forw. If a generator s appears in some reduced expression forw,
then s appears in every reduced expression for w [1, Corollary 1.4.8 (i i)]. Therefore,
we can define nd(w) to be the number of distinct generators in any reduced expression
for w.

We define a set T = {xsx−1 : x ∈ W , s ∈ S} of the conjugates of the generators,
and if t ∈ T , then we say that t is a reflection. We can write any element as a product
of reflections w = t1t2 · · · tq . If q is minimal among all such expressions, then we
say that q is the reflection length of w, denoted lR(w) = q. The reflection length
is sometimes called the absolute length [1] and denoted al(w). Other notations in
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the literature [2,4–6] include v(w), n(w), l(w), and l ′(w). We follow the notation of
McCammond and Petersen [7,8].

The relations in any Coxeter group W are generated by those of the form s2i = 1
and (si s j )mi, j = 1, where the mi, j are integers with mi, j ≥ 2. In the case where the
relations of W are all of the form s2i = 1, then we say that W is universal. In any
Coxeter system (W , S), the rank is the number of generators |S|.
Example 1 We take W to be a universal Coxeter group

W = 〈s1, s2, s3, s4 | s21 = s22 = s23 = s24 = 1〉,

and we consider the expression for an element w

w = s1s2s4s1s2s4s1s2.

It is a reduced expression, since in a universal Coxeter group any expression without
repeated factors is reduced. The element w satisfies l(w) = 8 and nd(w) = 3. A
different expression

w = t1t2t3t4t5t6

where t1 = s1s2s4s2s1, t2 = s1s2s1, t3 = s2, t4 = s4s1s4, t5 = s4, and t6 = s2,
shows that lR(w) ≤ 6. In fact the reflection length of w is 4; we invite the reader to
find a different expression as a product of four reflections. We also emphasize that the
number of distinct generators nd(w) = 3 can be less than the rank 4.

The following useful theorem is our main tool for computing reflection lengths.

Theorem (Dyer’s Theorem, [4]) The reflection length of an element w is equal to the
minimum number of factors deleted from any reduced expression for w, such that the
remaining product is equal to the identity.

We can apply Dyer’s theorem to the element of Example 1 as follows. Since

s1s2ŝ4ŝ1s2ŝ4s1ŝ2 = s1s2s2s1 = 1,

where the hat denotes deletion, we see that lR(w) ≤ 4. We could use an exhaustive
search of deleting fewer factors to conclude that lR(w) = 4.

Since the generators are a subset of the reflections ofw, it follows immediately that
lR(w) ≤ l(w) for all w ∈ W . In fact, the reflection length is sometimes much less
than the length. IfW is finite, then Carter [2, Lemma 2] showed that lR(w) is equal to
the codimension of the space fixed by w in the standard geometric representation. In
a finite dihedral group, for example, we have lR(w) ≤ 2 for all w ∈ W , but the length
l(w) could be as large as half the order of W . For W of affine type, McCammond
and Petersen [8, Theorem A] showed that there exists a constant N , depending only
on the number of generators, such that lR(w) ≤ N for all w ∈ W . Duszenko proved
[3, Theorem 1.1] that if W is not finite or affine, then no such constant bound exists.
However, we can still ask if any improvement on the obvious bound lR(w) ≤ l(w)

exists. Our main results are the following.
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Theorem 1 We let (W , S) be a Coxeter system. For all nonidentity w ∈ W, we have

lR(w) ≤ l(w) − 2

⌈

l(w)

nd(w)

⌉

+ 2. (1)

Here we have used �r	 to denote the least integer that is greater than or equal to r , and
we recall that nd(w) is the number of distinct generators appearing in w. The bound
in Theorem 1 is sharp for universal groups in the following sense.

Theorem 2 We let (W , S) be a universal Coxeter system with |S| ≥ 2 and let m be a
positive integer. There exists w ∈ W such that l(w) = m and

lR(w) = l(w) − 2

⌈

l(w)

nd(w)

⌉

+ 2.

The remainder of this paper is organized as follows: Section 2 includes some basic
properties of the reflection length function. Section 3 contains the proof of the general
upper bound of Theorem 1. The proof of the upper bound includes a generalization of
the pigeonhole principle. In Sect. 4 we establish the sharpness of the upper bound for
universal Coxeter groups in the proof of Theorem 2. We close with some data toward
enumeration of elements by length and reflection length in Sect. 5.

2 Properties of the reflection length function

In this section we state some basic properties of the reflection length function and
establish a few useful lemmas. These properties are generally well known, but we
collect them here and include some simple proofs as appropriate.

Lemma 1 For all w ∈ W, we have lR(w) ≡ l(w) (mod 2).

Proof By the definition of a Coxeter group, W has a presentation with each relation
of the form s2i = 1 or (si s j )mi, j = 1. In particular, the relations which reduce the
number of factors in a expression reduce the number by an even number of factors.
Therefore, all expressions which are equal to the identity contain an even number of
factors. Then by Dyer’s theorem, l(w) is even if and only if lR(w) is even. ��

The following result is analogous to corresponding basic properties of the length
function, for example, Björner and Brenti’s Proposition 1.4.2 [1]. It may be proven by
standard arguments similar to that for the length function, and we omit the proof.

Proposition 1 For all w, x ∈ W:

(i) lR(wx) ≡ lR(w) + lR(x) (mod 2),
(ii) for s ∈ S, if w = xs, then lR(w) = lR(x) ± 1,
(iii) lR(w−1) = lR(w),
(iv) |lR(w) − lR(x)| ≤ lR(wx) ≤ lR(w) + lR(x)
(v) lR(wx−1) is a metric on W.
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The reflection length function has some useful properties which are not analogous
to properties of the length function, such as the following.

Lemma 2 We let w1 and w2 be conjugate elements in a Coxeter group W. Then,
lR(w1) = lR(w2).

Proof We let W be a Coxeter group and w1, w2 ∈ W be conjugate elements. By
the definition of conjugate, there exists an element x ∈ W such that w1 = xw2x−1.
Suppose we delete factors from a reduced expression for w2 such that the remainder
is equal to the identity. Then, deleting the same factors from xw2x−1 will reduce w1
to the identity. Therefore by Dyer’s Theorem, lR(w1) ≤ lR(w2). We also have that
w2 = x−1w1x , and the same argument shows that lR(w2) ≤ lR(w1). ��

One use of Lemma 2 is to move any factor to the beginning of an expression to help
calculate its reflection length. For example, suppose that w = s1s2xs1s2s3 where x
is some factor. Conjugating by s2s1, we can conclude that lR(w) = lR(xs1s2s3s1s2).
Then, we could apply Proposition 1 or other techniques to draw conclusions about
lR(w).

The final lemma that we will need is a bound on the reflection length of elements
in finite or infinite dihedral groups.

Lemma 3 We let (W , S) be a Coxeter system with |S| = 2. For all w ∈ W we have
lR(w) ≤ 2.

Proof We let (W , S) be a Coxeter system with |S| = 2 and w ∈ W . Any reduced
expression for w is an alternating product of the two generators. If l(w) is odd, then
this product is a palindrome and thereforew is a reflection and lR(w) = 1. Otherwise,
lR(w) = 0 or lR(w) = 2 by part (i i) of Proposition 1. ��

3 Proof of Theorem 1

We will need an inequality for the ceiling function.

Lemma 4 Suppose that N , k ∈ Z with k > 0. Then,

k

⌈

N

k

⌉

≤ N + k − 1.

Proof We take N = qk + r for q, r ∈ Z with 0 ≤ r < k. If r = 0, then k�N/k	 =
N ≤ N + k − 1. Otherwise, 1 < r < k, and

k

⌈

N

k

⌉

= k
⌈

q + r

k

⌉

= kq + k = N − r + k ≤ N + k − 1,

as desired. ��
We will also need the following generalization of the pigeonhole principle.
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Lemma 5 Suppose that N objects are placed in k boxes, and that m1, m2, . . . ,mk

are the number of objects in each box, with m1 ≥ m2 ≥ · · · ≥ mk ≥ 0. Then for all j
with 1 ≤ j ≤ k, we have

j
∑

i=1

mi ≥ j

⌈

N

k

⌉

− j + 1.

Proof We suppose to the contrary that there exists a j such thatm1+m2+· · ·+m j <

j�N/k	 − j + 1. We first note that we must have m j ≤ �N/k	 − 1, since otherwise
m1+m2+· · ·+m j ≥ jm j > j�N/k	− j . Since themi are nonincreasing, it follows
that mi ≤ �N/k	 − 1 for all i with j < i ≤ k. Applying these inequalities to the sum
of all the mi , we find that

k
∑

i=1

mi <

(

j

⌈

N

k

⌉

− j + 1

)

+ (k − j)

(⌈

N

k

⌉

− 1

)

= k

⌈

N

k

⌉

− k + 1

≤ N

by Lemma 4. However, each of the objects is placed into a box so
∑k

i=1 mi = N , a
contradiction. ��

We are now in a position to prove one of our main results.

Proof of Theorem 1. We let (W , S) be a rank n Coxeter system and consider some
reduced expression for a nonidentity element w. If n = 1, then the only nonidentity
element is the generator, which is easily seen to satisfy inequality (1). Therefore, we
may assume that n ≥ 2.

In our reduced expression for w, we suppose that a most frequently occurring
generator occurs m1 times and a second most frequently occurring generator occurs
m2 times. We remove the other l(w) − m1 − m2 letters from w to obtain a word w′.

First we consider the case in which l(w′) is odd. By Lemmas 3 and 1, lR(w′) = 1.
We also have that m1 + m2 ≥ 2�l(w)/nd(w)	 − 1 by Lemma 5. Therefore,

lR(w) ≤ lR(w
′) + (l(w) − m1 − m2)

≤ 1 + (l(w) − 2�l(w)/nd(w)	 + 1)

= l(w) − 2�l(w)/nd(w)	 + 2,

as desired.
We next consider the case in which l(w′) is even. By Lemma 3, lR(w′) ≤ 2. Since

m1 +m2 must be even, we conclude from Lemma 5 that m1 +m2 ≥ 2�l(w)/nd(w)	.
Therefore,
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lR(w) ≤ l(w) − 2�l(w)/nd(w)	 + 2,

as desired. ��

4 Proof of Theorem 2

We let (W , S) be a Coxeter system of rank n ≥ 2.We first show that powers of Coxeter
elements, which are elements of the form

w = (s1s2 · · · sn) j ,

achieve the upper bound for any j ≥ 1. We emphasize that here s1s2 · · · sn denotes a
product of the elements of S, with each element appearing once in the product. Speyer
showed [9] that these elements are reduced, so l(w) = nj . The number of distinct
generators is nd(w) = n, so we wish to show that lR(w) = nj − 2�(nj)/n	 + 2 =
nj − 2 j + 2.

Lemma 6 We let (W , S) be a universal Coxeter system of rank n ≥ 2. For any j ≥ 1,
the power of the Coxeter element w = (s1s2 · · · sn) j satisfies lR(w) = nj − 2 j + 2.

Proof If j = 1, then each generator appears exactly once so none of the relations
s2i = 1 may be used to reduce w to the identity. To reduce w to the identity, every
generator must be removed. Therefore, lR(w) = n, as desired.

For j > 1, we proceed by induction. We assume that lR(w′) = n( j − 1) − 2( j −
1) + 2, where w′ = (s1s2 · · · sn) j−1, and consider the element w = (s1s2 · · · sn) j . If
we remove generators from w to obtain an expression equal to the identity, then we
must remove at least n−1 consecutive generators, since the only relations in the group
are of the form s2i = 1. Using Lemma 2 and reindexing the generators as necessary,
we may assume that the first n − 1 generators are removed. Therefore,

lR(w) = n − 1 + lR(snw
′)

By Proposition 1 (i i), we have that either lR(w) = n + lR(w′) or lR(w) = n − 2 +
lR(w′). However, lR(w) = n + lR(w′) exceeds the bound of Theorem 1, so

lR(w) = n − 2 + lR(w
′) = n − 2 + n( j − 1) − 2( j − 1) + 2 = nj − 2 j + 2.

��
We next consider elements of the form

w = (s1s2 · · · sn) j s1s2 · · · sr

with 0 < r < n. In this case, l(w) = nj + r and nd(w) = n, so we wish to show that
lR(w) = nj + r − 2�(nj + r)/n	 + 2 = nj + r − 2 j .
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Lemma 7 We let (W , S) be a universal Coxeter system with |S| = n ≥ 2. For any
j ≥ 0 and r with 0 < r < n, the element w = (s1s2 · · · sn) j s1s2 · · · sr satisfies
lR(w) = nj + r − 2 j .

Proof We first notice that in the case where j = 0, the element w is a product of r
distinct generators and therefore has an reflection length of lR(w) = r , as desired.

In the case where j > 0 and r = 1, we conclude from Proposition 1 (i i) and
Lemma 6 that lR(w) = nj − 2 j + 1 or lR(w) = nj − 2 j + 3. However, by Theorem
1, the reflection length can be at most nj + 1 − 2�(nj + 1)/n	 + 2 = nj + 1 − 2 j .
Therefore, lR(w) = nj + 1 − 2 j , as desired.

Finally, we note that for the elements w1 = (s1s2 · · · sn) j s1 and w2 =
(s1s2 · · · sn) j+1, we have that lR(w2) = n( j + 1) − 2( j + 1) + 2 by Lemma 6
and lR(w1) = nj + 1 − 2 j from the case r = 1. These have a difference of
lR(w2) − lR(w1) = n − 1. We have the same difference l(w2) − l(w1) = n − 1
for the standard lengths. Then by Proposition 1 (i i), it must be the case that both
the reflection length and the standard length increase by 1 when right multiplying by
each factor of s2s3 · · · sn . Therefore, the reflection length of (s1s2 · · · sn) j s1s2 · · · sr is
nj + r − 2 j for all r with 1 ≤ r < n. ��
Proof of Theorem 2. We let (W , S) be a rank n ≥ 2 Coxeter system and let m be
a positive integer. Writing m = qn + r for integers q ≥ 0 and 0 ≤ r < n and
applying Lemma 6 or Lemma 7, we obtain an elementw with l(w) = m and lR(w) =
l(w) − 2�l(w)/nd(w)	 + 2. ��

5 Enumeration of group elements

Using Maple,1 we computed the number of elements of length at most 17 by their
reflection lengths in the universal Coxeter group 〈s1, s2, s3 | s21 = s22 = s23 = 1〉. The
nonzero entries are shown in the following table.

The main relevance of the data to our results is that the length of the rows is given
by the bound in Theorem 1. A few other observations can be easily explained. For
example, the parity of the row and column indices of nonzero entries is explained by
Lemma 1. The divisibility by 6 follows from the action of the symmetric group on
the subscripts. The (2m + 1, 1) entry is equal to 2m3, which can be explained by the
multiplication principle since it counts palindromes in s1, s2, and s3. Similarly, the
sum of row m is equal to 2m−13 because it counts words in s1, s2, and s3 without
repeated factors.

It would be interesting to find a two-variable generating function for this table, but
this remains an open question.

1 https://github.com/brian-drake/Reflection_Length_Maple.
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1 2 3 4 5 6 7

1 3
2 6
3 6 6
4 24
5 12 36
6 90 6
7 24 168
8 282 102
9 48 714 6
10 858 678
11 96 2904 72
12 2304 3834 6
13 192 11,394 702
14 6216 18,270 90
15 384 42,822 5940 6
16 15,702 81,786 816
17 768 151,170 44,562 108
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