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Abstract
A class of scattered linearized polynomials covering infinitely many field extensions
is exhibited. More precisely, the q-polynomial over Fq6 , q ≡ 1 (mod 4) described in
Bartoli et al. (ARSMath Contemp 19:125–145, 2020) and Zanella and Zullo (Discrete
Math 343:111800, 2020) is generalized for any even n ≥ 6 to an Fq -linear automor-
phismψ(x) of Fqn of order n. Such ψ(x) and some functional powers of it are proved
to be scattered. In particular, this provides new maximum scattered linear sets of the
projective line PG(1, qn) for n = 8, 10. The polynomials described in this paper lead
to a new infinite family of MRD-codes in Fn×n

q with minimum distance n − 1 for any
odd q if n ≡ 0 (mod 4) and any q ≡ 1 (mod 4) if n ≡ 2 (mod 4).

Keywords Linearized polynomial · Linear set · Subgeometry · Finite field · Finite
projective space · Rank metric code · MRD-code

1 Introduction and preliminaries

Let Fqn be the Galois field of order qn , q a prime power. An Fq -linearized polynomial,
or q-polynomial, over Fqn is a polynomial of the form

f (x) =
k∑

i=0

ci x
qi ∈ Fqn [x], k ∈ N.

If ck �= 0, the integer k is called the q-degree of f , in short degq( f ). It is well known
that any linearized polynomial defines an endomorphism of Fqn , when Fqn is regarded
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as an Fq -vector space and, vice versa, each element of EndFq (Fqn ) can be represented
as a unique linearized polynomial over Fqn of q-degree less than n, see [17].

For a q-polynomial f (x) = ∑n−1
i=0 ci xq

i
over Fqn , let D f denote the associated

Dickson matrix (or q-circulant matrix )

D f =

⎛

⎜⎜⎜⎝

c0 c1 . . . cn−1

cqn−1 cq0 . . . cqn−2
...

...
...

...

cq
n−1

1 cq
n−1

2 . . . cq
n−1

0

⎞

⎟⎟⎟⎠ . (1)

The rank of the matrix D f is the rank of the Fq -linear map f (x), see [28].
Among the linearized polynomials over a finite field, a particular class has recently

aroused interest for its connections with finite geometry and with coding theory: that
of scattered polynomials.

More precisely, a scattered q-polynomial f (x) ∈ Fqn [x] has the property that the
polynomial f (x) + mx has at most q roots in Fqn for all m ∈ Fqn , or equivalently, if
for any y, z ∈ F

∗
qn the condition

f (y)

y
= f (z)

z
(2)

implies that y and z are Fq -linearly dependent. The condition for a q-polynomial to be
scattered can be equivalently stated in terms of Dickson matrices [6,29]. Polynomials
of this sort are linked to particular subsets of the finite projective line PG(1, qn)
called maximum scattered linear sets. Then consider the finite projective line � =
PG(F2

qn ,Fqn ) ∼= PG(1, qn). A set L of points in � is called Fq -linear set (or just
linear set) of rank k if it consists of the points defined by the nonzero vectors of an
Fq -subspace U of F2

qn of dimension k, i.e.

L = LU = {〈u〉Fqn : u ∈ U\{0}}.

Two linear sets LU and LW of PG(1, qn) are said to be P�L-equivalent if there is
an element ϕ ∈ P�L(2, qn) such that Lϕ

U = LW . It is clear that if U and W are
on the same �L(2, qn)-orbit, then LU and LW are P�L-equivalent, but the converse
statement is not true in general. For further details see [7,11].

The set LU is called Fq -linear set of Z(�L)-class r if r is the greatest integer
such that there exist Fq -subspaces U1,U2, . . . ,Ur of F2

qn such that LUi = LU for
i ∈ {1, 2, . . . , r} and Ui �= λUj for any λ ∈ F

∗
qn and distinct i, j ∈ {1, 2, . . . , r}.

Furthermore, LU is of �L-class s if s is the greatest integer such that there exist Fq -
subspacesU1,U2, . . . ,Us of F2

qn with LUi = LU for i ∈ {1, 2, . . . , s}, butUi andUj

are not on the same �L(2, qn)-orbit for i, j ∈ {1, 2, . . . , s}, i �= j . In particular, if
s = 1, then LU is called a simple Fq -linear set.

The scattered q-polynomials arise from some Fq -linear sets in PG(1, qn). An Fq -
linear set of rank k and size (qk − 1)/(q − 1) in PG(1, qn) is called scattered. A
scattered Fq -linear set of rank n is called maximum scattered linear set. As shown in
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[5], these are the linear sets of maximum size distinct from PG(1, qn). If LU is an Fq -
linear set of rank n of PG(1, qn), it can always be assumed (up to a projectivity) that
LU does not contain the point 〈(0, 1)〉Fqn . Then, U = U f = {(x, f (x)) : x ∈ Fqn },
for some q-polynomial f (x) over Fqn and for the sake of simplicity, we will write L f

instead of LU f to denote the linear set defined by U f . Clearly, L f is scattered if and
only if f (x) is a scattered q-polynomial. The first examples of scattered polynomials
were found by Blokhuis and Lavrauw in [5] and by Lunardon and Polverino in [20]
and then generalized by Sheekey in [26]. Apart from these, very few examples are
known. They are defined for n ≤ 8 and are summarized in Sect. 3. In view of the results
in [1,2], stating that the only families of scattered q-polynomials defined for infinitely
many n and satisfying certain additional assumptions are those of Blokhuis–Lavrauw
and Lunardon–Polverino, it would seem that the scattered polynomials are quite rare.

As stated before, scattered polynomials attracted a lot of attention, especially
because of their connection, established by Sheekey in [26, Section 5], with rank
distance codes. These were introduced by Delsarte as q-analogs of the usual linear
error- correcting codes endowed with Hamming distance, [13]. Recently, there has
been a resurgence of interest in them because of their applications to random linear
network coding and cryptography, see [14,27]. A rank distance code (or RD-code for
short) C is a subset of the set of m × n matrices Fm×n

q over Fq , the finite field of q
elements with q a prime power, endowed with the distance function

d(A, B) = rk(A − B)

for any A, B ∈ F
m×n
q . The minimum distance of an RD-code C, |C| ≥ 2, is defined as

d(C) = min
M,N∈C
M �=N

d(M, N ) .

A rank distance code of Fm×n
q with minimum distance d has parameters (m, n, q; d).

If C is an Fq -linear subspace of Fm×n
q , then C is called Fq -linear RD-code and its

dimension dimFq C is defined to be the dimension of C as a subspace over Fq .
The Singleton-like bound [13] for an (m, n, q; d) RD-code C is

|C| ≤ qmax{m,n}(min{m,n}−d+1).

If the size of the code C meets this bound, then C is a calledMaximum Rank Distance
code, MRD-code for short. In this paper, only the case m = n is considered; that is,
only codes whose code words are square matrices are taken into account. Note that if
n = d, then anMRD-code C consists of qn invertible endomorphisms ofFqn ; such C is
called spread set of EndFq (Fqn ). In particular, if C is Fq -linear, it is called a semifield
spread set of EndFq (Fqn ). These objects are related to semifields. For more details,
see [15,16].

The adjoint code of a rank code C is C� = {Ct : C ∈ C}, where Ct denotes the
transpose of the matrix C . Two Fq -linear codes C and C′ are called equivalent if there
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exist P, Q ∈ GL(n, q) and a field automorphism σ of Fq such that

C′ = {PCσ Q : C ∈ C}.

Furthermore, C and C′ are weakly equivalent if C is equivalent to C′ or to (C′)�.
In general, it is difficult to decide whether two rank distance codes with the same

parameters are equivalent or not. Useful tools to face this problem are the left and right
idealizers, see [18,22]. More precisely, the left and right idealizers L(C) and R(C) of
an RD-code C ⊆ F

n×n
q are

L(C) = {X ∈ F
n×n
q : XC ∈ C for all C ∈ C},

R(C) = {Y ∈ F
n×n
q : CY ∈ C for all C ∈ C},

respectively.
In this article a class of scattered linearized polynomials overFqn will be introduced.

Later, the connections to maximum scattered linear sets of the projective line and
MRD-codes that arise from these polynomials will be investigated. More precisely, in
Theorem 2.4, it will be proved that the polynomial

2ψ(x) = xq + xq
t−1 − xq

t+1 + xq
2t−1 ∈ Fq2t , t ≥ 3, (3)

is scattered for any odd q if t is even, and for q ≡ 1 (mod 4) if t is odd. Some
compositions of type ψ ◦ ψ ◦ · · · ◦ ψ(x) are scattered as well. For t = 3, ψ(x) is up
to equivalence the polynomial dealt with in [4,30].

This paper is organized as follows. In Sect. 2, the polynomials of type (3) are
investigated. In Sect. 3, it is shown that this family of scattered polynomials provides
maximum scattered linear sets that are not of pseudoregulus type for any even n ≥ 6.
The related linear sets in PG(1, qn) are proved to be P�L-equivalent to no previously
known linear set for n = 8, 10.

In the last section, Sheekey’s connection with the MRD-codes is described. In
Theorem 5.4 it is proved that the class (3) of linearized polynomials gives rise to
maximum subsets of square matrices of any even order n ≥ 6 with minimum rank
distance d = n − 1. They are not equivalent to any previously known MRD-code.

2 A class of scattered q-polynomials

Throughout this paper, q denotes a power of a prime p �= 2, t ≥ 3, t ∈ N, and n = 2t .
As usual, if � divides m,

Trqm/q� (x) = x + xq
� + xq

2� + · · · + xq
m−�

and Nqm/q� (x) = x
qm−1
q�−1
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denote the trace and the norm of x ∈ Fqm over Fq� . Consider the following q-
polynomials in Fqn [x]:

αn(x) = Trqn/qt (x)q
t−1

2
and βn(x) = (x − xq

t
)q

2
.

In the following, the index n will usually be omitted: α(x) = αn(x), βn(x) = β(x).
Note that α(x)q

t = α(x), β(x)q
t = −β(x) for any x ∈ Fqn .

Proposition 2.1 Let Fqn be the finite field of order qn, n = 2t , and consider

W = {x ∈ Fqn : x + xq
t = 0}.

Then,

(i) ker α = imβ = W;
(ii) ker β = imα = Fqt ;
(iii) the additive group of Fqn is direct sum of Fqt and W;
(iv) the product of two elements in W is in Fqt ;

(v) For any k ∈ N, q ≡ 1 (mod 4), and x ∈ Fqn , xq
k+1 = 1 implies x /∈ W.

Proof Only the last statement is non-trivial. Let ω be a generator of the multiplicative
group F

∗
qn . Then,

W = {ω(2�+1)(qt+1)/2 : � = 1, 2, . . . , qt − 1} ∪ {0}.

In order to be a (qk + 1)-th root of the unity, the generic element of W above must
satisfy

(2� + 1)(qt + 1)

2
(qk + 1) ≡ 0 (mod q2t − 1),

whence an integer m exists satisfying

2m(qt − 1) = (2� + 1)(qk + 1). (4)

Therefore, 4 must divide qk + 1. This implies that q ≡ −1 (mod 4), a contradiction.
��

Remark 2.2 If t and k are odd and q ≡ 3 (mod 4), then (qt − 1)/2 is odd and
(qk + 1)/4 is an integer. This implies that (4) has a solution with 2�+ 1 = (qt − 1)/2
and m = (qk + 1)/4. Therefore, an x ∈ W exists such that xq

k+1 = 1.

Now consider the q-polynomial

ψn(x) = αn(x) + βn(x). (5)
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The index n will be often omitted in what follows.
For any positive integer,

ψ(k)(x) =
k︷ ︸︸ ︷

ψ ◦ ψ ◦ · · · ◦ ψ(x)

will denote the k-fold composition of ψ with itself. The polynomials α(k)(x) and
β(k)(x) are defined analogously. All q-polynomials will be considered here as maps;
that is, they are reduced modulo xq

n − x .

Proposition 2.3 The map ψ(x) has order n.

Proof First, α(k)(x) = α(x)q
(k−1)(t−1)

and β(k)(x) = β(x)q
k−1

for any k ∈ N, whence

α(n)(x) = Trqn/qt (x)/2 and β(n)(x) = x − xq
t

2
. (6)

Note that for any k ∈ N and x ∈ Fqn , α(k)(x) ∈ Fqt and β(k)(x) ∈ W . Next, we prove
by induction that for any k ∈ N

ψ(k)(x) = α(k)(x) + β(k)(x). (7)

The induction base step (k = 1) is clear by the definition of ψ(x). Now suppose that
the property in (7) holds for k − 1; then,

ψ(k)(x) =ψ(ψ(k−1)(x)) = ψ(α(k−1)(x)) + ψ(β(k−1)(x))

= α(α(k−1)(x)) + β(α(k−1)(x)) + α(β(k−1)(x)) + β(β(k−1)(x)).
(8)

By Proposition 2.1 (i) (i i), we get (7), that in view of (6) implies ψ(n)(x) = x . ��
As a consequence of (7),

ψ(k)(x) = 1

2

(
xq

k + xq
t−k − xq

t+k + xq
2t−k )

(9)

for any 0 ≤ k ≤ t ; (9) can be extended to any k ∈ N by considering modulo 2t the
exponents of q.

Theorem 2.4 Let q be an odd prime power, t ≥ 3, and

ψ(x) = 1

2

(
xq + xq

t−1 − xq
t+1 + xq

2t−1) ∈ Fq2t [x].

For 1 ≤ k < 2t , the k-fold composition ψ(k)(x) is scattered if and only if one of the
following holds: (i) t is even and gcd(k, t) = 1, or (i i) t is odd, gcd(k, 2t) = 1, and
q ≡ 1 (mod 4).

123



Journal of Algebraic Combinatorics (2021) 53:639–661 645

Proof The first part of the proof is devoted to prove that any of the conditions (i) and
(i i) implies that ψ(k)(x) is scattered. It is straightforward to see that the condition for
ψ(k)(x) to be scattered can be rephrased in this way: if

ψ(k)(ρx) = ρψ(k)(x), x, ρ ∈ Fqn , x �= 0, (10)

then ρ ∈ Fq . By Lemma 2.1 (i i i), for any ρ ∈ Fqn there are precisely two elements
h = hρ ∈ Fqt and r = rρ ∈ W such that ρ = h + r . Condition (10) is equivalent to

α(k)((r + h)(x1 + x2)) + β(k)((r + h)(x1 + x2))

= (r + h)(α(k)(x1 + x2) + β(k)(x1 + x2)), (11)

with x = x1 + x2, where x1 ∈ Fqt and x2 belongs to W .
By Proposition 2.1 (i) (i i) (iv), the expression in (11) is reduced to

α(k)(r x2) + α(k)(hx1) + β(k)(r x1) + β(k)(hx2) = (r + h)(α(k)(x1) + β(k)(x2)).

(12)

Now, by expanding (12),

(r x2)
qk(t−1) + (hx1)

qk(t−1) + (r x1)
qk + (hx2)

qk = (r + h)(xq
k(t−1)

1 + xq
k

2 ). (13)

Since W and Fqt meet in the trivial space, one obtains

⎧
⎨

⎩
r xq

k

2 − rq
k(t−1)

xq
k(t−1)

2 = (hq
k(t−1) − h)xq

k(t−1)

1

rq
k
xq

k

1 − r xq
k(t−1)

1 = (h − hq
k
)xq

k

2 .

Raising the first equation to its qk-power,

⎧
⎨

⎩
rq

k
xq

2k

2 − r x2 = (h − hq
k
)x1

rq
k
xq

k

1 − r xq
k(t−1)

1 = (h − hq
k
)xq

k

2 .

(14)

This can be seen as a linear system in the unknowns r and rq
k
. In the following, it will

be assumed that r �= 0, leading to a contradiction.

– Case 1. x1 = 0: the linear system in (14) is reduced to

⎧
⎨

⎩
rq

k
xq

2k

2 − r x2 = 0

(h − hq
k
)xq

k

2 = 0
(15)
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Since x2 �= 0, the first equation in (15) gives rq
k−1 = (x−1

2 )q
2k−1. Then, there

exists μ ∈ F
∗
qk

∩ Fqn = F
∗
q such that

r = μ(x−1
2 )q

k+1.

The right-hand side of the last equation belongs to F
∗
qt , that is a contradiction.

– Case 2. x2 = 0 : as before, the linear system in (14) is reduced to

⎧
⎨

⎩
(h − hq

k
)x1 = 0

rq
k
xq

k

1 − r xq
k(t−1)

1 = 0
(16)

Since x1 �= 0, by the second equation in (16), the existence of a λ ∈ F
∗
q follows

such that r = λ(xq
k

1 )q
k(t−3)+qk(t−4)+...+qk+1, implying r ∈ F

∗
qt , a contradiction.

Note that (again under the assumption r �= 0) h /∈ Fq , since for h ∈ Fq the same
arguments as above lead to a contradiction.

– Case 3. x1 �= 0 �= x2. The first goal is to prove that the determinant D =
xq

k

1 x2 − xq
k(t−1)

1 xq
2k

2 is not zero.

If t is even, D cannot be zero, otherwise the existence of a λ ∈ Fq2 would follow

such that x2 = λ(x−qk

1 )q
k(t−4)+...+q2k+1, implying x2 ∈ Fqt , a contradiction.

If t is odd, q ≡ 1 (mod 4), and D = 0, a necessary condition for (14) to have a
solution is

det

(
xq

2k

2 (h − hq
k
)x1

xq
k

1 (h − hq
k
)xq

k

2

)
= 0,

leading to (xq
k

2 /x1)q
k+1 = 1. Since xq

k

2 /x1 ∈ W , this contradicts Proposition
2.1 (v).

Therefore, D �= 0. Obtaining rq
k
and r from (14),

rq
k = (h − hq

k
)
xq

k+1
2 − xq

k(t−1)+1
1

xq
k

1 x2 − xq
k(t−1)

1 xq
2k

2

and

r = (h − hq
k
)

xq
2k+qk

2 − xq
k+1

1

xq
k

1 x2 − xq
k(t−1)

1 xq
2k

2

.
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Therefore,

rq
k−1 = xq

k+1
2 − xq

k(t−1)+1
1

xq
2k+qk

2 − xq
k+1

1

.

Note that y = xq
2k+qk

2 − xq
k+1

1 belongs to Fqt , and rq
k−1 = yq

k(t−1)−1. Then,

there exists λ ∈ Fq such that r = λyq
k(t−2)+qk(t−3)+···+qk+1, implying r ∈ Fqt , a

contradiction again.

Hence, the condition r �= 0 yields in all cases a contradiction. Taking into account
(14), h must belong to Fq , implying ρ ∈ Fq . This concludes the proof of the
sufficiency.

If d = gcd(k, t) �= 1, then ψ(k)(x) is a qd -polynomial; hence, it is not scattered as
a q-polynomial. So, gcd(k, t) = 1 is a necessary condition.

Assume k is even; then, it may be assumed that t is odd. An x ∈ F
∗
q2

⊆ Fqn belongs

toW if and only if xq−1 = −1 which is an equation admitting (q −1) solutions. Then
fix μ ∈ W ∩F

∗
q2

⊆ Fqn and x2 ∈ W\{0} arbitrarily. A solution of (14) is x1 = h = 0,

r = μ(x−1
2 )q

k+1, and this implies that ψ(k)(x) is not scattered.
For odd t and k and q ≡ 3 (mod 4), the q-polynomial ψ(k)(x) is not scattered.

Indeed, taking x1 = 1, x2 ∈ W such that xq
k+1

2 = 1, the equations in (14) are

equivalent for any h ∈ Fqt . The images of the Fq -linear maps r ∈ W �→ rq
k
xq

2k

2 −
r x2 ∈ Fqt and h ∈ Fqt �→ (h − hq

k
)x1 ∈ Fqt both have Fq -dimension at least t − 1;

this implies that their intersection is not trivial, and r ∈ W , h ∈ Fqt exist such that
r �= 0 and (14) is satisfied. ��
Remark 2.5 Note that for n = 6, 2ψ(5)(x) is the polynomial described in [30], that for
q ≡ 1 (mod 4) and it is associated with the scattered Fq -linear set L

5,6
h ⊆ PG(1, q6),

h2 = −1 that will be described in Sect. 3. Furthermore, ψ(5)(x) and ψ(x) determine
the same linear set, sinceψ(5)(x) is the adjoint map ofψ(x)with respect to the bilinear
form Trq6/q(xy) (cf. [3,7]).

3 On the equivalence issue for linear sets

By definition,

L
ψ

(k)
n

= {〈(x, ψ(k)
n (x))〉Fqn : x ∈ F

∗
qn }

denotes the maximum scattered Fq -linear set of PG(1, qn) associated with ψ
(k)
n (x) ∈

Fqn [x], provided that the assumptions of Theorem 2.4 are satisfied. The related Fq -
vector subspace of F2

qn is

U
ψ

(k)
n

= {(x, ψ(k)
n (x)) : x ∈ Fqn }.
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Since the collineation (a, b) ∈ F
2
qn �→ (a p, bp) ∈ F

2
qn stabilizes U

ψ
(k)
n
, an

Fq -subspace of F2
qn is �L(2, qn)-equivalent to U

ψ
(k)
n

if and only if it is GL(2, qn)-
equivalent to U

ψ
(k)
n
.

Proposition 3.1 Let t ≥ 3 and assume that ψ
(k)
n (x) and ψ

(m)
n (x) are scattered, 1 ≤

k,m < 2t = n. Then, the Fq-subspaces Uψ
(k)
n

and U
ψ

(m)
n

are equivalent under the

action of �L(2, qn) if and only if k = m or k = n − m.

Proof Since

U
ψ

(k)
n

= {(ψ(n−k)
n (x), x) : x ∈ Fqn },

U
ψ

(k)
n

and U
ψ

(n−k)
n

are equivalent under the action of �L(2, qn). This allows to prove
the necessity of the condition only for 1 ≤ k < m < t .

Assume that

(
a b
c d

)
is an invertible matrix in F

2×2
qn such that for any x ∈ Fqn , a

z ∈ Fqn exists such that

(
a b
c d

) (
x

α(k)(x) + β(k)(x)

)
=

(
z

α(m)(z) + β(m)(z)

)
. (17)

This implies

cx + dα(k)(x) + dβ(k)(x)

= α(m)(ax + bα(k)(x) + bβ(k)(x)) + β(m)(ax + bα(k)(x) + bβ(k)(x))

for any x ∈ Fqn . Decompose any x ∈ Fqn as a sum x = x1 + x2 with x1 ∈ Fqt ,
x2 ∈ W . The above equation splits in

⎧
⎨

⎩
c1x1 + c2x2 + d1x

qt−k

1 + d2x
qk

2 = (a1x1 + a2x2 + b1x
qt−k

1 + b2x
qk

2 )q
t−m

c2x1 + c1x2 + d2x
qt−k

1 + d1x
qk

2 = (a2x1 + a1x2 + b2x
qt−k

1 + b1x
qk

2 )q
m
.

(18)

Putting x2 = 0 in (18), one obtains that for any x1 ∈ Fqt

⎧
⎨

⎩
c1x1 + d1x

qt−k

1 − aq
t−m

1 xq
t−m

1 − bq
t−m

1 xq
n−k−m

1 = 0

c2x1 + d2x
qt−k

1 − aq
m

2 xq
m

1 − bq
m

2 xq
t+m−k

1 = 0.
(19)

Similarly,

⎧
⎨

⎩
c2x2 + d2x

qk

2 − aq
t−m

2 xq
t−m

2 − bq
t−m

2 xq
t+k−m

2 = 0

c1x2 + d1x
qk

2 − aq
m

1 xq
m

2 − bq
m

1 xq
k+m

2 = 0
(20)
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must hold for any x2 ∈ W . After reducing modulo xq
t − x in (19) and modulo xq

t + x
in (20), four polynomials are obtained all whose coefficients must be zero.

If k +m �= t , the first identity in (19) implies a1 = b1 = c1 = d1 = 0, and the first
of (20) implies a2 = b2 = c2 = d2 = 0, a contradiction.

Finally, assume k + m = t . The second of (19) gives b2 = c2 = 0 and d2 = aq
m

2 ;

the first of (20) implies d2 = aq
t−m

2 . As a result, aq
2m−1

2 = −1; a2 ∈ F
∗
q4m

∩ Fq2t .
Since m and 2t are relatively prime, a2 ∈ Fq4\Fq2 , whence t ≡ 2 (mod 4). The first

of (19) gives a1 = d1 = 0 and c1 = bq
t−m

1 ; the second of (20) implies c1 = −bq
m

1 . As

a result, bq
2m−1

1 = −1; so, b1 ∈ Fq4 ∩ Fqt = Fq2 and this is a contradiction. ��

A question that remains open is whether L
ψ

(k)
n

and L
ψ

(m)
n

are P�L-equivalent for
1 ≤ k < m < t .

In order to decide whether the linear sets L
ψ

(k)
n

are new, they will be compared
to the known maximum scattered linear sets in PG(1, qn). The known nonequivalent
(under the action of �L(2, qn)) maximum scattered subspaces of F2

qn , i.e. subspaces
defining maximum scattered linear sets, are listed below.

1. U 1,n
s = {(x, xqs ) : x ∈ Fqn }, 1 ≤ s ≤ n − 1, gcd(s, n) = 1 [5,12],

2. U 2,n
s,δ = {(x, δxqs + xq

n−s
) : x ∈ Fqn }, n ≥ 4, Nqn/q(δ) /∈ {0, 1}, gcd(s, n) = 1

[20,23,26],
3. U 3,n

s,δ = {(x, δxqs + xq
s+n/2

) : x ∈ Fqn }, n ∈ {6, 8}, gcd(s, n/2) =
1,Nqn/qn/2(δ) /∈ {0, 1}, for some δ and q [9],

4. U 4,6
δ = {(x, xq + xq

3 + δxq
5
) : x ∈ Fq6}, q odd and δ2 + δ = 1, see [10] for

q ≡ 0,±1(mod 5), and [24] for the remaining congruences of q,
5. U 5,6

h = {(x, hq−1xq − hq
2−1xq

2 + xq
4 + xq

5
) : x ∈ Fq6}, h ∈ Fq6 , h

q3+1 = −1,
q odd [4,30].

To make notation easier, Li,n
s , Li,n

s,δ , L
4,6
δ , and L5,6

h will denote the Fq -linear sets

defined by Ui,n
s , Ui,n

s,δ , U
4,6
δ , and U 5,6

h , respectively. Moreover, the sets L1,n
s and L2,n

s,δ
are called of pseudoregulus type and LP-type, respectively. As noted in the previous
section, Lψ6 = L5,6

h where h2 = −1 for q ≡ 1 (mod 4). In order to understand
whether, under the assumptions of Theorem 2.4, the maximum scattered linear set
L

ψ
(k)
n

is of pseudoregulus type or of LP type, some preliminary results have to be
retraced.

First of all, Lunardon andPolverino in [21, Theorem1 and 2], (see also [19]) showed
that every linear set is projection of a canonical subgeometry, where a canonical
subgeometry in PG(m − 1, qn) is a linear set L of rank m such that 〈L〉 = PG(m −
1, qn). In particular, this result in the projective line case states that for each Fq -
linear set LU of the projective line � = PG(1, qn) of rank n there exists a canonical
subgeometry � = PG(n − 1, q) of �∗ = PG(n − 1, qn), and an (n − 3)-subspace �

of �∗ with � disjoint from � and � such that

LU = p�,�(�) = {〈�, P〉 ∩ � : P ∈ �}.
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In [12], Csajbók and the second author gave a characterization of the linear sets of
pseudoregulus type as a particular projection of a canonical subgeometry showing the
following

Theorem 3.2 [12, Theorem 2.3] Let � be a canonical subgeometry of PG(n − 1, qn),
q > 2, n ≥ 3. Assume that� and� are an (n−3)-subspace and a line ofPG(n−1, qn),
respectively, such that � ∩ � �= ∅ �= � ∩ �. Then, the following assertions are
equivalent:

(i) the set p�,�(�) is a scattered Fq -linear set of pseudoregulus type;
(ii) there exists a generator σ of the subgroup P�L(n, qn) fixing� pointwise and such

that dim(� ∩ �σ ) = n − 4;
(iii) there exist a point P� and a generator σ of the subgroup of P�L(n, qn) fixing �

pointwise, such that 〈P�, Pσ
� , . . . , Pσ n−1

� 〉 = PG(n − 1, qn), and

� = 〈P�, Pσ
� , . . . , Pσ n−3

� 〉.

Therefore, using the Theorem above, one obtains

Proposition 3.3 For any n ≥ 6 and k such that gcd(n, k) = 1, the linear set L
ψ

(k)
n

is
not of pseudoregulus type.

Proof Since the linear set L
2ψ(k)

n
can be represented as the projection of the subge-

ometry � whose points are of type Pu = 〈(u, uq , . . . , uq
n−1

)〉Fqn , u �= 0, from the
vertex �k of equations x0 = xk + xt−k − xt+k + xn−k = 0 onto the line � of equations
x1 = x2 = . . . = xn−k−1 = xn−k+1 = . . . = xn−1 = 0. For, the hyperplane of
PG(n − 1, qn) joining �k and Pu has equations

2ψ(k)
n (u)x0 − u(xk + xt−k − xt+k + xn−k) = 0.

Such hyperplane meets � in the point all whose coordinates are zero except x0 = u,
xn−k = 2ψ(k)

n (u). Let

σ : 〈(x0, x1, . . . , xn−1)〉Fqn �→ 〈(xqn−1, x
q
0 , . . . , xqn−2)〉Fqn ,

then σ is a generator of the subgroup of P�L(n, q) fixing � pointwise. Since the
dimension of �k ∩ �σm

k is less than n − 4 for any m = 1, . . . , n − 1, L
ψ

(k)
n

is not of
pseudoregulus type by Theorem 3.2. ��

In [30], the intersection number of an (n − 3)-subspace � of PG(n − 1, qn) with
respect to a collineation σ fixing pointwise a q-order subgeometry� such that�∩� =
∅ has been defined as

intnσ (�) = min{k ∈ N : dim(� ∩ �σ ∩ . . . ∩ �σ k
) > n − 3 − 2k}.

By means of this notion and since the linear set L2,n
s,δ has �L-class at most 2 for

n ∈ {5, 6, 8} (see [8] and [10]), Zullo and the second author gave a characterization
in term of projection for linear sets of LP-type. More precisely,
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Theorem 3.4 [30, Theorem 3.5] Let L be a maximum scattered linear set in � =
PG(1, qn) with n ≤ 6 or n = 8. Then, L is a linear set of LP-type if and only if for
each (n−3)-subspace � of PG(n−1, qn) such that L = p�,�(�), the following holds:

(i) there exists a generator σ of the subgroup of P�L(n, qn) fixing � pointwise, such
that intnσ (�) = 2;

(ii) there exist a unique point P and some point Q of PG(n − 1, qn) such that

� = 〈P, Pσ , . . . , Pσ n−4
, Q〉,

and the line 〈Pσ n−1
, Pσ n−3〉 meets �.

In [30, Section 5], exploiting the Theorem above, it has been shown that Lψ6 is
not equivalent to a linear set of LP-type. The following proposition involves similar
arguments. Clearly, by Proposition 3.1, hereafter one may suppose k < t .

Proposition 3.5 The linear set L
ψ

(k)
8

is not of LP-type for k = 1, 3.

Proof The result will be showed only for k = 1. Similar considerations lead to the
same result also for k = 3. Then, as before, the linear set L

ψ
(1)
8

can be represented as

the projection of the subgeometry � whose points are of type 〈(u, uq , . . . , uq
7
)〉Fq8 ,

u �= 0, from the vertex � of equations x0 = x1 + x3 − x5 + x7 = 0 onto the line
x1 = x2 = . . . = x6 = 0. Let σ ∈ P�L(8, q8) be defined as

〈(x0, x1, . . . , x7)〉σFq8 = 〈(xq1 , xq2 , . . . , xq0 )〉Fq8 .

The collineations σ , σ 3, σ 5 and σ 7 are the only generators of the subgroup of
P�L(8, q8) fixing pointwise the subgeometry �. Consider the subspaces

�σ :
{
x1 = 0

x2 + x4 − x6 + x0 = 0
and �σ 2 :

{
x2 = 0

x3 + x5 − x7 + x1 = 0.
(21)

By direct computation, dim(�∩�σ ) = 3 and, since q is odd, dim(�∩�σ ∩�σ 2
) = 1.

Furthermore, since�∩�σ 7 = (�∩�σ )σ
7
and�∩�σ 7∩�(σ 7)2 = (�∩�σ ∩�σ 2

)σ
6
,

we have dim(� ∩ �σ 7
) = 3 and dim(� ∩ �σ 7 ∩ �(σ 7)2) = 1. Hence,

intnσ (�) = intnσ 7(�) ≥ 3.

A similar argument can be applied also for σ 3 and σ 5. As a consequence, the
necessary condition stated in Theorem 3.4 for a linear set in PG(1, q8) to be of LP-
type is not satisfied by L

ψ
(1)
8
. ��

In [9], the scattered subspace U 3,n
s,δ of F2

qn is exhibited for n ∈ {6, 8}, s coprime to
n and under some conditions on δ and q.
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Moreover, according to [9, Section 5], U 3,n
s,δ is GL(2, qn)-equivalent to U 3,n

n−s,δqn−s

and to U 3,n
s+n/2,δ−1 ; thus, it is enough to take into account the linear sets L3,n

s,δ with
s < n/4, gcd(s, n/2) = 1 and hence only with s = 1 for n = 6, 8. Finally, the authors
in [10, Proposition 4.1 and 4.2] showed that the Z(�L)-class of L3,n

1,δ is two and L3,n
1,δ

is a simple linear set.

Proposition 3.6 The linear set L
ψ

(k)
8
, k = 1, 3, is not P�L-equivalent to L3,8

s,δ for any
s.

Proof By the results in [9,10] quoted above, the linear set L
ψ

(1)
8

is P�L-equivalent to

some L3,8
s,δ if and only if

U2ψ = {(x, xq + xq
3 − xq

5 + xq
7
) : x ∈ Fq8}

is �L-equivalent to U 3,8
1,δ . Then suppose that there exist an invertible matrix

(
a b
c d

)

such that for each x ∈ Fq8 , there exists z ∈ Fq8 satisfying

(
a b
c d

) (
x

xq + xq
3 − xq

5 + xq
7

)
=

(
z

δzq + zq
5

)
. (22)

Equivalently, for each x ∈ Fq8 ,

cx + d(xq + xq
3 − xq

5 + xq
7
)

= δ[aq xq + bq(xq
2 + xq

4 − xq
6 + x)] + [aq5xq5 + bq

5
(xq

6 + x − xq
2 + xq

4
)].
(23)

This is a polynomial identity in x that implies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c = δbq + bq
5

d = δaq

0 = δbq − bq
5

d = 0

0 = δbq + bq
5

d = −aq
5
,

whence, since δ �= 0, a = c = d = 0: a contradiction. By applying the argument
above for U

2ψ(3)
8
, taking into account (9),

cx + d(xq + xq
3 + xq

5 − xq
7
)

= δ[aq xq + bq(xq
2 + xq

4 + xq
6 − x)] + [aq5xq5 + bq

5
(xq

6 + x + xq
2 − xq

4
)].
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As before, this polynomial identity in x implies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c = −δbq + bq
5

d = δaq

0 = δbq + bq
5

d = 0

0 = δbq − bq
5

d = aq
5
,

whence, since δ �= 0, a = c = d = 0, a contradiction again. ��

4 Z(0L)- and 0L-class of LÃ(k)
n

for some values of n and k

Now, similarly to what has been done in [7], the Z(�L)-class and the �L-class of the
maximum scattered Fq -linear set Lψ

(k)
n

for small values of n and k will be determined.
For the sake of completeness, the following preliminary results will be recalled.

Proposition 4.1 [10, Proposition 2.3] Let f (x) and g(x) be two q-polynomials over
Fqn . Then, L f ⊆ Lg if and only if

xq
n − x | det DF(Y )(x) ∈ Fqn [x],

where F(Y ) = f (x)Y − g(Y )x (cf. (1)). In particular, if deg(det DF(Y )(x)) < qn,
then L f ⊆ Lg if and only if det DF(Y )(x) is the zero polynomial.

Lemma 4.2 [7, Lemma 3.6] Let f (x) = ∑n−1
i=0 ai xq

i
and g(x) = ∑n−1

i=0 bi xq
i
be two

q-polynomials over Fqn such that L f = Lg. Then,

a0 = b0, (24)

for k = 1, 2, . . . , n − 1, it holds that

aka
qk

n−k = bkb
qk

n−k, (25)

for k = 2, 3, . . . , n − 1, it holds that

a1a
q
k−1a

qk

n−k + aka
q
n−1a

qk

n−k+1 = b1b
q
k−1b

qk

n−k + bkb
q
n−1b

qk

n−k+1. (26)

Therefore, the following results can be shown.

Proposition 4.3 Let q ≡ 1 (mod 4). The Z(�L)-class of Lψ6 is two. Moreover, Lψ6

is a simple linear set.
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Proof Sinceψ6(x) andψ
(5)
6 (x)define the same linear set,weknow that L2ψ6 = L

2ψ(5)
6
.

Suppose Lϕ = L2ψ6 for someϕ(x) = ∑5
i=0 ai x

qi ∈ Fq6 [x].We show that there exists
λ ∈ F

∗
q6

such that either λUϕ = U2ψ6 or λUϕ = U
2ψ(5)

6
.

By (24), (25) and (26) in Lemma 4.2, one obtains that

a0 = a3 = 0, a1a
q
5 = 1 and a2a

q2

4 = −1. (27)

By Proposition 4.1, the Dickson matrix associated with the q-polynomial

F(Y ) = ϕ(x)Y − 2ψ6(Y )x (28)

has determinant DF(Y )(x) equal to zero for each x ∈ Fq6 , where, by (27),

ϕ(x) = a1x
q + a2x

q3 − a−q4

2 xq
4 + a−q5

1 xq
5
.

Direct computation shows that

DF(Y )(x) = 1

Nq6/q(a1a2)
Qa1,a2(x), (29)

where Qa1,a2(x) is a polynomial in Fq6 [x] whose coefficients are polynomials in a1
and a2.

By a straightforward estimate, we note that the deg(Qa1,a2(x)) is at most 4q5 +
2q4. Since q ≥ 5, deg(Qa1,a2(x)) is less than q6. Therefore, Qa1,a2(x) is the null
polynomial. Consider the coefficient

a1+q+q2

1 a1+q+2q2+q4

2 (aq
3+q4

1 − aq
3

2 )(aq
3+q4

1 + aq
3

2 )

of the term xq
3+2q4+3q5 of Qa1,a2(x), it is zero if and only if either a2 = aq+1

1 or

a2 = −aq+1
1 . In both cases, since up to the sign the coefficient of the term xq+q2+q4+3q5

is a1+q+q2+2q3+2q4

1 (Nq6/q(a1)−1)2 and it vanishes, we get Nq6/q(a1) = 1. Therefore,

putting a1 = λq−1, we obtain λUϕ = U2ψ6 if a2 = aq+1
1 and λUϕ = U

2ψ(5)
6

if

a2 = −aq+1
1 . Hence, the Z(�L)-class of Lψ6 is two and, by Proposition 3.1, it is

simple. ��
Proposition 4.4 The Z(�L)-class of L

ψ
(k)
8
, k = 1, 3, is two. Moreover, L

ψ
(k)
8

is a

simple linear set.

Proof First, we prove the statement for k = 1. Since ψ8(x) and ψ
(7)
8 (x) define the

same linear set, we know L2ψ8 = L
2ψ(7)

8
. Suppose Lϕ = L2ψ8(x) for some ϕ(x) =

∑7
i=0 ai x

qi ∈ Fq8 [x]. We show that there exists λ ∈ F
∗
q8

such that either λUϕ = U2ψ8

or λUϕ = U
2ψ(7)

8
.
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By (24), (25) and (26) in Lemma 4.2, one obtains that

a0 = a2 = a4 = a6 = 0, a1a
q
7 = 1 and a3a

q3

5 = −1. (30)

By Proposition 4.1, the Dickson matrix associated with the q-polynomial

F(Y ) = ϕ(x)Y − 2ψ8(Y )x (31)

has zero determinant DF(Y )(x) for each x ∈ Fq8 , where, by (30),

ϕ(x) = a1x
q + a3x

q3 − a−q5

3 xq
5 + a−q7

1 xq
7
.

Direct computation shows that

DF(Y )(x) = 1

Nq8/q(a1a3)
Qa1,a3(x), (32)

where Qa1,a3(x) is a polynomial in Fq8[x] whose coefficients are polynomials in a1
and a3. By a straightforward estimate, we note that the deg(Qa1,a3(x)) is at most
4(q6 + q7).

– Case 1, q ≥ 5. In this case, 4(q6 + q7) is less than q8. Therefore, DF(Y )(x) is the

null polynomial. Consider then the coefficient xq
4+q5+3q6+3q7 of Qa1,a2(x), it is

zero if and only if either a3 = aq
2+q+1

1 or a3 = −aq
2+q+1

1 .
In both cases, then, since up to the sign the coefficient

a2+q3+2q4+2q5+3q6+4q7

1 (Nq8/q(a1) − 1)2

of term x3+3q+q2+q5 is zero, Nq8/q(a1) = 1 follows.

Therefore, putting a1 = λq−1, we obtain λUϕ = U2ψ8 if a3 = aq
2+q+1

1 and

λUϕ = U
2ψ(7)

8
if a3 = −aq

2+q+1
1 .

– Case q = 3. Reducing the polynomial Qa1,a3(x) in (29) modulo (xq
8 − x), then

one gets that the coefficient of x48 is a54801 a42483 − a54541 a42503 . Then, either a3 =
aq

2+q+1
1 or a3 = −aq

2+q+1
1 . In both cases, since Qa1,a2(x) (mod xq

8 −x) has to be
the null polynomial, up to sign the coefficient of term x2439 is a2860(Nq8(a1)−1)2,
whence Nq8/q(a1) = 1. Therefore, putting a1 = λq−1, we obtain λUϕ = U2ψ8 if

a3 = aq
2+q+1

1 and λUϕ = U
2ψ(7)

8
if a3 = −aq

2+q+1
1 .

The computations for k = 3 are similar and we omit to report them. Hence, the
Z(�L)-class of L

ψ
(k)
8

is two for k = 1, 3 and, by Proposition 3.1, such linear set is

simple. ��
Corollary 4.5 The linear sets Lψ8 and L

ψ
(3)
8

are not P�L-equivalent.
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Proposition 4.6 Let q ≡ 1 (mod 4). TheZ(�L)-class of Lψ10 is two. Moreover, Lψ10

is a simple linear set.

Proof Like in the previous propositions, (24), (25) and (26) in 4.2 imply that if Lϕ =
L2ψ10(x) for some ϕ(x) = ∑9

i=0 ai x
qi ∈ Fq10 [x], then

a0 = a2 = a3 = a5 = a7 = a8 = 0, (33)

and a9 = a−q9

1 , a6 = −a−q6

4 . The determinant DF(Y )(x) of the Dickson matrix

associatedwithϕ(x)Y−(Yq+Yq4−Yq6+Yq9)x has degree atmost 4q9+4q8+2q7 <

q10, so it vanishes. The coefficient of x3+3q+2q2+q3+q4 in DF(Y )(x) is

aw1
1 aw2

4

(
a2(1+q+q2+q3)
1 − a24

)

for some w1, w2 ∈ Z, implying a4 = ±a1+q+q2+q3

1 . In both cases, by substituting

such expressions of a4 in DF(Y )(x), the coefficient of xq
3+3q7+3q8+3q9 is

±aw
1

(
1 − Nq10/q(a1)

)2

for some w ∈ Z, whence Nq10/q(a1) = 1. The proof can now be completed as in
Propositions 4.3 and 4.4. ��
Corollary 4.7 The linear set Lψ10 is a new maximum scattered Fq-linear set in
PG(1, q10) (q ≡ 1 (mod 4)).

Proof Since Lψ10 is a simple linear set, it is enough to check thatUψ10 does not belong
to the�L-orbit of someU 2,10

s,δ . This will be proved in Proposition 5.3 in a more general
result. ��
Remark 4.8 For n = 10 and k = 3, the equations in Lemma 4.2 do not imply that
six coefficients of ϕ(x) are equal to zero, like in (33). This adds complexity to the
computations.

It is not known to the authors of this paper whether L
ψ

(k)
n

is a new linear set for
n > 10 and gcd(n, k) = 1 or n = 10 and k = 3. Indeed, it would be necessary to
show that L

ψ
(k)
n

is not a linear set of LP-type. Furthermore, the techniques used so far
do not seem to be within easy reach when solving the issue of Z(�L)- and �L-class
of L

ψ
(k)
n

for n > 10 and gcd(n, k) = 1 or n = 10 and k = 3 .
The following result describes the intersection of L

ψ
(k)
n

with a special Baer subline.

Proposition 4.9 Assume that ψ
(k)
n is a scattered q-polynomial, 1 ≤ k < t . Let � ∼=

PG(1, qt ) be the subline of PG(1, qn) consisting of the points represented by nonzero
pairs in F

2
qt . Then, � ∩ L

ψ
(k)
n

is partitioned into two Fq-linear sets of pseudoregulus

type of PG(1, qt ).
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Proof The points of an Fq -linear set of pseudoregulus type contained in L
ψ

(k)
n

are of

type 〈(h, hq
t−k

)〉Fqn for h ∈ F
∗
qt . Let ξ ∈ Fqt be such that Nqt/q(ξ) = −1. The map

〈(a, b)〉Fqn �→ 〈(a, ξb)〉Fqn induces a projectivity of � mapping any of the (qt −
1)/(q−1) points of type 〈(r , rqk )〉Fqn , r ∈ W\{0} in a point having nonhomogeneous

coordinate, say ηr , satisfying Nqt/q(ηr ) = 1. Therefore, M = {〈(r , rqk )〉Fqn : r ∈
W\{0}} is a further linear set of pseudoregulus type contained in �.

Next, let P = 〈(u, v)〉Fqn be a point in �, with u, v ∈ Fqt . Then, P belongs to

L
ψ

(k)
n

if and only if there exists λ, x ∈ F
∗
qn such that x = λu and ψ(k)(x) = λv. This

is equivalent to

ψ(k)(x)

x
= v

u
,

whence ψ(k)(x)/x ∈ Fqt . Equivalently,

(
ψ(k)(x)

x

)qt

= ψ(k)(x)

x
,

that can be reformulated in

α(k)(x)β(x)q
2t−1 = β(k)(x)α(x)q . (34)

Clearly, the equation is satisfied by all x either in Fqt or in W . Now suppose that
x ∈ Fqn\(Fqt ∪ W ). Then, there exist x1 ∈ Fqt and x2 ∈ W , both nonzero, such that
x = x1 + x2. Next, (34) implies

α(k)(x1)β(x2)
q2t−1 = β(k)(x2)α(x1)

q .

This is equivalent to xq
k−1

2 = xq
k(t−1)−1

1 ; therefore, there exists μ ∈ Fq such that

x2 = μxq
k(t−2)+...+1

1 , a contradiction. ��

5 NewMRD-codes

As recalled before, in [26, Section 5] Sheekey explicated a link between maximum
scattered Fq -linear sets of PG(1, qn) and Fq -linear MRD-codes with minimum dis-
tance d = n − 1. We briefly describe such relationship. After fixing an Fq -basis for
Fqn , we can define an isomorphism between the rings EndFq (Fqn ) and Fq

n×n and
then any RD-code can be seen as a subset of linearized polynomials over Fqn . Next,
let U f = {(x, f (x)) : x ∈ Fqn } be an Fq -subspace of Fqn × Fqn , where f (x) is a
q-polynomial over Fqn . The set

C f = {a f (x) + bx : a, b ∈ Fqn } = 〈x, f (x)〉qn (35)
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corresponds to a subset of square matrices of order n over Fq and hence to a rank
distance code. In particular, the following result holds:

Theorem 5.1 [26] Let f (x) be a linearized polynomial with degq( f ) ≤ n − 1. Then
C f is an Fq-linear MRD-code with parameters (n, n, q; n − 1) if and only if U f is a
maximum scattered Fq -subspace of Fqn × Fqn , i.e., f is a scattered q-polynomial.

Moreover, in [9], the authors prove that C f is Fqn -linear on the left, i.e. L(C f ) � Fqn ,
and any MRD-code with parameters (n, n, q; n − 1) with left idealizer isomorphic to
Fqn is equivalent to C f , for some scattered q-polynomial f (x), in [9, Proposition 6.1].
Finally, we recall the following result concerning the equivalence.

Theorem 5.2 [26] If C f and Cg are two MRD-codes arising from maximum scattered
subspaces U f and Ug of Fqn × Fqn , then C f and Cg are equivalent if and only if U f

and Ug are �L(2, qn)-equivalent.

Therefore, if C f and Cg are equivalent, one gets that the associated linear sets L f

and Lg are P�L(2, qn)-equivalent. The converse statement does not hold in general,
see [25, Section 4.1]. By the results in Sect. 3, we have that

– U
ψ

(k)
n

and U 1,n
s ,

– U
ψ

(k)
8

and U 2,n
s,δ ,

– U
ψ

(k)
8

and U 3,8
s,δ

give rise to pairwise inequivalent MRD-codes for any compatible k. Then, to conclude
the equivalence issue, we show the following

Proposition 5.3 Let t ≥ 3 and assume that ψ(k)
n (x) is scattered, 1 ≤ k < n. Then the

Fq-subspaces Uψ
(k)
n

and U 2,n
s,δ are not equivalent under the action of �L(2, qn).

Proof Suppose that U
ψ

(k)
n

and U 2,n
s,δ are �L(2, qn)-equivalent. This is equivalent to

suppose thatU
ψ

(k)
n

andU 2,n
s,δ are GL(2, qn)-equivalent. Furthermore, since, by Propo-

sition 3.1, U
ψ

(k)
n

and U 2,n
s,δ are �L(2, qn)-equivalent if and only if U

ψ
(n−k)
n

and U 2,n
s,δ

are �L(2, qn)-equivalent, we may suppose k < t . Then, let

(
a b
c d

)
be an invertible

matrix in F2×2
qn such that for any x ∈ Fqn there exists z ∈ Fqn such that

(
a b
c d

)(
x

ψ
(k)
n (x)

)
=

(
z

δzq
s + zq

n−s

)
.

In particular, one obtains that for any x ∈ Fqt

cx + dxq
k(t−1) = δ

(
ax + bxq

k(t−1))qs + (
ax + bxq

k(t−1))qn−s

.

That is, any x ∈ Fqt is a root of the polynomial

cx + dxq
t−k − δaq

s
xq

s − δbq
s
xq

n−k+s − aq
n−s

xq
n−s − bq

n−s
xq

n−k−s
. (36)
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• Case 1: s < t . Then, the polynomial in (36) becomes

cx + dxq
t−k − δaq

s
xq

s − δbq
s
xq

e1 − aq
n−s

xq
t−s − bq

n−s
xq

e2
, (37)

where e1 and e2 are the remainders of the divisions of n − k + s and n − k − s by
t , respectively, and this polynomial is the null one.
Call M1, M2, . . ., M6 the monomials in (37).

• Case 1a. s = k. Since k and t are relatively prime, the integers k, t − k and e2 are
distinct. Then, M1, M4 are of degree q0;
M2, M5 are of degree qt−k ;
M3 is of degree qk ;
M6 is of degree qe2 .
This implies a = b = 0, a contradiction.

• Case 1b. s = t − k. Since k and t are relatively prime, the integers k, e1 and t − k
are distinct. Then,
M1, M6 are of degree q0;
M2, M3 are of degree qt−k ;
M4 is of degree qe1 ;
M5 is of degree qe2 .
This implies a = b = 0, a contradiction.

• Case 1c. s �= k and k + s �= t . In this case, M1 is the unique monomial of degree
q0, whence c = 0; M1 is the unique monomial of degree qt−k , whence d = 0, a
contradiction.

• Case 2: s > t . Then, one may suppose that s = t + r with r < t . Then, the
polynomial in (36) becomes

cx + dxq
t−k − δaq

s
xq

r − δbq
s
xq

d1 − aq
n−s

xq
t−r − bq

n−s
xq

d2
, (38)

where d1 and d2 are the remainders of the divisions of n − k + r and n − k − r by
t , respectively, and this polynomial is the null one.
As before, call N1, N2, . . ., N6 themonomials in (38). Proceeding as in the previous
case, a contradiction is obtained. ��
In view of Theorem 5.2, the following result summarizes Propositions 3.1, 3.3, 3.5,

3.6 and 5.3.

Theorem 5.4 Let t ≥ 3 and q odd if t is even, or q ≡ 1 (mod 4) if t is odd. Further-
more, let 1 ≤ k < t be such that gcd(k, 2t) = 1. Then, the code C

ψ
(k)
2t

(cf. (35) (9)) is an

MRD-code with parameters (2t, 2t, q; 2t −1) not equivalent to any previously known
MRD-code. The ϕ(2t)/21 codes obtained in this way are distinct up to equivalence.

Funding Open Access funding provided by Università degli Studi di Padova.

1 Here, ϕ is Euler’s totient function.
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