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Abstract
If we regard a set of s lines in P

2 over either the reals or the complex numbers as an
algebraic plane curve, then it is an open problem to classify for all s those for which
the number t2 of points of multiplicity 2 satisfies t2 < �s/2�. By the Sylvester–Gallai
theorem, there are no nontrivial (i.e., not a pencil or a near pencil) real arrangements
with t2 = 0, but there are complex arrangements with t2 = 0 and it is an open
problem to classify them. In this paper, we initiate a classification of an interesting
class of line arrangements called the supersovable line arrangements and give a partial
classification for them over the reals or the complex numbers. In particular, we show
that a complex line arrangement which is nontrivial cannot have more than 4 modular
points and we completely describe those with 3 or 4 modular points.

Keywords Dirac–Motzkin conjecture · Homogeneous supersolvable line
arrangements · Modular points · Double points

1 Introduction

Line arrangements have provided useful insight in studying a range of recent problems
in algebraic geometry. They have played a fundamental role for studying the contain-
ment problem (see [9,10]), for the bounded negativity problem and H constants [4]
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Fig. 1 A supersolvable line
arrangement with 2 modular
points (shown as white dots)

and for unexpected curves [6,7]. The supersolvable arrangements are a particularly
tractable subclass of line arrangements which have played a role in the study of unex-
pected curves [6,7]. Understanding supersolvable arrangements better should make
them even more useful. Thus, the goal of the present paper is to pin down, as much as
currently possible, properties of real and complex supersolvable line arrangements.

A line arrangement is simply a finite set of s > 1 distinct lines L = {L1, . . . , Ls}
in the projective plane. A point p is a modular point for L if it is a crossing point
(i.e., a point where two or more of the lines meet) with the additional property that
whenever q is any other crossing point, then the line through p and q is Li for some
i . We say L is supersolvable if it has a modular point (see Fig. 1).

If the s lines of L are concurrent (i.e., all meet at a point), then L is supersolvable
since it has only one crossing point, and hence, it is modular. Such an arrangement is
called a pencil. If L consists of s lines where exactly s − 1 of them are concurrent, it
is called a near pencil; near pencils are also supersolvable, since every crossing point
for a near pencil is modular. For example, consider Fig. 1: Removing any line from the
arrangement, other than the line through the two white dots, results in a near pencil.
We will refer to pencils and near pencils as being trivial arrangements.

We refer to the number of lines of an arrangement L containing a point as the
multiplicity of the point. So crossing points always have multiplicity at least 2. The
modular points in Fig. 1 have multiplicity 3, while the other crossing points in the
figure have multiplicity 2. For k ≥ 2, we will use tk(L) to denote the number of
crossing points of L of multiplicity k.

For example, a pencil of s ≥ 2 lines has a unique crossing point and it has multi-
plicity s, so ts = 1 and otherwise tk = 0. A near pencil of s lines has s crossing points;
when s > 3, s−1 of the s crossing points have multiplicity 2 and one has multiplicity
s − 1 (so t2 = s − 1, ts−1 = 1 and otherwise tk = 0), while if s = 3 all three crossing
points have multiplicity 2 (so t2 = 3 and otherwise tk = 0).

It is an open problem to determine which vectors (t2, . . . , ts) can arise for real
or complex line arrangements, even for supersolvable line arrangements. It is also an
open problem to classify all complex line arrangements with t2 = 0. By the Sylvester–
Gallai theorem [first proved by Melchior [14]; see inequality (2.3)], no nontrivial real
line arrangement can have t2 = 0. However, three nontrivial kinds of complex line
arrangements are knownwith t2 = 0 (see Sect. 4), but there is no proof that there are no
others. Anzis and Tohǎneanu [3] conjectured that a nontrivial complex supersolvable
arrangement of s lines has t2 ≥ s/2, and the first version of the present paper proposed
a weaker conjecture, namely that t2 > 0. After our paper was posted to the arXiv, Abe
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[1] posted a proof of the Anzis and Tohǎneanu conjecture, thereby showing also that
t2 = 0 is impossible for nontrivial complex supersolvable line arrangements.

The fact that these problems were, at the time of the writing of this paper, also
open for the subclass of supersolvable line arrangements motivated this paper. Our
approach here is to begin a classification of all supersolvable real or complex line
arrangements. The partial classification that we obtain is of interest in its own right. In
particular, we show that a complex line arrangement which is nontrivial cannot have
more than 4 modular points, we completely describe those with 3 or 4 modular points,
and we completely describe those for which the modular points do not all have the
same multiplicity. In all of these cases, it happens that t2 ≥ s/2. This supported our
conjecture that t2 > 0 and the much stronger conjecture of Anzis and Tohǎneanu that
t2 ≥ s/2. (After posting the first version of this paper on the arXiv, Abe and Dimca [2]
extended our classification to cover the case of supersolvable line arrangements with
exactly two modular points of equal multiplicity, and Abe [1] proved the conjecture
of Anzis and Tohǎneanu.)

Given a line arrangement L, we denote by μL the number of modular points of L,
so L is supersolvable exactly when μL > 0. We denote the number of lines of L by
sL, the number of crossing points by nL and the maximum k such that tk(L) > 0 by
mL.

We divide supersolvable line arrangements (over any field) into two broad classes.
Given a supersolvable line arrangement L, if it has two or more modular points and
they do not all have the same multiplicity, we say L is not homogeneous, but if all
modular points of L have the same multiplicity, we say L is homogeneous and m-
homogeneous if the common multiplicity is m, in which case we have m = mL by
Lemma 2.

Our main results are summarized by the following theorem.

Theorem 1 Let L be a line arrangement (over any field) with μL > 0.

(a) If L is not homogeneous, then either L is a near pencil or μL = 2; if μL = 2,
then L consists of a ≥ 2 lines through one modular point, b > a lines through the
other modular point, and we have sL = a + b − 1 and t2 = (a − 1)(b − 1).

(b) If L has a modular point of multiplicity 2, then L is trivial.
(c) If L is complex and homogeneous with m = mL > 2, then 1 ≤ μL ≤ 4. If

3 ≤ μL ≤ 4, we have the following possibilities. If μL = 4, then sL = 6, m = 3,
t2 = 3, t3 = 4 and tk = 0 otherwise; up to change of coordinates, L consists of
the lines x = 0, y = 0, z = 0, x − y = 0, x − z = 0 and y − z = 0 (intuitively,
an equilateral triangle and its angle bisectors). And if μL = 3, then m > 3, and
up to change of coordinates, L consists of the lines defined by the linear factors
of xyz(xm−2 − ym−2)(xm−2 − zm−2)(ym−2 − zm−2); hence, sL = 3(m − 1),
t2 = 3(m − 2), t3 = (m − 2)2, tm = 3 and tk = 0 otherwise.

The proof of Theorem1 is as follows. Theorem1(a,b) follows fromCorollary 3. The
fact that 1 ≤ μL ≤ 4 in Theorem 1(c) follows from Theorem 7, and when μL ≥ 3,
the classification in Theorem 1(c) for mL = 3 is done in Sect. 3.2.2, and for mL > 3,
it is done in Sect. 3.2.4.

Theorem 1 thus gives a complete classification of supersolvable line arrangements
L if either there is a modular point of multiplicity 2, or the arrangement is not homoge-
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neous, or the arrangement is homogeneous, defined overC and has 3 or more modular
points. In addition, we give a complete classification of real supersolvable line arrange-
ments withmore than 1modular point (see Sect. 3.4), but our methods only give partial
results for the case that μL = 2 over C. For this latter case, we direct the reader to the
paper [2] of Abe and Dimca, which builds on our results by finishing the classification
for μL = 2 over C. Thus, all that is left for our classification program is the case
μL = 1. Such cases do occur, but it is still an open problem to classify them. See
Sect. 3.3 for some partial results.

The structure of this paper is as follows. In Sect. 2, we recall facts we will use later.
In Sect. 3, we study the classification of supersolvable real and complex line arrange-
ments and prove Theorem 7. In Sect. 4, we consider various conjectures related to the
occurrence of points of multiplicity 2 on real and complex line arrangements (includ-
ingConjectures 12 and 13, nowknown to be true byAbe [1]), andwe demonstratewhat
our methods can say about these formerly open conjectures (see for example Theorem
18). Finally, in Sect. 5, we discuss the application of supersolvable line arrangements
to the occurrence of unexpected plane curves and raise the question of whether all
which can occur are already known.

2 Preliminaries

Let L = {L1, . . . , Ls} be a line arrangement in the projective plane over an arbitrary
field K . In this section, we include some well-known results that we use in this paper.

First we have the following combinatorial identity which holds for any field K .

(
s

2

)
=

∑
k≥2

(
k

2

)
tk . (2.1)

If K = C and L is nontrivial, we have the following inequality due to Hirzebruch
[12].

t2 + 3

4
t3 ≥ s +

∑
k>4

tk(k − 4). (2.2)

If K = R and L is not a pencil, we have the following inequality due to Melchior
[14].

t2 ≥ 3 +
∑
k≥3

(k − 3)tk . (2.3)

When char(K ) = 0 andL is supersolvable, we have the following inequality proved
in [3, Proposition 3.1].

t2 ≥ 2nL − mL(s − mL) − 2. (2.4)

The following result is [15, Lemma 2.1]. For the reader’s convenience, we include
a proof.

Lemma 2 LetL be a supersolvable line arrangement (over any field K )with amodular
point p of multiplicity m. If q is a crossing point of multiplicity n ≥ m, then q is also
modular.
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Proof In addition to the line L = L p1 = Lq1 through p and q, L contains m − 1 lines
through p (denote them by L p2, . . . , L pm) and n− 1 lines through q (denote them by
Lq2, . . . , Lqn). Let ri j be the point where L pi intersects Lq j . Suppose A and B are
any two distinct lines in L. Let r be the point where A and B meet. We must show r
is on a line in L through q. If either A or B contain q, then r is on a line in L through
q, so assume neither A nor B contains q.

First say n > m. Let a j be the point where A and Lq j meet. Since q �= a j , we get
n − 1 distinct points a j , each of which is on some line L pi j since p is modular. But
there are only m − 1 < n − 1 lines L pi , so we must have i j = i j ′ for some j �= j ′,
and hence, A = L pi j = L pi j ′ , so p ∈ A. Likewise p ∈ B, so r = p ∈ L is on a
line in L through q. (This also shows that n > m implies that every line in L contains
either p or q; i.e., the lines in L are the m + n − 1 lines through p and q.)

Now say n = m. If both A and B contain p, then r = p ∈ L is on a line inL through
q. So assume either A or B does not contain p; say p /∈ A. But p is modular, so the
point r where A and B meet is on L pi ′ for some i ′. Again, let a j be the point where A
and Lq j meet. Since q �= a j , we get n−1 distinct points a j , each of which is on some
line L pi j since p is modular. If i j = i j ′ for some j �= j ′, then A = L pi j = L pi j ′ , so
p ∈ A contrary to assumption. Hence, i j �= i j ′ whenever j �= j ′, the n − 1 = m − 1
values of j > 1 map under j 	→ i j to all m − 1 = n − 1 values of i > 1; hence,
for some j ′ we have i ′ = i j ′ , so A meets L pi ′ at a j ′ = ri j ′ j ′ = ri ′ j ′ ∈ L pi ′ . But A
meets L pi ′ at r ∈ L pi ′ , so r = a j ′ ∈ Lq j ′ , so r is on a line in L through q. Thus, q is
modular. ��

3 Classifying supersolvable line arrangements

3.1 Supersolvable line arrangements withmodular points of multiplicity 2

We first classify all line arrangements, over any field K , having one or more modular
points of multiplicity 2, or two (or more) modular points, not all of the same mul-
tiplicity. Thus, after this section, we may assume all modular points have the same
multiplicity, which is at least 3.

As a corollary of the proof of Lemma 2, we have the following result, which
classifies line arrangements with a modular point of multiplicity 2, or where at least
two distinct multiplicities occur as multiplicities of modular points.

Corollary 3 Let L be a supersolvable line arrangement (over any field K ) with a
modular point p of multiplicity m. If m = 2, then every crossing point is modular
and L is either a pencil or a near pencil. If m > 2 and L has a crossing point
q of multiplicity n > m, then q is modular, the only modular points are p and q,
and L consists exactly of the m lines through p and the n lines through q (hence
sL = m + n − 1).

Proof Say m = 2. Then by Lemma 2, every crossing point is modular. Thus, if p is
the only modular point, then L is a pencil. Now say there is another modular point q.
Let L be the line through p and q, and let L p ∈ L be the line through p not through
q. First assume q has multiplicity 2. Let Lq ∈ L be the line through q not through p.
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Let r be the point where L p and Lq cross. Since p and q have multiplicity 2, no point
off L other than r is a crossing point of L. In particular, if A ∈ L is a line other than
L and L p, then A meets L p away from p, hence at r ; i.e., every line in L other than
L contains r . Thus, L is a near pencil. Now assume q has multiplicity more than 2.
Thus, there are at least two lines Bi ∈ L, i = 1, 2, through q other than L . If A ∈ L is
a line other than L p which does not go through q, let bi be the point where A meets
Bi . Since b1 and b2 are on A and A �= L p, at most one of the points bi can be on L p.
Assume b1 /∈ L p. Then b1 ∈ L (since the only lines of L through p are L and L p,
and p is modular). But b1 ∈ B1 and B1 �= L but B1 meets L at q, so b1 = q. This
contradicts our assumption that A does not go through q. Thus, every line of L except
L p contains q, so L is a near pencil.

Now say m > 2 and L has a crossing point q of multiplicity n > m. Then q is
modular by Lemma 2. We saw in the proof of Lemma 2 that the lines in L are the
m + n − 1 lines through p and q. Thus, there are n − 1 > m − 1 ≥ 2 lines through q
other than L , and on each of these n − 1 lines, there are m − 1 ≥ 2 crossing points of
multiplicity 2 (these being the points of intersection with the m − 1 lines through p
other than L), and these (n − 1)(m − 1) crossing points are the only crossing points
other than p and q. But a point of multiplicity 2 on one line through q is connected to
at most one point of multiplicity 2 on any other line through q, and hence, no point of
multiplicity 2 is modular. That is, the only modular crossing points are p and q. ��
Proposition 4 LetLbea line arrangement (over any field) havingoneormoremodular
points, exactly one of which has multiplicity 2 (call this point p). Then L is the pencil
consisting of the two lines through p.

Proof If L had a crossing point of multiplicity n > m = 2, then by Corollary 3, L is
a near pencil, and thus would have n points of multiplicity 2. Thus, L has exactly one
crossing point, and it has multiplicity 2, so L is the pencil consisting of the two lines
through p. ��
Proposition 5 LetLbea line arrangement (over anyfield) having twoormoremodular
points, at least two of which have multiplicity 2. Then L is a near pencil.

Proof Let p and q be modular points of multiplicity 2. Since L is supersolvable,
given a crossing point other than p, the line from p to that point is in L. But p has
multiplicity 2, so every crossing point must be on one or the other of the two lines
through p. Likewise, every crossing point must be on one or the other of the two lines
through q.

Let L be the line through both p and q; thus, L ∈ L. Let L p be the other line in L
through p, and let Lq be the other line in L through q. Let r be the point where L p

and Lq meet. Thus, any crossing point not on L must be on both L p and Lq ; i.e., r is
the only crossing point not on L . Thus, every line in L other than L must contain r ,
so L is a near pencil. ��

3.2 Homogeneous supersolvable line arrangements (mostly for char(K) = 0)

By our foregoing results, we see that it remains to understand supersolvable line
arrangements such that all modular points have the same multiplicity m (we say such
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a supersolvable line arrangement is homogeneous or m-homogeneous) with m ≥ 3. It
follows from Lemma 2 in this case that tk = 0 for k > m, so m = mL.

3.2.1 The values of tmL that arise for char(K) = 0

When K is algebraically closed but of finite characteristic, there is no bound to the
number of modular points a supersolvable line arrangement can have. (Just take all
lines defined over a finite field F of a elements. Then the arrangement has a2 + a + 1
lines and the same number of crossing points; all are modular and all have multiplicity
a + 1.) In characteristic 0, things are very different, as we show in Theorem 7.

To prove the theorem, we will use the following result.

Proposition 6 For an m-homogeneous supersolvable complex line arrangement L
with m = mL ≥ 3, no three modular points are collinear.

Proof Suppose that p, q and r are collinear modular points. Then the line L that
contains them is in L. Moreover, L contains m − 1 additional lines through each of
p, q and r . Denote the union of these m − 1 lines through p by Cp. Similarly, we
have Cq and Cr . The intersection of the curves Cp and Cq is a complete intersection
of (m − 1)2 points, which are also contained in Cr . Since the curves all have degree
m − 1, we see that Cr is in the pencil defined by Cp and Cq . That is, the forms Fp, Fq
and Fr defining the curves are such that Fr is a linear combination of Cp and Cq . we
can choose coordinates such that L is x = 0, p is x = y = 0, q is x = z = 0 and
r is y = z = 1. In terms of these coordinates, the restrictions of Fp, Fq , Fr to L are
ym−1, zm−1 and aym−1 + bzm−1 = (y − z)m−1 for some nonzero constants a and b.
Setting z = 1, we thus see that aym−1 +b = (y−1)m−1, so aym−1 +b has a multiple
root at y = 1. This contradicts the fact that the derivative a(m − 1)ym−2 + b is not 0
at y = 1. ��
Theorem 7 For an m-homogeneous supersolvable complex line arrangement L with
m = mL ≥ 3, we have 1 ≤ tm = μL ≤ 4.

Proof By Lemma 2, we have tm = μL. First we show that tm < 7. Suppose tm ≥ 7
for some m ≥ 3. Each nonmodular crossing point is connected by a line to each of
the tm ≥ 7 modular points. Since at most two modular points can lie on any line by
Proposition 6, we see that each crossing point must have multiplicity at least 4. Also,
each modular point has multiplicity m ≥ 6 since each one connects to each of the
others. Thus, t2 = t3 = 0, but this is impossible by Inequality (2.2).

Next we show that tm < 6. Suppose L has tm = 6. It is enough to show tm < 6
under the assumption that every line in L contains a modular point. (This is because
if we let L′ be the line arrangement obtained from L by deleting all lines not through
a modular point, L′ still has tmL′ = 6.) Since every modular point is on a line in L
through another modular point, we have m ≥ 5. Every crossing point q of L also
connects to every modular point so has multiplicity at least 3 (since a line can go
through at most 2 modular points), with multiplicity exactly 3 if and only if q is 3
lines through pairs of modular points.

There are 2
(6
4

) = 30 possible locations for crossing points of multiplicity 3; hence,

t3 ≤ 30. To see this, note that there are
(6
4

)
ways to pick 4 of the 6modular points. There
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are 3 reducible conics through these 4 points. The singular points of these three conics
are crossing points where two lines through disjoint pairs chosen from the 4 points
intersect. In order to get a point q of multiplicity 3, the line H through the remaining
2 points of the 6 modular points must contain q. This might not happen for any of the
three singular points, but it can be simultaneously true for at most two of the three
singular points, since at most two of the singular points can be on the line H . (This is
merely because the three singular points cannot be collinear in characteristic 0.) Thus,
we get at most 2

(6
4

) = 30 possible locations for crossing points of multiplicity 3.
Now apply Inequality (2.2), using the fact that our assumption (that every line in L

contains a modular point) implies that L has (m − 5)6 + (6
2

)
lines:

22.5 = 3

4
30 ≥ 3

4
t3 ≥ ((m − 5)6 +

(
6

2

)
) + (m − 4)6.

For m ≥ 6, this is 22.5 ≥ 12m − 39 ≥ 33; thus, the only possibility for tm = 6
is m = 5. For m = 5, we see L has

(6
2

) = 15 lines and every crossing point has
multiplicity at least 3 and at most 5, so from Eq. (2.1) we get:

105 =
(
15

2

)
= 3t3 + 6t4 + 10t5 = 3t3 + 6t4 + 60

so 15 = t3 + 2t4; hence, t3 ≤ 15. Inequality (2.2) now gives (3/4)15 ≥ 15+ 6, which
is false.

Finally, we show that tm < 5. So assume tm = 5. Arguing as before, wemay assume
that every line in L contains a modular point. We still have that all nonmodular points
have multiplicity at least 3, and the 5 modular points have multiplicity m ≥ 4. Each
choice of 4 of the 5 modular points gives 3 possible locations for a triple point; hence,
t3 ≤ 3(5) = 15. Thus, Inequality (2.2) gives 11.25 = (3/4)15 ≥ (

(5
2

) + (m − 4)5) +
(m − 4)5 = 10m − 30, which is impossible for m ≥ 5. For m = 4, we see L has(5
2

) = 10 lines and every crossing point has multiplicity at least 3 and at most 4, so
from Eq. (2.1) we get:

45 =
(
10

2

)
= 3t3 + 6t4 = 3t3 + 30

so 5 = t3. Inequality (2.2) now gives (3/4)5 ≥ 10, which is false. ��
Example 8 For m-homogeneous supersolvable line arrangements over both the com-
plex numbers and the reals, all four cases 1 ≤ tmL ≤ 4 arise. It is easy to obtain
exampleswith exactly onemodular point; seeSect. 3.3. (However, the fact that there are
many examples makes it hard to classify them!) It is also easy to obtain examples with
exactly twomodular points; seeCorollary 3. For exactly threemodular points, consider
the line arrangement defined by the linear factors of xyz(xn − yn)(xn − zn)(yn − zn)
for n ≥ 2. The coordinate vertices are the modular points and have multiplicity n+ 2.
For n = 2, the arrangement is real (see the arrangement of 9 lines shown in Fig. 3); for
n > 2, it is complex but not real. Taking n = 1, so xyz(x − y)(x − z)(y− z), gives the
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only example we know over the complexes or reals with exactly four modular points;
see Case 2 of Fig. 2. (We thank Ş. Tohǎneanu for pointing out that a line arrangement
equivalent to the one defined by the linear factors of xyz(xn − yn)(xn − zn)(yn − zn)
for n = 2 arose as an example in section 3.1.1 of [3], to show that a certain bound
on the number of crossing points was sharp. For the line arrangements given by
xyz(xn − yn)(xn − zn)(yn − zn), the bound is t ≤ d2 +d +1, where t = n2 +3n+3
is the number of crossing points and d = mL − 1 = n + 1. Thus, we see that
t = d2 + d + 1, so this bound is in fact sharp for all values of n.)

3.2.2 Classifyingm-homogeneousL for tm > 1 andm = 3

Consider the case of a line arrangement L with two or more modular points of multi-
plicity m ≥ 3. Since we have at least two modular points, we pick two and call them
p and q.

First say m = 3. We will show that there are three cases, shown in Fig. 2: L has
either 5, 6 or 7 lines, and either 2, 4 or 7 modular points, respectively. The case of 7
lines occurs only in characteristic 2. The other cases occur for any field.

Clearly, L has at least 5 lines: the line L defined by p and q, and in addition lines
p ∈ L pi and q ∈ Lqi , for i = 1, 2. No other lines in L (if any) can contain p or q.
Let r1 be where L p1 and Lq1 meet, and let r2 be where L p2 and Lq2 meet. And let s1
be where L p1 and Lq2 meet, and let s2 be where L p2 and Lq1 meet. Any other line in
L must intersect the lines L pi and Lqi only at r1, r2, s1, or s2.

One possibility is that L has only the five lines mentioned above. Alternatively,
assume L has another line, A. Of the six pairs two points chosen from the four points
r1, r2, s1 and s2, A must contain either r1 and r2 or s1 and s2 (A cannot contain r1 and
s1, for example, because that line is L p1). Up to relabeling, the cases r1 and r2 are the
same as s1 and s2, so say A contains r1 and r2. Up to projective equivalence, we may
assume that p = (0, 0, 1), q = (0, 1, 0), r1 = (1, 0, 0) and r2 = (1, 1, 1), in which
case s1 = (1, 0, 1) and s2 = (1, 1, 0). So a second possibility is that L has six lines,
with A being the sixth line. Note that in this case that L has 4 modular points: The
points p, q, r1 and r2 are modular, and all have multiplicity 3. The only option for L
to contain an additional line is for the additional line (call it B) to be the line through
s1 and s2. But A is y − z = 0 and B is x − y − z = 0, so A and B intersect at the
point (2, 1, 1). When the ground field does not have characteristic 2, this is not on any
of the three lines through p (or on any of the three lines through q); hence, including
B would make L not be supersolvable. Thus, when the characteristic is not 2, L must
either have 5 or 6 lines, and be Case 1 or Case 2 shown in Fig. 2. If the characteristic
is 2, the point (2, 1, 1) is on the line through p and q, in which case L consists of the
7 lines of the Fano plane, there are 7 crossing points, and all are modular and have
multiplicity 3.

3.2.3 Classifyingm-homogeneousL overR for tm > 1 andm > 3

Now we consider the casem ≥ 4 for real line arrangements. So, in addition to the line
L through p and q, there are m − 1 lines through p and m − 1 lines through q. These
lines form a complete intersection (i.e., a grid) of (m − 1)2 crossing points. The only
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Fig. 2 Classification of supersolvable line arrangements with 2 or more modular points (shown as white
dots), all of multiplicity m = 3

other crossing points for these 2m − 1 lines are p and q. Certainly L could consist of
only these 2m − 1 lines, in which case p and q are the only modular points and we
have tk = 0 except for tm = 2 and t2 = (m − 1)2.

The question now is what additional lines can be added to these 2m−1 while main-
taining supersolvability. To answer this, let us choose coordinates so that p becomes
(0, 1, 0) and q becomes (1, 0, 0). Thus, the line through p and q is now the line at
infinity, and the m − 1 other lines through p are parallel to the x = 0 axis, and the
m − 1 other lines through q are parallel to the y = 0 axis.

Any additional line must avoid p and q, and must intersect the m − 1 vertical lines
only at points where they meet the m − 1 horizontal lines. By inspection, we can see
that this can happen in exactly to ways. First is that the four corners of the grid form a
rectangle and the i th vertical line (counting from the left) meets the i th horizontal line
(counting up from the bottom) meet on the anti-diagonal of the rectangle (in which
case the anti-diagonal can be added to L). The second way is that the four corners of
the grid form a rectangle (as before) and the i th vertical line (counting from the left)
meets the i th horizontal line (counting down this time from the top) meet on the main
diagonal of the rectangle (in which case the main diagonal can be added to L). In case
both cases hold, both diagonals can be added if and only if m is even.

Thus, there are three cases:L has 2m−1 lines andwe have tm = 2 and t2 = (m−1)2

but only twomodular points, namely p and q;L has 2m lines where the additional line
is one of the twomajor diagonals (assuming the lines are spaced correctly) and we still
have only two modular points (p and q), with tm = 2, t2 = (m−1)2 − (m−1)+1; or
L has 2m + 1 lines where the additional lines are the two major diagonals (assuming
the lines are spaced correctly and m is even), in which case either m = 4 and we have
tm = 3, t2 = 6, t3 = 4 and there are three modular points (p, q and the center of the
rectangle), orm > 4 and we have tm = 2, t2 = (m−1)2 − (2m−1)+2, t3 = 2m−4
and t4 = 1 and there are only two modular points (p and q).

Thus, we have a complete classification of real supersolvable line arrangements
when there is more than one modular point of multiplicity at least 3.

3.2.4 Classifyingm-homogeneousL overC for tm > 2 andm > 3

Nowwe consider the casem ≥ 4 for complex line arrangementswith at least 3modular
points. By Theorem 7, the number of modular points cannot be more than 4.
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Webeginwith the case of exactly tm = 3modular points. IfL has a line that does not
contain a modular point, deleting it gives an arrangement which is still supersolvable,
so we first assume every line in L goes through a modular point.

After a changeof coordinates,wemayassume that the threemodular points, p,q and
r , are the coordinate vertices of P2, so say p = (0, 0, 1), q = (0, 1, 0), r = (1, 0, 0).
In addition to the three coordinate axes,Lmust containm−2 lines through each of p,
q and r . Let Fp be the form defining the union of these m − 2 lines through p, other
than the coordinate axes. Note that Fp is a form of degree m − 2 and involves only
the variables x and y, hence is Fp(x, y). Likewise we have Fq(x, z) and Fr (y, z) for
q and r . Since the coordinate axes are not among the lines defined by Fp, Fq or Fr ,
we see that none of these forms is divisible by a variable.

The crossing points for the lines from Fp and the lines from Fq form a complete
intersection of (m − 2)2 points on which Fr also vanishes, so Fr = aFp + bFq for
some scalars a and b. The only term that Fp and Fq can have in common is xm−2.
Thus, in order that all terms involving x cancel in aFp + bFq so that Fr involves
only y and z, we see that xm−2 is the only term in either Fp or Fq involving x . Thus
(after dividing by the coefficient of xm−2 in each case), we have Fp = xm−2 −αym−2

and Fq = xm−2 − βzm−2. By absorbing the α into y and the β into z, we get Fp =
xm−2 − ym−2 and Fq = xm−2 − zm−2, so Fr = ym−2 − zm−2.

Thus, if every line inL goes through one of the threemodular points, then the lines in
L correspond to the linear factors of xyz(xm−2− ym−2)(xm−2−zm−2)(ym−2−zm−2).
Nowwe check that no line not through p, q or r can be added toLwhile still preserving
supersolvability. If such a line L existed, it would need to intersect every line of L in a
crossing point. In particular, L must contain one of the (m −2)2 intersection points of
the lines from Fp and the lines from Fq . Let n := m − 2. By an appropriate change of
coordinates obtained by multiplying x, y and z by appropriate powers of an nth root
of 1, we may assume that L contains (1, 1, 1). Let ε = cos(2π/n) + ı sin(2π/n) be a
primitive nth root of 1. The line L must intersect y−εz = 0 at a crossing point (hence
at (εi , ε, 1) for some 1 ≤ i ≤ n) and also y − ε2z = 0 at a crossing point (hence at
(ε j , ε2, 1) for some 1 ≤ j ≤ n). The question is whether i and j exist such that these
points lie on a line through (1, 1, 1) which does not go through p, q or r .

The lines through (1, 1, 1) are of the form a(x − z) + b(y − z) = 0. For the
line not to go through p, q or r , we need ab �= 0. Thus, we can write the line as
c = (y − z)/(x − z) for some c �= 0. For (εi , ε, 1) and (ε j , ε2, 1) both to lie on this
line, we must have

ε − 1

εi − 1
= ε2 − 1

ε j − 1
.

This simplifies to

εi−1(ε + 1) = ε j−1 + 1.

Thus, the complex norms are equal; i.e., |ε + 1| = |ε j−1 + 1|. But if γ = cos(θ) +
ı sin(θ), the norm |γ + 1| is a decreasing function of θ for 0 ≤ θ ≤ π , so the only
possibilities for |ε+1| = |ε j−1+1| are j = 2, n. If j = 2, then εi−1(ε+1) = ε j−1+1
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forces i = 1, so the line through (εi , ε, 1) and (ε j , ε2, 1) then is x − y = 0, which
contains p. If j = n, then εi−1(ε + 1) = ε j−1 + 1 = (1 + ε)/ε forces εi = 1, and
hence, i = n, so the line is x − z = 0, which contains q.

Thus, the only possibility for 3 modular points of multiplicity m > 3 is (up to
choice of coordinates) for the line arrangement to be the lines defined by the linear
factors of xyz(xm−2 − ym−2)(xm−2 − zm−2)(ym−2 − zm−2).

Now suppose L has 4 modular points with m > 3. We can, up to choice of coordi-
nates, assume that the four points are p, q, r and s, where p, q and r are as above, and
s = (1, 1, 1). If we delete any lines not through p, q and r , then the resulting arrange-
ment must come from the linear factors of xyz(xm−2 − ym−2)(xm−2 − zm−2)(ym−2 −
zm−2). To get L, we must add back in lines through s which intersect the lines coming
from xyz(xm−2 − ym−2)(xm−2 − zm−2)(ym−2 − zm−2) only at crossing points for
the lines from xyz(xm−2 − ym−2)(xm−2 − zm−2)(ym−2 − zm−2). But as we just saw
there are no such lines. Thus, L having 4 modular points with m > 3 is impossible.

Thus, up to choice of coordinates, the only complex supersolvable line arrangement
with 4 modular points is the one we found before; i.e., xyz(xm−2 − ym−2)(xm−2 −
zm−2)(ym−2 − zm−2) with m = 3, displayed in Case 2 of Fig. 2. And up to choice
of coordinates, the only complex supersolvable line arrangements with 3 modular
points are given by the linear factors of xyz when m = 2 and by the linear factors of
xyz(xm−2 − ym−2)(xm−2 − zm−2)(ym−2 − zm−2) for m > 3.

We do not have a classification of complex supersolvable line arrangement with just
1 or 2 modular points, but the case of 2 modular points has now been handled by Abe
and Dimca [2]. If for m ≥ 3 you remove one or more of the linear factors of ym−2 −
zm−2 from the set of linear factors of xyz(xm−2−ym−2)(xm−2−zm−2)(ym−2−zm−2),
then we get examples of complex supersolvable line arrangement with just 2 modular
points. Thus, more examples occur over C than over R, but it was not clear to us what
the full range of possibilities was.

In any case, we have given a full classification overC for supersolvable line arrange-
ment with 3 or 4 modular points. We discuss the case of 1 modular point in the next
section.

3.3 Having a single modular point

The case that there is a single modular point is the hardest to classify and we can give
only partial results in this case.

We begin with a lemma.

Lemma 9 LetL be a line arrangement (not necessarily supersolvable, not necessarily
over the reals). Let m be the maximum of the multiplicities of the crossing points, and
let n be the number of crossing points. If n < 2m, then L is either a pencil or near
pencil.

Proof Assume L is not a pencil or a near pencil. Let p be a point of multiplicity m
and take lines A and B not through p. Then A and the m lines through p give m + 1
crossing points, and B then gives at least another m − 1 crossing points, for a total of
at least 2m crossing points. ��
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We now consider the case of a line arrangement L with a single modular point,
which we assume has multiplicity m > 2; call it p. By [3], every other crossing point
of L has multiplicity less than p (because for a supersolvable line arrangement, all
points of maximum multiplicity are modular). Assume L is not a pencil or a near
pencil. Let L′ be the arrangement obtained from L by removing the m lines through
p. We can recover L by adding to L′ every line from p to a crossing point of L′.
What is difficult to know is how many lines get added, since one line through p might
contain more than one crossing point of L′. But we see that tm = 1 and tk+1 = t ′k for
all 2 < k < m, where t ′k is the number of crossing points of L′ of multiplicity k. Even
knowing how many lines are in L′ and the value of t ′k for every k, it is hard to say how
many lines are in L, or what the value of t2 is, except in certain special situations.

Suppose, for example, we know that no two crossing points of L′ are on the same
line through p. Since L′ has t ′2 + · · · + t ′m crossing points and L′ has s′ lines, where(s′
2

) = ∑
k t

′
k

(k
2

)
[see (2.1)], we then know that L has s = s′ + t ′2 + · · · + t ′m lines, and

then from
(s
2

) = ∑
k tk

(k
2

)
, we can determine t2.

Alternatively, startwith any line arrangementL′ (over anyfield)which is not a pencil
or a near pencil. By Lemma 9, n′ ≥ 2m′, where n′ is the number of crossing points of
L′ andm′ is the maximum of their multiplicities. For a general point p, no line through
p will contain more than one crossing point of L′. Now add to L′ each line from p to
a crossing point of L′ to get a larger line arrangement L of s = n′ + s′ lines, where s′
is the number of lines of L′. We also know that tk+1 = t ′k for all k > 2, and we can

determine t2 from
(s
2

) = ∑
k tk

(k
2

)
. Moreover, p is the unique modular point ofL. Note

that p has multiplicity n′ ≥ 2m′ and the maximum multiplicity of any other crossing
point of L is m′ + 1 < 2m′. Thus, if L has another modular point, it has multiplicity
d < n′; hence, by our classification L has d + n′ − 1 lines. But in fact s′ ≥ d + 1
since L′ is not a pencil or near pencil, and L has s = s′ + n′ > d + 1− n′ lines. Thus,
L has a unique modular point, namely p. Thus, classifying line arrangements with a
unique modular point, even when that point is general, comes down to classifying line
arrangements in general.

3.4 Summary

The real supersolvable line arrangements having more than one modular point can be
subsumed by one general construction. Take two points, p and q, on a line L . Take
ap ≥ 0 additional lines through p and aq ≥ 0 additional lines through q. This gives
a supersolvable line arrangement as long as ap + aq > 0. In addition, if ap = aq ≥ 2
and the obvious collinearity condition obtains, an additional line can be added in two
possible ways (shown by the dashed and dashed dotted lines in Fig. 3 in the case of
ap = aq = 3). If both can be added separately and if ap = aq is odd, both can be added
simultaneously. These constructions cover all possible cases of real supersolvable line
arrangements with 2 or more modular points.

The case of complex supersolvable line arrangements with more than two modular
points is all given, up to choice of coordinates, by the linear factors of xyz(xm−2 −
ym−2)(xm−2 − zm−2)(ym−2 − zm−2) for m ≥ 3.
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Fig. 3 A supersolvable line arrangement with 2 modular points of equal multiplicity with possible added
lines

4 Points of multiplicity 2 in supersolvable line arrangements

4.1 Questions and conjectures

By Inequality (2.3), every nonpencil real line arrangement has t2 ≥ 3. More generally,
there is the still open Dirac–Motzkin conjecture [8] (now known for s  0; see [11]):

Conjecture 10 The inequality t2 ≥ �s/2� holds for every nonpencil real line arrange-
ment of s lines.

Things overC are more complicated. Four types of complex line arrangements with
t2 = 0 are currently known: pencils of 3 or more lines; the lines defined by the linear
factors of (xn − yn)(xn − zn)(yn − zn) for n ≥ 3 (known as the Fermat arrangement,
Fn); an arrangement due to Klein [13] with 21 lines and tk = 0 except for t3 = 28
and t4 = 21; and an arrangement due to Wiman [16] with 45 lines and tk = 0 except
for t3 = 120, t4 = 45 and t5 = 36 (see [5] for more information about the Klein and
Wiman arrangements).

We believe the following question is open.

Question 11 Are there any complex line arrangements with t2 = 0 other than the four
types listed above?

For the case of supersolvable line arrangements, an earlier version of this paper
posed the following conjecture.

Conjecture 12 Every nontrivial complex supersolvable line arrangement has t2 > 0.

A much stronger conjecture was posed by [3].

Conjecture 13 Every nonpencil complex supersolvable line arrangement of s lines
has t2 ≥ s/2.

Recently, Abe [1] has proved Conjecture 13 in full generality. An earlier version
of our present paper, which appeared before [1], made some progress toward the
conjecture by proving it in some cases. We include these results below, since our
methods are very different from those of [1].
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In the previous section, we have found all complex supersolvable line arrangements
with at least 3 modular points, and for these, t2 ≥ s/2 holds. Thus, if the conjecture
is false, then it must fail for a line arrangement with either one or at most 2 modular
points.

It is also interesting to ask:

Question 14 Which nonpencil complex line arrangements of s lines fail to satisfy
t2 ≥ �s/2�?

Of course, as noted above, there are nonpencil line arrangements with t2 = 0,
and for these, t2 ≥ �s/2� fails to hold. Also, by adding or deleting lines from such
line arrangements one can sometimes get additional examples. For example, the line
arrangement L with s = 3n lines defined by the linear factors of (xn − yn)(xn −
zn)(yn − zn) has t2 = 0; by adding the line x = 0, we get a line arrangement L′ with
s = 3n + 1 and t2 = n, so t2 ≥ �s/2� still fails. For another example, each line of the
Klein arrangement of 21 lines contains four crossing points of multiplicity 4 and four
of multiplicity 3. By removing one line, we thus get an arrangement of s = 20 lines
with t4 = 17, t3 = 28 and t2 = 4, so here too t2 ≥ �s/2� fails. But this leaves the
question: Are there any examples where t2 ≥ �s/2� fails to hold which do not come
in this way from the known examples with t2 = 0?

If L is defined over R, [3] proves Conjecture 13 (see [3, Theorem 2.4]). A key step
in their proof is [3, Lemma 2.2], a version of which we now state. For the convenience
of the reader, we include a slightly simplified version of the proof from [3].

Lemma 15 Let p be a modular point of some multiplicity m in a nonpencil real super-
solvable line arrangement L containing s lines. Then every line in L not containing
p contains a crossing point of multiplicity 2.

Proof At left in Fig. 4, we see the m lines (L1, . . . , Lm enumerated from bottom to
top) through p and some line L not through p. To these, we have added a dotted line
below L1 and a dashed line above Lm . After a change of coordinates, the dotted line
becomes y = 0, the dashed line becomes the line z = 0 at infinity, L becomes x = 0
and p becomes the point (1, 0, 0). Thus, in the affine plane as shown at right in Fig. 4,
the lines Li become horizontal lines and L becomes vertical.

Let pi be the point of intersection of Li with L . Since p is modular, every line
in L (other than L itself) must intersect L at one of the points pi . We want to show
that one of the points pi has multiplicity 2. Suppose by way of contradiction that the
multiplicity of pi is more than 2 for each i . Thus, we can pick an additional line Hi

in L through pi for each i . The slope of Hi in the affine picture at right in Fig. 4 is
defined and not 0.

For each i �=, the intersection of Hi and Hj must be on one of the lines Lk , since p
is modular. If the slopes of H1 and Hm have the same sign, it is easy to see that they
intersect either above Lm (if the slopes are both positive and H1 has the larger slope,
or if the slopes are both negative and H1 has the more negative slope) or below L1
(if the slopes are both positive and Hm has the larger slope, or if the slopes are both
negative and Hm has the more negative slope).

Thus, in order for p to be modular, H1 and Hm must have slopes of opposite sign.
This means as you go from H1 to H2 and on to Hm , there is a least i such that Hi and
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Fig. 4 At left, a modular point p of multiplicity m in a real supersolvable line arrangement L and a line
L in L = {L1, . . . , Lm } not through p, and at right an affine version of the same arrangement after an
appropriate change of coordinates moving the dashed line to infinity

Hi+1 have slopes of opposite sign. But this means that Hi and Hi+1 intersect between
Li and Li+1, and hence, that the point of intersection is not on any of the horizontal
lines Lk , contradicting modularity of p. Thus, at least one of the points pi must have
multiplicity 2. (For example, we could have pm have multiplicity 2 so there would be
no Hm , and H1, . . . , Hm1 could all meet at a point of Lm .) ��

We now state and give a simplified proof of a slightly strengthened version of [3,
Theorem 2.4].

Theorem 16 Let L be a real nonpencil supersolvable line arrangement containing
s lines. Let p be any modular point of L, and let m be the multiplicity of p. Then
t2 ≥ max{s − m,m} ≥ s/2.

Proof By Lemma 15, each of the s − m lines in L not through p contains a point of
multiplicity 2. These points are all distinct since if two different lines not through p
shared a point of multiplicity 2, no other lines in L could contain that point; hence, no
line through p could contain the point, contradictingmodularity of p. Thus, t2 ≥ s−m.
On the other hand, by Inequality (2.3) we have t2 ≥ 3+(m−3)tm ≥ 3+(m−3) = m.

��
The preceding result prompts the following question:

Question 17 Does every nonpencil supersolvable complex line arrangement of s lines
with a modular point of multiplicity m satisfy t2 ≥ max{s − m,m}?

Although Conjecture 12 is now known to be true [1], it may be of interest to see
how a special case can be obtained using the above methods.

Theorem 18 Let L = {L1, . . . , Ls} be a nontrivial complex line arrangement (i.e.,
not a pencil or near pencil). Assume that every crossing point of L has multiplicity
equal to 3 or 4. Then the line arrangement L is not supersolvable.

Proof Since L is not a pencil or a near pencil by hypothesis, we can apply Inequality
(2.2). In our case, it takes the form: 3

4 t3 ≥ s.
By (2.1), we have s(s − 1) = 6t3 + 12t4.
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Suppose that L is supersolvable. Then, by (2.4), we have t2 ≥ 2n −m(s −m) − 2,
where n is the total number of crossings and m is the maximum k such that tk > 0. In
our case, this gives 0 ≥ 2(t3 + t4) − m(s − m) − 2, where m = 3 or m = 4.

First we assumem = 4 and obtain a contradiction. We have 2(s − 4)+ 1 ≥ t3 + t4.
This implies 12(s − 4) + 6 ≥ 6(t3 + t4) ≥ 8s + 6t4. The last inequality follows from
the Hirzebruch inequality. So we get 6t4 + 12(s − 4) + 6 ≥ 6t3 + 12t4 = s(s − 1),
where the last equality follows from (2.1).

This, in turn, gives 12(s−4)+6 ≥ 6t4+8s ≥ s(s−1)−12(s−4)−6+8s. Looking
at the first and third terms in this and rearranging terms, we get s2 − 17s + 84 ≤ 0.
But since this quadratic in s has positive leading coefficient and negative discriminant,
s2 − 17s + 84 > 0 for every s, giving us the desired contradiction.

The calculation is similar if m = 3. By (2.4), we get 3(s − 3) + 2 ≥ 2t3. Using the
Hirzebruch inequality (2.2), we get 9(s − 3) + 6 ≥ 6t3 ≥ 8s. This forces s ≥ 21. On
the other hand, s(s−1) = 6t3 by (2.1). Hence, we obtain 9(s−3)+6 ≥ 6t3 = s(s−1),
or equivalently, (s − 3)(s − 7) ≤ 0. So 3 ≤ s ≤ 7. This is not possible. ��
Example 19 We do not know many nontrivial examples of complex line arrangements
where every crossing point has multiplicity 3 or 4. We get two examples by taking
the lines defined by the linear factors of (xn − yn)(xn − zn)(yn − zn) for n = 3 and
n = 4. The only other example we know is the one due to Klein [13], having 21 lines
with tk = 0 except for t3 = 28 and t4 = 21.

5 Applications to unexpectedness

One of the most interesting applications of line arrangements in P
2 is to finding

unexpected curves. More specifically, given a line arrangement in P
2 one considers

the dual arrangement of points. The question then is whether these points admit an
unexpected curve. For more details, see [6].

The existence of unexpected curves depends on some properties of the line arrange-
ment. If the arrangement is supersolvable, then [7, Theorem 3.17] proves that there is
an unexpected curve through the dual points if and only if s > 2m, where s is the num-
ber of lines and m is the maximum multiplicity of a crossing point. We now use this
characterization to determine which supersolvable arrangements in the classification
of Section 3 admit unexpected curves.

5.1 Real line arrangements admitting unexpected curves

First, let us consider a real supersolvable line arrangement L.
If L has exactly one modular point, then the only arrangement we know which

satisfies the condition s > 2m is given by considering a regular n-gon for even n and
adding the line at infinity. For more details, see [7, Theorem 3.15].

If L has exactly two modular points, then the only arrangement which admits an
unexpected curve is given by the following. Let m ≥ 6 be even and consider an
arrangement of m horizontal and m vertical lines, along with the line at infinity. This
is supersolvable with the twomodular points of multiplicitym+1 at infinity where the
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horizontal and vertical lines meet the line at infinity. Since there are only s = 2m + 1
lines, this arrangement does not admit an unexpected curve. But we can add the two
diagonals (as in Fig. 3, which shows the case of m = 4, but in that case there are three
modular points) to this arrangementwithout changing themaximummultiplicitywhile
preserving supersolvability. Now the condition s = 2m+3 > 2(m+1) is satisfied, and
hence, the new arrangement admits an unexpected curve. This arrangement is a special
type of tic-tac-toe arrangement described in [7, Theorem 3.19]. The multiplicities of
the twomodular points (or threewhenm = 4) in this tic-tac-toe arrangement are equal.
There are no other supersolvable arrangements with exactly twomodular points which
admit unexpected curves.

The only other real supersolvable line arrangement admitting an unexpected curve
is the Fermat arrangement for n = 2 with three coordinate axes added.More precisely,
this arrangement is defined by xyz(x2 − y2)(x2 − z2)(y2 − z2) = 0. This has 9 lines
and three modular points of multiplicity 4 each. (It is displayed in Fig. 3.)

In summary, except for possibly more supersolvable arrangements with a unique
modular point, the only real supersolvable line arrangements which admit an expected
curve are listed above. We ask the following question.

Question 20 Are there any other real supersolvable line arrangements (other than the
one coming from a regular n-gon) with exactly one modular point whose dual points
admit an unexpected curve?

5.2 Complex line arrangements admitting unexpected curves

We now consider complex line arrangements. The only examples known to us of
supersolvable arrangements which admit unexpected curves are obtained by adding
two or three coordinate axes to the Fermat arrangement Fn . In other words, we are
considering the complex line arrangement given by xy(xn − yn)(xn − zn)(yn − zn),
or xyz(xn − yn)(xn − zn)(yn − zn) = 0.

This has s = 3n+ ε lines, where ε = 2 or 3 and maximummultiplicitym = n+2.
Hence, the condition s > 2m is satisfied for ε = 2, n ≥ 3 or ε = 3, n ≥ 2. In the first
case, there is a unique modular point, and in the second case, there are three modular
points.

We end with the following question.

Question 21 Are there any other complex supersolvable line arrangements (different
from the arrangements coming from the Fermat arrangement described above) whose
dual points admit an unexpected curve?
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