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Abstract
The Macdonald process is a stochastic process on the collection of partitions that
is a (q, t)-deformed generalization of the Schur process. In this paper, we approach
the Macdonald process identifying the space of symmetric functions with a Fock
representation of a Heisenberg algebra. By using the free field realization of opera-
tors diagonalized by the Macdonald symmetric functions, we propose a method of
computing several correlation functions with respect to the Macdonald process. It is
well known that expectation value of several observables for the Macdonald process
admits determinantal expression. We find that this determinantal structure is appar-
ent in free field realization of the corresponding operators and, furthermore, it has
a natural interpretation in the language of free fermions at the Schur limit. We also
propose a generalized Macdonald measure motivated by recent studies on general-
ized Macdonald functions whose existence relies on the Hopf algebra structure of the
Ding–Iohara–Miki algebra.

Keywords Macdonald process · Macdonald symmetric function · Ding–Iohara–Miki
algebra · Generalized Macdonald functions · Generalized Macdonald measure
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1 Introduction

1.1 Backgrounds

Let Yn be the collection of partitions of n ∈ Z≥1, and set Y := ⋃∞
n=0 Yn , where

Y0 = {∅}. The Macdonald measure MMq,t is a probability measure on Y defined
by [8,14]
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MMq,t (λ) = 1

�(X ,Y ; q, t)
Pλ(X; q, t)Qλ(Y ; q, t), λ ∈ Y.

Here, Pλ(X; q, t) is the Macdonald symmetric function of X = (x1, x2, . . . ) for a
partition λ and Qλ(Y ; q, t) is its dual symmetric function of Y = (y1, y2, . . . ) (see
Sect. 2 for definition). From the Cauchy-type identity, the normalization factor is
computed as

�(X ,Y ; q, t) =
∑

λ∈Y
Pλ(X; q, t)Qλ(Y ; q, t) =

∏

i, j≥1

(t xi y j ; q)∞
(xi y j ; q)∞

,

where (a; q)∞ = ∏∞
n=0(1 − aqn). In the following, we suppress the parameters q

and t if there is no ambiguity, for instance, by writing Pλ(X) = Pλ(X; q, t). Precisely
speaking, to obtain a genuine probability measure, we have to adopt a nonnegative
specialization of the Macdonald symmetric functions whose classification was con-
jectured in [38] and recently proved in [41].

As a generalization of the Macdonald measure, the N -step Macdonald process
[8,14] for N ≥ 1 is a probability measureMP

N
q,t onY

N defined so that the probability

for a sequence (λ(1), . . . , λ(N )) ∈ Y
N of partitions is given by

MP
N
q,t (λ

(1), . . . , λ(N ))

:= Pλ(1) (X (1))�λ(1),λ(2) (Y (1), X (2)) · · · �λ(N−1),λ(N ) (Y (N−1), X (N ))Qλ(N ) (Y (N ))
∏

1≤i≤ j≤N �(X (i),Y ( j))
.

(1.1)

Here, the transition function �λ,μ(Y , X) is given by

�λ,μ(Y , X) =
∑

ν∈Y
Qλ/ν(Y )Pμ/ν(X), λ, μ ∈ Y, (1.2)

with Pλ/ν being theMacdonald symmetric functions for a skew-partitionλ/ν and Qλ/μ

being its dual. The case of N = 1 is just the Macdonald measure, MMq,t = MP
1
q,t .

It is known that the Macdonald process reduces to several interesting stochastic
models by specializing the variables and limiting the parameters and has given many
applications to probability theory. Examples include the q-TASEP [8], general β-
ensembles [17], Hall–Littlewood plane partitions [29], Whittaker processes [26,45,
50], Kingman partition structures [51] (see also [16,18,21,25]). In particular, when
we set q = t , the Macdonald symmetric functions reduce to the Schur functions and,
correspondingly, the Macdonald process reduces to the Schur process [47,49]. The
Schur process can be shown to be a determinantal point process (DPP) in a simple
manner owing to the infinite-wedge realization of the Schur functions and action of
free fermions [47]. The analogous field theoretical approach to theMacdonald process
is, however, absent to the author’s knowledge.
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1.2 Correspondence among correlation functions

In the present paper, we study theMacdonald process by identifying the space of sym-
metric functions with a Fock representation of a Heisenberg algebra as was suggested
in [34]. As its first step, we express a correlation function of the Macdonald process in
terms of matrix elements of operators on the Fock space. We set F = C(q, t). Then,
we regard a function f : Y → F as a random variable or an observable.

Definition 1.1 Let f1, . . . , fN : Y → F be random variables. The correlation function
E
N
q,t [ f1[1] · · · fN [N ]] with respect to the N -step Macdonald process is defined by

E
N
q,t [ f1[1] · · · fN [N ]] :=

∑

(λ(1),...,λ(N ))∈YN

f1(λ
(1)) · · · fN (λ(N ))MP

N
q,t (λ

(1), . . . , λ(N )).

In the case of N = 1, we simply write Eq,t [ f ] := E
1
q,t [ f [1]].

We write � for the ring of symmetric functions over F. Then, it is isomorphic to a
Fock representationF and its dualF† of a Heisenberg algebra (see Sect. 3), where the
Macdonald symmetric function Pλ corresponding to λ ∈ Y is identified with |Pλ〉 ∈ F
and its dual Qλ is identified with 〈Qλ| ∈ F†. We introduce operators on F :

�(X)± = exp

(
∑

n>0

1 − tn

1 − qn
pn(X)

n
a±n

)

, (1.3)

where an , n ∈ Z\{0} are generators of the Heisenberg algebra and pn(X), n ≥ 1 is
the n-th power-sum symmetric function of variables X = (x1, x2, . . . ) (see Sect. 2).

We write F[Y] := { f : Y → F} for the set of random variables. The method
of computing correlation functions using operators (difference operators in typical
cases) that are diagonalized by the Macdonald polynomials has been developed in
[8,10,14,17,29,36]. Here, we shall formulate a complementary algebraic scheme to
compute correlation functions.

Definition 1.2 Regarding the values of a random variable as the eigenvalues of an
operator, we define a mapping

O : F[Y] → End(F); f 
→
∑

λ∈Y
f (λ)|Pλ〉〈Qλ|.

For a random variable f ∈ F[Y], we also define

ψ
X ,Y
f := �(Y )+O( f )�(X)−.

Then, we have the following correspondence between correlation functions under
the Macdonald process and matrix elements in the Fock space.
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Theorem 1.3 Let f1, . . . , fN ∈ F[Y] be random variables. Then, their correlation
function with respect to the N-step Macdonald process becomes

E
N
q,t [ f1[1] · · · fN [N ]] = 〈0|ψ X (N ),Y (N )

fN
· · ·ψ X (1),Y (1)

f1
|0〉

〈0|ψ X (N ),Y (N )

1 · · ·ψ X (1),Y (1)

1 |0〉
. (1.4)

Here, |0〉 ∈ F and 〈0| ∈ F† are the vacuum vectors and 1 ∈ F[Y] is the unit constant
function.

Theorem 1.3 is proved in Sect. 3.

1.3 Determinantal expression of operators

Due to Theorem 1.3, the problem reduces to how efficientlywe can compute thematrix
elements in (1.4). We use the free field realization of operators that are diagonalized
by the Macdonald symmetric functions due to [30] to make the computation of (1.4)
possible.

It is well known [8,14] that several expectation values concerning the Macdonald
process admit determinantal expression. The determinantal structure of theMacdonald
processes is a long-standing mystery as it is not a DPP, and the initial motivation of
this work was to understand the origin of this determinantal structure. We found
that the determinantal structure gets apparent in the free field realization of operators
diagonalized by the Macdonald symmetric functions as we are overviewing below.

The Macdonald symmetric functions are simultaneous eigenfunctions of commut-
ing operators including the Macdonald operators. Under the isomorphism F � �,
these operators are identified with operators on F , which were studied in [30,55] as
the free field realization. We seek different expression of these free field realizations
involving determinant. Let us introduce a vertex operator

η(z) = exp

(
∑

n>0

1 − t−n

n
a−nz

n

)

exp

(

−
∑

n>0

1 − tn

n
anz

−n

)

, (1.5)

which lies in End(F)[[z, z−1]].
Theorem 1.4 Let r = 1, 2, . . . . The free field realization Êr of the r-th Macdonald
operator is expressed as

Êr = t−r

r !
∫ (

r∏

i=1

dzi
2π

√−1

)

det

(
1

zi − t−1z j

)

1≤i, j≤r

:η(z1) · · · η(zr ): . (1.6)

Throughout this paper, we understand the integral
∫ dz

2π
√−1

as the functional taking

the coefficient of z−1 and a rational function of formal variables like 1
z−γw

, γ ∈ F as

a formal series expanded in F[w]((z−1)). In particular, 1
z−γw

= − 1
γw−z . We prove
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Theorem 1.4 in Sect. 4 and also show determinantal expression of other operators.
Combining these determinantal expressions with Theorem 1.3, we derive determinan-
tal formulas of correlation functions in Sect. 5. Hence, we can say that the determinant
appearing as a integrand in (1.6) gives determinantal formulas.

To understand still more fundamental origins of the determinantal structure, we
also consider the Schur-limit in Sect. 4. Consequently, we find that the operator (1.6)
reduces to action of fermionic operators that give the determinantal integrand in (1.6).

We remark that our approach is fully algebraic and formal and does not require any
specialization of the variables. Therefore, our results apply to any models obtained by
specialization of the Macdonald process.

1.4 GeneralizedMacdonaldmeasure

We also propose a certain generalization of the Macdonald measure. It is known that
the Ding–Iohara–Miki (DIM) algebra [28,42] plays a relevant role in the theory of the
Macdonald symmetric functions. In [1], the authors proposed a family of generalized
Macdonald functions using the coproduct structure of the DIM algebra. We consider
a generalization of the Macdonald measure replacing the Macdonald symmetric func-
tions by generalized Macdonald functions as follows.

Let m ∈ N be fixed. In [1,31], it was proved that the m-fold tensor product F̃⊗m

of F̃ := C(q1/4, t1/4) ⊗F F admits a Macdonald type basis labeled by m-tuple of
partitions. Under the isomorphism F⊗m � �⊗m , the level m generalized Macdonald
functions Pλ(X), λ = (λ(1), . . . , λ(m)) ∈ Y

m , X = (X (1), . . . , X (m)) and their dual
functions Qλ(X) are defined (see Proposition 6.1 andDefinition 6.2 below). In Sect. 6,
we will define the level m generalized Macdonald measure as a probability measure
GM

m
q,t on Y

m so that

GM
m
q,t (λ) ∝ Pλ(X)Qλ(Y), λ ∈ Y

m

and write GE
m
q,t for the expectation value under GM

m
q,t .

As a demonstration, we will compute the expectation value of a random variable
Ê (m)
1 , defined by

Ê (m)
1 (λ) :=

m∑

j=1

⎛

⎝1 + (t − 1)
∑

i≥1

(qλ
( j)
i − 1)t−i

⎞

⎠ , λ = (λ(1), . . . , λ(m)) ∈ Y
m .

Theorem 1.5 Set

H(w; X) :=
∏

i≥1

1 − t xiw

1 − xiw
,

M(z; X) :=
∏

k≥1

(1 − zxk)(1 − q−1zxk)

(1 − q−1t zxk)(1 − t−1zxk)
, X = (x1, x2, . . . ),
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and p = q/t . Then, we have

GE
m
q,t [Ê (m)

1 ] =
∫

dz

2π
√−1z

m∑

i=1

∏i−1
j=1 M(p−( j+1)/2z; Y (i))

H(p(i−1)/2z−1; X (i))H(t−1 p−(i−1)/2z; Y (i))
.

1.5 Future directions

We close this introduction by make comments on future directions.

1.5.1 Application to stochastic models

Since our results are formal and do not require any specialization of variables, they
apply to any reduction of the Macdonald process. For application to stochastic mod-
els, however, one has to specialize variables and carry out further analyses typically
studying asymptotic behaviors (e.g., [4,8,9,11,15,17,33]). It is not clear so far how our
results are useful for such application and more study is needed.

1.5.2 Further studies on generalized Macdonald measure

We need to study generalized Macdonald measure in application to stochastic models.
For this purpose, we have to consider positive specialization of generalized Macdon-
ald functions to define a genuine probability measure. We also need to define skew
generalized Macdonald functions and combinatorial formula of their few-variable
specialization. To all these aims, the first step is to study the Pieri-type formulas for
generalized Macdonald functions.

1.5.3 Elliptic generalization

In [53,54], the elliptic Macdonald operators were realized as operators on a Fock
space by means of the elliptic DIM algebra. Though the elliptic Macdonald symmetric
functions as a basis of the Fock space have not been captured so far, once aMacdonald-
type basis is found, a similar story as in this paper would work in the elliptic case.

1.5.4 Relation to higher spin six-vertex models

Another pillar than the Macdonald process in the field of integrable probability is a
higher spin six-vertex model and its variants [13,19,22–24,27], and there are attempts
to understand these two on the same footing [20,23,24,35]. Notably, partition functions
of a higher spin six-vertexmodel give a family of symmetric rational functions [19] that
are regarded as generalization of the Hall–Littlewood polynomials. It is also known
[5,6] that, for some lattice models such as a metaplectic ice model, a vertex operator
acting on a Fock space works as a transfer matrix and its matrix elements give a family
of symmetric functions. Since a Fock space and vertex operators are also basic tools in
this paper, the present work could give a new insight to this subject from a perspective
of the representation theory of quantum algebras.
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The present paper is organized as follows: In Sect. 2, we review the basic notions
of symmetric functions and introduce the Macdonald symmetric functions, which are
needed to define the Macdonald process (1.1). In Sect. 3, we recall that the space of
symmetric functions is isomorphic to a Fock representation of a Heisenberg algebra
and prove Theorem 1.3. We also see the free field realization of operators that are
diagonalized by the Macdonald symmetric functions. In Sect. 4, we rewrite the free
field realizations in Sect. 3 by using determinants to prove Theorem 1.4 and its ana-
logues to other operators. We also consider the Schur-limit to better understand the
origin of the determinantal structure. In Sect. 5, we present applications of Theorem
1.3 and the results in Sect. 4 to compute correlation functions of some observables. In
Sect. 6, after overviewing the theory of the DIM algebra, we introduce a generalized
Macdonald measure and prove Theorem 1.5. In Appendix 1, we give a proof of the
free field realization of a certain family of operators diagonalized by the Macdonald
symmetric functions.

Throughout this paper, we use the notations

[n]q = 1 − qn

1 − q
, [n]q ! =

n∏

k=1

[k]q , (x; q)n =
n−1∏

k=0

(1 − xqk).

2 Preliminaries on symmetric functions

In this paper, we regard the parameters q and t as indeterminates unless otherwise spec-
ified and set F := C(q, t). Let us prepare some terminologies of symmetric functions
and introduce the Macdonald symmetric functions. The relevant reference is [40].

2.1 Ring of symmetric functions

Let �(n) = F[x1, . . . , xn]Sn be the ring of symmetric polynomials in n variables over
F. The ring of symmetric functions is defined as the projective limit � = lim←−n

�(n)

in the category of graded rings, where, given m > n, the projection �(m) → �(n)

sends the last m − n variables to zero. For a symmetric function F ∈ �, its image
under the canonical surjection � � �(n), n ∈ Z≥0 will be denoted as F (n), and call
it the n-variable reduction of F . In the following, we write X = (x1, x2, . . . ) for a set
of infinitely many variables and use the notation �X if the variables are need to be
specified.

For a partition λ ∈ Yn of n ∈ Z≥1, we write |λ| = n for its weight. Its length is
defined by (λ) := max{i = 1, 2, . . . |λi > 0}, and the multiplicity of i ∈ Z≥1 in λ

is defined by mi (λ) := |{ j = 1, 2, . . . |λ j = i}|. In terms of the multiplicity, we also
express a partition as λ = (1m1(λ)2m2(λ) · · · ). For two partitions λ, μ ∈ Y, we write
λ ≥ μ if |λ| = |μ| and λ1 + · · · + λn ≥ μ1 + · · · + μn , n = 1, 2, . . . . Then, ≥
defines a partial order on Y called the dominance order. For two partitions λ, μ ∈ Y,
we say that μ is included in λ if λi ≥ μi , i = 1, 2, . . . , hold, and write μ ⊂ λ. Their
difference is called a skew-partition and denoted as λ/μ.
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Let us introduce some important symmetric functions. For r ∈ Z>0, the r -th ele-
mentary symmetric function er (X) is defined by er (X) := ∑

i1<···<ir xi1 · · · xir and
the r -th power-sum symmetric function pr (X) is defined by pr (X) := ∑

i≥1 x
r
i .

For a partition λ = (λ1, λ2, . . . ) ∈ Y, we also define pλ(X) := pλ1(X)pλ2(X) · · · .
Other important symmetric functions are monomial symmetric functions. Let λ ∈ Y

be a partition and n be an integer larger than or equal to (λ). We may regard
λ = (λ1, . . . , λn) as an element in (Z≥0)

n , on which the n-th symmetric group acts
by permutation of components. A monomial symmetric polynomial of n variables is

defined by m(n)
λ (x1, . . . , xn) = ∑

σ x
λσ(1)
1 · · · xλσ(n)

n , where the sum runs over distinct

terms. Then, the collection {m(n)
λ (x1, . . . , xn) : n ≥ (λ)} determines a unique sym-

metric function mλ(X) ∈ � called the monomial symmetric function corresponding
to λ. It is known that the collections {pλ}λ∈Y and {mλ}λ∈Y form F-bases of �.

An algebraic homomorphism ρ : � → F is called a specialization. We often write
the image of F ∈ � under a specialization ρ as F(ρ) instead of ρ(F). We frequently
consider specializations associated with partitions. For λ ∈ Y and n ∈ Z, we define a
specialization qλt−δ+n : � → F by

pr (q
λt−δ+n) :=

(λ)∑

i=1

(qλi t−i+n)r + t−r((λ)+1−n)

1 − t−r
, r = 1, 2, . . . ,

which is interpreted as substitution xi 
→ qλi t−i+n , i ≥ 1. A specialization q−λtδ−n

is defined just by replacing q by q−1 and t by t−1 in the above formula.

2.2 Macdonald symmetric functions

To define theMacdonald symmetric functions, we introduce theMacdonald difference
operators. Fix n ∈ Z≥1. Then for r = 1, . . . , n, the r -thMacdonald difference operator
D(n)
r acting on �(n) is defined by [40, Section VI. 3]

D(n)
r = D(n)

r (q, t) := tr(r−1)/2
∑

I⊂{1,2,...,n}
|I |=r

∏

i∈I
j /∈I

t xi − x j
xi − x j

∏

i∈I
Tq,xi ,

where Tq,xi is the q-shift operator (Tq,xi f )(x1, . . . , xn) := f (x1, . . . , qxi , . . . , xn).
For a partition λ ∈ Y, the corresponding Macdonald symmetric function

Pλ(X; q, t) ∈ �X is uniquely characterized by the triangularity

Pλ(X; q, t) = mλ(X) +
∑

μ;μ<λ

cλμ(q, t)mμ(X), cλμ(q, t) ∈ F (2.1)

and theproperty that, for eachn ≥ (λ), then-variable reduction P(n)
λ (x1, . . . , xn; q, t)

is a simultaneous eigenfunction of the Macdonald difference operators so that

D(n)
r P(n)

λ (x1, . . . , xn; q, t) = e(n)
r (qλ1 tn−1, . . . , qλn )P(n)

λ (x1, . . . , xn; q, t)
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for each r = 1, . . . , n. Note that the triangularity property ensures that the Macdonald
symmetric functions Pλ(X; q, t), λ ∈ Y form a basis of �.

Though the Macdonald difference operators themselves do not extend to operators
on �, it is known [30, Proposition 3.3] (see also [40, Chapter VI, Section 4]) that
we may define ones that extend to �. For each r ∈ Z≥1 and n ≥ r , we consider a
difference operator on �(n)

E (n)
r :=

r∑

k=0

t−nr−(r−k+1
2 )

(t−1; t−1)r−k
D(n)
k ,

with the convention that D(n)
0 = 1. Then the family {E (n)

r : n ≥ r} gives a unique

operator Er = Er (q, t) = lim←−n
E (n)
r that is diagonalized by theMacdonald symmetric

functions so that

Er Pλ(X; q, t) = er (q
λt−δ)Pλ(X; q, t), λ ∈ Y.

We next introduce the Macdonald symmetric functions for skew-partitions. Let
X = (x1, x2, . . . ) and Y = (y1, y2, . . . ) be two sets of variables and suppose that
they are combined to be a single set of variables (X ,Y ) = (x1, x2, . . . , y1, y2, . . . ).
Then, we can think of a Macdonald symmetric function Pλ(X ,Y ) ∈ �(X ,Y ) of these
variables. TheMacdonald symmetric function Pλ/μ for a skew-partitionλ/μ is defined
by Pλ(X ,Y ) = ∑

μ∈Y Pλ/μ(X)Pμ(Y ).

2.3 Definition using an inner product

The Macdonald symmetric functions are also characterized as an orthogonal basis
of � with respect to an inner product defined below. We write the inner product as
〈·, ·〉q,t : � × � → F and define it as [40, Section VI. 2]

〈pλ, pμ〉q,t = zλ(q, t)δλ,μ, λ, μ ∈ Y,

where we set

zλ(q, t) = zλ

(λ)∏

i=1

1 − qλi

1 − tλi
, zλ =

∞∏

i=1

mi (λ)!imi (λ), λ ∈ Y.

Then, the Macdonald symmetric functions Pλ, λ ∈ Y are characterized by the trian-
gularity (2.1) and orthogonality: 〈Pλ, Pμ〉 = 0 if λ = μ.

Note that, when we set Qλ := 1
〈Pλ,Pλ〉q,t

Pλ, λ ∈ Y, the collection {Qλ}λ∈Y is the
dual basis of {Pλ}λ∈Y with respect to the inner product 〈·, ·〉q,t . Similarly to the usual
Macdonald symmetric functions, we define Qλ/μ for a skew-partition by Qλ(X ,Y ) =∑

μ∈Y Qλ/μ(X)Qμ(Y ).
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2.4 Another series of operators

We also consider the following operators: Let r , n ∈ Z≥1 and define an operator on
�(n) by

H (n)
r :=

∑

ν∈(Z≥0)
n

|ν|=r

⎛

⎝
∏

1≤i< j≤n

qνi xi − qν j x j
xi − x j

⎞

⎠

⎛

⎝
n∏

i, j=1

(t xi/x j ; q)νi

(qxi/x j ; q)νi

⎞

⎠
n∏

i=1

T νi
q,xi .

Here, we wrote ν = (ν1, . . . , νn) and |ν| = ∑n
i=1 νi . It was announced in [30,

Proposition 3.24] without a proof that these operators are also diagonalized by the
Macdonald polynomials so that

H (n)
r P(n)

λ (x1, . . . , xn) = g(n)
r (qλ1 tn−1, . . . , qλn ; q, t)P(n)

λ (x1, . . . , xn)

for all λ and n ≥ (λ), where gr (X; q, t) := Q(r)(X; q, t), r = 1, 2, . . . . Later proofs
appeared in [8, Proposition 2.17] and [14, Section 5]. To enhance these operators to
ones on �, we again have to consider their renormalized version.

Theorem 2.1 ([30, Proposition 3.25]) For a fixed r ∈ Z≥1 and n ∈ Z≥1, we set

G(n)
r := (−1)r t−nrq(r2)

(q; q)r

r∑

l=0

(−1)lq−(l2)q−l(r−l)(q−l+r−1; q)l H
(n)
l .

Then, the projective limit Gr = Gr (q, t) = lim←−n
G(n)

r exists and is diagonalized by
the Macdonald symmetric functions so that

Gr Pλ(X) = gr (q
λt−δ; q, t)Pλ(X), λ ∈ Y.

3 Free field realization

In this section, we interpret the whole thing in Sect. 2 in terms of the free field theory
in two steps. In the former Sect. 3.1, we identify the space of symmetric functions
� with a Fock representation in a standard manner [1–3,30,37]. The goal there is a
proof of Theorem 1.3. The latter Sect. 3.2 is devoted to the realization of operators
that are diagonalized by the Macdonald symmetric functions as operators on the Fock
representation.

3.1 Fock representation

Let h =
(⊕

n∈Z\{0} Fan
)

⊕ Fc be a Heisenberg Lie algebra defined by

[am, an] = m
1 − q |m|

1 − t |m| δm+n,0c, m, n ∈ Z\{0}, [c, h] = 0. (3.1)
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We decompose the Heisenberg Lie algebra so that h = h+ ⊕ Fc ⊕ h−, where h± are
Lie subalgebras generated by {a±n|n > 0}. A one-dimensional representation F|0〉 of
h≥0 := h+ ⊕ Fc is defined by the property that an|0〉 = 0, n > 0 and c|0〉 = |0〉. The
induced representation is the Fock representation of h:

F := U (h) ⊗U (h≥0) F|0〉 � U (h−) ⊗F F|0〉.

Here, for a Lie algebra g, U (g) is its universal enveloping algebra. For a partition
λ = (λ1, λ2, . . . ) ∈ Y, we set |λ〉 := a−λ1a−λ2 · · · |0〉. Then, the Fock space has a
basis {|λ〉 : λ ∈ Y}.

The dual Fock space F† is also constructed by induction. Let F〈0| be a one-
dimensional right representation of h≤0 = h− ⊕ Fc defined by 〈0|a−n = 0, n > 0
and 〈0|c = 〈0|. Then, the dual Fock space is obtained by

F† = F〈0| ⊗U (h≤0) U (h) � F〈0| ⊗F U (h+).

For a partition λ = (λ1, λ2, . . . ) ∈ Y, we set 〈λ| = 〈0|aλ1aλ2 · · · . Then the collection
{〈λ| : λ ∈ Y} forms a basis of F†.

We define an F-bilinear paring 〈·|·〉 : F† ×F → F by the properties 〈0|0〉 = 1 and

〈v|an · |w〉 = 〈v| · an|w〉, 〈v| ∈ F†, |w〉 ∈ F , n ∈ Z\{0}.

Then, we have the following Propositions 3.1 and 3.2, which are well-known facts.
See, e.g., [3, Section 3] for proofs.

Proposition 3.1 The Fock space and the dual Fock space are isomorphic to the space
of symmetric functions � by the assignments

ι : F → �; |λ〉 
→ pλ, ι† : F† → �; 〈λ| 
→ pλ.

Moreover, these assignments are compatible with the inner products so that the fol-
lowing diagram is commutative:

F† ⊗ F ι†⊗ι

〈·|·〉

� ⊗ �

〈·,·〉q,t

F .

Proposition 3.2 The mappings ι and ι† are equivalent to computation of the following
matrix elements:

ι(|v〉) = 〈0|�(X)+|v〉, |v〉 ∈ F , ι†(〈v|) = 〈v|�(X)−|0〉, 〈v| ∈ F†,

where �(X)± are defined in (1.3).
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Remark 3.3 It can also be shown that

ι(an|v〉) = n
1 − qn

1 − tn
∂

∂ pn
ι(|v〉), |v〉 ∈ F , n > 0,

ι†(〈v|a−n) = n
1 − qn

1 − tn
∂

∂ pn
ι†(〈v|), 〈v| ∈ F†, n > 0.

For a Macdonald symmetric function Pλ ∈ �, λ ∈ Y and its dual Qλ ∈ �, we set

|Pλ〉 := ι−1(Pλ) ∈ F , |Qλ〉 := ι−1(Qλ) ∈ F ,

〈Pλ| := (ι†)−1(Pλ) ∈ F†, 〈Qλ| := (ι†)−1(Qλ) ∈ F†.

Then, it follows from Proposition 3.1 that 〈Qλ|Pμ〉 = 〈Pλ|Qμ〉 = δλ,μ. These prop-
erties and Proposition 3.2 verify the following.

Proposition 3.4 We have

〈0|�(X)+ =
∑

λ∈Y
Pλ(X)〈Qλ|, �(X)−|0〉 =

∑

λ∈Y
Pλ(X)|Qλ〉.

Remark 3.5 We can see that the computation of 〈0|�(Y )+�(X)−|0〉 reproduces the
Cauchy-type identity. Indeed, on the one hand, it reads

〈0|�(Y )+�(X)−|0〉 =
∑

λ∈Y
Pλ(X; q, t)Qλ(Y ; q, t).

On the other hand, a standard computation relying on the Baker–Campbell–Hausdorff
formula gives

�(Y )+�(X)− = exp

(
∑

n>0

1 − tn

1 − qn
pn(X)pn(Y )

n

)

�(X)−�(Y )+

= �(X ,Y ; q, t)�(X)−�(Y )+.

This reproduces the Cauchy-type identity

∑

λ∈Y
Pλ(X; q, t)Qλ(Y ; q, t) = 〈0|�(Y )+�(X)−|0〉 = �(X ,Y ; q, t).

The Macdonald symmetric functions for skew-partitions are also expressed as
matrix elements.

Proposition 3.6 ([3, Theorem3.7])Letλ/μ be a skew-partition. Then, the correspond-
ing Macdonald symmetric function has the following expressions.

Pλ/μ(X) = 〈Qμ|�(X)+|Pλ〉 = 〈Pλ|�(X)−|Qμ〉.
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Also, the dual Macdonald symmetric function is expressed as

Qλ/μ(X) = 〈Pμ|�(X)+|Qλ〉 = 〈Qλ|�(X)−|Pμ〉.
Precisely speaking, [3, Theorem 3.7] is a statement only about Qλ/μ, but the assertion
for Pλ/μ also holds by the same reasoning.

We are in position to prove Theorem 1.3.

Proof of Theorem 1.3 We first compute the following matrix element:

〈Pμ|ψ X ,Y
f |Qν〉 = 〈Pμ|�(Y )+O( f )�(X)−|Qν〉 =

∑

λ∈Y
f (λ)Pλ/ν(X)Qλ/μ(Y ).

Here, we inserted the identity operator IdF = ∑
λ∈Y |Qλ〉〈Pλ| into the left and right

of the operator O( f ) and used Proposition 3.6. Insertion of the identity operator also
gives us

〈0|ψ X (N ),Y (N )

fN
· · ·ψ X (1),Y (1)

f1
|0〉

=
∑

ν(1),...,ν(N−1)∈Y
〈0|ψ X (N ),Y (N )

fN
|Qν(N−1)〉〈Pν(N−1) |ψ X (N−1),Y (N−1)

fN−1
|Qν(N−2)〉

× · · · × 〈Pν(1) |ψ X (1),Y (1)

f1
|0〉

=
∑

ν(1),...,ν(N−1)∈Y

∑

λ(1),...,λ(N )∈Y
fN (λ(N ))Pλ(N )/ν(N−1) (X (N ))Qλ(N )/∅(Y (N ))

× fN−1(λ
(N−1))Pλ(N−1)/ν(N−2) (X (N−1))Qλ(N−1)/ν(N−1) (Y (N−1))

· · · · · ·
× f1(λ

(1))Pλ(1)/∅(X (1))Qλ(1)/ν(1) (Y (1))

=
∑

λ(1),...,λ(N )∈Y
f1(λ

(1)) · · · fN (λ(N ))Pλ(1) (X (1))�λ(1),λ(2) (Y (1), X (2))

× · · · × �λ(N−1),λ(N ) (Y (N−1), X (N ))Qλ(N ) (Y (N )).

Here, we used the definition of the transition function (1.2). In the case when
f1, . . . , fN = 1, the above result exactly gives the normalization factor:

〈0|ψ X (N ),Y (N )

1 · · · ψ X (1),Y (1)

1 |0〉 =
∏

1≤i≤ j≤N

�(X (i),Y ( j)).

Therefore, we have

〈0|ψ X (N ),Y (N )

fN
· · · ψ X (1),Y (1)

f1
|0〉

〈0|ψ X (N ),Y (N )

1 · · · ψ X (1),Y (1)

1 |0〉
=

∑

λ(1),...,λ(N )∈Y
f1(λ

(1)) · · · fN (λ(N ))MP
N
q,t (λ

(1), . . . , λ(N )),

which is just the correlation function E
N
q,t [ f1[1] · · · fN [N ]]. ��
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3.2 Free field realization of operators

First, let us fix our terminologies.

Definition 3.7 Let T ∈ End(�) be an operator on �. We call the operator

T̂ := ι−1T ι ∈ End(F)

the free field realization of T .

Definition 3.8 Let z be a formal variable. An End(F)-valued formal power series V (z)
of the following form is called a vertex operator:

V (z) = V (z)−V (z)+ ∈ End(F)[[z, z−1]],

V (z)+ = exp

(
∑

n>0

γnanz
−n

)

, γn ∈ F, n > 0,

V (z)− = exp

(
∑

n>0

γ−na−nz
n

)

, γ−n ∈ F, n > 0

Remark 3.9 A vertex operator does not converge in U (h)[[z, z−1]], but makes sense
in End(F)[[z, z−1]].
Definition 3.10 Let Vi (zi ) ∈ End(F)[[zi , z−1

i ]], i = 1, 2, . . . , r be vertex operators.
Their normally ordered product :V1(z1) · · · Vr (zr ): ∈ End(F)[[zi , z−1

i |i = 1, . . . , r ]]
is defined as

:V1(z1) · · · Vr (zr ): := V1(z1)− · · · Vr (zr )−V1(z1)+ · · · Vr (zr )+.

In this subsection, we see the free field realization of operators introduced in Sect. 2
that are diagonalized by the Macdonald symmetric functions. We begin with the Mac-
donald operators Er , r = 1, 2, , . . . . Notice that the vertex operator η(z) in (1.5) gives
an example of Definition 3.8; hence, in particular, the normally ordered product is
defined for it.

Theorem 3.11 ([55, Theorem 9.2], [30, Proposition 3.6]) Let r = 1, 2, . . . . The
following operator gives the free field realization of Er :

Êr = t−r(r+1)/2

(t−1; t−1)r

∫ (
r∏

i=1

dzi
2π

√−1zi

)⎛

⎝
∏

1≤i< j≤r

1 − z j/zi
1 − t−1z j/zi

⎞

⎠ :η(z1) · · · η(zr ): .

In the case of r = 1, the product part
∏

1≤i< j≤r
1−z j /zi

1−t−1z j /zi
is understood as unity.

Here, the linear functional
∫ (∏r

i=1
dzi

2π
√−1zi

)
takes the constant term.
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On the same space F , the Macdonald operators Er (q−1, t−1), r = 1, 2, . . . with
inverted parameters are also realized. To this end,we introduce another vertex operator:

ξ(z) = exp

(

−
∑

n>0

1 − t−n

n
(t/q)n/2a−nz

n

)

exp

(
∑

n>0

1 − tn

n
(t/q)n/2anz

−n

)

.

Notice that, thoughwe see the contribution from (q/t)1/2, each coefficient of zn , n ∈ Z

makes sense over the base field F.

Theorem 3.12 ([30, Section III. F]) For r = 1, 2, . . . , the operator

Êr (q
−1, t−1) = tr(r+1)/2

(t; t)r
∫ (

r∏

i=1

dzi
2π

√−1zi

)⎛

⎝
∏

1≤i< j≤r

1 − z j/zi
1 − t z j/zi

⎞

⎠ :ξ(z1) · · · ξ(zr ):

gives the free field realization of Er (q−1, t−1).

We have also introduced the operators Gr , r = 1, 2, . . . that are also diagonalized
by theMacdonald symmetric functions (Sect. 2.4). These operators admit the following
free field realization:

Theorem 3.13 ([30, Proposition 3.17]) For each r = 1, 2, . . . , the following operator
on F is the free field realization of Gr :

Ĝr = (−1)r q(r2)

(q; q)r

∫ (
r∏

i=1

dzi
2π

√−1zi

)
∏

1≤i< j≤r

1 − z j/zi
1 − qz j/zi

:η(z1) · · · η(zr ): .

The inversion of the parameters q → q−1, t → t−1 again involves the replacement
of vertex operators η(z) → ξ(z).

Theorem 3.14 For each r = 1, 2, . . . , the following operator on F is the free field
realization of Gr (q−1, t−1):

Ĝr (q
−1, t−1) = (−1)r q−(r2)

(q−1; q−1)r

∫ (
r∏

i=1

dzi
2π

√−1zi

)
∏

1≤i< j≤r

1 − z j/zi
1 − q−1z j/zi

:ξ(z1) · · · ξ(zr ): .

Though naturally expected from [30], this result is not stated nor proved therein. We
will give a proof of Theorem 3.14 in Appendix 1.

4 Determinantal expression and the Schur-limit

In this section, we derive alternative expressions of the free field realizations presented
in the previous Sect. 3 by using determinants to prove Theorem 1.4 and the determi-
nantal expressions of other operators. We also discuss the Schur-limit to see that the
determinant gains a natural interpretation in terms of free fermions.
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4.1 Preliminaries

We introduce the operation of symmetrization.

Definition 4.1 For a function f (z1, . . . , zn) of n variables z1, . . . , zn , the symmetriza-
tion is defined by

Sym[ f (z1, . . . , zn)] := 1

n!
∑

σ∈Sn

f (zσ(1), . . . , zσ(n)).

The following lemma has been observed, e.g., in the proof of [55, Lemma 9.4] and
plays a key role in this section.

Lemma 4.2 We have

Sym

⎛

⎝
∏

1≤i< j≤n

zi − z j
zi − t z j

⎞

⎠ = [n]t !
n!

∏

1≤i< j≤n

(zi − z j )(z j − zi )

(zi − t z j )(z j − t zi )
.

Proof The Hall–Littlewood polynomial for the empty partition reads [40, Chapter III,
(1.4)]

∑

σ∈Sn

σ

⎛

⎝
∏

i< j

zi − t z j
zi − z j

⎞

⎠ = [n]t !.

When we multiply
∏

i< j
(zi−z j )(z j−zi )

(zi−t z j )(z j−t zi )
on the both sides, we obtain

∑

σ∈Sn

∏

i< j

zσ( j) − zσ(i)

zσ( j) − t zσ(i)
= [n]t !

∏

i< j

(zi − z j )(z j − zi )

(zi − t z j )(z j − t zi )
.

When we write the longest element inSn as,

σ ∗ =
(
1 2 · · · n
n n − 1 · · · 1

)

,

we see that

∑

σ∈Sn

σ ◦ σ ∗
⎛

⎝
∏

i< j

zi − z j
zi − t z j

⎞

⎠ = [n]t !
∏

i< j

(zi − z j )(z j − zi )

(zi − t z j )(z j − t zi )
,

where the left hand side is n!Sym
(∏

i< j
zi−z j
zi−t z j

)
. ��
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4.2 Proof of Theorem 1.4 and other operators

Now we are in position to prove Theorem 1.4.

Proof of Theorem 1.4 Recall that the constant term of amultivariable function is invari-
ant under symmetrization. Therefore, we have

Êr = t−r(r+1)/2

(t−1; t−1)r

∫ (
r∏

i=1

dzi
2π

√−1zi

)

Sym

⎛

⎝
∏

1≤i< j≤r

1 − z j/zi
1 − t−1z j/zi

⎞

⎠ :η(z1) · · · η(zr ): .

Note that the normally ordered product of vertex operators is symmetric under
exchange of variables. As we saw in Lemma 4.2,

Sym

⎛

⎝
∏

1≤i< j≤r

1 − z j/zi
1 − t−1z j/zi

⎞

⎠ = [r ]t−1 !
r !

∏

1≤i< j≤r

(1 − z j/zi )(1 − zi/z j )

(1 − t−1z j/zi )(1 − t−1zi/z j )
.

Thus,

Êr = t−r(r+1)/2

(t−1; t−1)r

[r ]t−1 !
r !

∫ (
r∏

i=1

dzi
2π

√−1zi

)
∏

1≤i< j≤r

(1 − z j/zi )(1 − zi/z j )

(1 − t−1z j/zi )(1 − t−1zi/z j )

× :η(z1) · · · η(zr ): .

The product can be further computed as

∏

1≤i< j≤r

(1 − z j/zi )(1 − zi/z j )

(1 − t−1z j/zi )(1 − t−1zi/z j )

=
∏

i< j (zi − z j )
∏

i< j (z j − zi )
∏

i< j (zi − t−1z j )
∏

i< j (z j − t−1zi )

= tr(r−1)/2(1 − t−1)r
r∏

i=1

zi

∏
i< j (zi − z j )

∏
i< j (t

−1z j − t−1zi )
∏

i, j (zi − t−1z j )
.

Now recall the Cauchy determinant formula

det

(
1

xi − y j

)

i, j

=
∏

i< j (xi − x j )
∏

i< j (y j − yi )
∏

i, j (xi − y j )
.

Using this, we obtain

Êr = t−r(r+1)/2

(t−1; t−1)r

[r ]t−1 !
r !

∫ (
r∏

i=1

dzi
2π

√−1zi

)

tr(r−1)/2(1 − t−1)r
r∏

i=1

zi

× det

(
1

zi − t−1z j

)

1≤i, j≤r

:η(z1) · · · η(zr ):
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= t−r

r !
∫ (

r∏

i=1

dzi
2π

√−1

)

det

(
1

zi − t−1z j

)

1≤i, j≤r

:η(z1) · · · η(zr ): .

This is the desired result. ��

In similar manners, we can also derive the following expressions.

Theorem 4.3 For r = 1, 2, . . . , we have

Êr (q
−1, t−1) = tr

r !
∫ (

r∏

i=1

dzi
2π

√−1

)

det

(
1

zi − t z j

)

1≤i, j≤r

:ξ(z1) · · · ξ(zr ): ,

Ĝr = (−1)r

r !
∫ (

r∏

i=1

dzi
2π

√−1

)

det

(
1

zi − qz j

)

1≤i, j≤r

:η(z1) · · · η(zr ): ,

Ĝr (q
−1, t−1) = (−1)r

r !
∫ (

r∏

i=1

dzi
2π

√−1

)

det

(
1

zi − q−1z j

)

1≤i, j≤r

:ξ(z1) · · · ξ(zr ):

Let us name a frequently used functional; for r = 1, 2, . . . and γ ∈ F, we define a
functional

∫

Dr
γ z :=

∫ (
r∏

i=1

dzi
2π

√−1

)

det

(
1

zi − γ z j

)

: F[[zi , z−1
i |i = 1, . . . , r ]] → F.

The following property will be used in the next Sect. 5.

Lemma 4.4 The functional
∫
Dr

γ z is invariant under a uniform scale transformation
and the uniform inversion. Namely, if we set

wi = αzi , i = 1, . . . , r , α ∈ F

or
wi = z−1

i , i = 1, . . . , r ,

then we have ∫

Dr
γ z =

∫

Dr
γ w.

Proof The invariance under a scale transformation is obvious. We consider the case
of inversion: wi = z−1

i , i = 1, . . . , n. The operation taking the residues in zi , i =
1, . . . , r is written as

∫ (
r∏

i=1

dzi
2π

√−1

)

=
∫ (

r∏

i=1

dwi

2π
√−1

)
r∏

i=1

w−2
i .
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The determinant gives

det

(
1

zi − γ z j

)

1≤i, j≤r

= det

(
wiw j

w j − γwi

)

1≤i, j≤r

=
r∏

i=1

w2
i det

(
1

wi − γw j

)

1≤i, j≤r

.

Then, the desired invariance is proved. ��

4.3 Schur-limit

Throughout this subsection, we fix t and refer to the limit q → t as the Schur-limit. To
illustrate the origin of the determinantal expressions, we investigate the Schur-limit of
the operators discussed above. To this aim, we introduce a semi-infinite wedge space
and free fermion fields on it following [47, Appendix A]. Let V be a complex vector
space spanned by basis vectors k, k ∈ Z + 1

2 . We say that a subset S ⊂ Z + 1
2 is a

Maja diagram if it possesses the following two properties: (1) S+ := S\ (
Z≤0 − 1

2

)

is finite, (2) S− := (
Z≤0 − 1

2

) \S is finite, and write M for the collection of Maja
diagrams. Writing elements in a Maja diagram S ∈ M in the descending order as
S = {s1 > s2 > · · · }, we associate to it a semi-infinite wedge vS := s1 ∧ s2 ∧ · · · .
The semi-infinite wedge of V is defined by � = ∧∞/2 V := ⊕

S∈MCvS that is
equipped with a bilinear form such that 〈vS|vS′ 〉 = δS,S′ . For each r ∈ Z + 1

2 , we
define an operator ψr on � by ψr · v := r ∧ v and ψ∗

r as its adjoint operator. Then,
these operators exhibit the canonical anti-commutation relations:

{ψr , ψs} = {ψ∗
r , ψ∗

s } = 0, {ψr , ψ
∗
s } = δr ,s, r , s ∈ Z + 1

2
,

where {A, B} = AB + BA is the anti-commutator. We define the charge operator C
by C · vS := (|S+| − |S−|) vS , S ∈ M, and the translation operator T by T · s1 ∧
s2 ∧ · · · := s1 + 1 ∧ s2 + 1 ∧ · · · , S = {s1 > s2 > · · · } ∈ M. It is obvious that the
translation operator is invertible.We further introduce operatorsαn ,n ∈ Z\{0}byαn =∑

r∈Z+ 1
2
ψr−nψ

∗
r . Then, they satisfy commutation relations [αm, αn] = mδm+n,0,

m, n ∈ Z\{0}, which are identified with the Schur-limit q → t of the Heisenberg
commutation relations in (3.1) at c = 1. Due to the boson-fermion correspondence
(see, e.g., [39, Lecture 5]), the fermion operators are recovered by means of these
boson operators, the charge and the translation operators. In terms of generating series

ψ(z) = ∑
r∈Z+ 1

2
ψr zr−

1
2 and ψ∗(z) = ∑

r∈Z+ 1
2
ψ∗
r z

−r− 1
2 , we have

ψ(z) = T zC exp

(
∑

n>0

α−n

n
zn

)(

−
∑

n>0

αn

n
z−n

)

,

ψ∗(z) = T−1z−C exp

(

−
∑

n>0

α−n

n
zn

) (
∑

n>0

αn

n
z−n

)

.
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To a partition λ ∈ Y, we associate a Maja diagramM(λ) = {λi − i + 1
2 }i≥1. Then,

we can see that |M(λ)+| = |M(λ)−|. In fact, the assignment λ 
→ M(λ) is a bijection
between Y and M0 = {S ∈ M||S+| = |S−|}. Furthermore, the charge-zero subspace
�0 := {v ∈ �|C ·v = 0} is isomorphic to�, under which the vector vM(λ) is identified
with the Schur function sλ of the same partition.

For each r = 1, 2, . . . , we define operators on � by

Er := t−r

r !
∫ (

r∏

i=1

dzi
2π

√−1

)

ψ(z1) · · · ψ(zr )ψ
∗(t−1zr ) · · · ψ∗(t−1z1),

Gr := (−t)−r

r !
∫ (

r∏

i=1

dzi
2π

√−1

)

ψ∗(t−1z1) · · · ψ∗(t−1zr )ψ(zr ) · · · ψ(z1).

Notice that these operators commute with the charge operator C , and hence, can be
regarded as operators on �. The operator E1 is essentially the same as “the operator
E0(z)” in [48] and is the action of an element in (completion of) theW1+∞-algebra.

Proposition 4.5 For every r = 1, 2, . . . , the operators Êr and Ĝr on � reduce at the
Schur-limit q → t to Er and Gr , respectively.

Proof We only show the case of Êr since that of Ĝr is shown in a parallel argument.
We write the Schur-limit of the vertex operator η(z) as

ηS(z) = exp

(
∑

n>0

1 − t−n

n
α−nz

n

)

exp

(

−
∑

n>0

1 − tn

n
αnz

−n

)

.

Then, the normally ordered product of ηS(z) makes sense in exactly the same manner
as in Definition 3.10. Due to the Wick formula, we have

ψ(z1) · · · ψ(zr )ψ
∗(t−1zr ) · · · ψ∗(t−1z1) = det

(
1

zi − t−1z j

)

1≤i, j≤r

trC :ηS(z1) · · · ηS(zr ): .

Notice that the part trC acts as unity restricted on the charge-zero subspace �0. We
can see the desired result by comparing this with the expression in Theorem 1.4. ��

This result suggests that we may understand the free field realization Êr and Ĝr ,
r = 1, 2, . . . as the result of (1) rearranging the product of fermionic fields into
the normal order in the bosonic basis, (2) deforming ηS(z) to η(z), or equivalently,
αm to am , m ∈ Z\{0} and (3) taking the residues. The determinants appearing in
the expression of Êr and Ĝr , r = 1, 2, . . . have their origins at the step (1) of this
procedure. A similar interpretation has been given in [52] to the Nazarov–Sklyanin
operator in the Jack case [44].
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We can directly compute the eigenvalues of Er , r = 1, 2, . . . on the Schur basis.
In fact, evaluating the residues, we have

Er = trC

r !
∑

s1,...,sr∈Z+ 1
2

t
∑r

i=1

(
si− 1

2

)

ψs1 · · · ψsr ψ
∗
sr · · · ψ∗

s1 .

From the very definition of a vector vM(λ) for a partition λ ∈ Y, it follows that

ErvM(λ) = 1

r !
∑

i1,...,ir
distinct

t
∑r

j=1

(
λi j −i j

)

vM(λ) = er (t
λ−δ)vM(λ),

where tλ−δ is the specialization defined by xi 
→ tλi−i , i ≥ 1. Note that the eigenvalue
is the Schur limit of er (qλt−δ) as was expected. As for the operator Gr , we have

Gr = (−1)r

r !
∑

s1,...,sr∈Z+ 1
2

t
∑r

i=1

(
si− 1

2

)

ψ∗
s1 · · ·ψ∗

sr ψsr · · · ψs1 ,

and hence, GrvM(λ) = (−1)r er (t−λ′+δ−1)vM(λ), λ ∈ Y, where λ′ is the transpose of
λ and the specialization is xi 
→ t−λ′+i−1

i , i ≥ 1. The eigenvalue can be shown to
coincide with the Schur-limit of gr (qλt−δ; q, t) due to the following lemma that is a
special case of [30, Lemma 3.27]:

Lemma 4.6 For each λ ∈ Y and r = 1, 2, . . . , the identity hr (tλ−δ) =
(−1)r er (t−λ′+δ−1) holds, where hr = limq→t gr (q, t) is the r-th complete symmetric
function.

Proof Thegenerating series of the complete symmetric functions reads
∑∞

r=0 hr (X)ur =∏
i≥1(1 − xiu)−1, where we set h0 = 1. Hence, for each λ ∈ Y, we have

∞∑

r=0

hr (q
λ−δ)ur =

∏

i≥1

1

1 − tλi−i u
=

∏

i≥1

(tλi−i+1u; t)∞
(tλi−i u; t)∞ = (tλ1u; t)∞

∏

i≥1

(tλi+1−i u; t)∞
(tλi−i u; t)∞ .

Here, each factor of the product (tλi+1−i u;t)∞
(tλi−i u;t)∞ = (tλi+1−i u; t)λi−λi+1 is unity unless

λi > λi+1. Hence,

∞∑

r=0

hr (q
λ−δ)ur =

∏

i≥1

(1 − t−λ′
i+i−1u) =

∞∑

r=0

er (t
−λ′+δ−1)(−u)r

implying the desired identities. ��
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5 Applications

In this section, we give applications of Theorem 1.3.We have considered four series of
operators; Er , Er (q−1, t−1), Gr , and Gr (q−1, t−1), r = 1, 2, . . . , which are diago-
nalized by the Macdonald symmetric functions. Correspondingly, we have four series
of observables for theMacdonald process, for which we compute the correlation func-
tions below.

5.1 Preliminaries

Aspreliminaries, we introduce an expectation value of a generating function of random
variables and fix the notion of the formal Fredholm determinant.

Definition 5.1 Let fn : Y → F, n = 0, 1, . . . be random variables and let F(u) =∑∞
n=0 fnun with u being a formal variable be a generating function of them. Then,

the expectation value of F(u) with respect to the Macdonald measure is given by

Eq,t [F(u)] :=
∞∑

n=0

Eq,t [ fn]un ∈ F[[u]].

Definition 5.2 Let K (z, w) ∈ F[[z, z−1, w,w−1]] be a formal power series in two
variables, and let u be another formal variable. Then, we define the formal Fredholm
determinant det(I + uK ) ∈ F[[u]] by

det(I + uK ) := 1 +
∞∑

r=1

ur

r !
∫ (

r∏

i=1

dzi
2π

√−1

)

det[K (zi , z j )]1≤i, j≤r

if it exists.

5.2 The first series observables

The first series of observables we consider is

Er : Y → F; Er (λ) := er (q
λt−δ+1), r = 1, 2, . . . ,

Let us also introduce their generating function as follows.

EE (u) = EE (·, u) :=
∞∑

r=0

Er (·)ur ; EE (λ, u) =
∏

i≥1

(1 + qλi t−i+1u), λ ∈ Y,

with E0 = 1. Note that these observables are different from those represented by the
same symbols in [14], which are the same as the observables E ′

r , r = 1, 2, . . . in the
next Sect. 5.3.
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Theorem 5.3 Let N ∈ {1, 2, . . . } and r1, . . . , rN ∈ {1, 2, . . . }. The correlation func-
tion of Er1 , . . . , ErN with respect to the N-step Macdonald process becomes

E
N
q,t [Er1 [1] · · · ErN [N ]]

= 1
∏N

α=1 rα!
∫ N∏

α=1

( rα∏

i=1

dw
(α)
i

2π
√−1

)

det

(
1

w
(α)
i − t−1w

(α)
j

)

1≤i, j≤rα

×
∏

1≤α≤β≤N

( rβ∏

i=1

H(w
(β)
i ; X (α))−1

)( rα∏

i=1

H((tw(α)
i )−1; Y (β))−1

)

×
∏

1≤α<β≤N

W (w(α);w(β)).

Here, we set

H(w; X) =
∏

i≥1

1 − t xiw

1 − xiw
,

and

W (w(α);w(β)) =
rα∏

i=1

rβ∏

j=1

(1 − w
(β)
j /w

(α)
i )(1 − qt−1w

(β)
j /w

(α)
i )

(1 − qw
(β)
j /w

(α)
i )(1 − t−1w

(β)
j /w

(α)
i )

.

Proof WeuseTheorem1.3. Since er (qλt−δ+1) = tr er (qλt−δ), we have fromTheorem
1.4, for r = 1, 2, . . . ,

O(Er ) = tr Êr = 1

r !
∫ (

r∏

i=1

dzi
2π

√−1

)

det

(
1

zi − t−1z j

)

1≤i, j≤r

:η(z1) · · · η(zr ): .

Let r1, . . . , rN ∈ {1, 2, . . . } We shall compute the unnormalized correlation function

〈0|ψ X (N ),Y (N )

ErN · · ·ψ X (1),Y (1)

Er1 |0〉

= 1
∏N

α=1 rα!
∫ N∏

α=1

( rα∏

i=1

dz(α)
i

2π
√−1

)

det

(
1

z(α)
i − t−1z(α)

j

)

1≤i, j≤rα

× 〈0|�(Y (N ))+η(z(N ))�(X (N ))− · · · �(Y (1))+η(z(1))�(X (1))−|0〉,

where we set η(z(α)) =:η(z(α)
1 ) · · · η(z(α)

rα ): , α = 1, . . . , N . To compute the matrix
element, we write

η(z(α)) = η(z(α))−η(z(α))+, α = 1, . . . , N ,

where

η(z(α))+ := exp

(

−
∑

n>0

1 − tn

n
an

rα∑

i=1

(z(α)
i )−n

)

,
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η(z(α))− := exp

(
∑

n>0

1 − t−n

n
a−n

rα∑

i=1

(z(α)
i )n

)

.

Then, we can see that

�(Y (α))+η(z(α))�(X (α))−

= exp

(
∑

n>0

1 − t−n

n
pn(Y

(α))

rα∑

i=1

(z(α)
i )n

)

exp

(

−
∑

n>0

1 − tn

n
pn(X

(α))

rα∑

i=1

(z(α)
i )−n

)

× η(z(α))−�(Y (α))+�(X (α))−η(z(α))+

= �(X (α), Y (α))

rα∏

i=1

H((z(α)
i )−1; X (α))−1H(t−1z(α)

i ; Y (α))−1

× η(z(α))−�(X (α))−�(Y (α))+η(z(α))+.

Noting that the vertex operator η(z) exhibits the following operator product expansion
(OPE):

η(z)η(w) = (1 − w/z)(1 − qt−1w/z)

(1 − qw/z)(1 − t−1w/z)
:η(z)η(w): .

Then, we obtain the following formula:

�(Y (β))+η(z(β))+η(z(α))−�(X (α))−

= �(X (α),Y (β))W (z(β), z(α))

rα∏

i=1

H(t−1z(α)
i ; Y (β))−1

rβ∏

i=1

H((z(β)
i )−1; X (α))−1

× η(z(α))−�(X (α))−�(Y (β))+η(z(β))+.

Combining the above formulas we can compute the matrix element as

〈0|�(Y (N ))+η(z(N ))�(X (N ))− · · · �(Y (1))+η(z(1))�(X (1))−|0〉

=
∏

1≤i≤ j≤N

�(X (i), Y ( j))
∏

1≤α≤β≤N

( rα∏

i=1

H(t−1z(α)
i ; Y (β))−1

) ( rβ∏

i=1

H((z(β)
i )−1; X (α))−1

)

×
∏

1≤α<β≤N

W (z(β), z(α)).

Therefore, we have

E
N
q,t [Er1 [1] · · · ErN [N ]]

= 1
∏N

i=1 ri !
∫ N∏

α=1

( rα∏

i=1

dz(α)
i

2π
√−1

)

det

(
1

z(α)
i − t−1z(α)

j

)

1≤i, j≤rα

×
∏

1≤α≤β≤N

( rα∏

i=1

H(t−1z(α)
i ; Y (β))−1

) ( rβ∏

i=1

H((z(β)
i )−1; X (α))−1

)
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×
∏

1≤α<β≤N

W (z(β), z(α)).

Finally, we adopt a transformation of integral variables so that w
(α)
i = (z(α)

i )−1,
i = 1, . . . , rα , α = 1, . . . , N . With help of Lemma 4.4 and the property

W (z−1
1 , . . . , z−1

m ;w−1
1 , . . . , w−1

n ) = W (w1, . . . , wn; z1, . . . , zm),

we obtain

E
N
q,t [Er1 [1] · · · ErN [N ]]

= 1
∏N

i=1 ri !
∫ N∏

α=1

( rα∏

i=1

dw
(α)
i

2π
√−1

)

det

(
1

w
(α)
i − t−1w

(α)
j

)

1≤i, j≤rα

×
∏

1≤α≤β≤N

( rβ∏

i=1

H(w
(α)
i ; X (α))−1

) ( rα∏

i=1

H((tw(α)
i )−1; Y (β))−1

)

×
∏

1≤α<β≤N

W (w(α),w(β)).

Then, the proof is complete. ��
In particular, when N = 1, we have the following.

Corollary 5.4 Set

K E (z, w) := 1

z − t−1w
H(z; X)−1H((tw)−1; Y )−1.

Then, we have
Eq,t [EE (u)] = det(I + uK E ). (5.1)

Proof When N = 1, Theorem 5.3 reduces to

Eq,t [Er ] = 1

r !
∫ (

r∏

i=1

dwi

2π
√−1

)

det[K E (wi , w j )]1≤i, j≤r , r = 1, 2, . . . .

Therefore, the desired result follows from Definitions 5.1 and 5.2. ��
Remark 5.5 In the case that r1 = · · · = rN = 1, the result of Theorem 5.3 is essentially
equivalent to that of [14, Theorem6.1],where the authors considered a randomvariable
Ê1 defined by

Ê1(λ) = 1 + (1 − t)
∑

i≥1

(1 − qλi )t−i = (t − 1)e1(q
λt−δ), λ ∈ Y. (5.2)

Hence, the corresponding operator is just O(Ê1) = ∫ dz
2π

√−1z
η(z).
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Remark 5.6 The left hand side of Eq. (5.1) is intrinsically dependent on two parameters
q and t , but in the right hand side of Eq. (5.1), it is manifest that it is independent of
q. Note that this q-independence is equivalent to that observed in [40, Chapter VI,
Section 3].

5.3 The second series of observables

The next observables we consider are defined by

E ′
r : Y → F; E ′

r (λ) := er (q
−λtδ−1), r = 1, 2, . . . .

They are just obtained from Er , r = 1, 2, . . . by inverting parameters q and t of the
values. We also write the generating function of them with a formal variable u as

EE ′
(u) = EE ′

(·, u) =
∞∑

r=0

E ′
r (·)ur ; EE ′

(λ, u) =
∏

i≥1

(1 + q−λi t i−1u), λ ∈ Y,

with the convention E ′
0 = 1. As was mentioned in Sect. 5.2, the observables E ′

r ,
r = 1, 2, . . . are the same as the observables written as Er , r = 1, 2, . . . in [14]. In
fact, we recover [14, Theorem 1.1] in our free field approach as follows.

Theorem 5.7 Let N ∈ {1, 2, . . . } and r1, . . . , rN ∈ {1, 2, . . . }. The correlation func-
tion of E ′

r1 , . . . , E ′
rN with respect to the N-step Macdonald process becomes

E
N
q,t [E ′

r1 [1] · · · E ′
rN [N ]]

= 1
∏N

α=1 rα!
∫ N∏

α=1

( rα∏

i=1

dw
(α)
i

2π
√−1

)

det

(
1

w
(α)
i − tw(α)

j

)

1≤i, j≤rα

×
∏

1≤α≤β≤N

( rβ∏

i=1

H(w
(β)
i ; X (α))

) ( rα∏

i=1

H((qw
(α)
i )−1; Y (β))

)

×
∏

1≤α<β≤N

W̃ (w(α);w(β)).

Here, we set

W̃ (w(α);w(β)) =
rα∏

i=1

rβ∏

j=1

(1 − w
(β)
j /w

(α)
i )(1 − q−1tw(β)

j /w
(α)
i )

(1 − q−1w
(β)
j /w

(α)
i )(1 − tw(β)

j /w
(α)
i )

.

Proof The proof is very similar to that of Theorem 5.3. The observable E ′
r is

just obtained from Er by simultaneously inverting the parameters q and t . Since
Pλ(X; q, t) = Pλ(X; q−1, t−1) [40, Chapter VI, (4.14.iv) ], and from Theorem 4.3,
we have
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O(E ′
r ) = t−r Êr (q

−1, t−1)

= 1

r !
∫ (

r∏

i=1

dzi
2π

√−1

)

det

(
1

zi − t z j

)

1≤i, j≤r

:ξ(z1) · · · ξ(zr ): .

For r1, . . . , rN ∈ {1, 2, . . . }, the unnormalized correlation function reads

〈0|ψ X (N ),Y (N )

E ′
rN

· · ·ψ X (1),Y (1)

E ′
r1

|0〉

= 1
∏N

α=1 rα!
∫ N∏

α=1

( rα∏

i=1

dz(α)
i

2π
√−1

)

det

⎛

⎝ 1

z(α)
i − t z(β)

j

⎞

⎠

1≤i, j≤rα

× 〈0|�(Y (N ))+ξ(z(N ))�(X (N ))− · · · �(Y (1))+ξ(z(1))�(X (1))−|0〉,

where we set ξ(z(α)) =:ξ(z(α)
1 ) · · · ξ(z(α)

rα ): , α = 1, . . . , N . We again write ξ(z(α)) =
ξ(z(α))−ξ(z(α))+, α = 1, . . . , N , where

ξ(z(α))+ = exp

(
∑

n>0

1 − tn

n
(t/q)n/2an

rα∑

i=1

(z(α)
i )−n

)

,

ξ(z(α))− = exp

(

−
∑

n>0

1 − t−n

n
(t/q)n/2a−n

rα∑

i=1

(z(α)
i )n

)

.

To compute the matrix element, we first note the following formula:

�(Y (α))+ξ(z(α))�(X (α))−

= exp

(

−
∑

n>0

1 − t−n

n
(t/q)n/2 pn(Y

(α))

rα∑

i=1

(z(α)
i )n

)

× exp

(
∑

n>0

1 − tn

n
(t/q)n/2 pn(X

(α))

rα∑

i=1

(z(α)
i )−n

)

× ξ(z(α))−�(Y (α))+�(X (α))−ξ(z(α))+

= �(X (α),Y (α))

rα∏

i=1

H(t1/2q−1/2(z(α)
i )−1; X (α))H(t−1/2q−1/2z(α)

i ; Y (α))

× ξ(z(α))−�(X (α))−�(Y (α))+ξ(z(α))+.

From the OPE

ξ(z)ξ(w) = (1 − w/z)(1 − q−1tw/z)

(1 − q−1w/z)(1 − tw/z)
:ξ(z)ξ(w): ,
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we also have

�(Y (β))+ξ(z(β))+ξ(z(α))−�(X (α))−

= �(X (α),Y (β))

rα∏

i=1

H(t−1/2q1/2z(α)
i ; Y (β))

rβ∏

i=1

H(t1/2q−1/2(z(β)
i )−1; X (α))

× W̃ (z(β), z(α))ξ(z(α))−�(X (α))−�(Y (β))+ξ(z(β))+.

Therefore, the correlation function becomes

E
N
q,t [E ′

r1 [1] · · · E ′
rN [N ]]

= 1
∏N

α=1 rα!
∫ N∏

α=1

( rα∏

i=1

dz(α)
i

2π
√−1

)

det

(
1

z(α)
i − t z(α)

j

)

1≤i, j≤rα

×
∏

1≤α≤β≤N

( rβ∏

i=1

H(t1/2q−1/2(z(β)
i )−1; X (α))

)( rα∏

i=1

H(t−1/2q1/2z(α)
i ; Y (β))

)

×
∏

1≤α<β≤N

W̃ (z(β), z(α)).

Whenweperforma transformationof integral variables so thatw(α)
i := t1/2q−1/2(z(α)

i )−1,
i = 1, . . . , rα , α = 1, . . . , N , with help of Lemma 4.4, we obtain the desired result. ��

Again, in the case when N = 1, we obtain the following result in the same manner
as for Corollary 5.4.

Corollary 5.8 Set

K E ′
(z, w) := 1

z − tw
H(z; X)H((qw)−1; Y ).

Then, we have
Eq,t [EE ′

(u)] = det(I + uK E ′
).

5.4 Third series of observables

We also consider other random variables defined by

Gr (λ) := gr (q
λt−δ; q, t), λ ∈ Y, r = 1, 2, . . .

and their generating function

FG(u) = FG(·, u) =
∞∑

r=0

Gr (·)ur ; FG(λ, u) =
∏

i≥1

(qλi t−i+1u; q)∞
(qλi t−i u; q)∞

,
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with G0 = 1. Here we used the property [40, Chapter VI, Section 2]

∏

i≥1

(t xi u; q)∞
(xiu; q)∞

= exp

(
∑

n>0

1 − tn

1 − qn
pn(X)

n
un

)

= 1 +
∞∑

r=1

gr (X; q, t)ur .

Theorem 5.9 Let N ∈ {1, 2, . . . } and r1, . . . , rN ∈ {1, 2, . . . }. The correlation func-
tion of Gr1 , . . . ,GrN with respect to the N-step Macdonald process becomes

E
N
q,t [Gr1 [1] · · ·GrN [N ]]

= (−1)
∑N

α=1 rα

∏N
α=1 rα!

∫ N∏

α=1

( rα∏

i=1

dw
(α)
i

2π
√−1

)

det

(
1

w
(α)
i − qw

(α)
j

)

1≤i, j≤rα

×
∏

1≤α≤β≤N

( rβ∏

i=1

H(w
(β)
i ; X (α))−1

)( rα∏

i=1

H((tw(α)
i )−1; Y (β))−1

)

×
∏

1≤α<β≤N

W (w(α);w(β)).

Proof From Theorems 2.1 and 4.3, we have

O(Gr ) = Ĝr = (−1)r

r !
∫ (

r∏

i=1

dzi
2π

√−1

)

det

(
1

zi − qz j

)

1≤i, j≤r

:η(z1) · · · η(zr ): .

The essential part of the proof is computation of the matrix element

〈0|�(Y (N ))+η(z(N ))�(X (N ))− · · ·�(Y (1))+η(z(1))�(X (1))−|0〉,

but this was given in the proof of Theorem 5.3. Therefore, we obtain the desire result.
��

In case of N = 1, we have

Corollary 5.10 Set

KG(z, w) := 1

z − qw
H(z; X)−1H((tw)−1; Y )−1.

Then, we have
Eq,t [FG(u)] = det(I − uKG).

5.5 Fourth series of observables

The final series of observables G′
r , r = 1, 2, . . . is defined by

G′
r (λ) = qr gr (q

−λtδ−1; q, t), λ ∈ Y, r = 1, 2, . . . .
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Their generating function reads

FG′
(u) = FG′

(·, u) =
∞∑

r=0

G′
r (·)ur ; FG′

(λ, u) =
∏

i≥1

(q−λi+1t i u; q)∞
(q−λi+1t i−1u; q)∞

,

with G′
0 = 1.

Theorem 5.11 Let N ∈ {1, 2, . . . } and r1, . . . , rN ∈ {1, 2, . . . }. The correlation func-
tion of G′

r1 , . . . ,G′
rN with respect to the N-step Macdonald process becomes

E
N
q,t [G′

r1 [1] · · ·G′
rN [N ]]

= (−1)
∑N

α=1 rα

∏N
α=1 rα!

∫ N∏

α=1

( rα∏

i=1

dw
(α)
i

2π
√−1

)

det

(
1

w
(α)
i − q−1w

(α)
j

)

1≤i, j≤rα

×
∏

1≤α≤β≤N

( rβ∏

i=1

H(w
(β)
i ; X (α))

)( rα∏

i=1

H((qw
(α)
i )−1; Y (β))

)

×
∏

1≤α<β≤N

W̃ (w(α);w(β)).

Proof The operators Ĝr (q−1, t−1), r = 1, 2, . . . are diagonalized by |Pλ〉, λ ∈ Y so
that

Ĝr (q
−1, t−1)|Pλ〉 = gr (q

−λtδ; q−1, t−1)|Pλ〉.
Recall that, for r = 1, 2, . . . , we have [40, Chapter VI, (4.14) (iv)]

gr (X; q−1, t−1) = (qt−1)r gr (X; q, t).

Hence, we have gr (q−λtδ; q−1, t−1) = qr gr (q−λtδ−1q, t), r = 1, 2, . . . , which
implies that

O(G′
r ) = Ĝr (q

−1, t−1).

Using the expression in Theorem 4.3 and following computation in the proof of The-
orem 5.7, we obtain the formula in Theorem 5.11. ��

In case of N = 1, we have

Corollary 5.12 Set

KG′
(z, w) := 1

z − q−1w
H(z; X)H((qw)−1; Y ).

Then, we have
Eq,t [FG′

(u)] = det(I − uKG′
).
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Corollary 5.12 admits a nontrivial q-Whittaker (t → 0) limit. The generating
function FG′

(u) reduces at the q-Whittaker limit to

FG′
(λ, u)

∣
∣
t=0 = 1

(q−λ1+1u; q)∞
, λ ∈ Y,

and the kernel function becomes

KG′
(z, w)

∣
∣
t=0 = 1

z − q−1w

∏

i≥1

1

1 − xi z

1

1 − yi/(qz)
. (5.3)

Let us informally state the result at the q-Whittaker limit:

Corollary 5.13 At the q-Whittaker limit t → 0, we have

Eq,0

[
1

(q−λ1+1u; q)∞

]

= det
(
I − uKG′ ∣∣

t=0

)
.

Remark 5.14 A similar observable has been considered in [12, Theorem 3.3] (and in
[7, Theorem 3.20] for a half-space counterpart). In comparison with these results, our
result does not require any specialization of variables and the kernel function (5.3)
seems to be simpler, though its good application has not yet been found.

6 GeneralizedMacdonaldmeasure

In this section, we propose a generalization of the Macdonald measure using the
representation theory of the DIM algebra [28,42] and give a proof of Theorem 1.5.

6.1 Ding–Iohara–Miki algebra

Webeginwith introducing theDIM algebra following [1,28]. Let us introduce a formal
power series

g(z) = G+(z)

G−(z)
∈ F[[z]], G±(z) = (1 − q±1z)(1 − t∓1z)(1 − q∓1t±1z).

The DIM algebra U is a unital associative algebra over F generated by currents

x±(z) =
∑

n∈Z
x±
n z−n, ψ±(z) =

∑

±n∈Z≥0

ψ±
n z−n

and an invertible central element γ 1/2 subject to relations

ψ±(z)ψ±(w) = ψ±(w)ψ±(z),
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ψ+(z)ψ−(w) = g(γw/z)

g(γ −1w/z)
ψ−(w)ψ+(z),

ψ+(z)x±(w) = g(γ ∓1/2w/z)∓1x±(w)ψ+(z),

ψ−(z)x±(w) = g(γ ∓1/2w/z)±1x±(w)ψ−(z),

[x+(z), x−(w)] = (1 − q)(1 − t−1)

1 − qt−1 (δ(γ −1z/w)ψ+(γ 1/2w) − δ(γ z/w)ψ−(γ −1/2w)),

G∓(z/w)x±(z)x±(w) = G±(z/w)x±(w)x±(z).

Here, we set δ(z) = ∑
n∈Z zn as the formal delta distribution.

The DIM algebra U is a formal Hopf algebra with coproduct � defined by

�(γ 1/2) = γ 1/2 ⊗ γ 1/2,

�(ψ±(z)) = ψ±(γ
±1/2
(2) z) ⊗ ψ±(γ

∓1/2
(1) z),

�(x+(z)) = x+(z) ⊗ 1 + ψ1(γ
1/2
(1) z) ⊗ x+(γ(1)z),

�(x−(z)) = x−(γ(2)z) ⊗ ψ+(γ
1/2
(2) z) + 1 ⊗ x−(z).

Here, we used the notation γ
1/2
(1) = γ 1/2 ⊗ 1 and γ

1/2
(2) = 1 ⊗ γ 1/2.

To consider a representation of U on a Fock space F̃ := C(q1/4, t1/4) ⊗F F , we
introduce, in addition to the vertex operators η(z) and ξ(z), the following ones

ϕ±(z) := exp

(

∓
∑

n>0

1 − t±n

n
(1 − (t/q)n)(t/q)−n/4a±nz

∓n

)

.

Then, the assignment ρ : U → End(F̃) defined by

ρ(γ 1/2) = (t/q)1/4, ρ(ψ±(z)) = ϕ±(z), ρ(x+(z)) = η(z), ρ(x−(z)) = ξ(z)

gives a level one representation of U on F̃ . As we saw in Theorem 3.11, the zero mode
x+
0 acts essentially as the first Macdonald operator on F so that

ρ(x+
0 )|Pλ〉 = Ê1(λ)|Pλ〉, λ ∈ Y.

See (5.2) for definition of the eigenvalues.
Using the formal Hopf algebra structure of U , we can equip the m-fold tensor

product F̃⊗m , m ∈ N with an action of U . We set �(1) = Id, �(2) = � and,
inductively, �(m) = (Id ⊗ · · · ⊗ Id ⊗ �) ◦ �(m−1), m ∈ N. Then the assignment

ρ(m) := (ρ ⊗ · · · ⊗ ρ) ◦ �(m) : U → End(F̃⊗m)

gives an level m representation of U on F̃⊗m .
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6.2 GeneralizedMacdonald functions

We write, for T ∈ End(F̃) and i = 1, . . . ,m,

T (i) := Id ⊗ · · · ⊗ Id ⊗
i

Ť ⊗ Id ⊗ · · · ⊗ Id,

and set

�(X)± =
m∏

i=1

�(X (i))
(i)
± , X = (X (1), . . . , X (m)).

Then, the isomorphisms ι⊗m : F̃⊗m → �̃X (1) ⊗· · ·⊗ �̃X (m) and (ι†)⊗m : (F̃†)⊗m →
�̃X (1) ⊗ · · · ⊗ �̃X (m) , where �̃ = C(q1/4, t1/4) ⊗F �, are identified with

ι⊗m = 〈0|�(X)+, (ι†)⊗m = �(X)−|0〉,

where we set |0〉 = |0〉 ⊗ · · · ⊗ |0〉 and 〈0| = 〈0| ⊗ · · · ⊗ 〈0|.
We write an m-tuple of partitions as λ = (λ(1), . . . , λ(m)) ∈ Y

m . An analogue of
the dominance order on Y

m is defined so that, for λ, μ ∈ Y
m , we say that λ ≥ μ if

|λ(1)| + · · · |λ( j−1)| +
i∑

k=1

λ
( j)
k ≥ |μ(1)| + · · · + |μ( j−1)| +

i∑

k=1

μ
( j)
k

holds for all i ≥ 1 and j = 1, . . . ,m. For a monomial symmetric functionmλ, λ ∈ Y,
we write 〈mλ| = (ι†)−1(mλ) and set

〈mλ| := 〈mλ(1) | ⊗ · · · ⊗ 〈mλ(m) | ∈ (F†)⊗m, λ ∈ Y
m .

The following proposition was presented in [1] (see also [32,43,46] for recent
studies).

Proposition 6.1 ([1]) For an m-tuple of partitions λ ∈ Y
m, a vector 〈Pλ| ∈ (F̃†)⊗m

is uniquely determined by the following properties:

〈Pλ| = 〈mλ| +
∑

μ<λ

cλμ〈mμ|, cλμ ∈ C(q1/4, t1/4),

〈Pλ|X+
0 = Ê (m)

1 (λ)〈Pλ|, Ê (m)
1 (λ) =

m∑

i=1

Ê1(λ(i)),

wherewe set X+
0 := ρ(m)(x+

0 ). The collection {〈Pλ||λ ∈ Y
m} forms a basis of (F̃†)⊗m.

Definition 6.2 Let {|Qλ〉|λ ∈ Y
m} be the basis of F̃⊗m dual to {〈Pλ||λ ∈ Y

m} so
that 〈Pλ|Qμ〉 = δλμ, λ,μ ∈ Y

m . We also set Pλ := (ι†)⊗m(〈Pλ|) ∈ �⊗m and
Qλ := ι⊗m(|Qλ〉) ∈ �⊗m , λ ∈ Y

m .
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Remark 6.3 Differently from the usual Macdonald symmetric functions, Pλ and Qλ

are not proportional to each other.

Proposition 6.4 We have the following expansions:

�(X)−|0〉 =
∑

λ∈Ym

Pλ(X)|Qλ〉, 〈0|�(X)+ =
∑

λ∈Ym

Qλ(X)〈Pλ|.

As a corollary of this proposition, we obtain the Cauchy-type identity:

Corollary 6.5 We have

∑

λ∈Ym

Pλ(X)Qλ(Y) = �(m)(X,Y) :=
m∏

i=1

�(X (i),Y (i)).

Proof Computation of
〈0|�(Y)+�(X)−|0〉

in two ways proves the desired result. On the one hand, we have

〈0|�(Y)+�(X)−|0〉 =
∑

λ∈Ym

Pλ(X)Qλ(Y),

while, on the other hand, we also have

〈0|�(Y)+�(X)−|0〉 =
m∏

i=1

〈0|�(Y (i))+�(X (i))−|0〉 = �(m)(X,Y).

��

6.3 GeneralizedMacdonaldmeasure

Now we define the level m generalized Macdonald measure on Y
m .

Definition 6.6 The level m generalized Macdonald measure is a probability measure
on Ym so that the weight of λ ∈ Y

m is given by

GM
m
q,t (λ) := 1

�(m)(X,Y)
Pλ(X)Qλ(Y).

We write GE
m
q,t for the expectation value under the level m generalized Macdonald

measure.

Proof of Theorem 1.5 We compute the quantity

〈0|�(Y)+X+
0 �(X)−|0〉
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in two ways. On the one hand, it is shown that

〈0|�(Y)+X+
0 �(X)−|0〉 = �(m)(X,Y)GE

m
q,t [E (m)]

from the definition of level m generalized Macdonald functions presented in Proposi-
tion 6.1, Definition 6.2, and the expansions in Proposition 6.4.

On the other hand, we can also write

X+
0 =

∫
dz

2π
√−1z

X+(z), X+(z) = ρ(m)(x+(z)) =
m∑

i=1

�̃i (z),

where we set

�̃i (z) = ϕ−(p−1/4z) ⊗ ϕ−(p−3/4z) ⊗ · · · ⊗ ϕ−(p−(2i−3)/4z) ⊗
i
η̌(p−(i−1)/2z) ⊗ Id ⊗ · · · ⊗ Id

for i = 1, . . . ,m. It can be verified that �(X)+ and ϕ−(z) exhibit OPE

�(X)+ϕ−(z) =
∏

k≥1

(1 − p−3/4xkz)(1 − t−1 p1/4xkz)

(1 − p1/4xkz)(1 − t−1 p−3/4xkz)
ϕ−(z)�(X)+.

Then, a similar argument as in Sect. 5 gives the desire result. ��
Acknowledgements The author is grateful to Makoto Katori, Tomohiro Sasamoto, Takashi Imamura,
Yoshihiro Takeyama and Alexander Bufetov for fruitful discussion. He also thanks anonymous referees
for helping him improve the manuscript with convenient advice and suggestions. This work was supported
by the Grant-in-Aid for JSPS Fellows (Nos. 17J09658, 19J01279)

Appendix A: Proof of Theorem 3.14

Fix r ∈ Z≥1. What we show is the identity

〈0|�(X)+Ĝr (q
−1, t−1) = Gr (q

−1, t−1)〈0|�(X)+,

which is equivalent to

〈0|�n(X)+Ĝr (q
−1, t−1) = G(n)

r (q−1, t−1)〈0|�n(X)+, n = 1, 2, . . . ,

where

�n(X)+ = exp

(
∑

m>0

1 − tm

1 − qm
p(n)
m (X)

m
am

)

is the n-variable reduction of �(X)+.
The following lemma can be checked by standard computation:
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Lemma A.1 We have

y�n(X)+ξ(z) =
n∏

i=1

1 − t1/2q−1/2xi z

1 − t−1/2q−1/2xi z
ξ(z)�n(X)+.

By using this, we can see that

〈0|�n(X)+Ĝr (q
−1, t−1)

= (−1)r q−(r2)

(q; q)r

∫ (
r∏

i=1

dzi
2π

√−1zi

) ⎛

⎝
∏

1≤i< j≤r

1 − z j/zi
1 − q−1z j/zi

⎞

⎠

×
⎛

⎝
n∏

i=1

r∏

j=1

1 − t1/2q−1/2xi z j
1 − t−1/2q−1/2xi z j

⎞

⎠ 〈0| :ξ(z1) · · · ξ(zr ): �n(X)+

As a generalization,we introduce the following object: forμ = (μ1, . . . , μn) ∈ Z
n ,

G(μ)
r (q−1, t−1)

:=
∫ (

r∏

i=1

dzi
2π

√−1zi

)⎛

⎝
∏

1≤i< j≤r

1 − z j/zi
1 − q−1z j/zi

⎞

⎠

⎛

⎝
n∏

i=1

r∏

j=1

1 − t1/2qμi−1/2xi z j
1 − t−1/2q−1/2xi z j

⎞

⎠

× 〈0| :ξ(z1) · · · ξ(zr ): �n(X)+. (A.1)

Correspondingly, we set

H (n),(μ)
r (q−1, t−1)

:=
∑

ν∈(Z≥0)
n

|ν|=r

⎛

⎝
∏

1≤i< j≤n

q−νi xi − q−ν j x j
xi − x j

⎞

⎠

⎛

⎝
n∏

i, j=1

(t−1xi/qμ j x j ; q−1)νi

(q−1xi/x j ; q−1)νi

⎞

⎠
n∏

i=1

T νi
q−1,xi

.

(A.2)

Then, Theorem 3.14 is the case when μ = (0, . . . , 0) of the following one:

Theorem A.2 For μ ∈ Z
n and r = 1, 2, . . . , we have

G(μ)
r (q−1, t−1)

= trnqr |μ|
r∑

l=0

(−1)lq(l2)ql(r−l)(q−r+l−1; q−1)l H
(n),(μ)
l (q−1, t−1)〈0|�n(X)+.

To prove this theorem, we prepare lemmas. The first one can be checked by a simple
calculation.

Lemma A.3 We have

〈0|ξ(t1/2q1/2x−1
k )�n(X)+ = Tq−1,xk 〈0|�n(X)+.
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We also have

Lemma A.4 Let ν = (ν1, . . . , νn) ∈ Zn. Then

n∑

k=1

(q−νk − 1)

⎛

⎝
∏

i =k

xk − q−νi xi
xk − xi

⎞

⎠ = q−|ν| − 1.

Proof By comparing residues and behavior at z → ∞, we have

n∏

i=1

z − q−νi xi
z − xi

=
n∑

k=1

(1 − q−νk )xk
z − xk

⎛

⎝
∏

i =k

xk − q−νi xi
xk − xi

⎞

⎠ + 1.

Then, setting z = 0, we can see the desired result. ��
Proof of TheoremA.2 We first integrate out the variable z1 in Eq. (A.1). Then the
residues at z1 = t1/2q1/2x−1

i , i = 1, . . . , n and z1 = ∞ contribute. (To make this
computation easier to see, it might be convenient to transform the variables so that
wi = z−1

i , i = 1, . . . , r .) Consequently, we obtain

G(μ)
r (q−1, t−1)

=
∫ (

r∏

i=2

dzi
2π

√−1zi

)
n∑

k=1

(1 − tqμk )

⎛

⎝
∏

2≤i< j≤r

1 − z j/zi
1 − q−1z j/zi

⎞

⎠

⎛

⎝
r∏

j=2

1 − t1/2qμk−1/2xk z j
1 − t−1/2q−3/2xk z j

⎞

⎠

×

⎛

⎜
⎜
⎝

n∏

i=1
i =k

r∏

j=2

1 − t1/2qμi−1/2xi z j
1 − t−1/2q−1/2xi z j

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

n∏

i=1
i =k

xk − tqμi xi
xk − xi

⎞

⎟
⎟
⎠

× 〈0| :ξ(t1/2q1/2x−1
k )ξ(z2) · · · ξ(zr ): �n(X)+

+ tnq |μ|G(μ)
r−1(q

−1, t−1).

Here, we shall use Lemma A.3 to find

G(μ)
r (q−1, t−1) =

n∑

k=1

(1 − tqμk )

n∏

i=1
i =k

xk − tqμi xi
xk − xi

Tq−1,xkG
(μ+εk )
r−1 (q−1, t−1)

+ tnq |μ|G(μ)
r−1(q

−1, t−1),

where we set εk = (0, . . . , 0,
k

1̌, 0, . . . , 0).
We prove the theorem by induction in r = 1, 2, . . . . When r = 1, we can see that

G
(μ)
1 (q−1, t−1) =

⎛

⎜
⎜
⎝

n∑

k=1

(1 − tqμk )

n∏

i=1
i =k

xk − tqμi xi
xk − xi

Tq−1,xk + tnq |μ|

⎞

⎟
⎟
⎠ 〈0|�n(X)+,
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while, from Eq. (A.2), we also have

H (n),(μ)
1 (q−1, t−1) = −t−nq−|μ|

n∑

k=1

1 − tqμk

1 − q−1

n∏

i=1
i =k

xk − tqμi xi
xk − xi

Tq−1,xk .

Therefore, it follows that

G
(μ)
1 (q−1, t−1) = tnq |μ| (1 − (1 − q−1)H (n),(μ)

1 (q−1, t−1)
)

〈0|�n(X)+,

which is the desired result of the theorem for r = 1.
We suppose that the theorem holds at r − 1. To use this induction hypothesis, we

make some preliminaries. For ν = (ν1, . . . , νn) ∈ (Z≥0)
n and μ = (μ1, . . . , μn) ∈

Z
n , set

h(μ)
ν (q−1, t−1) =

⎛

⎝
∏

1≤i< j≤n

q−νi xi − q−ν j x j
xi − x j

⎞

⎠

⎛

⎝
n∏

i, j=1

(t−1xi/qμ j x j ; q−1)νi

(q−1xi/x j ; q−1)νi

⎞

⎠ .

Then, we have the following expression:

H (n),(μ)
r (q−1, t−1) =

∑

ν∈(Z≥0)
n

|ν|=r

h(μ)
ν (q−1, t−1)

n∏

i=1

T νi
q−1,xi

.

Observe that

h(μ+εk)
ν (q−1, t−1) = 1 − t−1q−μk−νk

1 − t−1q−μk

n∏

i=1
i =k

xk − t−1q−μk−νi xi
xk − t−1q−μk xi

h(μ)
ν (q−1, t−1)

(A.3)

and

Tq−1,xk h
(μ)
ν (q−1, t−1)

= 1 − q−νk−1

1 − t−1q−μk−νk

n∏

i=1
i =k

t−1q−μk+1xi − xk
xi − t−1q−μi xi

xk − q−νi xi
xk − t−1q−μk−νi+1xi

h(μ)
ν+εk

(q−1, t−1)Tq−1,xk .

(A.4)

By the induction hypothesis, we have

G(μ)
r (q−1, t−1) =

[

t (r−1)nq(r−1)(|μ|+1)
r−1∑

l=0

(−1)lq(l2)ql(r−l+1)(q−r+l; q−1)l
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×
n∑

k=1

(1 − tqμk )

n∏

i=1
i =k

xk − tqμi xi
xk − xi

Tq−1,xk H
(n),(μ+εk )
l (q−1, t−1)

+ trnqr |μ|
r−1∑

l=0

(−1)lq(l2)ql(r−l+1)(q−r+l; q−1)l

× H (n),(μ)
l (q−1, t−1)

]

〈0|�n(X)+.

Let us set

X :=
n∑

k=1

(1 − tqμk )

n∏

i=1
i =k

xk − tqμi xi
xk − xi

Tq−1,xk H
(n),(μ+εk )
l (q−1, t−1).

Then, using Eqs. (A.3) and (A.4), we can verify that

X = tnq |μ| ∑

ν∈(Z≥0)
n

|ν|=l

n∑

k=1

(q−νk−1 − 1)
n∏

i=1
i =k

xk − q−νi xi
xk − xi

h(μ)
ν+εk

(q−1, t−1)Tq−1,xk

n∏

i=1

T νi
q−1,xi

= tnq |μ| ∑

ν∈(Z≥0)
n

|ν|=l+1

⎛

⎜
⎜
⎝

n∑

k=1

(q−νk − 1)
n∏

i=1
i =k

xk − q−νi xi
xk − xi

⎞

⎟
⎟
⎠ h(μ)

ν (q−1, t−1)

n∏

i=1

T νi
q−1,xi

.

Here, we use Lemma A.4 to obtain

X = tnq |μ|(q−l−1 − 1)H (n),(μ)
l+1 (q−1, t−1).

Therefore,

G(μ)
r (q−1, t−1) =

[

t (r−1)nq(r−1)(|μ|+1)
r−1∑

l=0

(−1)lq(l2)ql(r−l+1)(q−r+l; q−1)l

× tnq |μ|(q−l−1 − 1)H (n),(μ)
l+1 (q−1, t−1)

+ trnqr |μ|
r−1∑

l=0

(−1)lq(l2)ql(r−l+1)(q−r+l; q−1)l

× H (n),(μ)
l (q−1, t−1)

]

〈0|�n(X)+.

It can be checked that this coincides with

trnqr |μ|
r∑

l=0

(−1)lq(l2)ql(r−l)(q−r+l−1; q−1)l H
(n),(μ)
l (q−1, t−1)〈0|�n(X)+.
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Then, the proof is complete. ��
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