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Abstract
A graph whose full automorphism group is isomorphic to a finite group G is called
a G-graph, and we let α(G) denote the minimal number of vertices among all G-
graphs. The value of α(G) has been established for numerous infinite families of
groups. In this article, we expand upon the subject matter of vertex-minimal G-graphs
by computing the value of α(G)whenG is isomorphic to either a quasi-dihedral group
or a quasi-abelian group. These results completely establish the value of α(G) when
G is a member of one of the six infinite families of 2-groups that contain a cyclic
subgroup of index 2.

Keywords Automorphism group · Graph · Vertex-minimal · Quasi-abelian group ·
Quasi-dihedral group

1 Introduction

Throughout this article, all groups considered are finite and all graphs considered are
simple and finite. In 1936, König [16] famously inquired about which abstract groups
could be realized as the automorphism group of some graph. Three years later, Frucht
[5] proved that for every groupG, there exists a graph whose full automorphism group
is isomorphic to G; such a graph is called a G-graph.

For a groupG, letα(G) denote theminimal number of vertices among allG-graphs.
In general, α(G) ≤ 3|G| and the cyclic groups of orders 3, 4, and 5 demonstrate that
this bound is best possible (i.e., α(G) = 3|G| provided G is a cyclic group of orders 3,
4, or 5). Without sacrificing much generality, Babai improved this bound on the value
of α(G).

Theorem 1 (Babai [2]) If G is a group different from the cyclic group of orders 3, 4,
or 5, then α(G) ≤ 2|G|.
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The constant 2 in Theorem 1 is sharp. For example, Sabidussi [23] proved that α(G) =
2|G| for cyclic groups of prime order p ≥ 7, and Graves et. al. [9] proved equality
for generalized quaternion groups. However, this constant can be sharpened for most
groups by considering a graphical regular representation. A graph � is a graphical
regular representation (GRR) of a group G if the automorphism group of � is a
regular permutation group that is isomorphic to G. In this case, G admits a GRR, and
the GRR problem was to identify all groups that admit a GRR. It follows immediately
from these definitions that if the group G admits a GRR, then α(G) ≤ |G|.

The results of numerous authors provided partial solutions for the GRR problem
(see [4,14,15,20,21,24,26–28]). A complete classification of groups that admit a GRR
was found by Hetzel [13] and Godsil [6,7], and we state their result below.

Theorem 2 (Hetzel [13], Godsil [6,7]) The group G admits a GRR provided it is
distinct from each of the following groups:
(a) an abelian group of exponent greater than 2;
(b) an elementary abelian group of orders 4, 8, or 16;
(c) a generalized dicyclic group; and
(d) one of ten exceptional groups whose orders are at most 32, two of which are

nonabelian groups of order 16.

Theorem 2 implies that the bound α(G) ≤ |G| will hold for most groups G. We will
establish an infinite family of groups that demonstrate this bound is best possible in
Theorem 4.

In addition to the aforementioned bounds, the exact value of α(G) has been com-
puted for some infinite families of groups G. In the following remark, we state all the
groups G for which the exact value of α(G) is known.

Remark 3 The value of α(G) has been established for the following groups G:

(a) cyclic groups (Meriwether [19], Sabidussi [23]);
(b) noncyclic abelian groups (Arlinghaus [1]);
(c) hyperoctahedral groups (Haggard et al. [12]);
(d) symmetric groups (Quintas [22]);
(e) alternating groups of degree at least 13 (Liebeck [17]);
(f) generalized quaternion groups (Graves et al. [9]); and
(g) dihedral groups (Graves, Graves, Haggard, McCarthy [8,10,11,18]).

In this article, we wish to further expand the results on the subject matter of vertex-
minimal G-graphs. Burnside [3] proved that there are six infinite families of order-
2m groups that each contain a cyclic subgroup of index 2: the cyclic group Z2m ,
the noncyclic abelian group Z2m−1 × Z2, the dihedral group D2m , the generalized
quaternion group (or the dicyclic group) Q2m , the quasi-dihedral group (or the semi-
dihedral group) QD2m , and the quasi-abelian group (or the modular group) QA2m . As
shown in Remark 3, four of these six families have been considered in relation to the
orders of vertex-minimal graphs with prescribed automorphism groups. In particular,

α(Z2m ) =
{
2m if m = 0, 1

2m + 6 if m ≥ 2
and α(Z2m−1 × Z2) =

{
4 if m = 2

2m−1 + 8 if m ≥ 3,
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and whenm ≥ 3, we have that α(D2m ) = 2m−1 and α(Q2m ) = 2m+1 (see [1,9,11,23],
respectively).

Here, we will consider the remaining two families of 2-groups that contain a cyclic
subgroup of index 2. The quasi-dihedral group QD2m and quasi-abelian group QA2m

only exist when m ≥ 4, and their presentations are given in Sect. 2. The following
two theorems contain our main results.

Theorem 4 Let m ≥ 4 be an integer. The quasi-dihedral group QD2m of order 2m

satisfies α(QD2m ) = 2m.

Theorem 5 Let m ≥ 4 be an integer. The quasi-abelian group QA2m of order 2m

satisfies α(QA16) = 18 and α(QA2m ) = 2m−1 + 6 when m ≥ 5.

Fix m ≥ 5, and let G be a group of order 2m that contains a cyclic subgroup of
index 2 (so that G belongs to one of the aforementioned six families of 2-groups).
Theorems 4 and 5 completely establish the orders of vertex-minimal graphs whose
automorphism groups are isomorphic to a 2-group that contains a cyclic subgroup
of index 2. Although the groups in these families are similar (in the sense that they
each have the same order and a large cyclic subgroup), the order of a vertex-minimal
G-graph is distinct. Specifically,

α(D2m ) < α(QA2m ) < α(Z2m−1 × Z2) < α(QD2m ) < α(Z2m ) < α(Q2m ),

for a fixed integer m ≥ 5.
This article is organized as follows. We first develop the background and notation

that will be used to prove Theorems 4 and 5 in Sect. 2. In Sect. 3, we will consider
quasi-dihedral groups and prove that a certain GRR admitted by QD2m is vertex-
minimal among all QD2m -graphs. As a result, α(QD2m ) = 2m , which will establish
Theorem 4. The group QA16 is the only quasi-abelian group that does not admit a
GRR; the results of Sect. 4 will focus on this special case. Finally, in Sect. 5, we will
consider the quasi-abelian group QA2m with m ≥ 5 and prove Theorem 5.

2 Preliminaries

In this section, we will introduce the background and notation required to prove The-
orems 4 and 5. When m ≥ 4 is an integer, we will utilize the presentation

QD2m =
〈
σ, τ : σ 2m−1 = 1 = τ 2, τστ = σ 2m−2−1

〉
(1)

for the quasi-dihedral group of order 2m and the presentation

QA2m =
〈
σ, τ : σ 2m−1 = 1 = τ 2, τστ = σ 2m−2+1

〉
(2)

for the quasi-abelian group of order 2m . Assume that G is isomorphic to either QD2m

or QA2m . To establish the value of α(G), we will consider G as a permutation group
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whose elements are permutations of the vertex set of some graph. In particular, we
assume thatG acts on a set S of n symbols for some permissible integer n ≥ 2m−1 and
then focus on the cycle decomposition of the generator σ . We will implicitly assume
that the cycle decomposition of every permutation in G is disjoint, and call a cycle of
length r an r-cycle. Lastly, the support of a permutation ρ ∈ G is

supp(ρ) = {s ∈ S : ρ(s) �= s}.

Under these assumptions, we obtain the following property of the cycle decomposition
of σ ∈ G.

Lemma 6 Assume that G is isomorphic to QD2m or QA2m , where m ≥ 4 is an integer.
Consider G as a permutation group, and let σ and τ be the generators of G as defined
in Eq. (1) if G ∼= QD2m or in Eq. (2) if G ∼= QA2m . If σ1 and σ2 are cycles in the
cycle decomposition of σ , and τ transposes a symbol in supp(σ1) with a symbol in
supp(σ2), then σ1 and σ2 have equal length.

Proof After a possible relabeling, assume that σ1 = (1, 2, . . . , a) and σ2 = (a+1, a+
2, . . . , b) are cycles in the cycle decomposition of σ , where a, b ∈ Z

+ with a < b.
Assume that the permutation τ ∈ G exchanges the symbols 1 and a + k for some
k ∈ {1, 2, . . . , b − a}. In this case, the relation τστ = σ� (with either � = 2m−2 − 1
or � = 2m−2 + 1) implies that τσ1τ = σ�

2 . Since the cycle τσ1τ is an a-cycle and σ�
2

has length b− (a + 1) + 1, we have that a = b− (a + 1) + 1. Therefore, 2a = b and
the result now follows. ��

Wewill continuewith a fewmore preliminaries to be used throughout the remainder
of this article. The automorphism group of a graph �, denoted Aut �, is the set of
adjacency-preserving permutations of the vertices of �. Let V (�) and E(�) denote
the vertex set of � and the edge set of �, respectively. In many of the proofs that
follow, we will use the Orbit-Stabilizer Theorem, which gives a relationship between
the order of Aut �, the size of the orbit of vertex v in Aut �, and the order of the
stabilizer of v in Aut �. Specifically, for each v ∈ V (�), the orbit of v is

O(v) = {ρ(v) : ρ ∈ Aut �}

and the stabilizer of v is

stab(v) = {ρ ∈ Aut � : ρ(v) = v};

the Orbit-Stabilizer Theorem states that

|Aut �| = |O(v)| · | stab(v)|.

In addition to the orbit of a vertex in Aut �, we also define the orbit of an edge inAut �.
If G is a subgroup of the permutation group SV (�), then for vertices u, v ∈ V (�) the
set

OG{u, v} = {[ρ(u), ρ(v)] : ρ ∈ G}
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defines the edge orbit of [u, v] ∈ E(�). When the group G is clear from context, we
will omit the subscript inOG{u, v} and simply writeO{u, v}. Finally, let Av ⊆ V (�)

denote the set of all vertices of � that are adjacent to v. The vertices in Av are called
the neighbors of v. The neighborhood graph of v, denoted N (v), is the subgraph
of � whose vertex set is Av and whose edge set consists of all edges in E(�) that
have both ends in Av . For intelligible depictions of graphs, our convention is that the
neighborhood graph of v does not include v.

This section concludes with a brief overview of the methods we use to establish
the value of α(G) in this article. Consider G as a permutation group acting on a set of
vertices of a G-graph. The existence of such a graph has implications on the structure
of the cycle decomposition of the permutations in G. In particular, the size of the
support of a generator in G gives a lower bound on the value of α(G). In the work that
follows this lower bound will be sharp; thus, to establish the value of α(G) it suffices
to construct a graph � with |V (�)| = α(G) and Aut � ∼= G. From the construction,
the order of � is easily verified. We will prove that � is actually a G-graph with the
following steps: (1) Establish that G is isomorphic to a subgroup of Aut �, and (2)
use the Orbit-Stabilizer Theorem to establish that |G| = |Aut �|.

3 The quasi-dihedral group QD2m

The quasi-dihedral group QD2m , where m ≥ 4 is an integer, admits a GRR by The-
orem 2. If � is a GRR of QD2m , then Aut � is a regular permutation group that is
isomorphic to QD2m by definition. Consequently, α(QD2m ) ≤ |QD2m | = 2m and our
proof of Theorem 4 will show that equality holds. Since � is a GRR, it can be thought
of as a Cayley graph of QD2m with no extra automorphisms, and we will continue by
constructing such a graph �.

Let G be a group, and suppose that S ⊆ G\{1} is closed under inverses; the
Cayley graph of G with connection set S, denoted Cay(G, S), is the graph with
V

(
Cay(G, S)

) = G and

E
(
Cay(G, S)

) = {[g, gs] : g ∈ G and s ∈ S}.

Although it is not required to prove Theorem 4, we write

QD2m =
〈
x, y : x2m−1 = 1 = y2, yxy = x2

m−2−1
〉

and construct a QD2m -graph that is also a Cayley graph of QD2m with connection set

S =
{
x, x2

m−1−1, y, xy, x2
m−2+1y

}
⊆ QD2m .

Bydefinition,Cay(QD2m , S)has 2m vertices and E
(
Cay(QD2m , S)

)
contains the edges

in

E
(
Cay(QD2m , S)

) = {[g, gs] : g ∈ QD2m and s ∈ S}.
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Fig. 1 Cayley graph of QD16 = 〈x, y〉 with connection set {x, x7, y, xy, x5y}

In particular, the edge set of Cay(QD2m , S) is comprised of the three edge orbits
O{1, x}, O{1, y}, and O{1, xy} and thus has size 5 · 2m−1. The graph Cay(QD16, S)

with connection set S = {x, x7, y, xy, x5y} is depicted in Fig. 1.

Proposition 7 Let m ≥ 4 be an integer. If QD2m = 〈x, y〉, then the Cayley graph
Cay(QD2m , S) with connection set

S =
{
x, x2

m−1−1, y, xy, x2
m−2+1y

}

is a QD2m -graph.

Proof For each g ∈ QD2m , define themapπg : QD2m → QD2m byπg(h) = gh, where
h ∈ QD2m . In this case, {πg : g ∈ QD2m } is a subgroup of Aut(Cay(QD2m , S)

)
that is

isomorphic toQD2m . To prove these groups {πg : g ∈ QD2m } andAut(Cay(QD2m , S)
)

are equal (i.e., that Cay(QD2m , S) is a QD2m -graph), we will apply the Orbit-Stabilizer
Theorem.

Fix i ∈ Z and consider xi ∈ QD2m . Since Aut
(
Cay(QD2m , S)

)
contains all left

multiplications by elements in QD2m , it acts transitively on V
(
Cay(QD2m , S)

) =
QD2m . Therefore, |O(xi )| = |QD2m | = 2m , and by the Orbit-Stabilizer Theorem,

∣∣Aut(Cay(QD2m , S)
)∣∣ = |O(xi )| · |H | = 2m · |H |, (3)
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(a) (b)

Fig. 2 Two subgraphs of Cay(QD2m , S), which appeared in the proof of Proposition 7

where H = stab(xi ). To find the order of the subgroup H in Aut
(
Cay(QD2m , S)

)
, we

consider the neighborhood graph of xi , which is denoted by N (xi ) and depicted in
Fig. 2a. Since xi is fixed in H , the subgraph N (xi ) is invariant under any automorphism
of H . Moreover, the only neighbor of xi in N (xi ) with degree 2, namely xi y, is also
fixed in H , and thus {xi+1, xi+1y} and {xi−1, xi+2m−2+1y} are each H -invariant sets.
Additionally, notice that xi is contained in exactly five 4-cycles in Cay(QD2m , S);
these 4-cycles are depicted in Fig. 2b. The vertex xi+1 is contained in exactly two of
these 4-cycles and xi+1y is contained in exactly three of these 4-cycles. Consequently,
the H -invariant set {xi+1, xi+1y} is actually fixed pointwise by every automorphism
of H ; a similar argument shows that {xi−1, xi+2m−2+1y} is also fixed pointwise by H .

By the argument above, if xi is fixed, then all of its neighbors in Cay(QD2m , S)

are fixed by H . Specifically, the vertices xi+1, xi y, and xi+1y are fixed by any auto-
morphism of H . Repeating the argument above with xi replaced by xi+1 yields that
xi+2, xi+1y, and xi+2y are fixed by H . Continuing this process by replacing xi in the
argument above with the vertices xi+2, xi+3, . . . , xi+2m−1−1 proves that every ver-
tex in Cay(QD2m , S) is fixed by any automorphism of Cay(QD2m , S) that fixes xi .
Therefore, H is the identity subgroup and |H | = 1; because QD2m is isomorphic to a
subgroup of Aut

(
Cay(QD2m , S)

)
, the result now follows from Eq. (3). ��

Proposition 7 implies that α(QD2m ) ≤ 2m because Cay(QD2m , S) is a QD2m -graph
with 2m vertices. We claim that this graph has minimal order among all QD2m -graphs;
we will write QD2m as a permutation group and consider the cycle decomposition of
σ ∈ QD2m to prove this claim.

Proposition 8 Let m ≥ 4 be an integer. Assume that � is QD2m -graph, and consider
Aut � = 〈σ, τ 〉 as a permutation group where σ, τ ∈ QD2m are as defined in Eq. (1).
The cycle decomposition of σ contains at least two 2m−1-cycles.

Proof The cycle decomposition of the generator σ must contain at least one 2m−1-
cycle because the order of σ is the prime power 2m−1. Toward a contradiction, suppose
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that the cycle decomposition of σ contains exactly one 2m−1-cycle. Without loss of
generality, assume that σ = (1, 2, 3, . . . , 2m−1)ρ is the cycle decomposition of σ ,
where all of the cycles that appear in the cycle decomposition of ρ have lengths less
than 2m−1 and

supp(ρ) ⊂ Z
+\{1, 2, 3, . . . , 2m−1}.

In this case, for each k ∈ {1, 2, . . . , 2m−1},

{1, 2, 3, . . . , 2m−1} ⊆ O(k)

because σ acts transitively on {1, 2, 3, . . . , 2m−1}. Since the cycle decomposi-
tion of σ contains exactly one 2m−1-cycle, τ must transpose k with a symbol in
{1, 2, 3, . . . , 2m−1} by Lemma 6, and thus,

O(k) ⊆ {1, 2, 3, . . . , 2m−1}.

Therefore, O(k) has size 2m−1 and

2m = |Aut �| = |O(k)| · | stab(k)| = 2m−1 · | stab(k)|, (4)

where the second equality holds by the Orbit-Stabilizer Theorem. The remainder of
the proof will establish the existence of an integer n ∈ {1, 2, 3, . . . , 2m−1} such that
| stab(n)| ≥ 3, which will contradict Eq. (4) with k = n.

Since the cycle decomposition of σ contains exactly one 2m−1-cycle, τ(1) = � for
some � ∈ {1, 2, . . . , 2m−1} by Lemma 6. The relation τστ = σ 2m−2−1 implies that
for each k ∈ {1, 2, . . . , 2m−1}

τ(k) ≡ (
(2m−2 − 1)(k − 1) + �

)
mod 2m−1,

where we identify the integer 0 with 2m−1. This equation guarantees that � is odd;
otherwise,

τ(�) ≡ (
(2m−2 − 1)(� − 1) + �

)
mod 2m−1 ≡ (1 − 2m−2)mod 2m−1,

which is impossible because τ has order 2 and 1 �≡ (1− 2m−2)mod 2m−1. Moreover,
the linear congruence

n ≡ (
(2m−2 − 1)(n − 1) + �

)
mod 2m−1

or

(2 − 2m−2)n ≡ (� + 1 − 2m−2)mod 2m−1
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has a solution because gcd(2− 2m−2, 2m−1) = 2 divides � + 1− 2m−2. Without loss
of generality, assume that n ∈ {1, 2, . . . , 2m−1} so that τ(n) = n by the argument
above. Therefore, τ ∈ stab(n), and we claim that the permutation

α :=
{

(1, 2m−2 + 1)(3, 2m−2 + 3) · · · (2m−2 − 1, 2m−2 + 2m−2 − 1) if n is even

(2, 2m−2 + 2)(4, 2m−2 + 4) · · · (2m−2, 2m−2 + 2m−2) if n is odd

is also an element of stab(n). To this end, notice that α is either σ 2m−2
restricted to

the even elements in {1, 2, 3, . . . , 2m−1} or σ 2m−2
restricted to the odd elements in

{1, 2, 3, . . . , 2m−1}. Since α(n) = n, to prove that α ∈ stab(n) it suffices to show that
there exists β ∈ 〈σ, τ 〉 = Aut � such that α[u, v] = β[u, v] for each [u, v] ∈ E(�).
First, assume that n is odd; the three cases that follow depend on the parity of u and v.

(a) If u and v are odd, then α and β = 1 both fix the edge [u, v].
(b) If u and v are both even, then α[u, v] = β[u, v] with β = σ 2m−2

.
(c) Now suppose u and v have different parity; without loss of generality, assume that

u is even and v is odd. If u > 2m−1, then α and β = 1 both fix the edge [u, v],
while α[u, v] = β[u, v] with β = σ 2m−2

provided u ≤ 2m−1 and v > 2m−1.
Finally, assume that u, v ≤ 2m−1. Recall that 0 is identified with 2m−1, and notice
that

α[u, v] = [α(u), α(v)] = [(u + 2m−2)mod 2m−1, v].

Additionally, since u is even,

σ u+v+2m−2−1−�τ (u) = σ u+v+2m−2−1−�
(
((2m−2 − 1)(u − 1) + �)mod 2m−1)

= σ u+v+2m−2−1−�
(
(−2m−2 − u + 1 + �)mod 2m−1)

= u + v + 2m−2 − 1 − � − 2m−2 − u + 1 + �

= v

and

σ u+v+2m−2−1−�τ (v) = σ u+v+2m−2−1−�
(
((2m−2 − 1)(v − 1) + �)mod 2m−1)

= σ u+v+2m−2−1−�
(
(2m−2v − 2m−2 − v + 1 + �)mod 2m−1)

≡ (u + 2m−2v)mod 2m−1

≡ (u + 2m−2)mod 2m−1,

where the last equality holds because v is odd. Hence,

α[u, v] = [(u + 2m−2)mod 2m−1, v] = β[u, v]

with β = σ u+v+2m−2−1−�τ .
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The three cases above prove that there exists β ∈ 〈σ, τ 〉 = Aut � such that α and β

agree for each edge [u, v] ∈ E(�) provided n is odd. When n is even, a similar argu-
ment to that above gives the existence of the desired β ∈ 〈σ, τ 〉 = Aut �. Therefore,
α ∈ stab(n) ≤ Aut � and 1, τ, α ∈ stab(n), a final contradiction. ��

The proof of our first main result follows from Propositions 7 and 8.

Proof of Theorem 4 If QD2m = 〈x, y〉, then the Cayley graph Cay(QD2m , S) with
connection set

S =
{
x, x2

m−1−1, y, xy, x2
m−2+1y

}

is a QD2m -graph by Proposition 7. Hence,

α(QD2m ) ≤ |QD2m | = 2m .

To prove the reverse inequality, suppose that � is a QD2m -graph and consider Aut � =
〈σ, τ 〉 as a permutation group where σ, τ ∈ QD2m are as defined in Eq. (1). The cycle
decomposition of σ contains at least two 2m−1-cycles by Proposition 8. Therefore,

2m−1 + 2m−1 = 2m ≤ | supp(σ )| ≤ |V (�)|

implies that 2m ≤ α(QD2m ) because � is a QD2m -graph. The result now follows. ��
With the value of α(QD2m ) established for all integers m ≥ 4, we now turn our

attention to quasi-abelian groups and prove Theorem 5.

4 The quasi-abelian group QA16

In this section, we will consider the special case of Theorem 5. In particular, to prove
that α(QA16) = 18, we first construct a QA16-graph on 18 vertices as follows. Define
the permutations σ and τ on {1, 2, 3, . . . , 18} by

σ = (1, 2, 3, 4, 5, 6, 7, 8)(9, 10, 11, 12, 13, 14, 15, 16)(17, 18)

and

τ = (1, 9)(2, 14)(3, 11)(4, 16)(5, 13)(6, 10)(7, 15)(8, 12)(17, 18).

Clearly, σ and τ have orders 8 and 2, respectively; since τστ = σ 5, these permutations
satisfy the relations given in Eq. (2) and 〈σ, τ 〉 ∼= QA16. Define the graph �(4) on 18
vertices with V

(
�(4)

) = {1, 2, 3, . . . , 18} and E
(
�(4)

)
containing the following four

edge orbits:

O{1, 2}, O{1, 9}, O{1, 10}, and O{1, 17}.
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Fig. 3 The QD16-graph �(4) with 18 vertices and 56 edges

The graph �(4) has 56 edges and is depicted in Fig. 3.
A quick computation in GAP [25] proves that �(4) is a QA16-graph. Moreover, a

computer search in GAP proves that no graph on less than 18 vertices is a QA16-graph.
Therefore, α(QA16) = 18, and we turn our attention to the value of α(QA2m ) with
m ≥ 5 in the next section.

5 The quasi-abelian group QA2m withm ≥ 5

The results of Sect. 4 prove that α(QA16) = 18. Thus, to prove Theorem 5, we will
assume that m ≥ 5 is an integer and construct a QA2m -graph, denoted �(m), with
2m−1+6 vertices; then, we argue that�(m) hasminimal order among all QA2m -graphs
to establish Theorem 5.

Definition 9 Assume that m ≥ 5 is an integer. Define the graph �(m) on 2m−1 + 6
vertices with V

(
�(m)

) = {1, 2, . . . , 2m−1+6} and E(
�(m)

)
containing the following

3 · 2m + 8 edges:
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1

2

3

4
5

6

7

8

9

10

11

12
13

14

15

16

(a) Subgraph of Γ(5) containing the
edges in O{1, 2} ⊂ E Γ(5) .

17

18

22

20

19

21

(b) Subgraph of Γ(5) containing the edges
in O{17, 18} ∪ O{17, 21} ⊂ E Γ(5) .

Fig. 4 Two subgraphs of the graph �(5), constructed in Definition 9

{u, v}, where u, v ∈ {1, 2, 3, . . . , 2m−1} and v − u ≡ k mod 2m−1 for

k ∈ {1, 2, 2m−2 + 1};
{u, v}, where u ∈ {1, 2, 3, . . . , 2m−1}, v ∈ {2m−1 + 1, . . . , 2m−2 + 4}, and

v − u ≡ k mod 4 for k ∈ {0, 1};
{u, v}, where u, v ∈ {2m−1 + 1, . . . , 2m−2 + 4} and v − u ≡ 1 mod 4; and

{u, v}, where u ∈ {1, 2, . . . , 2m−2 + 4}, v ∈ {2m−2 + 5, 2m−2 + 6},
and v − u ≡ 0 mod 2.

Observe that the image of each edge in �(m) under the permutation

σ = (1, 2, 3, . . . , 2m−1)(2m−1+1, 2m−1+2, 2m−1+3, 2m−1+4)(2m−1+5, 2m−1+6)
(5)

or
τ = (2, 2m−2 + 2)(4, 2m−2 + 4)(6, 2m−2 + 6) · · · (2m−2, 2m−2 + 2m−2) (6)

is also an edge in �(m) by construction. Consequently, 〈σ, τ 〉 is a subgroup of
Aut

(
�(m)

)
and E

(
�(m)

)
comprises the following seven edge orbits:

O{1, 2}, O{1, 3}, O{1, 2m−1 + 1}, O{1, 2m−1 + 2}, O{1, 2m−1 + 5},
O{2m−1 + 1, 2m−1 + 2}, and O{2m−1 + 1, 2m−1 + 5}.

The edge orbit O{1, 2} contains 2m edges of �(m) and is depicted in Fig. 4a when
m = 5. The edge orbits O{2m−1 + 1, 2m−1 + 2} and O{2m−1 + 1, 2m−1 + 5} each
contain four edges.Whenm = 5, Fig. 4b gives an illustration of the union of these two
edge orbits. The remaining four edge orbits of Aut

(
�(m)

)
each contain 2m−1 edges.

Below, we prove that �(m) is a QA2m -graph.
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2m−1 + 5

3

2 2m−2 + 2

2m−1 + 2

2m−1 2m−2

2m−1 − 1 2m−1 + 1

(a) Neighborhood graph N(1).

2m−1 + 6

4

3 2m−2 + 3

2m−1 + 3

1 2m−2 + 1

2m−1 2m−1 + 2

(b) Neighborhood graph N(2).

Fig. 5 Neighborhood graphs N (1) and N (2), which appeared in the proof of Proposition 10

Proposition 10 If m ≥ 5 is an integer, then the graph �(m) given in Definition 9 is a
QA2m -graph.

Proof The permutations σ and τ defined in Eqs. (5) and (6), respectively, satisfy
the relations given in Eq. (2). Therefore, 〈σ, τ 〉 ∼= QA2m and 〈σ, τ 〉 is a subgroup of
Aut

(
�(m)

)
by construction. To prove that Aut

(
�(m)

) = 〈σ, τ 〉, we partition V (
�(m)

)
into three subsets, namely

V1 = {1, 2, 3, . . . , 2m−1}, V2 = {2m−1 + 1, . . . , 2m−2 + 4}, and

V3 = {2m−1 + 5, 2m−2 + 6},

and then, apply the Orbit-Stabilizer Theorem twice.
Each vertex in V1, V2, and V3 has degree 9, 2m−2 + 3, and 2m−2 + 2, respectively.

Since these degrees are distinct for each m ≥ 5, it follows that V1, V2, and V3 are the
orbits of Aut

(
�(m)

)
because σ acts transitively on each these sets. For 1 ∈ V

(
�(m)

)
,

we have that

∣∣Aut(�(m)
)∣∣ = |O(1)| · | stab(1)| = 2m−1 · | stab(1)|, (7)

where the first equality holds by the Orbit-Stabilizer Theorem. To establish the order
of stab(1), we consider the neighborhood graph N (1), which is depicted in Fig. 5a.

Since 1 is fixed by all automorphisms of stab(1), the neighborhood graph N (1) is
invariant under the action of stab(1). Additionally, the only neighbors of 1 that lie in
V2, namely 2m−1 + 1 and 2m−1 + 2, are fixed in stab(1) because they have different
degrees in N (1); the vertex 2m−1 + 5 is also fixed by every automorphism of stab(1)
as the only neighbor of 1 in V3. It follows that 2 and 2m−2 + 2 form an orbit of stab(1)
in Aut

(
�(m)

)
, and thus vertex 3 is fixed by stab(1). Vertices 2m−1 and 2m−2 also form
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an orbit of stab(1) in Aut
(
�(m)

)
, and thus, 2m−1 − 1 is fixed by stab(1). Moreover, if

1 and now 2 are fixed by some automorphism of �(m), then the neighborhood graph
N (2) is also fixed in stab(1, 2) (Fig. 5b). In succession, the neighborhood graphs
N (3), N (4), . . . , N (2m−1) are fixed by every automorphism of �(m) that fixes 1 and
2. Therefore, | stab(1, 2)| = 1, and by the Orbit-Stabilizer Theorem,

| stab(1)| = |{2, 2m−2 + 2}| · | stab(1, 2)| = 2 · 1 = 2. (8)

Equations (7) and (8) imply that
∣∣Aut(�(m)

)∣∣ = 2m . Since we previously established
that QA2m

∼= 〈σ, τ 〉 ≤ Aut
(
�(m)

)
, the result now follows. ��

Ifm ≥ 5 is an integer, then the graph�(m) given in Definition 9 is a QA2m -graph by
Proposition 10. Since V

(
�(m)

) = 2m−1 + 6, we have that α(QA2m ) ≤ 2m−1 + 6 for
all m ≥ 5. We claim that no graph on fewer than 2m−1 + 6 vertices is a QA2m -graph.

Proposition 11 Letm ≥ 5bean integer. If� is aQA2m -graph, then |V (�)| ≥ 2m−1+6.

Proof Assume that � is a QA2m -graph, and toward a contradiction, suppose that
|V (�)| < 2m−1 + 6. Consider Aut � = QA2m as a permutation group, and let σ

and τ be the generators of QA2m as defined in Eq. (2). Since the order of σ is 2m−1,
the cycle decomposition of σ must contain at least one 2m−1-cycle. Without loss of
generality, assume that σ = (1, 2, 3, . . . , 2m−1)ρ is the cycle decomposition of σ

with

supp(ρ) ⊆ {2m−1 + 1, 2m−1 + 2, . . . , 2m−1 + 5};

this assumption on supp(ρ) is valid because

| supp(σ )| ≤ |V (�)| < 2m−1 + 6

and this forces the order of ρ to be either 1, 2, or 4.
Since the cycle decomposition of σ contains exactly one 2m−1-cycle, Lemma 6

implies τ(1) = � for some � ∈ {1, 2, . . . , 2m−1}. Moreover, the relation τστ =
σ 2m−2+1 defined in Eq. (2) implies that

τ(k) ≡ (
(2m−2 + 1)(k − 1) + �

)
mod 2m−1

for each k ∈ {1, 2, . . . , 2m−1}. Because τ(�) = 1, the equation above implies that
� ≡ 1(mod 2m−2). Therefore, � = 1 or � = 2m−2 + 1 when � ∈ {1, 2, . . . , 2m−1},
and either

τ
∣∣{1,2,3,...,2m−1} = (2, 2m−2 + 2)(4, 2m−2 + 4) · · · (2m−2, 2m−2 + 2m−2)

or

τ
∣∣{1,2,3,...,2m−1} = (1, 2m−2 + 1)(3, 2m−2 + 3) · · · (2m−2 − 1, 2m−2 + 2m−2 − 1).

As a result, each edge orbit in Aut � = QA2m has one of the following three forms:
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(a) O{1, a} with 1 < a ≤ 2m−1;
(b) O{1, a} with 2m−1 + 1 ≤ a ≤ 2m−1 + 5; or
(c) O{a, b} with 2m−1 + 1 ≤ a < b ≤ 2m−1 + 5.

We will conclude this proof by finding an involution α ∈ Aut �\QA2m ; such an
automorphism will contradict the fact that � is a QA2m -graph and thus conclude our
proof. The two cases that follow depend on the order of ρ, which appeared in the cycle
decomposition of σ .

First, assume that the order of ρ is 1 or 2. Define the permutation α on
{1, 2, 3, . . . , 2m−1} by

α = (2, 2m−1)(3, 2m−1 − 1) · · · (2m−2, 2m−2 + 2) =
2m−2−1∏
i=1

(1 + i, 2m−1 + 1 − i).

Since α is an involution and the only involutions of QA2m are τ , σ 2m−2
, and σ 2m−2

τ ,
it follows that α /∈ QA2m . If 1 < a ≤ 2m−1, then the induced subgraph of � on
{1, 2, 3, . . . , 2m−1} with edge set O{1, a} is a circulant graph. Moreover, the induced
bipartite subgraph of � with partite sets {1, 2, 3, . . . , 2m−1} and supp(ρ) and edge set
O{1, a} is either a complete bipartite graph (K1,2m−1 or K2,2m−1 ), or K1,2m−2 ⊕K1,2m−2

for any a ∈ {2m−1 +1, . . . , 2m−1 +5}. Consequently, α leaves every edge orbit of the
form O{1, a} with a ∈ {1, 2, . . . , 2m−1 + 5} invariant. Since α fixes the every edge
orbit O{a, b} with 2m−1 + 1 ≤ a < b ≤ 2m−1 + 5, we have that α ∈ Aut �\QA2m , a
contradiction.

Now, assume that the order of ρ is 4. After a possible relabeling, suppose that the
4-cycle

(2m−1 + 1, 2m−1 + 2, 2m−1 + 3, 2m−1 + 4)

is contained in the cycle decomposition of ρ and that 2m−1 + 1 ≤ a ≤ 2m−1 + 5.
If E(�) does not contain an edge orbit of the form O{1, a} (set a = 2m−1 + 1) or
contains exactly one edge orbit of the form O{1, a}, then a similar argument to that
above proves that

α = (ρ(a), ρ3(a))

2m−2−1∏
i=1

(1 + i, 2m−1 + 1 − i) ∈ Aut �\QA2m ,

a contradiction. If there are exactly two edge orbits of the form O{1, a} contained in
E(�), say O{1, a} and O{1, ρ(a)} or O{1, a} and O{1, ρ2(a)}, then the involution

α = (a, ρ(a))(ρ2(a), ρ3(a))

2m−2−1∏
i=1

(1 + i, 2m−1 + 1 − i)
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is an element of Aut �\QA2m in the first case, whereas

α = (a, ρ2(a))(ρ(a), ρ3(a))

2m−2−1∏
i=1

(1 + i, 2m−1 + 1 − i)

is an element of Aut �\QA2m in the second case. Since the situations when there are
three or four edge orbits of the form O{1, a} contained in E(�) are complements of
the aforementioned cases, we obtain a final contradiction. Thus, the order of � is at
least 2m−1 + 6. ��

This article concludes with the proof of our second main result, namely Theorem 5.

Proof of Theorem 5 The results of Sect. 4 prove that α(QA16) = 18. Thus, we assume
that m ≥ 5 is an integer. If � is a QA2m -graph, then |V (�)| ≥ 2m−1 + 6 by Proposi-
tion 11. As a result, α(QA2m ) ≥ 2m−1 + 6. Moreover, α(QA2m ) ≤ 2m−1 + 6 because
the graph �(m) given in Definition 9 with 2m−1 + 6 vertices is a QA2m -graph by
Proposition 10. Therefore,

α(QA2m ) =
{
18 if m = 4

2m−1 + 6 if m ≥ 5,

as desired. ��
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