
Journal of Algebraic Combinatorics (2020) 51:567–588
https://doi.org/10.1007/s10801-019-00885-8

Hopf algebras of planar binary trees: an operated algebra
approach

Yi Zhang1 · Xing Gao2

Received: 1 May 2018 / Accepted: 29 March 2019 / Published online: 20 May 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Parallel to operated algebras built on top of planar rooted trees via the grafting oper-
ator B+, we introduce and study ∨-algebras and more generally ∨�-algebras based
on planar binary trees. Involving an analogy of the Hochschild 1-cocycle condition,
cocycle ∨�-bialgebras (resp. ∨�-Hopf algebras) are also introduced and their free
objects are constructed via decorated planar binary trees. As a special case, the well-
known Loday–Ronco Hopf algebra HLR is a free cocycle ∨-Hopf algebra. By means
of admissible cuts, a combinatorial description of the coproduct �LR(�) on decorated
planar binary trees is given, as in the Connes–Kreimer Hopf algebra by admissible
cuts.
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1 Introduction

The rooted tree is a significant object studied in algebra and combinatorics. Many
algebraic structures have been equipped on rooted trees. One of the most important
examples is the Connes–Kreimer Hopf algebra [10], which is employed to deal with a
problem of renormalization in Quantum Field Theory [5,8,11,12,21,24]. Other Hopf
algebras have also been constructed on rooted trees in different situations, such as
Loday–Ronco [27], Grossman-Larson [18] and Foissy-Holtkamp [13,14,22]. Further-
more, other algebraic structures, such as dendriformalgebras [28], pre-Lie algebras [9],
operated algebras [19] and Rota-Baxter algebras [38], have been established on rooted
trees.Most of these algebraic structures possess certain universal properties. For exam-
ple, the Connes–Kreimer Hopf algebra of rooted trees inherits its algebra structure
from the initial object in the category of (commutative) algebras with a linear opera-
tor [13,34].

As a special case of rooted trees (rooted), planar binary trees play an indispensable
role in the study of combinatorics [36], algebraic operads [7,31], associahedrons [30],
cluster algebras [23] and Hopf algebras [2,4,27]. In [27], Loday and Ronco defined
a Hopf algebra HLR (with unity) on planar binary trees, which is a free associative
algebra on the trees of the form | ∨ T , that is, the trees such that the tree born from
the root on the left has only one leaf. The HLR (without unity) is the free dendriform
algebra on one generator [27,29]. Later, Brouder and Frabetti [4] showed that there
exists a noncommutative Hopf algebra on planar binary trees which represents the
renormalization group of quantum electrodynamics, and the coaction which describes
the renormalization procedure. In the algebraic framework of Chapoton [6] for Bessel
operad, a Hopf operad is constructed on the vector spaces spanned by forests of leaf-
labeled binary rooted trees. Aguiar and Sottile further studied the structure of the
Loday–Ronco Hopf algebra by a new basis in [2], where the product, coproduct and
antipode in terms of this basis were also given.

The concept of an algebra with (one or more) linear operators was introduced by
Kurosh [26]. Later, Guo [19] constructed the free objects of such algebras in terms
of various combinatorial objects, such as Motzkin paths, rooted forests and bracketed
words by the name of �-operated algebras, where � is a nonempty set used to index
the operators. See also [3,17,20]. The Connes–Kreimer Hopf algebra of rooted trees
can be viewed as an operated algebra, where the operator is the grafting operation B+.
More generally, the decorated (planar) rooted trees with vertices decorated by a set
�, together with a set of grafting operations {B+

α | α ∈ �}), are an �-operated alge-
bra [25,38]. Indeed, it is the free �-operated algebra on the empty set or equivalently
the initial object in the category of �-operated algebras.

It is well known that the noncommutative Connes–Kreimer Hopf algebra of planar
rooted trees is isomorphic to the Loday–RoncoHopf algebra of planar binary trees [14,
22]. Now, the former can be treated in the framework of operated algebras [38]. So,
there should be an analogy of operated algebras on top of planar binary trees, which
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is introduced and explored in the present paper by the name of ∨-algebras or more
generally∨�-algebras. Let us emphasize that the binary grafting operation∨ on planar
binary trees has subtle difference with the aforementioned grafting operation B+ on
rooted trees—the ∨ is binary, while B+ is unary. Thanks to these new concepts, the
decorated planar binary trees HLR(�) can be viewed as a free cocycle ∨�-bialgebra
and further a free cocycle ∨�-Hopf algebra on the empty set, involving an analogues
of a Hochschild 1-cocycle condition on planar rooted trees [15]. In particular, the well-
known Loday–Ronco Hopf algebra HLR is a free cocycle ∨-Hopf algebra. This new
free algebraic structure on planar binary trees validates again that most of algebraic
structures on rooted trees have universal properties.

Our second source of inspiration and motivation is the admissible cut on rooted
trees which was introduced by Connes and Kreimer [10]. We adapt from this cut to
expose the concept of admissible cut on decorated planar binary trees. Surprisingly,
the admissible cuts on decorated planar binary trees make it possible to give a combi-
natorial description of the coproduct on the decorated Loday–Ronco Hopf algebras.
We point out that our admissible cut is different from the one introduced by Connes
and Kreimer [10], see Remark 2.5.

Structure of the Paper. In Sect. 2, we first recall some results concerning the Hopf
algebraic structures on decorated planar binary trees. Motivated by the admissible cut
on rooted trees, we introduce the concept of an admissible cut on decorated planar
binary trees. Having this concept in hand, we give a combinatorial description of
the coproduct of the decorated Loday–Ronco Hopf algebra (Theorem 2.6). We end
this section by showing that HLR(�) is a strictly graded coalgebra concerning the
coalgebra structure (Theorem 2.12). In Sect. 3, viewing the Hopf algebra of decorated
planar binary trees in the framework of operated algebras, we build ∨-algebras and
more generally ∨�-algebras (Definition 3.2), leading to the notations of (cocycle)
∨�-bialgebras and ∨�-Hopf algebras (Definitions 3.6, 3.7), involving a ∨-cocycle
condition. With the help of these concepts, we first equip the decorated planar binary
trees HLR(�) with a free ∨�-algebraic structure (Theorem 3.5). A family of coideals
of a ∨�-bialgebra is also given (Proposition 3.8). We then prove, respectively, that
HLR(�) is the free cocycle ∨�-bialgebra and free cocycle ∨�-Hopf algebra on the
empty set (Theorem 3.10). In particular, when � is a singleton set, we establish,
respectively, the free cocycle ∨-bialgebra and free cocycle ∨-Hopf algebra structures
on the well-known Loday–Ronco Hopf algebra HLR (Corollary 3.11).

Convention. Throughout this paper, let k be a unitary commutative ring which will
be the base ring of all modules, algebras, coalgebras and bialgebras, as well as linear
maps. Algebras are unitary algebras but not necessary commutative. For any set Y ,
denote by kY the free k-module with basis Y .

2 Hopf algebras of decorated planar binary trees

In this section, we expose some results and notations concerning Hopf algebraic struc-
tures on decorated planar binary trees, which will be used later. See [7,14,33,35] for
more details.
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2.1 Hopf algebras of decorated planar binary trees

A planar tree is an oriented graph drawn on a plane, with a preferred vertex called
the root. It is binary when any vertex is trivalent (one root and two leaves) [27]. The
root is at the bottom of the tree. For each n � 0, the set of planar binary trees with n
interior vertices will be denoted by Yn . For instance,

Y0 = {|}, Y1 =
{ }

, Y2 =
{

,

}
,

Y3 =
{

, , , ,

}
.

Here, | stands for the unique tree with one leaf. The number of the set Yn is given by
the Catalan number (2n)!

n!(n+1)! [27].
Let � be a nonempty set throughout the remainder of the paper. For each n � 0,

let Yn(�) denote the set of planar binary trees in Yn with interior vertices decorated
by elements of �. Denote by

Y∞(�) :=
⊔
n�0

Yn(�) and HLR(�) := kY∞(�) =
⊕
n�0

kYn(�).

A planar binary tree T in Yn(�) is called an n-decorated planar binary tree or
n-tree for simplicity. The depth dep(T ) of a decorated planar binary tree T is the
maximal length of linear chains from the root to the leaves of the tree. For example,

dep(|) = 0 and dep

(
α

)
= 1.

Let T ∈ Ym(�) and T ′ ∈ Yn(�) be two decorated planar binary trees and α an
element in �. The grafting ∨α of T and T ′ on α is the (n + m + 1)-decorated planar
binary tree T ∨α T ′ ∈ Ym+n+1(�), obtained by joining the roots of T and T ′ and create
a new root, which is decorated by α. For any decorated planar binary tree T ∈ Yn(�)

with n � 1, there exist unique elements T l ∈ Yk(�), T r ∈ Yn−k−1(�) and α ∈ �

such that

T = T l ∨α T r ,

where T l and T r are the left-hand side of T and the right-hand side of T , respectively.
For instance,

β ∨α | = αβ , β ∨α γ = β γ
α .
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A multiplication ∗ on HLR(�) with unit | is given recursively on the sum of depth
as [14, Sec. 4.3]

| ∗ T := T ∗ | := T and T ∗ T ′ := T l ∨α (T r ∗ T ′) + (T ∗ T
′l) ∨β T

′r , (1)

where T = T l ∨α T r and T ′ = T
′l ∨β T

′r are in Y∞(�) with α, β ∈ �. Let us agree
to fix the notation ∗ to denote the multiplication given in Eq. (1) hereafter.

Example 2.1 We have

α ∗ β = α
β + β

α
, α

β ∗ γ = β γ
α + β

α γ ,

γ ∗ α
β = γ

αβ + α
γ

β + γ
β α .

In the undecorated case, the description of the coproduct in the Loday–Ronco
Hopf algebra HLR was first introduced in [27, Proposition 3.3]. In the decorated
case, Foissy [14, Sec. 4.3] equipped the k-algebra HLR(�) with a coproduct �LR(�)

described recursively on dep(T ) for basis elements T ∈ Y∞(�) as

�LR(�)(T ) := | ⊗ | if T = |; (2)

and for T = T l ∨α T r ,

�LR(�)(T ) := �LR(�)(T
l ∨α T r ) := (T l ∨α T r ) ⊗ |

+ (∗,∨α)
(
�LR(�)(T

l) ⊗ �LR(�)(T
r )

)
, (3)

where (∗,∨α) := (∗ ⊗ ∨α) ◦ τ23 and τ23 is the permutation of the second and third
tensor factors.

Example 2.2 We have

�LR(�)

(
α

)
= α ⊗ | + | ⊗ α ,

�LR(�)

(
α
β

)
= α

β ⊗ | + | ⊗ α
β + β ⊗ α ,

�LR(�)

(
α

β

)
= α

β ⊗ | + | ⊗ α
β + β ⊗ α ,

�LR(�)

(
αβ

γ
)

= αβ
γ ⊗ | + | ⊗ αβ

γ + β
γ ⊗ α + γ ⊗ α

β ,

�LR(�)

(
β γ

α

)
= β γ

α ⊗ | + | ⊗ β γ
α +

(
β

γ + γβ

)
⊗ α

+ β ⊗ α
γ + γ ⊗ α

β .
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Foissy [14] also defined linear maps

εLR(�) : HLR(�) → k, | 
→ 1k and T 
→ 0 for | �= T ∈ Y∞(�)

and

| : k → HLR(�), 1k 
→ |.

Recall [33] that a bialgebra (H , ∗H , 1H ,�, ε) is called graded if there are k-
submodules H (n), n � 0, of H such that

(a) H = ⊕∞
n=0 H

(n);
(b) H (p)H (q) ⊆ H (p+q), p, q � 0; and
(c) �(H (n)) ⊆ ⊕

p+q=n H
(p) ⊗ H (q), n � 0.

Elements of H (n) are called to have degree n. H is called connected if H (0) = k and
ker ε = ⊕

n�1 H
(n). It is well known that a connected graded bialgebra is a Hopf

algebra [32].

Lemma 2.3 [14, Sec. 4.3] [33, Sec. 6.3.5]Thequintuple (HLR(�), ∗, |,�LR(�), εLR(�))

is a connected graded bialgebra with grading HLR(�) = ⊕n�0kYn(�) and hence a
Hopf algebra.

If � is a singleton set, then Y∞(�) is precisely the planar binary trees (without
decorations) and one gets the Loday–Ronco Hopf algebra on planar binary trees [27,
Thm. 3.1].

2.2 A combinatorial description of1LR(Ä)

Next, we give a combinatorial description of the coproduct �LR(�) by the admissible
cut which was introduced by Connes and Kreimer [10] on rooted trees and further
studied by Foissy [16] on decorated rooted trees. This notion of cut of rooted trees can
be adapted to decorated planar binary trees as follows.

Let T ∈ Y∞(�) be a decorated planar binary tree. The edges of T are oriented
upwards, from root to leaves. A (non-total) cut c is a choice of edges connecting
internal vertices of T . Note that an edge connecting a leaf and an internal vertex is not
in a cut. In particular, the empty cut is a cut with the choice of no edges. The cut c
is called admissible if any oriented path from a vertex of the tree to the root meets at
most one cut edge. For an admissible cut c, cutting each edge in c into two edges, T is
sent to a pair (Pc(T ), Rc(T )), such that Rc(T ) is the connected component containing
the root of T and Pc(T ) is the product of the other connected components with respect
to the multiplication ∗ given in Eq. (1), from left to right. The total cut is also added,
which is by convention an admissible cut such that

Rc(T ) = | and Pc(T ) = T .
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The set of admissible cuts of T is denoted by Adm∗(T ). Let us note that the empty
cut is admissible. Denote by

Adm(T ) := Adm∗(T ) \ {empty cut, total cut}.

Example 2.4 (a) Consider the decorated planar binary tree T = αβ
γ

with α, β, γ ∈
�. It has 22 non-total cuts and one total cut.

cut c empty αβ
γ

αβ
γ

αβ
γ

total

Admissible? yes yes yes no yes

Rc(T ) αβ
γ

α α
β × |

Pc(T ) | β
γ

γ × αβ
γ

(b) Consider the decorated planar binary tree T = β γ
α with α, β, γ ∈ �. It has

22 non-total cuts and one total cut.

cut c empty
β γ

α
β γ

α
β γ

α total

Admissible? yes yes yes yes yes

Rc(T )
β γ

α α
γ

α
β

α |
Pc(T ) | β γ β ∗ γ

β γ
α

Remark 2.5 It should be pointed out that our admissible cut is different from the one,
which is introduced by Connes–Kreimer on undecorated planar rooted trees [10] and
further studied by Foissy on decorated planar rooted trees [16]. For example, under
the framework of [16], Foissy gave

Rc( �∨��

�

α

γβ

δ

) = �

�

α
γ and Pc( �∨��

�

α

γβ

δ

) = �

�

β
δ .

The undecorated case can also be found in [10, Figure 5]. Note that the cutting edge
is deleted. However, our admissible cut c cuts each cutting edge into two edges.

Now, we are ready to give a combinatorial description of the coproduct �LR(�).

Theorem 2.6 Let T ∈ Y∞(�) \ {|}. Then,
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�LR(�)(T ) =
∑

c∈Adm∗(T )

Pc(T ) ⊗ Rc(T ) = T ⊗ | + | ⊗ T

+
∑

c∈Adm(T )

Pc(T ) ⊗ Rc(T ). (4)

Proof We prove Eq. (4) by induction on the depth dep(T ) � 1. For the initial step of

dep(T ) = 1, we have T = α for some α ∈ �. Since α has only one internal

vertex and each edge in a cut can’t connect a leaf and an internal vertex, T has only
two cuts—the total cut and the empty cut. Thus, Adm∗(T ) consists of the total cut and
the empty cut, and so

�LR(�)

(
α

)
= α ⊗ | + | ⊗ α .

For the induction step of dep(T ) � 2, we may write T = T l ∨α T r for some
T l , T r ∈ Y∞(�) and α ∈ �. We have two cases to consider.

Case 1. dep(T l) = 0 and dep(T r ) � 1, or dep(T l) � 1 and dep(T r ) = 0. Without
loss of generality, we consider dep(T l) = 0 and dep(T r ) � 1. Then, T l = | and
T = | ∨α T r . By Eq. (3),

�LR(�)(T ) = �LR(�)(| ∨α T r ) = (| ∨α T r ) ⊗ |
+ (∗,∨α)

(
�LR(�)(|) ⊗ �LR(�)(T

r )
)

= T ⊗ | + (∗,∨α)
(| ⊗ | ⊗ �LR(�)(T

r )
)

(by Eq. (2))

= T ⊗ | + (∗,∨α)

(
| ⊗ | ⊗

(
T r ⊗ | + | ⊗ T r

+
∑

c∈Adm(T r )

Pc(T r ) ⊗ Rc(T r )
))

(by the induction hypothesis)

= T ⊗ | + (∗,∨α)

(
| ⊗ | ⊗ T r ⊗ | + | ⊗ | ⊗ | ⊗ T r

+
∑

c∈Adm(T r )

| ⊗ | ⊗ Pc(T r ) ⊗ Rc(T r )

)

= T ⊗ | + (| ∗ T r ) ⊗ (| ∨α |) + (| ∗ |) ⊗ (| ∨α T r )

+
∑

c∈Adm(T r )

(| ∗ Pc(T r )) ⊗ (| ∨α Rc(T r ))

= T ⊗ | + | ⊗ (| ∨α T r ) + T r ⊗ (| ∨α |)
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+
∑

c∈Adm(T r )

Pc(T r ) ⊗ (| ∨α Rc(T r ))

= T ⊗ | + | ⊗ T +
∑

c∈Adm(T )

Pc(T ) ⊗ Rc(T r ).

Case 2. dep(T l) � 1 and dep(T r ) � 1. Then, T = T l ∨α T r with T l �= | and T r �= |.
It follows from Eq. (3) that

�LR(�)(T ) = �LR(�)(T
l ∨α T r ) = (T l ∨α T r ) ⊗ |

+ (∗,∨α)
(
�LR(�)(T

l) ⊗ �LR(�)(T
r )

)

= T ⊗ | + (∗,∨α)

((
T l ⊗ | + | ⊗ T l

+
∑

c∈Adm(T l )

Pc(T l) ⊗ Rc(T l)
)

⊗
(
T r ⊗ | + | ⊗ T r

+
∑

c′∈Adm(T r )

Pc′
(T r ) ⊗ Rc′

(T r )
))

(by the induction hypothesis)

= T ⊗ | + (∗,∨α)

(
T l ⊗ | ⊗ T r ⊗ | + T l ⊗ | ⊗ | ⊗ T r

+ T l ⊗ | ⊗
∑

c′∈Adm(T r )

Pc′
(T r ) ⊗ Rc′

(T r )

+ | ⊗ T l ⊗ T r ⊗ | + | ⊗ T l ⊗ | ⊗ T r

+ | ⊗ T l ⊗
∑

c′∈Adm(T r )

Pc′
(T r ) ⊗ Rc′

(T r )

+
∑

c∈Adm(T l )

Pc(T l) ⊗ Rc(T l) ⊗ T r ⊗ |

+
∑

c∈Adm(T l )

Pc(T l) ⊗ Rc(T l) ⊗ | ⊗ T r

+
∑

c∈Adm(T l )

∑
c′∈Adm(T r )

Pc(T l) ⊗ Rc(T l) ⊗ Pc′
(T r ) ⊗ Rc′

(T r )

)

= T ⊗ | + (T l ∗ T r ) ⊗ (| ∨α |) + T l ⊗ (| ∨α T r )

+
∑

c′∈Adm(T r )

(T l ∗ Pc′
(T r )) ⊗ (| ∨α Rc′

(T r ))

+ T r ⊗ (T l ∨α |) + | ⊗ (T l ∨α T r )

+
∑

c′∈Adm(T r )

Pc′
(T r ) ⊗ (T l ∨α Rc′

(T r ))
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+
∑

c∈Adm(T l )

(Pc(T l) ∗ T r ) ⊗ (Rc(T l) ∨α |)

+
∑

c∈Adm(T l )

Pc(T l) ⊗ (Rc(T l) ∨α T r )

+
∑

c∈Adm(T l )

∑
c′∈Adm(T r )

(Pc(T l) ∗ Pc′
(T r )) ⊗ (Rc(T l) ∨α Rc′

(T r ))

= T ⊗ | + | ⊗ T + (T l ∗ T r ) ⊗ (| ∨α |) + T l ⊗ (| ∨α T r )

+ T r ⊗ (T l ∨α |)
+

∑
c′∈Adm(T r )

(T l ∗ Pc′
(T r )) ⊗ (| ∨α Rc′

(T r ))

+
∑

c′∈Adm(T r )

Pc′
(T r ) ⊗ (T l ∨α Rc′

(T r ))

+
∑

c∈Adm(T l )

(Pc(T l) ∗ T r ) ⊗ (Rc(T l) ∨α |)

+
∑

c∈Adm(T l )

Pc(T l) ⊗ (Rc(T l) ∨α T r )

+
∑

c∈Adm(T l )

∑
c′∈Adm(T r )

(Pc(T l) ∗ Pc′
(T r )) ⊗ (Rc(T l) ∨α Rc′

(T r )).

(5)

We may draw the decorated planar binary tree T graphically as

T = α

Tl...
Tr...

.

Then, all kinds of admissible cuts in Adm(T ) can be illustrated graphically as:

Note that the last eight terms in Eq. (5) are precisely corresponding to the eight
kinds of admissible cuts in Adm(T ). Thus,

�LR(�)(T ) = �LR(�)(T
l ∨α T r ) = T ⊗ | + | ⊗ T +

∑
c∈Adm(T )

Pc(T ) ⊗ Rc(T ).

This completes the proof. ��
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Example 2.7 (a) Consider the planar binary tree T = α
β

γ

. By Theorem 2.6 and

Example 2.4 (a), we have

�LR(X)

(
αβ

γ
)

= αβ
γ ⊗ | + | ⊗ αβ

γ + β
γ ⊗ α + γ ⊗ α

β
.

(b) Let T = β γ
α . It follows from Theorem 2.6 and Example 2.4 (b) that

�LR(X)

(
β γ

α

)
= β γ

α ⊗ | + | ⊗ β γ
α +

(
β ∗ γ

)
⊗ α

+ β ⊗ α
γ + γ ⊗ α

β

= β γ
α ⊗ | + | ⊗ β γ

α +
(

β
γ + γ

β
)

⊗ α

+ β ⊗ α
γ + γ ⊗ α

β
.

Observe that the results in (a) and (b) are consistent with the corresponding ones
in Example 2.2.

As a direct consequence of Theorem2.6,wemay give another proof of the following
result, which was obtained in [14, Sec. 4.3] and [33, Sec. 6.3.5].

Corollary 2.8 For each n � 0,

�LR(�)(kYn(�)) ⊆
⊕

p+q=n

kYp(�) ⊗ kYq(�).

Proof Let T ∈ Yn(�). Denote by Int(T ) the set of interior vertices of T . Then,
|Int(T )| = n. For an admissible cut c in Adm∗(T ), write

Pc(T ) = T1 ∗ · · · ∗ Tk and Rc(T ) = Tk+1 for some k � 0.

Here, we use the convention that Pc(T ) = | when k = 0. By [14, Sec. 4.3], the
number of interior vertices of each summand in T1 ∗ · · · ∗ Tk is

∑k
i=1 |Int(Ti )|. So, by

Theorem 2.6, the number of interior vertices of each summand in �LR(�)(T ) is

k∑
i=1

|Int(Ti )| + |Int(Tk+1)| = |Int(T )| = n,

whence

�LR(�) ∈
⊕

p+q=n

kYp(�) ⊗ kYq(�),

as required. ��
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Remark 2.9 By Theorem 2.6, the fact that HLR(�) is a connected graded bialgebra is
obvious.

2.3 Subcoalgebras of coalgebra of decorated planar binary trees

In this subsection, we only consider the aforementioned coalgebraic structure on dec-
orated planar binary trees and show that HLR(�) is a strictly graded coalgebra.

Let C be a coalgebra. If there exists a family of k-submodules {C (n) | n � 0} of C
such that

(a) C = ⊕
n�0 C

(n);

(b) ε(C (n)) = 0 , n �= 0; and
(c) �(C (n)) ⊆ ⊕

p+q=n C
(p) ⊗ C (q), n � 0,

then C is called a graded coalgebra. If in particular,

C (0) ∼= k and C (1) = P(C),

then C is said to be a strictly graded coalgebra [1, Chap. 4.1], where P(C) is the set
of primitive elements of C .

Definition 2.10 [1, Chap. 3.1] Let C be a coalgebra.

(a) A subcoalgebra M of C is called a simple subcoalgebra if it does not have any
subcoalgebras other than 0 and M .

(b) C is called irreducible if C has only one simple subcoalgebra.
(c) C is called pointed if all simple subcoalgebras of C are one dimensional.

Lemma 2.11 [1, Chap. 4.1] A strictly graded coalgebra is a pointed irreducible coal-
gebra.

Narrowing our attention to the coalgebraic structure of HLR(�), we obtain

Theorem 2.12 The coalgebra (HLR(�),�LR(�), εLR(�)) is a strictly graded coal-
gebra with the grading HLR(�) = ⊕n�0kYn(�) and hence has only one simple
subcoalgebra k{|}.
Proof By Lemma 2.3, HLR(�) = ⊕n�0kYn(�) is a graded coalgebra. Since Y0(�) =
Y0 = {|}, we have kY0(�) = k. Furthermore,

kY1(�) = k{ α | α ∈ �}

is the set of primitive elements of HLR(�) by Theorem 2.6. Thus, HLR(�) is a strictly
graded coalgebra. By Lemma 2.11, HLR(�) has only one simple subcoalgebra. Then,
the result follows from that kY0(�) = k{|} is a simple subcoalgebra of HLR(�). ��
Remark 2.13 Summing up, the coradical of the Hopf algebra HLR(�) (that is to say
the sum of all its simple coalgebra) is k{|}.
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3 Free cocycle∨Ä-Hopf algebras of decorated planar binary trees

In this section, based on the binary grafting operations ∨α on HLR(�) with α ∈ �,
we introduce the concept of a ∨-algebra and more generally a ∨�-algebra, leading
to the emergence of ∨�-bialgebras and ∨�-Hopf algebras. Further when a ∨-cocycle
condition is involved, cocycle ∨�-bialgebras and cocycle ∨�-Hopf algebras are also
introduced. We finally show that HLR(�) is a free cocycle ∨�-Hopf algebra.

3.1 Free∨Ä-algebras of decorated planar binary trees

In this subsection, we equip the space HLR(�) of planar binary trees decorated by
a nonempty set � with a free ∨�-algebra structure. Let us first recall the concept of
operated algebras.

Definition 3.1 [19, Sec. 1.2]

(a) An operated algebra is an algebra A togetherwith a (linear) operator P : A → A.
(b) An �-operated algebra is an algebra A together with a set of (linear) operators

Pα : A → A, α ∈ �.

Motivated by the above definition and Eq. (1), we introduce ∨-algebras.
Definition 3.2 (a) A ∨-algebra is an algebra (A, ∗A, 1) together with a binary oper-

ation ∨ : A ⊗ A → A such that, for a = a1 ∨ a2 and a′ = a′
1 ∨ a′

2 in A,

a ∗A a′ = a1 ∨ (a2 ∗A a′) + (a ∗A a′
1) ∨ a′

2.

More generally, let � be a nonempty set.
(b) A ∨�-algebra is an algebra (A, ∗A, 1A) equipped with a set of binary operations

∨� := {∨α : A ⊗ A → A | α ∈ �}

such that

a ∗A a′ = a1 ∨α (a2 ∗A a′) + (a ∗A a′
1) ∨α′ a′

2, (6)

where a = a1 ∨α a2 and a′ = a′
1 ∨α′ a′

2 in A with α, α′ ∈ �. We denote such a
∨�-algebra by (A, ∗A, 1A,∨�).

(c) Let (A, ∗A, 1A,∨�) and (A′, ∗A′ , 1A′ ,∨′
�) be two ∨�-algebras. A linear map

φ : A → A′ is called a ∨�-algebra morphism if φ is an algebra homomorphism
such that φ ◦ ∨α = ∨′

α ◦ (φ ⊗ φ) for each α ∈ �.
(d) A free ∨�-algebra on a set X is a ∨�-algebra (A, ∗A, 1A,∨�) together with a

set map j : X → A with the property that, for any (A′, ∗A′ , 1A′ ,∨′
�) and a set

map φ : X → A′, there exists a unique ∨�-algebra morphism φ : A → A′ such
that φ ◦ j = φ.
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Remark 3.3 Let us emphasize that ∨-algebras are different from operated algebras:
the ∨-algebra is an algebra equipped with a binary operation satisfying Eq. (6), but
the operated algebra is an algebra equipped with a unary operation.

Example 3.4 It follows from Eq. (1) that (HLR(�), ∗, |,∨�) is a ∨�-algebra. Indeed,
it is a free ∨�-algebra with a universal property (see Theorem 3.5 below).

The significant role of the binary grafting∨� is clarified by the following universal
property.

Theorem 3.5 The quadruple (HLR(�), ∗, |,∨�) is the free ∨�-algebra on the empty
set, that is, the initial object in the category of ∨�-algebras. More precisely, for any
∨�-algebra A = (A, ∗A, 1A,∨A,�), there exists a unique ∨�-algebra morphism
φ : HLR(�) → A.

Proof (Uniqueness). Suppose that φ : HLR(�) → A is a ∨�-algebra morphism.
We prove the uniqueness of φ(T ) for basis elements T ∈ Y∞(�) by induction on
dep(T ) � 0. For the initial step of dep(T ) = 0, we have T = | andφ(T ) = φ(|) = 1A.
For the induction step of dep(T ) � 1, we may write T = T1 ∨α T2 for some α ∈ �

and then

φ(T ) = φ(T1 ∨α T2) = φ ◦ ∨α(T1, T2) = ∨A,α ◦ (φ ⊗ φ)(T1, T2)

= ∨A,α

(
φ(T1) ⊗ φ(T2)

) = φ(T1) ∨A,α φ(T2).

Here, φ(T1) and φ(T2) are determined uniquely by the induction hypothesis and so
φ(T ) is unique.

(Existence). Define a linear map φ : HLR(�) → A recursively on depth dep(T )

for T ∈ Y∞(�) by assigning

φ(|) := 1A and φ(T ) := φ(T1 ∨α T2) := φ(T1) ∨A,α φ(T2), (7)

where T = T1 ∨α T2 for some T1, T2 ∈ Y∞(�) and α ∈ �. Then, for any T1, T2 ∈
Y∞(�), we have

φ ◦ ∨α(T1, T2) = φ(T1 ∨α T2) = φ(T1) ∨A,α φ(T2) = ∨A,α

(
φ(T1) ⊗ φ(T2)

)
= ∨A,α ◦ (φ ⊗ φ)(T1, T2)

and so

φ ◦ ∨α = ∨A,α ◦ (φ ⊗ φ).

We are left to check that

φ(T ∗ T ′) = φ(T ) ∗A φ(T ′) for any T , T ′ ∈ Y∞(�). (8)

123



Journal of Algebraic Combinatorics (2020) 51:567–588 581

We proceed to prove Eq. (8) by induction on the sum of depths dep(T )+dep(T ′) � 0.
For the initial step of dep(T ) + dep(T ′) = 0, we have T = T ′ = | and

φ(T ∗ T ′) = φ(| ∗ |) = φ(|) = 1A = 1A ∗A 1A = φ(|) ∗A φ(|)
= φ(T ) ∗A φ(T ′).

For the induction step of dep(T ) + dep(T ′) � 1, if dep(T ) = 0 or dep(T ′) = 0,
without loss of generality, letting dep(T ) = 0, then T = | and

φ(T ∗ T ′) = φ(| ∗ T ′) = φ(T ′) = 1A ∗A φ(T ′) = φ(|) ∗A φ(T ′)
= φ(T ) ∗A φ(T ′).

So, we may assume that dep(T ), dep(T ′) � 1 and write

T = T1 ∨α T2 and T ′ = T ′
1 ∨β T ′

2 for some α, β ∈ �.

Hence,

φ(T ∗ T ′) = φ
(
T1 ∨α (T2 ∗ T ′) + (T ∗ T ′

1) ∨β T ′
2

)
(by Eq. (1))

= φ
(
T1 ∨α (T2 ∗ T ′)

) + φ
(
(T ∗ T ′

1) ∨β T ′
2

)
(by φ being linear)

= φ(T1) ∨A,α φ(T2 ∗ T ′) + φ(T ∗ T ′
1) ∨A,β φ(T ′

2) (by Eq. (7))

= φ(T1) ∨A,α

(
φ(T2) ∗A φ(T ′)

) + (
φ(T ) ∗A φ(T ′

1)
) ∨A,β φ(T ′

2)

(by the induction hypothesis)

= φ(T1) ∨A,α

(
φ(T2) ∗A

(
φ(T ′

1) ∨A,β φ(T ′
2)

))

+
((

φ(T1) ∨A,α φ(T2)
) ∗A φ(T ′

1)
)

∨A,β φ(T ′
2)

(by Eq. (7))

= (
φ(T1) ∨A,α φ(T2)

) ∗A
(
φ(T ′

1) ∨A,β φ(T ′
2)

)
(by Eq. (6))

= φ(T1 ∨α T2) ∗A φ(T ′
1 ∨β T ′

2) (by Eq. (7))

= φ(T ) ∗A φ(T ′),

as required. This completes the proof. ��

3.2 Free cocycle∨Ä-Hopf algebras of decorated planar binary trees

In this subsection, we prove that HLR(�) is the free cocycle ∨�-Hopf algebra on the
empty set. Let us first pose the following concepts which aremotivated from the binary
grafting operations {∨α | α ∈ �} characterized in Eq. (1) and the coproduct �LR(�)

given in Eq. (3).

Definition 3.6 (a) A ∨�-bialgebra (resp. ∨�-Hopf algebra) is a bialgebra (resp.
Hopf algebra) (H , ∗H , 1H ,�H , εH )which is also a∨�-algebra (H , ∗H , 1H ,∨�).
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(b) Let (H , ∨�) and (H ′, ∨′
�) be two ∨�-bialgebras (resp. ∨�-Hopf algebras). A

linear map φ : H → H ′ is called a ∨�-bialgebra morphism (resp. ∨�-Hopf
algebra morphism) if φ is a bialgebra (resp. Hopf algebra) morphism such that
φ ◦ ∨α = ∨′

α ◦ (φ ⊗ φ) for α ∈ �.

Involved with an analogy of the Hochschild 1-cocycle condition [15], we pose

Definition 3.7 (a) An �-cocycle ∨�-bialgebra or simply a cocycle ∨�-bialgebra
is a ∨�-bialgebra (H , ∗H , 1H ,�H , εH ,∨�) satisfying the following ∨-cocycle
condition: for any α ∈ � and h, h′ ∈ H ,

�H (h ∨α h′) = (h ∨α h′) ⊗ 1H + (∗H ,∨α)
(
�H (h) ⊗ �H (h′)

)
, (9)

where (∗H ,∨α) := (∗H ⊗ ∨H ) ◦ τ23 and τ23 is the permutation of the second and
third tensor factor. If the bialgebra in a cocycle ∨�-bialgebra is a Hopf algebra,
then it is called a cocycle ∨�-Hopf algebra.

(b) A free cocycle ∨�-bialgebra on a set X is a cocycle ∨�-bialgebra (H , ∗H , 1H ,

�H , εH ,∨�) together with a set map j : X → H with the property that for any
cocycle∨�-bialgebra (H ′, ∗H ′ , 1H ′ ,�H ′ , εH ′ ,∨′

�) and any setmapφ : X → H ′,
there exists a unique ∨�-bialgebra morphism φ : H → H ′ such that φ ◦ j = φ.
The concept of a free cocycle ∨�-Hopf algebra is defined in the same way.

When� is a singleton set, the subscript� in Definitions 3.2 and 3.7 will be suppressed
for simplicity.

The following result gives a family of coideals of a cocycle ∨�-bialgebra. Recall
that a submodule I in a coalgebra (C,�, ε) is called a coideal if I ⊆ ker ε and
�(I ) ⊆ I ⊗C +C ⊗ I . A biideal of a bialgebra A is a submodule of A which is both
an ideal and a coideal of A.

Proposition 3.8 Let (H , ∗H , 1H ,�H , εH ,∨�) be a cocycle ∨�-bialgebra and C a
coideal of H. Then, we have the following.

(a) H ∨α H := {h1 ∨α h2 | h1, h2 ∈ H} is a coideal of H for each α ∈ �.
(b) The ideal generated by C is a biideal.

Proof (a) Let α ∈ �. We first show H ∨α H ⊆ ker εH . Let

h = h1 ∨α h2 ∈ H ∨α H with h1, h2 ∈ H .

Using Sweedler notation, we can write

�H (h1) =
∑
(h1)

h1(1) ⊗ h1(2) and �H (h2) =
∑
(h2)

h2(1) ⊗ h2(2).

Then,

h1 ∨α h2 = (εH ⊗ id) ◦ �H (h1 ∨α h2) (by the counicity)
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= (εH ⊗ id)
(
(h1 ∨α h2) ⊗ 1H

+ (∗H ,∨α)
(
�H (h1) ⊗ �H (h2)

))
(by Eq. (9))

= εH (h1 ∨α h2) ⊗ 1H + (εH ⊗ id) ◦ (∗H ,∨α)⎛
⎝(∑

(h1)

h1(1) ⊗ h1(2)

)
⊗

( ∑
(h2)

h2(1) ⊗ h2(2)

)⎞
⎠

= εH (h1 ∨α h2) ⊗ 1H + (εH ⊗ id) ◦ (∗H ,∨α)⎛
⎝ ∑

(h1),(h2)

h1(1) ⊗ h1(2) ⊗ h2(1) ⊗ h2(2)

⎞
⎠

= εH (h1 ∨α h2) ⊗ 1H + (εH ⊗ id)⎛
⎝ ∑

(h1),(h2)

(h1(1) ∗H h2(1)) ⊗ (h1(2) ∨α h2(2))

⎞
⎠

(by (∗H ,∨α) := (∗H ⊗ ∨α) ◦ τ23)

= εH (h1 ∨α h2) ⊗ 1H

+
∑

(h1),(h2)

εH (h1(1) ∗H h2(1)) ⊗ (h1(2) ∨α h2(2))

= εH (h1 ∨α h2) ⊗ 1H

+
∑

(h1),(h2)

(
εH (h1(1)) ∗k εH (h2(1))

)
(h1(2) ∨α h2(2))

= εH (h1 ∨α h2) ⊗ 1H

+
∑

(h1),(h2)

(
εH (h1(1)) ∗k h1(2)

)
∨α

(
εH (h2(1)) ∗k h2(2)

)

= εH (h1 ∨α h2) ⊗ 1H
+ h1 ∨α h2 (by the counicity),

which implies

εH (h1 ∨α h2) ⊗ 1H = 0 and so εH (h1 ∨α h2) = 0.

We next show

H ∨α H ⊆ (H ∨α H) ⊗ H + H ⊗ (H ∨α H).

Indeed, for any h1 ∨α h2 ∈ H ∨α H ,

�H (h1 ∨α h2) = (h1 ∨α h2) ⊗ 1H

+ (∗H ,∨α)
(
�H (h1) ⊗ �H (h2)) (by Eq. (9))
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= (h1 ∨α h2) ⊗ 1H + (∗H ,∨α)( ∑
(h1),(h2)

(h1(1) ⊗ h1(2)) ⊗ (h2(1) ⊗ h2(2))

)

= (h1 ∨α h2) ⊗ 1H

+
∑

(h1),(h2)

(h1(1) ∗H h2(1)) ⊗ (h1(2) ∨α h2(2))

∈ (H ∨α H) ⊗ H + H ⊗ (H ∨α H).

Thus, H ∨α H is a coideal.
(b) Suppose that I is the ideal generated byC . Then, we canwrite I = H ∗HC∗H H

and so

�H (I ) = �H (H ∗H C ∗H H) = �H (H) ∗H �H (C) ∗H �H (H)

⊆ (H ⊗ H) ∗H (C ⊗ H + H ⊗ C) ∗H (H ⊗ H)

= (H ∗H C ∗H H) ⊗ (H ∗ H ∗ H)

+ (H ∗ H ∗ H) ⊗ (H ∗H C ∗H H)

= I ⊗ H + H ⊗ I .

Thus I is a biideal of H . ��
As a consequence of Proposition 3.8 (a), we obtain a family of coideals of HLR(�).

Corollary 3.9 The HLR(�) ∨α HLR(�) is a coideal of HLR(�) for each α ∈ �.

Proof It follows from Proposition 3.8 (a). ��
Now we are ready for our main result of this section.

Theorem 3.10 Let � be a nonempty set.

(a) The sextuple (HLR(�), ∗, |,�LR(�), εLR(�),∨�) is the free cocycle∨�-bialgebra
on the empty set, that is, the initial object in the category of cocycle∨�-bialgebras.

(b) The sextuple (HLR(�), ∗, |,�LR(�), εLR(�),∨�) is the free cocycle ∨�-Hopf
algebra on the empty set, , that is, the initial object in the category of cocycle
∨�-Hopf algebras.

Proof (a) It follows from Lemma 2.3 that (HLR(�), ∗, |,�LR(�), εLR(�)) is a bial-
gebra. Furthermore, the (HLR(�), ∗, |,�LR(�), εLR(�),∨�) is a ∨�-bialgebra by
Eq. (1) and a cocycle ∨�-bialgebra by Eq. (3).

We are left to show the freeness of HLR(�). For this, let (H , ∗H , 1H ,�H , εH ,∨′
�)

be an arbitrary cocycle∨�-bialgebra. In particular, (H , ∗H , 1H ,∨′
�) is a∨�-algebra.

So, by Theorem 3.5, there exists a unique algebra homomorphism φ : HLR(�) → H
such that

φ ◦ ∨α = ∨′
α ◦ (φ ⊗ φ) for any α ∈ �. (10)
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It remains to check the following two points:

�H ◦ φ(T ) = (φ ⊗ φ) ◦ �LR(�)(T ), (11)

εH ◦ φ(T ) = εLR(�)(T ) for all T ∈ Y∞(�). (12)

We prove Eq. (11) by induction on dep(T ) � 0. For the initial step of dep(T ) = 0,
we have T = | and

�H ◦ φ(T ) = �H ◦ φ(|) = �H (1H ) = 1H ⊗ 1H = φ(|) ⊗ φ(|)
= (φ ⊗ φ)(| ⊗ |) = (φ ⊗ φ) ◦ �LR(�)(|) = (φ ⊗ φ) ◦ �LR(�)(T ).

For the induction step of dep(T ) � 1, we may write T = T1 ∨α T2 for some T1, T2 ∈
Y∞(�) and α ∈ �. Using the Sweedler notation,

�LR(�)(T1) =
∑
(T1)

T1(1) ⊗ T1(2) and �LR(�)(T2) =
∑
(T2)

T2(1) ⊗ T2(2). (13)

Then,

�H ◦ φ(T )

= �H ◦ φ(T1 ∨α T2) = �H
(
φ(T1) ∨′

α φ(T2)
)

(by Eq. (10))

= (
φ(T1) ∨′

α φ(T2)
) ⊗ 1H + (∗H ,∨′

α)(
�H

(
φ(T1)

) ⊗ �H
(
φ(T2)

))
(by Eq. (9))

= φ(T1 ∨α T2) ⊗ 1H + (∗H ,∨′
α)

((
(φ ⊗ φ)�LR(�)(T1)

)

⊗
(
(φ ⊗ φ)�LR(�)(T2)

))

(by Eq. (10) and the induction hypothesis)

= (φ ⊗ φ)
(
(T1 ∨α T2) ⊗ |

)
+ (∗H ,∨′

α)

((
(φ ⊗ φ)�LR(�)(T1)

)

⊗
(
(φ ⊗ φ)�LR(�)(T2)

))

= (φ ⊗ φ)
(
(T1 ∨α T2) ⊗ |

)
+ (∗H ,∨′

α)

( ∑
(T1),(T2)

(
φ(T1(1)) ⊗ φ(T1(2))

)

⊗
(
φ(T2(1)) ⊗ φ(T2(2))

))

(by Eq. (13))

= (φ ⊗ φ)
(
(T1 ∨α T2) ⊗ |

)
+

∑
(T1),(T2)

(
φ(T1(1)) ∗H φ(T2(1))

)
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⊗
(
φ(T1(2)) ∨′

α φ(T2(2))
)

= (φ ⊗ φ)
(
(T1 ∨α T2) ⊗ |

)

+
∑

(T1),(T2)

φ(T1(1) ∗ T2(1)) ⊗ φ(T1(2) ∨α T2(2))

(by φ being an algebra homomorphism and Eq. (10))

= (φ ⊗ φ)
(
(T1 ∨α T2) ⊗ |

)

+ (φ ⊗ φ)

( ∑
(T1),(T2)

(T1(1) ∗ T2(1)) ⊗ (T1(2) ∨α T2(2))

)

= (φ ⊗ φ)
(
(T1 ∨α T2) ⊗ |

)

+ (φ ⊗ φ) ◦ (∗,∨α)
(
�LR(�)(T1) ⊗ �LR(�)(T2)

)

= (φ ⊗ φ)

(
(T1 ∨α T2) ⊗ | + (∗,∨α)

(
�LR(�)(T1) ⊗ �LR(�)(T2)

))

= (φ ⊗ φ) ◦ �LR(�)(T1 ∨α T2)

= (φ ⊗ φ) ◦ �LR(�)(T ).

We next prove Eq. (12). If T = |, then

εH ◦ φ(T ) = εH ◦ φ(|) = εH (1H ) = 1k = εLR(�)(|).

If T �= |, then T can be written as T = T1∨α T2 for some T1, T2 ∈ Y∞(�) and α ∈ �.
By Eq. (10),

εH ◦ φ(T ) = εH ◦ φ(T1 ∨α T2) = εH
(
φ(T1) ∨′

α φ(T2)
) = 0 = εLR(�)(T ), (14)

where the second last step employs Proposition 3.8 (a). This completes the proof of
Item (a).

(b) By Lemma 2.3, (HLR(�), ∗, |,�LR(�), εLR(�)) is a Hopf algebra. It is further a
∨�-Hopf algebra by Eq. (1) and a cocycle∨�-Hopf algebra by Eq. (3). Then, Item (b)
follows from Item (a) and the well-known fact that any bialgebra morphism between
two Hopf algebras is compatible with the antipodes [37, Lem. 4.04]. ��

Taking � to be a singleton set in Theorem 3.10, all planar binary trees in HLR(�)

are decorated by the same letter. In other words, planar binary trees in HLR(�) have
no decorations in this case and that are precisely the planar binary trees in the classical
Loday–Ronco Hopf algebra HLR. So

Corollary 3.11 (a) The classical Loday–Ronco Hopf algebra HLR is the free cocycle
∨-bialgebra on the empty set, that is, the initial object in the category of cocycle
∨-bialgebras.
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(b) The classical Loday–Ronco Hopf algebra HLR is the free cocycle ∨-Hopf algebra
on the empty set, that is, the initial object in the category of cocycle ∨-Hopf
algebras.

Proof It follows from Theorem 3.10 by taking � to be a singleton set. ��
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