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Abstract Infinitesimal bialgebras were introduced by Joni and Rota. An infinitesi-
mal bialgebra is at the same time an algebra and coalgebra, in such a way that the
comultiplication is a derivation. Twenty years after Joni and Rota, Aguiar introduced
the concept of an infinitesimal (non-unitary) Hopf algebra. In this paper, we study
infinitesimal unitary bialgebras and infinitesimal unitary Hopf algebras, in contrary to
Aguiar’s approach. Using an infinitesimal version of the Hochschild 1-cocycle condi-
tion, we prove, respectively, that a class of decorated planar rooted forests is the free
cocycle infinitesimal unitary bialgebra and free cocycle infinitesimal unitary Hopf
algebra on a set. As an application, we obtain that the planar rooted forests are the free
cocycle infinitesimal unitary Hopf algebra on the empty set.
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1 Introduction

The renormalization method is to deal with divergence in physics and mathematics [6,
13,18,19,21,22], such as in Feynman integrals and multiple zeta values. The Connes-
Kreimer Hopf algebra of rooted forests was introduced in [5,25] as a babymodel of the
Hopf algebra of Feynman graphs to study the renormalization of perturbative quantum
field theory. Whereafter, this Hopf algebra was studied extensively as one of the main
examples of Hopf algebras used for physics applications [9,15,26,29,30]. It is also
related to theLoday-RoncoHopf algebra [28] andGrossman-LarsonHopf algebra [14]
of rooted trees. Based on planar rooted forests, a non-commutative version HP, R

of Connes-Kreimer Hopf algebra was introduced simultaneously in [10] and [23],
satisfying a universal property [12]. This universal property was generalized in [30] to
obtain more general free objects in terms of a class of decorated planar rooted forests.

The concept of algebras with (one or more) linear operators was introduced by A.
G. Kurosh [27] by the name of �-algebras. In particular, an algebra with one linear
operator is called an operated algebra in [16], in which the free operated algebra was
also constructed. See also [4,17,20]. In [30], the authors treated the Hopf algebra of
planar rooted forests under the viewpoint of operated algebra, where the linear operator
is the grafting operator B+. In this view, the universal property of the planar rooted
forests characterized in [12, Theorem 3] can be rephrased as the free operated algebra
on the empty set. Further, combined with a specific coproduct, a class of decorated
planar rooted forests H�(X̃) gives the free objects in the category of Hopf algebras
with a givenHochschild 1-cocycle [30], named cocycleHopf algebras—operatedHopf
algebras satisfying a 1-cocycle condition.

Our aim in the present paper is to introduce an infinitesimal version of the Hopf
algebra H�(X̃) constructed in [30]. The concept of an infinitesimal bialgebra originated
from Joni and Rota [24] in order to provide an algebraic framework for the calculus
of divided differences. More precisely, an infinitesimal bialgebra is a triple (A,m,�)

where (A,m) is an associative algebra, (A,�) is a coassociative coalgebra and for
each a, b ∈ A,

�(ab) = a · �(b) + �(a) · b =
∑

(b)

ab(1) ⊗ b(2) +
∑

(a)

a(1) ⊗ a(2)b. (1)
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A typical example is that the path algebra of an arbitrary quiver admits a canonical
structure of an infinitesimal bialgebra [1]. Later the basic theories of infinitesimal
bialgebras [2] and infinitesimal Hopf algebras [1,11] were developed, where analogies
with the theories of ordinary Hopf algebras and Lie bialgebras [3,8] were found.

We achieve our aim in two steps. We first equip a new coproduct on a class of deco-
rated planar rooted trees involving an analogy of the Hochschild 1-cocycle condition,
which gives a recursive construction of the coproduct in the well-known Connes-
Kreimer Hopf algebra of rooted forests [12]. We then extend this new coproduct to a
class of decorated planar rooted forests through Eq. (1). Note that the multiplicative
unit is an indispensable ingredient in such 1-cocycle conditions (see Eqs. (4) and (6)
below), and there is no nonzero infinitesimal bialgebra which is both unitary and
counitary [1]. So it is desirable to incorporate the unitary property into infinitesimal
bialgebras, and we propose the concepts of an infinitesimal unitary bialgebra and an
infinitesimal unitary Hopf algebra here. When a 1-cocycle condition is involved, we
also propose the concepts of a cocycle infinitesimal unitary bialgebra and a cocy-
cle infinitesimal unitary Hopf algebra. It is also profitable to incorporate the unitary
property into infinitesimal bialgebras to construct free objects. Namely, we can con-
struct, respectively, the free objects in the categories of cocycle infinitesimal unitary
bialgebras and cocycle infinitesimal unitary Hopf algebras via a class of decorated
planar rooted forests, whereas the constructions of free infinitesimal bialgebras and
free infinitesimal Hopf algebras are still not obtained up to now.

Here is the structure of the paper. In Sect. 2, after reviewing basics in planar rooted
forests, we give an infinitesimal version of the 1-cocycle condition (Eq. (4)), which
has a subtle difference with the usual 1-cocycle condition (Remark 2.2). Thanks to this
new 1-cocycle condition, we obtain a new coproduct�ε on a class of decorated planar
rooted forests H�(X̃), which, together with the concatenation multiplication, turns the
H�(X̃) into an infinitesimal unitary bialgebra (Theorem 2.15). To make the coproduct
�ε more explicit, a combinatorial description of it is also given in Sect. 2.2.2. Further,
we propose the concept of a cocycle infinitesimal unitary bialgebra (Definition 2.16)
and prove that H�(X̃) is the free cocycle infinitesimal unitary bialgebra on a set X
(Theorem 2.17). In Sect. 3, continuing the line in Sect. 2, we start with the concepts
of an infinitesimal unitary Hopf algebra (Definition 3.1) and a cocycle infinitesimal
unitary Hopf algebra (Definition 3.5). We show that H�(X̃) is an infinitesimal unitary
Hopf algebra (Theorem 3.10) and then the free cocycle infinitesimal unitary Hopf
algebra on a set X (Theorem 3.12). In particular, we obtain that the (undecorated)
planar rooted forests are the free cocycle infinitesimal unitary Hopf algebra on the
empty set (Corollary 3.13).

Notation In this paper, we will be working over a unitary commutative base ring k.
By an algebra we mean an associative algebra (possibly without unit) and by an coal-
gebra we mean a coassociative coalgebra (possibly without counit), unless otherwise
stated. Linear maps and tensor products are taken over k. For an algebra A, we view
A ⊗ A as an A-bimodule via

a · (b ⊗ c) := ab ⊗ c and (b ⊗ c) · a := b ⊗ ca. (2)
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2 Free cocycle infinitesimal unitary bialgebras of decorated planar
rooted forests

In this section, we first recall some basic notations used throughout the paper. Then we
show that a class of decorated planar rooted forests is an infinitesimal unitary bialgebra
and further a free cocycle infinitesimal unitary bialgebra.

2.1 Decorated planar rooted forests

We expose some concepts and notations on planar rooted forests from [17,30]. Let T
denote the set of planar rooted trees and S(T ) the free semigroup generated by T in
which the multiplication is concatenation, denoted by mRT and usually suppressed.
Thus an element F in S(T ), called a planar rooted forest, is a non-commutative
product of planar rooted trees in T . Adding to S(T ) the empty planar rooted tree 1,
we obtain the free monoid F = M(T ).

Next, we review some concepts and notations on decorated planar rooted forest. Let
X be a set and let σ a symbol not in the set X . Denote X̃ := X � {σ}. For the set X̃ , let
T (X̃) (resp. F(X̃) := M(T (X̃))) denote the set of planar rooted trees (resp. forests)
whose vertices, consisted of leaves and internal vertices, are decorated by elements of
X̃ .

Let T�(X̃) (resp. F�(X̃)) denote the subset of T (X̃) (resp. F(X̃)) consisting of
(vertex) decorated planar rooted trees (resp. forests) where elements of X decorate
the leaves only. In other words, all internal vertices, as well as possibly some of the
leaves, are decorated by σ. Note that the empty tree 1 is in T�(X̃). If a tree has only
one vertex, then the vertex is treated as a leaf. Here are some examples in T�(X̃)where
the root is on the bottom:

� x , � σ , �

�

σ
x , �∨��

σ

xσ
, �∨��

�

σ

σσ

x

,
�∨��

�

σ

σ

yx

,

whereas the following are some examples not in T�(X̃):

�

�

x
x , �∨��

x
xσ

, �∨��

�

σ

σx
x

,
�∨��

�

σ

x
yx

.

Let H�(X̃) := kF�(X̃) = kM(T�(X̃)) be the free k-module spanned by F�(X̃).
Denote by

B+ : H�(X̃) → H�(X̃)

the grafting map sending 1 to •σ and sending a rooted forest in H�(X̃) to its grafting
with the new root decorated by σ, and by mRT the concatenation on H�(X̃). Then
H�(X̃) is closed under the concatenation mRT [30]. Here are some examples about
B+ on H�(X̃):
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B+(1) = � σ , B+( � x ) = �

�

σ
x , B+( �

�

σ
x

� x ) = �∨��

�

σ

xσ

x

.

For F = T1 · · · Tn ∈ F�(X̃) with n ≥ 0 and T1, . . . , Tn ∈ T�(X̃), we define
bre(F) := n to be the breadth of F . Here we use the convention that bre(1) = 0. To
define the depth of a decorated planar rooted forests F ∈ F�(X̃), we give a recursive
structure on F�(X̃). Denote •X := {•x | x ∈ X} and set

M0 := M(•X ) = S(•X ) � {1}.

Here M(•X ) (resp. S(•X )) denotes the submonoid (resp. subsemigroup) ofF(X̃) gen-
erated by •X , which is also isomorphic to the free monoid (resp. semigroup) generated
by •X , justifying the abuse of notations. Assume that Mn, n ≥ 0, has been defined,
and define

Mn+1 := M(•X � B+(Mn)).

Then we have Mn ⊆ Mn+1 and

F�(X̃) = lim−→ Mn =
∞⋃

n=0

Mn .

Now elements F ∈ Mn \ Mn−1 are said to have depth n, denoted by dep(F) = n.
Here are some examples:

dep(1) = 0, dep( � x ) = 0, dep( � σ ) = dep(B+(1)) = 1, dep( �

�

σ
x ) = dep(B+( � x )) = 1,

dep( �

�

σ
σ ) = dep(B+(B+(1))) = 2, dep( �∨��

σ

xσ
) = dep(B+(B+(1) � x )) = 2.

2.2 Infinitesimal unitary bialgebras

In this subsection, we obtain an infinitesimal unitary bialgebraic structure on a class
of decorated planar rooted forests.

2.2.1 A new coalgebra structure on decorated planar rooted forests

We define a coproduct �ε on H�(X̃) recursively on depth. By linearity, we only need
to define �ε(F) for F ∈ F�(X̃). For the initial step of dep(F) = 0, we define

�ε(F) :=
⎧
⎨

⎩

0, if F = 1,
1 ⊗ 1, if F = •x for some x ∈ X,

•x1 · �ε(•x2 · · · •xm ) + �ε(•x1 ) · (•x2 · · · •xm ) if F = •x1 · · · •xm with m ≥ 2 and xi ∈ X.

(3)

Here in the third case, the definition of �ε reduces to the induction on breadth and the
dot action is defined in Eq. (2).
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For the induction stepof dep(F) ≥ 1, if bre(F) = 1, thenwemaywrite F = B+(F)

for some F ∈ F�(X̃) and define

�ε(F) := �εB
+(F) := F ⊗ 1 + (id ⊗ B+)�ε(F), (4)

that is, �εB+ = id ⊗ 1 + (id ⊗ B+)�ε. Here the coproduct �ε(F) is defined by
the induction hypothesis on depth, and we call Eq. (4) the infinitesimal 1-cocycle
condition (abbreviated ε-cocycle condition). If bre(F) ≥ 2, then we may assume
F = T1T2 · · · Tm with bre(F) = m ≥ 2 and define

�ε(F) = T1 · �ε(T2 · · · Tm) + �ε(T1) · (T2 · · · Tm). (5)

Here the definition of �ε again reduces to the induction on breadth.

Example 2.1 Foissy [11] also studied another kind of infinitesimal Hopf algebras on
(undecorated) planar rooted forests, using a different coproduct �F given by

�F (F) :=
⎧
⎨

⎩

1 ⊗ 1, if F = 1,
F ⊗ 1 + (id ⊗ B+)�F (F), if F = B+(F),

F1 · �F (F2) + �F (F1) · F2 − F1 ⊗ F2, if F = F1F2.

We give some examples to expose the differences between these two coproducts �ε

and �F . On the one hand,

�ε ( �

�

σ
x ) = � x ⊗ 1 + 1 ⊗ � σ ;

�ε

(
�∨��

σ

xσ
)

= � σ � x ⊗ 1 + � σ ⊗ � σ + 1 ⊗ �

�

σ
x ;

�ε

⎛

⎝
�∨��

�

σ

σσ

x
⎞

⎠ = �

�

σ
x

� σ ⊗ 1 + �

�

σ
x ⊗ � σ + � x ⊗ �

�

σ
σ + 1 ⊗ �∨��

σ

σσ
.

On the other hand,

�F ( �

�

) = �

� ⊗ 1 + 1 ⊗ �

� + � ⊗ �;
�F

(
�∨�� ) = �∨�� ⊗ 1 + 1 ⊗ �∨�� + � � ⊗ � + � ⊗ �

� ;

�F

(
�∨��

�
)

= �∨��

�

⊗ 1 + 1 ⊗ �∨��

�

+ �

�

� ⊗ � + � ⊗ �∨�� + �

� ⊗ �

�

.

Remark 2.2 The coproduct�RT on H�(X̃) given in [30] is defined by�RT (1) = 1⊗1
and the cocycle condition

�RT B
+(F) := F ⊗ 1 + (id ⊗ B+)�RT (F) for F ∈ F�(X̃). (6)

Note the subtle difference between this cocycle condition and the ε-cocycle condition
in Eq. (4).
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We are going to show that H�(X̃) equippedwith the�ε is a coalgebra. The following
two lemmas are needed.

Lemma 2.3 Let •x1 · · · •xm ∈ H�(X̃) with m ≥ 1 and x1, . . . , xm ∈ X. Then

�ε(•x1 · · · •xm ) =
m∑

i=1

•x1 · · · •xi−1 ⊗ •xi+1 · · · •xm ,

with the convention that •x1•x0 = 1 and •xm+1•xm = 1.

Proof We prove the result by induction on m ≥ 1. For the initial step of m = 1, we
have

�ε(•x1) = 1 ⊗ 1,

and the result is true trivially. For the induction step of m ≥ 2, we get

�ε(•x1 · · · •xm ) = •x1 ·�ε(•x2 · · · •xm ) + �ε(•x1) · (•x2 · · · •xm ) (by Eq. (3))

= •x1 ·�ε(•x2 · · · •xm ) + (1 ⊗ 1) · (•x2 · · · •xm ) (by Eq. (3))

= •x1 ·�ε(•x2 · · · •xm ) + 1 ⊗ •x2 · · · •xm (by Eq. (2))

= •x1 ·
(

m∑

i=2

•x2 · · · •xi−1 ⊗ •xi+1 · · · •xm
)

+ 1 ⊗ •x2 · · · •xm (by the induction hypothesis)

=
m∑

i=2

•x1 · · · •xi−1 ⊗ •xi+1 · · · •xm +1 ⊗ •x2 · · · •xm (by Eq. (2))

=
m∑

i=1

•x1 · · · •xi−1 ⊗ •xi+1 · · · •xm ,

as required. 
�
Lemma 2.4 Let F1, F2 ∈ F�(X̃). Then �ε(F1F2) = F1 · �ε(F2) + �ε(F1) · F2.
Proof Consider first that bre(F1) = 0 or bre(F2) = 0. Without loss of generality, let
bre(F2) = 0. Then F2 = 1 and

�ε(F1F2) = �ε(F11) = �ε(F1) = �ε(F1) · 1 = F1 · �ε(1) + �ε(F1) · 1,

where the last step employs �ε(1) = 0 in Eq. (3).
Consider next that bre(F1) = m1 ≥ 1 and bre(F2) = m2 ≥ 1. In this case, we

prove the result by induction on m1 + m2 ≥ 2. For the initial step of m1 + m2 = 2,
we have m1 = 1 and m2 = 1. Then F1 = T1 and F2 = T2 for some decorated planar
rooted trees T1, T2 ∈ T�(X̃). So by Eq. (5),

�ε(F1F2) = �ε(T1T2) = T1 · �ε(T2) + �ε(T1) · T2 = F1 · �ε(F2) + �ε(F1) · F2.
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Assume the result is true form1+m2 < m and consider the case ofm1+m2 = m ≥ 3.
By symmetry, we can let m1 ≥ 2 and write F1 = T1F

′
1 with bre(T1) = 1 and

bre(F
′
1) = m1 − 1. Then

�ε(F1F2) = �ε(T1F
′
1F2)

= T1 · �ε(F
′
1F2) + �ε(T1) · (F

′
1F2) (by Eq. (5))

= T1 ·
(
F

′
1 · �ε(F2) + �ε(F

′
1) · F2

)

+ �ε(T1) · (F
′
1F2) (by the induction hypothesis)

= (T1F
′
1) · �ε(F2) + T1 · �ε(F

′
1) · F2 + (

�ε(T1) · F ′
1

) · F2
= F1 · �ε(F2) +

(
T1 · �ε(F

′
1) + �ε(T1) · F ′

1

)
· F2

= F1 · �ε(F2) + �ε(F1) · F2 (by the induction hypothesis).

This completes the proof. 
�
Next, we prove that H�(X̃) is closed under the coproduct �ε .

Lemma 2.5 For each F ∈ H�(X̃), we have �ε(F) ∈ H�(X̃) ⊗ H�(X̃).

Proof By linearity, it suffices to consider basis elements F ∈ F�(X̃). We prove the
result by induction on dep(F) ≥ 0 for F ∈ F�(X̃). For the initial step of dep(F) = 0,
we have F = •x1 · · · •xm for some m ≥ 0 and x1, · · · , xm ∈ X . Here we use the
convention that F = 1 when m = 0. Then by Lemma 2.3,

�ε(F) = �ε(•x1 · · · •xm ) =
m∑

i=1

•x1 · · · •xi−1 ⊗ •xi+1 · · · •xm ∈ H�(X̃) ⊗ H�(X̃).

Assume the result is true for dep(F) < m and consider the case of dep(F) = m ≥ 1.
For this case, we apply the induction on breadth bre(F). Since dep(F) = m ≥ 1, we
have F �= 1 and bre(F) ≥ 1. If bre(F) = 1, we have F = B+(F) for some
F ∈ H�(X̃) and

�ε(F) = �ε

(
B+(F)

)
= F ⊗ 1 + (id ⊗ B+)�ε(F).

Note that F ⊗ 1 ∈ H�(X̃) ⊗ H�(X̃) by F ∈ H�(X̃). Moreover by the induction
hypothesis,

�ε(F) ∈ H�(X̃) ⊗ H�(X̃) and so (id ⊗ B+)�ε(F) ∈ H�(X̃) ⊗ H�(X̃).

Hence

F ⊗ 1 + (id ⊗ B+)�ε(F) ∈ H�(X̃) ⊗ H�(X̃).
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Assume the result is true for dep(F) = m and bre(F) < k, and consider the case
of dep(F) = m and bre(F) = k ≥ 2. Then we may write F = T1T2 · · · Tk with
T1, . . . , Tk ∈ T�(X̃) and so

�ε(F) =�ε(T1T2 · · · Tk)
= T1 · �ε(T2 · · · Tk) + �ε(T1) · (T2 · · · Tk)
= (T1T2) · �ε(T3 · · · Tk) + T1 · �ε(T2) · (T3 · · · Tk) + �ε(T1) · (T2 · · · Tk)

= · · · =
k∑

i=1

(T1 · · · Ti−1) · �ε(Ti ) · (Ti+1 · · · Tk).

For each i = 1, . . . , k, by the induction on breadth, we have

�ε(Ti ) ∈ H�(X̃) ⊗ H�(X̃),

and whence by Eq. (2),

(T1 · · · Ti−1) · �ε(Ti ) · (Ti+1 · · · Tk) ∈ H�(X̃) ⊗ H�(X̃).

This completes the proof. 
�
Theorem 2.6 The pair (H�(X̃),�ε) is a coalgebra (without counit).

Proof It suffices to prove the coassociative law

(id ⊗ �ε)�ε(F) = (�ε ⊗ id)�ε(F) for F ∈ F�(X̃) (7)

by induction on dep(F) ≥ 0. For the initial step of dep(F) = 0, we have F =
•x1 · · · •xm for some m ≥ 0 and x1, . . . , xm ∈ X . Then

(id ⊗ �ε)�ε(•x1 · · · •xm )

= (id ⊗ �ε)

(
m∑

i=1

•x1 · · · •xi−1 ⊗ •xi+1 · · · •xm
)

(by Lemma 2.3)

= (id ⊗ �ε)

(
m−1∑

i=1

•x1 · · · •xi−1 ⊗ •xi+1 · · · •xm + •x1 · · · •xm−1 ⊗1

)

=
m−1∑

i=1

•x1 · · · •xi−1 ⊗�ε(•xi+1 · · · •xm ) (by �ε(1) = 0 in Eq. (3))

=
m−1∑

i=1

•x1 · · · •xi−1 ⊗
⎛

⎝
m∑

j=i+1

•xi+1 · · · •x j−1 ⊗ •x j+1 · · · •xm
⎞

⎠ (by Lemma 2.3)

=
m−1∑

i=1

m∑

j=i+1

•x1 · · · •xi−1 ⊗ •xi+1 · · · •x j−1 ⊗ •x j+1 · · · •xm
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=
m∑

j=2

j−1∑

i=1

•x1 · · · •xi−1 ⊗ •xi+1 · · · •x j−1 ⊗ •x j+1 · · · •xm

+ �ε(1) ⊗ •x2 · · · •xm (by �ε(1) = 0 in Eq. (3))

=
m∑

j=2

⎛

⎝
j−1∑

i=1

•x1 · · · •xi−1 ⊗ •xi+1 · · · •x j−1

⎞

⎠ ⊗ •x j+1 · · · •xm +�ε(1) ⊗ •x2 · · · •xm

=
m∑

j=2

�ε(•x1 · · · •x j−1) ⊗ •x j+1 · · · •xm +�ε(1) ⊗ •x2 · · · •xm (by Lemma 2.3)

= (�ε ⊗ id)

⎛

⎝
m∑

j=2

•x1 · · · •x j−1 ⊗ •x j+1 · · · •xm +1 ⊗ •x2 · · · •xm
⎞

⎠

= (�ε ⊗ id)

⎛

⎝
m∑

j=1

•x1 · · · •x j−1 ⊗ •x j+1 · · · •xm
⎞

⎠

= (�ε ⊗ id)�ε(•x1 · · · •xm ) (by Lemma 2.3).

Assume that Eq. (7) is valid for dep(F) ≤ n and consider the case of dep(F) = n+1.
We now apply the induction on breadth bre(F). As dep(F) ≥ 1, we get F �= 1 and
bre(F) ≥ 1. When bre(F) = 1, we may write F = B+(F) for some F ∈ F�(X̃) and

(id ⊗ �ε)�ε(F) = (id ⊗ �ε)�ε(B
+(F))

= (id ⊗ �ε)
(
F ⊗ 1 + (id ⊗ B+)�ε(F)

)
(by Eq. (4))

= F ⊗ �ε(1) + (id ⊗ (�εB
+))�ε(F)

= (id ⊗ (�εB
+))�ε(F) (by �ε(1) = 0 in Eq. (3))

=
(
id ⊗ (

id ⊗ 1 + (id ⊗ B+)�ε

))
�ε(F) (by Eq. (4))

=
(
id ⊗ id ⊗ 1 + (id ⊗ id ⊗ B+)(id ⊗ �ε)

)
�ε(F)

= (id ⊗ id ⊗ 1)�ε(F)

+ (id ⊗ id ⊗ B+)(�ε ⊗ id)�ε(F) (by the induction on dep(F))

= �ε(F) ⊗ 1 + (�ε ⊗ B+)�ε(F)

= (�ε ⊗ id)
(
F ⊗ 1 + (id ⊗ B+)�ε(F)

)

= (�ε ⊗ id)�ε(F) (by Eq. (4)).

Assume that Eq. (7) holds for dep(F) = n + 1 and bre(F) ≤ m. Consider the case
when dep(F) = n + 1 and bre(F) = m + 1 ≥ 2. Then we can write F = F1F2 for
some F1, F2 ∈ F�(X̃) with bre(F1), bre(F2) < bre(F). Hence

(id ⊗ �ε)�ε(F1F2)

= (id ⊗ �ε)(F1 · �ε(F2) + �ε(F1) · F2)
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= (id ⊗ �ε)

⎛

⎝
∑

(F2)

F1F2(1) ⊗ F2(2) +
∑

(F1)

F1(1) ⊗ F1(2)F2

⎞

⎠ (by Eq. (2))

=
∑

(F2)

F1F2(1) ⊗ �ε(F2(2)) +
∑

(F1)

F1(1) ⊗ �ε(F1(2)F2)

=
∑

(F2)

F1F2(1) ⊗ �ε(F2(2)) +
∑

(F1)

F1(1) ⊗ (
F1(2) · �ε(F2) + �ε(F1(2)) · F2

)

=
∑

(F2)

F1F2(1) ⊗ F2(2) ⊗ F2(3) +
∑

(F1)

F1(1) ⊗
∑

(F2)

F1(2)F2(1) ⊗ F2(2)

+
∑

(F1)

F1(1) ⊗ F1(2) ⊗ F1(3)F2 (by the induction on breadth and Eq. (2))

=
∑

(F2)

F1F2(1) ⊗ F2(2) ⊗ F2(3) +
∑

(F2)

∑

(F1)

F1(1) ⊗ F1(2)F2(1) ⊗ F2(2)

+
∑

(F1)

F1(1) ⊗ F1(2) ⊗ F1(3)F2

=
∑

(F2)

�ε(F1F2(1)) ⊗ F2(2)

+
∑

(F1)

�ε(F1(1)) ⊗ F1(2)F2 (by the induction on breadth)

= (�ε ⊗ id)

⎛

⎝
∑

(F2)

F1F2(1) ⊗ F2(2) +
∑

(F1)

F1(1) ⊗ F1(2)F2

⎞

⎠

= (�ε ⊗ id)(F1 · �ε(F2) + �ε(F1) · F2) (by Eq. (2))

= (�ε ⊗ id)�ε(F1F2) (by Lemma 2.4).

This completes the induction on breadth and the induction on depth. 
�

2.2.2 A combinatorial description of �ε

This subsection is devoted to a combinatorial description of the coproduct �ε given
recursively in Sect. 2.2.1, as in the case of the coproduct in the Connes-Kreimer Hopf
algebra by admissible cuts and in the paper of Foissy for his version of infinitesimal
Hopf algebra. To get this explicit construction, first note that the number of terms
in the coproduct �ε(F) of a decorated planar rooted forest F equals the number of
vertices of F , which suggests that the coproduct �ε(F) depends on its effect on each
vertex. To make this more precise, let us set up some order relations on the vertices
of a decorated planar rooted forest, which was introduced by Foissy [10,11] in the
case of (undecorated) planar rooted forests. For a forest F , denote by V (F) the set of
vertices of F .

Definition 2.7 Let F = T1 · · · Tn ∈ F�(X̃) with T1, . . . , Tn ∈ T�(X̃) and n ≥ 1, and
let a, b ∈ V (F) be two vertices. Then
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(a) a ≤h b (being higher) if there exists a (directed) path from a to b in F and the
edges of F being oriented from roots to leaves;

(b) a ≤l b (being more on the left) if a and b are not comparable for ≤h and one of
the following assertions is satisfied:
(i) a is a vertex of Ti and b is a vertex of Tj with 1 ≤ j < i ≤ n.
(ii) a and b are vertices of the same Ti , and a ≤l b in the forest obtained from Ti

by deleting its root;
(c) a ≤h,l b (being higher or more on the left) if a ≤h b or a ≤l b.

The≤h and≤l are partial orders on V (F), and the≤h,l is a linear order on V (F) [10,
11]. As usual, we denote a <h,l b if a ≤h,l b but a �= b.

Let G be a graph and S a set of vertices of G. The induced subgraph in G by S
is the graph whose vertex set is S and whose edge set consists of all of the edges in
G that have both endpoints in S [7]. In particular, the induced subgraph by the empty
set is the empty graph. Let F ∈ F�(X̃) be a decorated planar rooted forest. Let us
agree to view F as a graph. For each vertex a ∈ V (F), denote by Ba the induced
subgraph in F by the set {b ∈ V (F) | a <h,l b}, and by Ra the induced subgraph in
F by the set V (F) \ (V (Ba) ∪ {a}). Equivalently, Ra is the induced subgraph in F by
the set {b ∈ V (F) | b <h,l a}. Note that both Ba and Ra are decorated planar rooted
forests in F�(X̃), not containing the vertex a. Now we are ready for the combinatorial
description of �ε :

�ε(F) =
∑

a∈V (F)

Ba ⊗ Ra for F ∈ F�(X̃). (8)

Here we use the convention that �ε(F) = 0 when F = 1. Before we go on to
prove that this combinatorial description coincides with recursive definition given in
Sect. 2.2.1, let us compute some examples for better understanding of Eq. (8).

Example 2.8 Consider F = �∨��

�

σ

σy
x

with x, y ∈ X . Then

� σ (the root) <h,l � σ (not the root) <h,l � x <h,l � y .

If a = � σ (the root), then

Ba = � y �

�

σ
x and Ra = 1.

If a = � y , then

Ba = 1 and Ra = �

�

�

σ
σ
x

.

If a = � σ (not the root), then

Ba = � y � x and Ra = � σ (the root).
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If a = � x , then

Ba = � y and Ra = �

�

σ
σ .

Consequently,

�ε

⎛

⎝
�∨��

�

σ

σy
x
⎞

⎠ = � y �

�

σ
x ⊗ 1 + 1 ⊗ �

�

�

σ
σ
x

+ � y � x ⊗ � σ + � y ⊗ �

�

σ
σ ,

which is different from the one computed by admissible cuts [12,30]:

�

⎛

⎝
�∨��

�

σ

σy
x
⎞

⎠ = �∨��

�

σ

σy
x

⊗ 1 + � x ⊗ �∨��

σ

σy + � y ⊗ �

�

�

σ
σ
x

+ �

�

σ
x ⊗ �

�

σ
y + � y � x ⊗ �

�

σ
σ

+ � y �

�

σ
x ⊗ � σ + 1 ⊗ �∨��

�

σ

σy
x

.

Example 2.9 Let F = �∨��

σ

xσ
�∨��

�

σ

σy
z

�

�

σ
w with x, y, z, w ∈ X . Denote by T1 = �∨��

σ

xσ
,

T2 = �∨��

�

σ

σy
z

and T3 = �

�

σ
w . Then we have the order:

� σ (the root of T3) <h,l �w <h,l � σ (the root of T2) <h,l � σ (not the root in T2) <h,l � z

<h,l � y <h,l � σ (the root of T1) <h,l � x <h,l � σ (the leaf in T1).

If a = � σ (the root of T1), then

Ba = � σ � x and Ra = �∨��

�

σ

σy
z

�

�

σ
w .

If a = � σ (the root of T2), then

Ba = �∨��

σ

xσ
� y �

�

σ
z and Ra = �

�

σ
w .

If a = � σ (not the root in T2), then

Ba = �∨��

σ

xσ
� y � z and Ra = � σ �

�

σ
w .

Repeat this process until a runs over V (F) and conclude

�ε

⎛

⎝
�∨��

σ

xσ
�∨��

�

σ

σy
z

�

�

σ
w

⎞

⎠ = � σ � x ⊗ �∨��

�

σ

σy
z

�

�

σ
w + 1 ⊗ �

�

σ
x

�∨��

�

σ

σy
z

�

�

σ
w + � σ ⊗ � σ �∨��

�

σ

σy
z

�

�

σ
w

+ �∨��

σ

xσ
� y �

�

σ
z ⊗ �

�

σ
w + �∨��

σ

xσ ⊗ �

�

�

σ
σ
z

�

�

σ
w
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+ �∨��

σ

xσ
� y � z ⊗ � σ �

�

σ
w + �∨��

σ

xσ
� y ⊗ �

�

σ
σ

�

�

σ
w + �∨��

σ

xσ
�∨��

�

σ

σy
z

�w ⊗ 1

+ �∨��

σ

xσ
�∨��

�

σ

σy
z

⊗ � σ .

Next we prove that the combinatorial definition of �ε in Eq. (8) is the same as the
recursive definition. First note that they agree on the initial step:

�ε(1) = 0 and �ε(•x ) = 1 ⊗ 1 for x ∈ X. (9)

So it suffices to show that �ε in Eq. (8) satisfies Eqs. (4) and (5), which determinate
the induction step of the recursive definition of �ε .

Lemma 2.10 Let �ε be given in Eq. (8) and T1, . . . , Tn ∈ T�(X̃) with n ≥ 2. Then

�ε(T1 · · · Tn) = T1 · �ε(T2 · · · Tn) + �ε(T1) · (T2 · · · Tn).

Proof We have

�ε(T1 · · · Tn) =
∑

a∈V (T1···Tn)
Ba ⊗ Ra

=
∑

a∈V (T2···Tn)
Ba ⊗ Ra +

∑

a∈V (T1)

Ba ⊗ Ra

=
∑

a∈V (T2···Tn)
(T1B

′
a) ⊗ Ra +

∑

a∈V (T1)

Ba ⊗ (R′
aT2 · · · Tn)

=
∑

a∈V (T2···Tn)
T1 · (B ′

a ⊗ Ra) +
∑

a∈V (T1)

(Ba ⊗ R′
a) · (T2 · · · Tn)

= T1 ·
⎛

⎝
∑

a∈V (T2···Tn)
B ′
a ⊗ Ra

⎞

⎠ +
⎛

⎝
∑

a∈V (T1)

Ba ⊗ R′
a

⎞

⎠ · (T2 · · · Tn)

= T1 · �ε(T2 · · · Tn) + �ε(T1) · (T2 · · · Tn) (by Eq. (8)),

where B ′
a is the intersection of Ba with T2 · · · Tn , and R′

a is the intersection of Ra with
T1. 
�
Lemma 2.11 Let �ε be given in Eq. (8) and F = B+(F) ∈ T�(X̃). Then

�ε(F) = F ⊗ 1 + (id ⊗ B+)�ε(F). (10)

Proof If F = 1, then F = •σ and �ε(F) = �ε(•σ) = 1 ⊗ 1 by Eq. (8). Since
�ε(F) = �ε(1) = 0 by Eqs. (9), (10) is valid for F = 1.
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Consider F �= 1. Then F = T1 · · · Tn for some T1, · · · , Tn ∈ T�(X̃) \ {1} with
n ≥ 1. We have

�ε(F) =
∑

a∈V (F)

Ba ⊗ Ra = F ⊗ 1 +
∑

a∈V (F)

Ba ⊗ Ra

= F ⊗ 1 +
n∑

i=1

∑

a∈V (Ti )

Ba ⊗ Ra

= F ⊗ 1 +
n∑

i=1

∑

a∈V (Ti )

(T1 · · · Ti−1B
′
a) ⊗ B+(R′

aTi+1 · · · Tn)

= F ⊗ 1 + (id ⊗ B+)

⎛

⎝
n∑

i=1

∑

a∈V (Ti )

(T1 · · · Ti−1B
′
a) ⊗ (R′

aTi+1 · · · Tn)
⎞

⎠

= F ⊗ 1 + (id ⊗ B+)

⎛

⎝
n∑

i=1

∑

a∈V (Ti )

(T1 · · · Ti−1) · (B ′
a ⊗ R′

a) · (Ti+1 · · · Tn)
⎞

⎠

= F ⊗ 1 + (id ⊗ B+)

×
⎛

⎝
n∑

i=1

(T1 · · · Ti−1) ·
⎛

⎝
∑

a∈V (Ti )

B ′
a ⊗ R′

a

⎞

⎠ · (Ti+1 · · · Tn)
⎞

⎠

= F ⊗ 1 + (id ⊗ B+)

×
(

n∑

i=1

(T1 · · · Ti−1) · �ε(Ti ) · (Ti+1 · · · Tn)
)

(by Eq. (8))

= F ⊗ 1 + (id ⊗ B+)�ε(T1 · · · Tn) (by the repetition of Lemma 2.10)

= F ⊗ 1 + (id ⊗ B+)�ε(F),

where B ′
a (resp. R′

a) is the intersection of Ba (resp. Ra) with Ti , and the fourth step
employs the fact that Ra has the root of F . This completes the proof. 
�
Proposition 2.12 The combinatorial description of�ε given inEq. (8) coincides with
the recursive definition of �ε in Sect. 2.2.1.

Proof It follows from Eq. (9) and Lemmas 2.10, 2.11. 
�

2.2.3 Infinitesimal unitary bialgebras

In order to provide an algebraic framework for the calculus of divided differences,
Joni and Rota [24] introduced the concept of an infinitesimal bialgebra. We adapt it
to the following unitary version.

Definition 2.13 An infinitesimal unitary bialgebra (abbreviated ε-unitary bialge-
bra) is a quadruple (A,m, 1,�), where (A,m, 1) is a unitary associative algebra,
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(A,�) is a coassociative coalgebra (without counit), and for each a, b ∈ A,

�(ab) = a · �(b) + �(a) · b. (11)

Here (A,�) cannot have the counit, since there is no nonzero infinitesimal bialgebra
which is both unitary and counitary [1].

Definition 2.14 Let (A,mA, 1A,�A) and (B,mB, 1B ,�B) be ε-unitary bialgebras.
A map ψ : A → B is called an infinitesimal unitary bialgebra morphism (abbrevi-
ated ε-unitary bialgebramorphism) ifψ is a unitary algebramorphism and a coalgebra
morphism.

Now we arrive at our main result in this subsection.

Theorem 2.15 The quadruple (H�(X̃), mRT , 1, �ε) is an ε-unitary bialgebra.

Proof It is known that the triple (H�(X̃), mRT , 1) is a unitary algebra [30, Theo-
rem 2.8]. Furthermore, (H�(X̃), �ε) is a coalgebra by Theorem 2.6. Finally Eq. (11)
follows from Lemma 2.4. This completes the proof. 
�

2.3 Free cocycle infinitesimal unitary bialgebras

In this subsection, we construct the free cocycle infinitesimal unitary bialgebra on a
set. For this, let us pose the following concepts.

Definition 2.16 (a) An operated infinitesimal unitary bialgebra (abbreviated oper-
ated ε-unitary bialgebra) (H, m, 1,�, P) is an ε-unitary bialgebra (H, m, 1,�)

which is also an operated algebra (H, P).
(b) Let (A, PA) and (B, PB) be two operated ε-unitary bialgebras. A map ψ : A →

B is called an operated infinitesimal unitary bialgebramorphism (abbreviated
operated ε-unitary bialgebra morphism) if ψ is an ε-unitary bialgebra morphism
and ψPA = PBψ .

(c) A cocycle infinitesimal unitary bialgebra (abbreviated cocycle ε-unitary bialge-
bra) is an operated ε-unitary bialgebra (H, m, 1,�, P) satisfying the ε-cocycle
condition:

�P = id ⊗ 1 + (id ⊗ P)�. (12)

(d) The free cocycle ε-unitary bialgebra on a set X is a cocycle ε-unitary bialgebra
(HX , mX , 1X ,�X , PX ) together with a set map jX : X → HX with the property
that, for any cocycle ε-unitary bialgebra (H, m, 1,�, P) and set map f : X →
H such that�( f (x)) = 1⊗1 for x ∈ X , there is a uniquemorphism f̄ : HX → H
of operated ε-unitary bialgebras such that f̄ jX = f .

Theorem 2.17 Let jX : X ↪→ H�(X̃), x �→ •x be the natural embedding. Then the
quintuple (H�(X̃), mRT , 1,�ε, B+) together with jX is the free cocycle ε-unitary
bialgebra on the set X.
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Proof The quadruple (H�(X̃), mRT , 1,�ε) is an ε-unitary bialgebra by Theo-
rem 2.15, and further, equipped with the operator B+, is a cocycle ε-unitary bialgebra
by Eq. (4).

Let (H, m, 1H ,�, P) be a cocycle ε-unitary bialgebra and let f : X → H be
a map such that �( f (x)) = 1 ⊗ 1 for x ∈ X . Then (H,m, 1H , P) is an operated
unitary algebra. Note that (H�(X̃), mRT , 1H , B+) is the free operated unitary algebra
on X [30]. So there is a unique operated unitary algebra morphism f̄ : H�(X̃) → H
such that f̄ jX = f . It remains to check the compatibility of the coproducts � and �ε

for which we verify

� f̄ (F) = ( f̄ ⊗ f̄ )�ε(F) for all F ∈ F�(X̃), (13)

by induction on the depth dep(F) ≥ 0. If dep(F) = 0, we have F = •x1 · · · •xm for
some m ≥ 0 and x1, . . . , xm ∈ X . Then

� f̄ (•x1 · · · •xm ) = �
(
f̄ (•x1) · · · f̄ (•xm )

)

=
m∑

i=1

(
f̄ (•x1) · · · f̄ (•xi−1)

)
· �

(
f̄ (•xi )

)

·
(
f̄ (•xi+1) · · · f̄ (•xm )

)
(by Eq. (11))

=
m∑

i=1

(
f̄ (•x1) · · · f̄ (•xi−1)

)
· �

(
f (xi )

) ·
(
f̄ (•xi+1) · · · f̄ (•xm )

)

=
m∑

i=1

(
f̄ (•x1) · · · f̄ (•xi−1)

)
· (1 ⊗ 1) ·

(
f̄ (•xi+1) · · · f̄ (•xm )

)

=
m∑

i=1

(
f̄ (•x1) · · · f̄ (•xi−1)

) ⊗ (
f̄ (•xi+1) · · · f̄ (•xm )

)

=
m∑

i=1

f̄ (•x1 · · · •xi−1) ⊗ f̄ (•xi+1 · · · •xm )

=
m∑

i=1

( f̄ ⊗ f̄ )(•x1 · · · •xi−1 ⊗ •xi+1 · · · •xm )

= ( f̄ ⊗ f̄ )

(
m∑

i=1

•x1 · · · •xi−1 ⊗ •xi+1 · · · •xm
)

= ( f̄ ⊗ f̄ )�ε(•x1 · · · •xm ) (by Lemma 2.3).

Assume that Eq. (13) holds for dep(F) ≤ n and consider the case of dep(F) = n+1.
For this case we apply the induction on the breadth bre(F) ≥ 1. If bre(F) = 1, since
dep(F) = n + 1 ≥ 1, we have F = B+(F) for some F ∈ F�(X̃). Then
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� f̄ (F) = � f̄ (B+(F)) = �P( f̄ (F))

= f̄ (F) ⊗ 1H + (id ⊗ P)�( f̄ (F)) (by Eq. (12))

= f̄ (F) ⊗ 1H

+ (id ⊗ P)( f̄ ⊗ f̄ )�ε(F) (by the induction hypothesis on dep(F))

= f̄ (F) ⊗ 1H + ( f̄ ⊗ P f̄ )�ε(F)

= f̄ (F) ⊗ 1H

+ ( f̄ ⊗ f̄ B+)�ε(F) (by f being an operated algebra morphism)

= ( f̄ ⊗ f̄ )
(
F ⊗ 1 + (id ⊗ B+)�ε(F)

)

= ( f̄ ⊗ f̄ )�ε(B
+(F))

= ( f̄ ⊗ f̄ )�ε(F).

Assume that Eq. (13) holds for dep(F) = n + 1 and bre(F) ≤ m, and consider the
case when dep(F) = n + 1 and bre(F) = m + 1 ≥ 2. Then F = F1F2 for some
F1, F2 ∈ F�(X̃) with bre(F1), bre(F2) < bre(F). Then

� f̄ (F) = � f̄ (F1F2) = �( f̄ (F1) f̄ (F2))

= f̄ (F1) · �( f̄ (F2)) + �( f̄ (F1)) · f̄ (F2)

= f̄ (F1) · ( f̄ ⊗ f̄ )�ε(F2)

+ ( f̄ ⊗ f̄ )�ε(F1) · f̄ (F2) (by the induction on breadth)

= f̄ (F1) · ( f̄ ⊗ f̄ )

⎛

⎝
∑

(F2)

F2(1) ⊗ F2(2)

⎞

⎠

+ ( f̄ ⊗ f̄ )

⎛

⎝
∑

(F1)

F1(1) ⊗ F1(2)

⎞

⎠ · f̄ (F2)

= f̄ (F1) ·
⎛

⎝
∑

(F2)

f̄ (F2(1)) ⊗ f̄ (F2(2))

⎞

⎠

+
⎛

⎝
∑

(F1)

f̄ (F1(1)) ⊗ f̄ (F1(2))

⎞

⎠ · f̄ (F2)

=
∑

(F2)

f̄ (F1) f̄ (F2(1)) ⊗ f̄ (F2(2))

+
∑

(F1)

f̄ (F1(1)) ⊗ f̄ (F1(2)) f̄ (F2) (by Eq. (2))

=
∑

(F2)

f̄ (F1F2(1)) ⊗ f̄ (F2(2)) +
∑

(F1)

f̄ (F1(1)) ⊗ f̄ (F1(2)F2)
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= ( f̄ ⊗ f̄ )

⎛

⎝
∑

(F2)

F1F2(1) ⊗ F2(2)

⎞

⎠ + ( f̄ ⊗ f̄ )

⎛

⎝
∑

(F1)

F1(1) ⊗ F1(2)F2

⎞

⎠

= ( f̄ ⊗ f̄ )

⎛

⎝
∑

(F2)

F1F2(1) ⊗ F2(2) +
∑

(F1)

F1(1) ⊗ F1(2)F2

⎞

⎠

= ( f̄ ⊗ f̄ )

⎛

⎝F1 ·
∑

(F2)

F2(1) ⊗ F2(2) +
( ∑

(F1)

F1(1) ⊗ F1(2)
)

· F2
⎞

⎠

= ( f̄ ⊗ f̄ )(F1 · �ε(F2) + �ε(F1) · F2)
= ( f̄ ⊗ f̄ )�ε(F1F2) (by Lemma 2.4)

= ( f̄ ⊗ f̄ )�ε(F).

This completes the induction on the depth and hence the induction on the breadth.

�

3 Free cocycle infinitesimal unitary Hopf algebras of decorated planar
rooted forests

In the last section, we have proved that H�(X̃) is the free cocycle ε-unitary bialgebra
on a set X . In this section, we are going to show that it is further an ε-unitary Hopf
algebra and then the free cocycle ε-unitary Hopf algebra on a set X . Throughout the
remainder of the paper, we assume that k is a field with char(k) = 0 and denote by
Homk(A, B) the set of linear map from A to B.

The concept of an infinitesimal Hopf algebra was introduced by Aguiar in order to
develop and study ε-bialgebras [1]. If A is an ε-bialgebra, then the space Homk(A, A)

is still an algebra under convolution:

f ∗ g = m( f ⊗ g)�,

but it possibly without unit with respect to the convolution ∗ [1]. So it is impossible
to consider antipode. To solve this difficulty, Aguiar equipped the space Homk(A, A)

with circular convolution � given by

f � g := f ∗ g + f + g, that is, ( f � g)(a) :=
∑

(a)

f (a(1))g(a(2))

+ f (a) + g(a) for a ∈ A.

Note that f � 0 = f = 0 � f and so 0 ∈ Homk(A, A) is the unit with respect to the
circular convolution �.

Now we propose a unitary version of an infinitesimal Hopf algebra.

Definition 3.1 An infinitesimal unitary bialgebra (A,m, 1,�) is called an infinitesi-
mal unitary Hopf algebra (abbreviated ε-unitary Hopf algebra) if the identity map
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id ∈ Homk(A, A) is invertible with respect to the circular convolution. In this case,
the inverse S ∈ Homk(A, A) of id is called the antipode of A. It is characterized by
the equations

∑

(a)

S(a(1))a(2) + S(a) + a = 0 =
∑

(a)

a(1)S(a(2)) + S(a) + a for a ∈ A. (14)

where �(a) = ∑
(a) a(1) ⊗ a(2).

Remark 3.2 Note �(1) = 0 by Eq. (11). In Eqs. (14), we take a = 1 to obtain
S(1) = −1.

Definition 3.3 Let (H,mH , 1H ,�H ) and (L ,mL , 1L ,�L) be ε-unitary Hopf alge-
bras, and let SH and SL be the antipodes of H and L , respectively. When an ε-unitary
bialgebra morphism φ : H → L satisfies the condition SLφ = φSH , φ is called an
ε-unitary Hopf algebra morphism.

Example 3.4 Aguiar [1] verified that the polynomial algebra k[x] is an ε-bialgebra
satisfying

�(1) = 0, �(xn) = xn−1 ⊗ 1 + xn−2 ⊗ x + · · · + x ⊗ xn−2

+ 1 ⊗ xn−1 for n ≥ 1,

and further an ε-Hopf algebra with the antipode S given by

S(xn) = −(x − 1)n for n ≥ 0.

Involved with the unity, it is also an ε-unitary bialgebra and an ε-unitary Hopf algebra.

Based on Definitions 2.16 and 3.1, we pose the following concepts.

Definition 3.5 (a) An operated infinitesimal unitary Hopf algebra (abbreviated
operated ε-unitary Hopf algebra) (H, m, 1,�, P) is an ε-unitary Hopf algebra
(H, m, 1,�) which is also an operated algebra (H, P).

(b) Let (H,mH , 1H ,�H , PH ) and (L ,mL , 1L ,�L , PL) be two operated ε-unitary
Hopf algebras. A map φ : H → L is called an operated infinitesimal uni-
tary Hopf algebra morphism (abbreviated operated ε-unitary Hopf algebra
morphism) if φ is an ε-unitary Hopf algebra morphism and φPH = PLφ.

(c) If the cocycle ε-unitary bialgebra is an ε-unitary Hopf algebra, then it is called a
cocycle infinitesimal unitary Hopf algebra (abbreviated cocyle ε-unitary Hopf
algebra).

(d) The free cocyle ε-unitary Hopf algebra on a set X is a cocycle ε-unitary Hopf
algebra (HX , mX , 1X ,�X , PX ) together with a set map jX : X → HX with
the property that, for any cocycle ε-unitary Hopf algebra (H, m, 1,�, P) and
set map f : X → H such that �( f (x)) = 1 ⊗ 1 for x ∈ X , there is a unique
morphism f̄ : HX → H of operated ε-unitary Hopf algebras such that f̄ jX = f .
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We expose some notations and results as preparation.

Definition 3.6 [1, p. 11] Let A be an algebra and C a coalgebra. The map f : C → A
is called locally nilpotent with respect to convolution ∗ if for each c ∈ C there is
some n ≥ 1 such that

f ∗n(c) :=
∑

(c)

f (c(1)) f (c(2)) · · · f (c(n+1)) = 0.

Denote by R and C the field of real numbers and the field of complex numbers,
respectively.

Lemma 3.7 [1, Proposition 4.5] Let (A, m, �) be an ε-bialgebra over a field k and
D := m�. Suppose that either

(a) k = R or C and A is finite dimensional, or
(b) D is locally nilpotent and char(k) = 0.

Then A is an ε-Hopf algebra with bijective antipode S = −∑∞
n=0

1
n! (−D)n.

We proceed to prove that the map mRT�ε on H�(X̃) is locally nilpotent. For this,
denote by

Hn := Hn
� (X̃) := k

{
F ∈ F�(X̃)

∣∣∣ |F | = n
}

for n ≥ 0,

where |F | is the number of vertices of F .

Lemma 3.8 For each F ∈ Hn with n ≥ 1, we have �ε(F) ∈ ∑
p+q=n−1 H

p ⊗ Hq .

Proof It follows fromEq. (8) and the fact that |Ba |+|Ra| = |F |−1 for each a ∈ V (F).

�

Lemma 3.9 Let (H�(X̃), mRT , 1,�ε) be the ε-unitary bialgebra as inTheorem 2.15
and

Dε := mRT�ε : H�(X̃) → H�(X̃).

Then for each n ≥ 0 and F ∈ Hn, D∗(n+1)
ε (F) = 0 and so Dε is locally nilpotent.

Proof We prove the result by induction on n ≥ 0. For the initial step of n = 0, it
follows from Eq. (3) that

Dε(F) = Dε(1) = mRT�ε(1) = 0. (15)

Assume that D∗(n+1)
ε (F) = 0 holds for F ∈ Hn with n < k, and consider the case

when n = k. Suppose first that bre(F) = 1. If F = •x for some x ∈ X , then F ∈ H1

and so

D∗2
ε (F) = mRT (Dε ⊗ Dε)�ε(•x ) = mRT (Dε ⊗ Dε)(1 ⊗ 1) = Dε(1)Dε(1) = 0.
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If F �= •x for all x ∈ X , then we can write F = B+(F) for some F ∈ Hk−1. Thus

D∗(k+1)
ε (F) = (D∗k

ε ∗ Dε)(F) = mRT (D∗k
ε ⊗ Dε)�ε(F)

=mRT (D∗k
ε ⊗ Dε)�ε

(
B+(F)

)

=mRT (D∗k
ε ⊗ Dε)

(
F ⊗ 1 + (id ⊗ B+)�ε(F)

)
(by Eq. (4))

=mRT

(
D∗k

ε (F) ⊗ Dε(1)
)

+ mRT (D∗k
ε ⊗ DεB

+)�ε(F)

=mRT (D∗k
ε ⊗ DεB

+)�ε(F) (by Eq. (15))

=mRT (D∗k
ε ⊗ DεB

+)

⎛

⎝
∑

(F)

F (1) ⊗ F (2)

⎞

⎠

=mRT

⎛

⎝
∑

(F)

D∗k
ε (F (1)) ⊗ DεB

+(F (2))

⎞

⎠

= 0,

where the last step employs the induction hypothesis and the fact that |F (1)| <

|F | = k − 1. Suppose next that bre(F) ≥ 2. Then we may write F = F1F2 with
bre(F1), bre(F2) < bre(F). Hence

D∗(k+1)
ε (F) = (D∗k

ε ∗ Dε)(F) = (D∗k
ε ∗ Dε)(F1F2) = mRT (D∗k

ε ⊗ Dε)�ε(F1F2)

= mRT (D∗k
ε ⊗ Dε)(F1 · �ε(F2) + �ε(F1) · F2) (by Lemma 2.4)

= mRT (D∗k
ε ⊗ Dε)

⎛

⎝
∑

(F2)

F1F2(1) ⊗ F2(2) +
∑

(F1)

F1(1) ⊗ F1(2)F2

⎞

⎠

= mRT

⎛

⎝
∑

(F2)

D∗k
ε (F1F2(1)) ⊗ Dε(F2(2))

+
∑

(F1)

D∗k
ε (F1(1)) ⊗ Dε(F1(2)F2)

⎞

⎠ .

By Lemma 3.8,

|F1F2(1)| = |F1| + |F2(1)| < |F1| + |F2| = |F | = k,

whence D∗k
ε (F1F2(1)) = 0 by the induction hypothesis. Similarly,

|F1(1)| < |F1| < |F1| + |F2| = |F | = k

and so D∗k
ε (F1(1)) = 0 by the induction hypothesis. Hence D∗(k+1)

ε (F) = 0. This
completes the proof. 
�
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The following result shows that H�(X̃) has an ε-unitary Hopf algebraic structure.

Theorem 3.10 The quadruple (H�(X̃), mRT , 1,�ε) is an ε-unitary Hopf algebra
with bijective antipode S = −∑∞

n=0
1
n! (−Dε)

n.

Proof By Theorem 2.15, (H�(X̃), mRT , 1,�ε) is an ε-unitary bialgebra. From
Lemmas 3.7, 3.9 and our assumption that k being a field with char(k) = 0,
(H�(X̃), mRT , �ε) is an ε-Hopf algebra with bijective antipode S = −∑∞

n=0
1
n!

(−Dε)
n . So the result holds by Definition 3.1. 
�

The following lemma is needed.

Lemma 3.11 [1, Proposition 3.8] Let H and L be ε-Hopf algebras and φ : H → L a
morphism of ε-bialgebras. ThenφSH = SLφ, i.e.,φ is amorphism of ε-Hopf algebras.

Now, we arrive at our main result of this subsection.

Theorem 3.12 Let jX : X ↪→ H�(X̃), x �→ •x be the natural embedding. Then
the quintuple (H�(X̃), mRT , 1, �ε, B+) together with the jX is the free cocycle
ε-unitary Hopf algebra on the set X.

Proof The (H�(X̃), mRT , 1, �ε) is an ε-unitary Hopf algebra by Theorem 3.10, and
further, together with the operator B+, is a cocycle ε-unitary Hopf algebra by Eq. (4).

Let (H,m, 1H ,�, P) be a cocycle ε-unitary Hopf algebra, where the antipode is
suppressed, and let f : X → H be a set map such that �( f (x)) = 1H ⊗ 1H for
x ∈ X . By Theorem 2.17, there is a unique morphism f̄ : H�(X̃) → H of operated
ε-unitary bialgebras. In particular, f̄ is a morphism of ε-bialgebras. By Lemma 3.11,
f̄ is compatible with the antipodes and so is a morphism of operated ε-unitary Hopf
algebras. This proves the desired universal property. 
�

Let X = ∅ be the empty set. Then X̃ = X � {σ} = {σ} is a singleton set. In this
case, decorated planar rooted forestsF�(X̃) have the same decoration σ. Equivalently,
forests inF�(X̃) have no decorations andF�(X̃) is preciselyF . So we obtain a cocycle
ε-unitaryHopf algebraic structure on planar rooted forests,which are the object studied
in the Foissy-Holtkamp Hopf algebra [10,23].

Corollary 3.13 The quintuple (kF , mRT , 1,�ε, B+) is the free cocycle ε-unitary
Hopf algebra on the empty set, that is, the initial object in the category of cocycle
ε-unitary Hopf algebras.

Proof It follows from Theorem 3.12 by taking X = ∅. 
�
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