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Abstract We generalize the concept of strong walk-regularity to directed graphs. We
call a digraph strongly �-walk-regular with � > 1 if the number of walks of length
� from a vertex to another vertex depends only on whether the first vertex is the
same as, adjacent to, or not adjacent to the second vertex. This generalizes also the
well-studied strongly regular digraphs and a problem posed by Hoffman. Our main
tools are eigenvalue methods. The case that the adjacency matrix is diagonalizable
with only real eigenvalues resembles the undirected case. We show that a digraph Γ

with only real eigenvalues whose adjacency matrix is not diagonalizable has at most
two values of � for which Γ can be strongly �-walk-regular, and we also construct
examples of such strongly walk-regular digraphs.We also consider digraphs with non-
real eigenvalues. We give such examples and characterize those digraphs Γ for which
there are infinitely many � for which Γ is strongly �-walk-regular.
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1 Introduction

In [14], we introduced the concept of “strongly walk-regular graphs” as a generaliza-
tion of strongly regular graphs. Here, we generalize this concept to directed graphs: a
digraph is called strongly �-walk-regular with � > 1 if the number of walks of length
� from a vertex to another vertex depends only on whether the first vertex is the same
as, adjacent to, or not adjacent to the second vertex. In the undirected case, we used
eigenvalues to characterize such graphs and we constructed several families of exam-
ples. Eigenvalue methods also play a crucial role in this paper, but the situation is more
complex and interesting for two reasons. First of all, the adjacencymatrix of a strongly
walk-regular digraph need not be diagonalizable, and secondly, the eigenvalues can
be non-real.

The concept of strongly walk-regular digraphs generalizes the concept of strongly
regular digraphs introduced by Duval [7] and is also related to a problem posed by
Hoffman (unpublished). He posed the problem of constructing digraphs with unique
walks of length 3, a problem that was generalized by Lam and van Lint [13] to arbitrary
given length. Such digraphs are indeed special cases of strongly walk-regular graphs.
Related work has also been done by Bosák [1] and Gimbert [8], who considered
digraphs with unique walks of length in a given interval. Related is also the work of
Comellas et al. [5], who introducedweakly distance-regular digraphs as those digraphs
for which the number of walks of length � from one vertex to another depends only on
the distance between the vertices and on �. These generalize the (standard) distance-
regular digraphs that were introduced by Damerell [6] and strongly regular digraphs.

In Sect. 2, we shall give some background on eigenvalues of digraphs and strongly
regular digraphs. In Sect. 2.3, we will observe that in general, strong regularity of a
digraph is a property that cannot be derived from the spectrum. This indicates behavior
that is quite different from that of the undirected case. Indeed, wewill give examples of
non-strongly regular digraphs whose adjacency matrix is not diagonalizable, but still
has the same spectrum as a particular strongly regular digraph. We will also use these
examples in Sect. 6.2 to construct strongly walk-regular digraphs whose adjacency
matrix is not diagonalizable. After making some basic observations in Sect. 3, we
classify in Sect. 4 the strongly connected strongly �-walk-regular digraphs for which
the number of walks of length � from vertices to non-adjacent vertices is zero. In the
remaining sections, we focus on the general case. In Sect. 5, we derive properties of the
eigenvalues,whichweuse inSect. 6,which is on digraphswith real eigenvalues only. In
Sect. 6.1, we focus on those digraphs for which the adjacency matrix is diagonalizable
with real eigenvalues only. The results and examples in this case resemble those for
undirected graphs as given in [14]. In Sect. 6.2, we show that a digraphΓ with only real
eigenvalues and whose adjacency matrix is not diagonalizable has at most two values
of � for which Γ can be strongly �-walk-regular, and we also construct examples of
such strongly walk-regular digraphs. In the final section, we focus on the digraphs
with non-real eigenvalues. We give examples and characterize those digraphs Γ for
which there are infinitely many � for which Γ is strongly �-walk-regular.
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2 Preliminaries

A digraph (or directed graph) Γ is an ordered pair (V, E) consisting of a set V of
vertices and a set E of ordered pairs of elements of V , called (directed) edges. We say
that a vertex u is adjacent to v if the ordered pair uv is an edge. In this case, we also call
v an outneighbor of u, and u an inneighbor of v. When E contains both edges uv and
vu, we say that the edge uv is bidirected. A digraph for which all edges are bidirected
is considered the same as an undirected graph. A digraph having no multiple edges or
loops (edges of the form uu) is called simple. All digraphs we consider in this paper
are simple.

The adjacency matrix A of a digraph Γ is the n × n matrix (auv) indexed by the
vertices of Γ , with entries auv = 1 if u is adjacent to v, and auv = 0 otherwise. The
all-ones matrix is denoted by J , or Jn if we want to specify that its size is n × n.
A digraph is called regular of degree k if AJ = J A = k J , that is, if all vertices
have both indegree and outdegree k. A walk (of length �) is a sequence of vertices
(u0, u1, . . . , u�), where uiui+1 is an edge for i = 0, 1, . . . , � − 1. The number of
walks of length � from u to v is given by (A�)uv . A digraph is strongly connected if
there is a walk from every vertex to every other vertex. The reverse of a digraph Γ is
the digraph with adjacency matrix A�.

The line digraph of a graph (V, E) has vertex set E . If uv and wz are both in E ,
then uv is adjacent to wz in the line digraph if v = w.

2.1 The spectrum of a digraph

The spectrum of a digraph consists of the set of eigenvalues of its adjacency matrix
together with their (algebraic) multiplicities. Some basic results on the spectrum are
the following (see also e.g. [4]):

(i) By the Perron–Frobenius theorem, the maximum eigenvalue θ0 of a strongly
connected digraphΓ is real, simple, and has a positive eigenvectoru. In particular,
if Γ is k-regular then u = j , where j denotes the all-ones vector, and θ0 = k;

(ii) For a k-regular digraph Γ , every eigenvector x of an eigenvalue θ different from
k is orthogonal to the all-ones vector j . This follows from the equation θ j�x =
j�Ax = k j�x;

(iii) If Γ is a strongly connected digraph with minimal polynomial having degree
d + 1, then the diameter of Γ is at most d;

(iv) If Γ has n vertices and m edges, then the spectrum of the line digraph of Γ

consists of the spectrum of Γ and m − n extra eigenvalues 0;
(v) Hoffman andMcAndrew [10] showed that for a digraph Γ with adjacency matrix

A, there exists a polynomial h(x) ∈ Q[x] such that

h(A) = J (2.1)

if and only if Γ is strongly connected and regular. If this is the case, then the
unique polynomial h(x) of least degree such that (2.1) is satisfied, the Hoffman
polynomial, is n

h̄(k) h̄(x), where (x − k)h̄(x) is the minimal polynomial of Γ and
n and k are the number of vertices and the degree of Γ , respectively.
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A useful consequence of the above is that if Γ is a strongly connected k-regular
digraph with adjacency matrix A, and p is a polynomial such that p(A) = α J for
some α, then the Hoffman polynomial divides p, and p(θ) = 0 for every eigenvalue
θ different from k.

2.2 Walk-regular and strongly regular digraphs

Like in the undirected case, a digraph is called walk-regular if for every �, the number
of (closed) walks of length � from a vertex to itself is independent of the chosen vertex.
This is equivalent to the property that A� has constant diagonal for every �.

The notion of a strongly regular digraph (or directed strongly regular graph) was
introduced by Duval [7] in 1988 as a generalization of strongly regular graphs to the
directed case. A strongly regular digraph is a regular digraph such that the number
of walks of length two from one vertex to another depends only on whether the first
vertex is the same as, adjacent to, or not adjacent to the second vertex. In particular,
a k-regular digraph on n vertices with adjacency matrix A is strongly regular with
parameters (n, k, t, λ, μ) if A2 = t I + λA + μ(J − I − A). The case t = k is
the undirected case. On the other extreme, the case t = 0, we have (doubly regular)
tournaments, in which case A+ A� = J − I . These two cases are typically excluded
from the study of strongly regular digraphs. We therefore say that a strongly regular
digraph is non-exceptional if 0 < t < k. Note that by the given definition, also
the complete digraph (with adjacency matrix J − I ) is strongly regular. We make
this specific remark because in the undirected case, the complete graph is excluded
from the definition of strong regularity. For more details, construction methods, and
references, we refer to Brouwer’s website [3].

2.3 Not a spectral characterization of strong regularity

A connected regular undirected graph with three distinct eigenvalues is strongly reg-
ular. This does, however, not generalize to digraphs, as the next examples will show.
The smallest (non-exceptional) strongly regular digraph is on six vertices with spec-
trum {21, 03,−12}; see [7, Fig. 1]. There are, however, three other digraphs with this
spectrum (which follows from checking all 2-regular digraphs on six vertices that
were generated by Brinkmann [2, private communication]). Each of these three is
strongly connected and regular, but the Hoffman polynomial is x2(x + 1) (so it has
0 as a multiple root), and therefore, it is not strongly regular. The first of these is
obtained from a directed 6-cycle {12, 23, 34, 45, 56, 61} by adding bidirected edges
13, 25, 46. The second digraph has directed edges 12, 23, 31, 14, 45, 51 and bidirected
edges 24, 36, 56, whereas the third digraph is the reverse of the second. The latter two
digraphs are not even walk-regular (because A2 does not have constant diagonal), but
the first one is. Thus, we have the following.

Observation. Strong regularity of digraphs can in general not be recognized from the
spectrum.

Note that because the Hoffman polynomials of the above examples have 0 as a mul-
tiple root, their adjacencymatrices are not diagonalizable. Godsil et al. [9] showed that
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for non-exceptional strongly regular digraphs, the adjacency matrix is diagonalizable.
On the other hand, a regular digraph with three distinct eigenvalues whose adjacency
matrix is diagonalizable must be strongly regular. Later we will also see examples of
strongly walk-regular digraphs for which the adjacency matrix is not diagonalizable.
The fact that this can happen is one of the interesting features in the generalization of
undirected graphs to directed graphs.

3 The basics

Like in the undirected case, we call a digraph Γ a strongly �-walk-regular digraph
with parameters (λ�, μ�, ν�), for � > 1, if the number of walks of length � from a
vertex to an adjacent vertex equals λ�, from a vertex to a non-adjacent vertex equals
μ�, and from a vertex to itself equals ν�. So indeed, every strongly regular digraph
with parameters (n, k, t, λ, μ) is a strongly 2-walk-regular digraph with parameters
(λ, μ, t). In particular, the empty and complete digraphs give examples. Indeed, these
digraphs are clearly strongly �-walk-regular for every �. It is also clear that if Γ is
an undirected digraph (i.e., its adjacency matrix is symmetric), then it is strongly �-
walk-regular as an undirected graph in the sense of [14] if and only if it is strongly
�-walk-regular as a digraph in the above sense.

We will first make some basic observations. All of these are similar as in the
undirected case, so we omit the (elementary) proofs.

Let A be the adjacency matrix of Γ . Then, Γ is a strongly �-walk-regular digraph
if and only if A� is in the span of A, I , and J .

Lemma 3.1 Let � > 1, and let Γ be a digraph with adjacency matrix A. Then,
Γ is a strongly �-walk-regular digraph with parameters (λ�, μ�, ν�) if and only if
A� + (μ� − λ�)A + (μ� − ν�)I = μ� J .

Now, it is clear that a strongly regular digraph is strongly �-walk-regular for more
values of � than just � = 2, because its adjacency algebra (that is, the algebra spanned
by all powers of A) equals 〈A, I, J 〉.
Proposition 3.2 Let Γ be a strongly regular digraph. Then Γ is a strongly �-walk-
regular digraph with parameters (λ�, μ�, ν�) for every � > 1 and some λ�, μ�, and
ν�.

It is also clear from Lemma 3.1 that the reverse of a strongly walk-regular graph is
strongly walk-regular, with the same parameters.

By Hoffman and McAndrew’s characterization of strongly connected regular
digraphs [10] (see Sect. 2.1), we have the following.

Lemma 3.3 Let � > 1, and let Γ be a strongly �-walk-regular digraph with parame-
ters (λ�, μ�, ν�) where μ� > 0. Then, Γ is regular and strongly connected.

Also if μ� = 0, the digraph can be regular and strongly connected. For example,
the directed cycle of size � is strongly �-walk-regular with parameters (0, 0, 1) and
strongly (� + 1)-walk-regular with parameters (1, 0, 0). We will look further into the
case μ� = 0 in Sect. 4 and focus on the case of strongly connected regular digraphs
in the later sections.
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4 Graphs with μ� = 0

In this section, we shall classify the strongly �-walk-regular digraphs with μ� = 0
that are strongly connected.

Example 1 Let Γ be a directed g-cycle, with adjacency matrix A. It is clear that Γ has
xg−1 + · · · + x + 1 as its Hoffman polynomial and xg − 1 as its minimal polynomial.
The eigenvalues of Γ are the complex gth-roots of unity. From the equation Ag = I ,
it follows that Γ is strongly �-walk-regular, with μ� = 0, for � ≡ 0 and 1 (mod g).

By using the so-called coclique extension, we can construct more examples as
follows.

Example 2 Let Γ be a coclique extension of a directed g-cycle with g ≥ 2, that is, a
digraph with vertex set V = ∪g

i=1Vi and edge set E = ∪g−1
i=1 (Vi × Vi+1) ∪ (Vg × V1).

Let A be the adjacency matrix of Γ , then Ag+1 = λg+1A, where λg+1 = �
g
i=1|Vi |. If

we require that |Vi | > 1 for at least one i , then Γ has diameter g, which implies that
xg+1 − λg+1x is the minimal polynomial of Γ . It follows that Γ is strongly �-walk-
regular, withμ� = 0, for � ≡ 1 (mod g). Note that the case g = 2 gives a (undirected)
complete bipartite graph.

The properties of these two examples are very typical for the strongly walk-regular
digraphs that have non-real eigenvalues, aswe shall see in Sect. 7.Wenowfirstmention
some exceptional non-regular examples.

Example 3 Let � ≥ 3, and consider the directed �-cycle on vertex set Z�, where a
vertex u is adjacent to a vertex v if v = u+1. To this digraph, we add the edge 02. The
obtained digraph has diameter � − 1 and is strongly �-walk-regular with parameters
(λ�, μ�, ν�) = (1, 0, 1). It follows that its minimal polynomial is x� − x −1. If on top,
we also add the edge 13, then the obtained digraph is strongly �-walk-regular with
parameters (λ�, μ�, ν�) = (2, 0, 1), and its minimal polynomial is x� − 2x − 1. Note
that for � = 3, the latter digraph is the complete graph K3 minus an edge.

We will show next that the given examples are the only strongly connected strongly
�-walk-regular digraphs with μ� = 0. In order to do this, we will use the following
lemma on shortest cycles in such digraphs. We recall that the girth g of a digraph is
the length of the shortest directed cycle. Note that g = 2 if there is a bidirected edge.

Lemma 4.1 LetΓ be a strongly connected strongly �-walk-regular digraphwithμ� =
0 and girth g. Then, � ≡ 0 or 1 (mod g). Moreover, if Γ is not a directed cycle, then
λ� > 0 and for every directed cycle C of length g and every vertex z not on C there
are vertices u and v on C such that uz and zv are edges.

Proof Let C be a cycle of shortest length g, and let w be a vertex on C . It is clear
that if one starts walking on the cycle from w, then after � steps one should end up in
either w itself or the unique outneighbor of w on C , because μ� = 0. Thus, � ≡ 0 or
1 (mod g).

Now, suppose that Γ is not a directed cycle, and let z be a vertex that is not on C .
Because Γ is strongly connected and the diameter of Γ is less than � (because the
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minimal polynomial is a divisor of x� − λ�x − ν�), it follows that there is a vertex on
C which is at distance less than � from z. But then one can extend a walk from z to
that vertex to a walk of length � from z to a vertex v on C . Because μ� = 0, it follows
that zv is an edge and that λ� > 0. Similarly there is a vertex u on C such that uz is
an edge. 	

Theorem 4.2 Let Γ be a strongly connected strongly �-walk-regular digraph with
μ� = 0 that is not complete. Then, Γ is one of the digraphs of Examples 1–3.

Proof Note again that Γ has diameter less than �, and so we may assume that � > 2.
In the following, let us denote by a →i b that there is a walk of length i from a to
b; we omit the subscript for i = 1. Let g be the girth of Γ and consider a cycle C of
length g. By Lemma 4.1, we know that � ≡ 0 or 1 (mod g). Further, we may assume
that Γ is not a g-cycle (Example 1). Let z be a vertex not on C , and let u and v be
vertices on C such that uz and zv are edges (see Lemma 4.1).

First, assume that � ≡ 0 (mod g). Let w be the outneighbor of u on C . By walking
� − 1 steps from w on the cycle, one ends up in u. So w →�−1 u → z, and so there
is a walk of length � from w to z; hence, wz is also an edge. Inductively, it follows
that every vertex on C is adjacent to z. Similarly, z is adjacent to every vertex on C .
This also implies that g = 2, and it easily follows that Γ is a complete graph. Thus,
we may assume below that � ≡ 1 (mod g).

Let us now assume that ν� = 0. We again consider the above vertices z, u, and v.
Because C is a shortest cycle, it follows that the distance from u to v on the cycle is
at most two. If uv is an edge, then v →�−2 u → z → v, so there is a closed walk of
length �, which contradicts the assumption that ν� = 0. Thus, u and v are at distance
two, or u = v in the (degenerate) case that g = 2. In any case, given C and z, the
vertices u and v are the unique vertices onC such that uz and zv are edges. Now, let vi ,
for i = 1, . . . , g be the consecutive vertices ofC , so vi−1vi is an edge for i = 1, . . . , g,
where we let v0 = vg . We now define the set of vertices Vi = {v : vi−1v is an edge}
for i = 1, . . . , g. It is easy to show now that there are no edges within each of the sets
Vi , that each vertex in Vi is adjacent to each vertex in Vi+1, and finally to draw the
conclusion that Γ must be a coclique extension of a g-cycle (Example 2).

Next, we assume that ν� > 0 (and recall that we assumed that � ≡ 1 (mod g)) and
hence that there are closed walks of length �. Any such closed walk must contain a
vertex not on C . In particular, it follows that there is an edge uz, with u on C and z
not on C , that is contained in a closed walk of length �. If u has outneighbor v on C ,
then it follows that z →�−1 u → v, so then zv is an edge. It also follows that every
edge of C , except possibly uv is contained in a closed walk of length �. Suppose now
that besides z, there is another vertex z′ not on C , and let v′ be an outneighbor of z′ on
C . If v′ 
= v, and v′′ is the inneighbor of v′ on C , then v′′v′ is contained in a walk of
length �, so z′ → v′ →�−1 v′′, and so z′v′′ is also an edge. Inductively, it follows that
z′v is an edge. By a similar argument (or applying the same argument to the reverse
digraph), it follows that uz′ is an edge. Now, z → v →�−2 u → z′, so zz′ is an edge.
By the same argument, this edge is bidirected, and so g = 2. It is now easy to show that
the digraph is complete, which is a contradiction. Hence, there is only one vertex (z)
not on C . If z has only one outneighbor (v) and one inneighbor (u), then Γ is the first
digraph of Example 3. Because C is a cycle of shortest length, z can have either one
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more inneighbor (the inneighbor of u onC) or one more outneighbor (the outneighbor
of v on C), but not both. In both cases, Γ is the second digraph of Example 3. 	


Note that for the digraphs of Example 3, the above proof indicates that � ≡
1 (mod g). It is, however, not hard to show that � = g + 1 (by constructing walks of
length tg + 1 from a vertex to a non-adjacent vertex for t ≥ 2), i.e., there is only one
� for which these digraphs are strongly �-walk-regular.

The given examples with μ� = 0 and ν� = 0 can be used to construct also some
examples that are weakly connected. For example, take a directed cycle, and add a few
vertices that only haveoneoutneighbor (andno inneighbors), and this outneighbor is on
the cycle. Even more degenerate examples can be constructed: if all walks eventually
end in vertices without outneighbor, then A� = O for � large enough.

5 Strongly connected regular digraphs

In order to study the case that μ� > 0, from now on we consider strongly connected
and regular digraphs; see Lemma 3.3. We denote the set of all diagonalizable digraphs
(that is, digraphs with diagonalizable adjacency matrix) by D. For these digraphs, all
roots of the minimal polynomial are simple. By Dθ , we denote the set of digraphs
whose minimal polynomial has all but one root simple, and the non-simple root is θ

and it has multiplicity 2. For example, the three digraphs in Sect. 2.3 that are cospectral
to a strongly regular digraph are inD0. The following result shows that if Γ is strongly
walk-regular, then eitherΓ ∈ D orΓ ∈ Dθ for some eigenvalue θ ofΓ . Note that from
the observations in Sect. 2.1 and Lemma 3.1, it follows that the Hoffman polynomial
divides the polynomial x�+(μ�−λ�)x+μ�−ν�, and hence, each eigenvalue different
from the degree k is a root of this polynomial.

Proposition 5.1 Let Γ be a strongly connected k-regular digraph. If Γ is strongly
�-walk-regular with parameters (λ�, μ�, ν�) where � > 1, then either Γ ∈ D or
Γ ∈ Dθ for θ = −�(μ�−ν�)

(�−1)(μ�−λ�)
. Moreover, if Γ ∈ Dθ , then θ is a nonzero integer

number different from k and (
μ�−ν�

�−1 )�−1 = (
μ�−λ�−�

)�.

Proof Suppose that Γ is not diagonalizable and let θ be a non-simple root of the
minimal polynomial. Then, θ 
= k, and hence, it is also a non-simple root of
the Hoffman polynomial and hence of p(x) = x� + (μ� − λ�)x + μ� − ν�. If the
multiplicity of θ in these polynomials is larger than two, then clearly it is also a root of
the derivatives p′(x) = �x�−1 +μ� −λ� and p′′(x) = �(�−1)x�−2. This implies that
θ = 0 and hence that μ� = λ� = ν�. Therefore, A� = μ� J and so every eigenvalue
different from k is 0. This, however, contradicts the fact that A has trace 0, so θ must
have multiplicity two in p(x) and hence in the minimal polynomial.

If θ is indeed a root of p(x) with multiplicity two, then it is also a root of p′(x),
and similar as before it follows that θ 
= 0. By combining the equations p(θ) = 0 and
p′(θ) = 0, it follows that

μ� − λ� = −�θ�−1 and μ� − ν� = (� − 1)θ� (5.1)
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and hence that θ = −�(μ�−ν�)
(�−1)(μ�−λ�)

. If this is indeed a root of both polynomials, then

(
μ�−ν�

�−1 )�−1 = (
μ�−λ�−�

)�. Moreover, if this is the case, then θ is a rational eigen-
value, and so it must be an integer (being a root of a monic polynomial with integer
coefficients). 	


In Sect. 6.2, we will show that the case of non-diagonalizable strongly walk-regular
digraphs really occurs by constructing some examples.

Proposition 5.2 Let � > 1. A strongly connected k-regular digraph Γ on n vertices is
strongly �-walk-regular with parameters (λ�, μ�, ν�) if and only if all of the following
conditions hold:

(i) Either Γ ∈ D or (
μ�−ν�

�−1 )�−1 = (
μ�−λ�−�

)� and Γ ∈ Dθ for θ = −�(μ�−ν�)
(�−1)(μ�−λ�)

;
(ii) All eigenvalues besides k are roots of the equation

x� + (μ� − λ�)x + μ� − ν� = 0;

(iii) And

k� + (μ� − λ�)k + μ� − ν� = μ�n.

Proof If Γ is a strongly �-walk-regular digraph with parameters (λ�, μ�, ν�), then
condition (i) holds by Proposition 5.1 and A� + (μ� − λ�)A + (μ� − ν�)I = μ� J
by Lemma 3.1. We already observed in Sect. 2.1 that this implies (ii). Condition (iii)
follows from multiplying the above matrix equation with the all-ones vector.

Now assume that (i), (ii) and (iii) hold. IfΓ is diagonalizable, then each eigenvalue
besides k is a simple root of the Hoffman polynomial, and hence, the Hoffman poly-
nomial divides the polynomial p(x) = x� + (μ� − λ�)x + μ� − ν�. If (

μ�−ν�

�−1 )�−1 =
(
μ�−λ�−�

)� and Γ ∈ Dθ for θ = −�(μ�−ν�)
(�−1)(μ�−λ�)

then, θ is a root of both p(x) and p′(x),
and so it is a root of multiplicity at least two of p(x). Because all other eigenvalues
besides k and θ are simple roots of the Hoffman polynomial, and θ is a root of multi-
plicity two in the Hoffman polynomial, also in this case the Hoffman polynomial h(x)
divides p(x).

Now, let g(x) = p(x)/h(x). Because g(x) is a polynomial, it follows that p(A) =
g(A)h(A) = g(A)J = g(k)J . By multiplying with the all-ones vector and condition
(iii), this implies that μ�n = p(k) = g(k)n, and hence, we obtain that p(A) = μ� J .
Thus Γ is strongly �-walk-regular with parameters (λ�, μ�, ν�). 	


Like in the undirected case, we obtain the following result from the above proof.

Corollary 5.3 Let � > 1. A strongly connected regular digraph is strongly �-walk-
regular if and only if its Hoffman polynomial divides the polynomial x� + ex + f for
some integers e and f .

Becausewe can bound the number of real roots of x�+ex+ f , this has consequences
for the number of real roots of the Hoffman polynomial, and hence, for the number of
distinct real eigenvalues of a strongly walk-regular digraph. The bound is as follows.
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Lemma 5.4 [14] Let � > 1, and let p(x) = x� + ex + f for some real e and f . Then,
p has at most three real roots. If � is even, then p has at most two real roots.

Note that the counted number of real roots includes multiplicities of these roots.
We thus obtain the following from Corollary 5.3.

Proposition 5.5 Let Γ be strongly connected, regular, and strongly �-walk-regular
with � > 1. Then, the Hoffman polynomial ofΓ has at most three real roots. Moreover,
if � is even, then it has at most two real roots.

We will now give three more results that follow from Proposition 5.2. We will use
these in the next sections.

Proposition 5.6 Let Γ be a strongly connected k-regular digraph on n vertices with
at least three distinct eigenvalues, and let � > 1. Then, Γ is strongly �-walk-regular
with parameters (λ�, μ�, ν�) if and only if all of the following conditions hold:

(i) Either Γ ∈ D or (
μ�−ν�

�−1 )�−1 = (
μ�−λ�−�

)� and Γ ∈ Dθ for θ = −�(μ�−ν�)
(�−1)(μ�−λ�)

;
(ii) For every two distinct eigenvalues θ1, θ2 
= k,

μ� − λ� = θ�
2 − θ�

1

θ1 − θ2
and μ� − ν� = θ2θ

�
1 − θ1θ

�
2

θ1 − θ2
; (5.2)

(iii) And

k� + (μ� − λ�)k + μ� − ν� = μ�n.

Proof Let θ1, θ2 
= k be two distinct eigenvalues of Γ . Then, it is straightforward to
show that (5.2) holds if and only if θ1 and θ2 are roots of the equation x� + (μ� −
λ�)x + μ� − ν� = 0. This implies that condition (ii) of Proposition 5.2 is equivalent
to the property that (5.2) holds for every two distinct eigenvalues θ1, θ2 
= k, which is
all we have to show. 	


Note that the restriction on Γ having at least three distinct eigenvalues is not really
necessary. It is not so hard to see that a strongly connected digraph with (at most) two
distinct eigenvalues must be a complete digraph (i.e., A = J − I ), and this satisfies
the conditions of the proposition.

Corollary 5.7 Let Γ be a strongly connected k-regular digraph with at least four
distinct eigenvalues, and let � > 1. If Γ is strongly �-walk-regular, then

(θ2 − θ3)θ
�
1 + (θ3 − θ1)θ

�
2 + (θ1 − θ2)θ

�
3 = 0 (5.3)

for every three distinct eigenvalues θ1, θ2, θ3 
= k.

Proof From (5.2), it follows that
θ�
2−θ�

1
θ1−θ2

= θ�
3−θ�

1
θ1−θ3

, and by working this out, (5.3)
follows. 	
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Lemma 5.8 Let Γ be a strongly connected k-regular digraph that is strongly �-walk-
regular with � > 1. If Γ ∈ Dθ , then

�θ�−1(θ − η) = θ� − η� (5.4)

for every eigenvalue η 
= k.

Proof From Proposition 5.2, it follows that η� + (μ� −λ�)η +μ� − ν� = 0. By using
(5.1), it now follows that �θ�−1(θ − η) = θ� − η�. 	


6 Digraphs with all eigenvalues real

In this section, we will consider the digraphs that have real eigenvalues only. The case
that � is even is then easy.

Proposition 6.1 Let Γ be a strongly connected regular digraph with all eigenvalues
real, and let � be even. Then, Γ is strongly �-walk-regular if and only if Γ is strongly
regular.

Proof Assume thatΓ is strongly �-walk-regular. Because � is even and all eigenvalues
are real, it follows from Proposition 5.5 that the Hoffman polynomial of Γ has at
most two roots (including multiplicities), and hence, Γ is strongly regular. On the
other hand, we already observed in Proposition 3.2 that a strongly regular digraph is
strongly �-walk-regular for every �. 	


For � odd, we will distinguish between diagonalizable digraphs and the others.

6.1 Diagonalizable digraphs

Let Γ be diagonalizable with all eigenvalues real, and suppose that Γ is strongly
connected, k-regular, and strongly �-walk-regular, but not strongly regular. Then, � is
odd and it follows by Proposition 5.5 that Γ has four distinct eigenvalues k > θ1 >

θ2 > θ3. The theory that was developed for strongly walk-regular undirected graphs
with four eigenvalues in [14, Section 4] can almost literally be extended to this case.
In particular, we obtain the following results.

Proposition 6.2 LetΓ be a strongly connected k-regular diagonalizable digraphwith
all eigenvalues real. If Γ is strongly �-walk-regular but not strongly regular, then � is
odd, Γ has four distinct real eigenvalues k > θ1 > θ2 > θ3, and

(i) Γ is strongly 3-walk-regular if and only if θ1 + θ2 + θ3 = 0;
(ii) If θ2 = 0 and θ3 = −θ1, then Γ is strongly �-walk-regular for every odd �, and
(iii) If θ2 
= 0 or θ3 
= −θ1, then there is at most one � > 1 such that Γ is strongly

�-walk-regular.

Proof The arguments for (i), (ii), and (iii) are similar as those for [14, Prop. 4.1], [14,
Prop. 4.2], and [14, Thm. 4.4], respectively. 	
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As in the undirected case, we can construct examples of strongly walk-regular
digraphs by product constructions.Other examples are obtained by using line digraphs.
The undirected version of this, the usual line graph, did not provide examples in the
undirected case.

Example 4 Consider a strongly regular digraph Γ with parameters (n, k, t, λ, μ), for
which λ = μ 
= t . An infinite family of such digraphs was constructed by Jørgensen
[11] (see also [3, Construction T4] and Example 7). If A is the adjacencymatrix of such
a digraph, and q > 1, then the digraph with adjacency matrix A⊗ Jq is diagonalizable
with four distinct eigenvalues qk, ±q

√
t − μ, and 0. So it is strongly �-walk-regular

for every odd �.
Also the line digraph of Γ is diagonalizable with four distinct eigenvalues: k,

±√
t − μ, and 0, because the eigenvalues of a digraph and its line digraph only differ

in the eigenvalues 0, see Sect. 2.1. So also the line digraph of Γ is strongly �-walk-
regular for every odd �. We remark finally that one could even combine the product
construction and the line digraph construction (repeatedly).

Example 5 Consider a strongly regular digraph Γ with parameters (n, k, t, λ, μ), for
which t > μ = λ + 1 (see [3, Construction M4] for an infinite family). Denote its
eigenvalues by k, r , and s, then r + s = −1 and r, s 
= 0. Let A be the adjacency
matrix of such a digraph, then the digraph with adjacency matrix J3n − I − A⊗ J3 is
diagonalizable with four distinct eigenvalues 3n−1−3k, 3r+2,−1,−1−3r . So it is
a strongly �-walk-regular digraph only for � = 3. Also here variations are possible by
using line digraphs, for example by first taking the line digraph of Γ , with adjacency
matrix B and then construct the digraph with adjacency matrix J3nk − I − B ⊗ J3.

It would be interesting, as in the undirected case, to also find examples that are
strongly �-walk-regular for precisely one � with � > 3 (and μ� > 0; see Example 3
for such digraphs with μ� = 0).

6.2 Non-diagonalizable digraphs

Using the earlier examples from Sect. 2.3 and the Kronecker product again, we can
construct examples of non-diagonalizable strongly walk-regular digraphs.

Example 6 Let A be the adjacency matrix of a regular digraph on six vertices with
Hoffman polynomial x2(x + 1) (see Sect. 2.3 for three such examples). Then, the
digraph with adjacency matrix J18− I − A⊗ J3 has Hoffman polynomial x3−3x−2.
Indeed, it has distinct eigenvalues 11, 2, and−1, with−1 havingmultiplicity two in the
minimal polynomial. So it is a strongly 3-walk-regular digraph with three eigenvalues
that is inD−1. It has the same spectrum as a strongly regular digraph that is constructed
in the same way from the strongly regular digraph on six vertices that was mentioned
in Sect. 2.3. It can be shown that the non-diagonalizable digraph is strongly �-walk-
regular only for � = 3, following the approach of the proof of the next result.

Proposition 6.3 Let Γ be a non-diagonalizable strongly connected regular digraph
with all eigenvalues real. Then, Γ is strongly �-walk-regular for at most two values of
�, and these � are odd.
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Proof Assume that Γ ∈ Dθ is strongly �-walk-regular, and let η 
= θ, k be another
real eigenvalue. Suppose that Γ is also stronglym-walk-regular, then �θ�−1(θ −η) =
θ� − η� and mθm−1(θ − η) = θm − ηm according to Lemma 5.8. By combining these
two equations, it follows that

�
(
1 − (η/θ)m

) = m
(
1 − (η/θ)�

)
.

Now, let ξ = |η/θ |, ε = sign(η/θ), and f (x) = �(1 − εξ x ) − x(1 − εξ�). Then,
f (m) = 0 and f (�) = 0 because m and � are odd (by Proposition 6.1). We now aim
to show that the equation f (x) = 0 has at most two solutions, because that would
finish the proof. Indeed, this follows from the fact that f ′′(x) is always positive, or
always negative, depending on ε, unless η = −θ . In this exceptional case, however,
f (x) = 2� − 2x , so it has only one root. 	

We would not be surprised if it can be shown that a non-diagonalizable strongly

connected digraph with all eigenvalues real can be strongly �-walk-regular for at most
one �. For the digraph of Example 6, we find that the function f from the above proof
satisfies f (x) = 3(1+ 2x ) − 9x , and it is easy to show that this has only one integral
root.

7 Digraphs with non-real eigenvalues

In this section, we consider strongly walk-regular digraphs with non-real eigenvalues.
Doubly regular tournaments, or equivalently strongly regular digraphs with t = 0 are
examples of these: If n is the number of vertices, then the eigenvalues are k = 1

2 (n−1)
and − 1

2 ± 1
2

√−n (this follows for example from the proof of [7, Thm. 2.2]). Clearly
also the directed cycle (see Example 1) and the digraphs of Example 2 have non-real
eigenvalues.

Hoffman (unpublished) posed the problem of constructing digraphs with unique
walks of length 3. Lam and van Lint [13] generalized this by considering directed
graphs with unique walks of fixed length (m say), that is, with adjacency matrix A
satisfying Am = J − I . This is a very particular case of our strongly walk-regular
digraphs (withμm = λm = 1 and νm = 0), whose eigenvalues different from k satisfy
the equation xm = −1. In particular, they showed that there are no such digraphs for
even m and constructed k-regular digraphs for every odd m on km + 1 vertices. In
order to generalize their example, we use the following lemma.

Lemma 7.1 Let � ≥ 1, k ≥ 2, and W = {∑�−1
i=0 ai (−k)i : a0, a1, . . . , a�−1 ∈

{1, 2, . . . , k}}. Then W = {1, 2, . . . , k�} if � is odd, and W = {0,−1,−2, . . . ,−k� +
1} if � is even.

Proof This follows easily by induction on �. 	

Now, we can generalize the construction of Lam and van Lint [13] to include even

m.
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Example 7 Let k ≥ 2, m ≥ 2, and n = km − (−1)m . The vertex set of Γ is Zn , and
a vertex u is adjacent to a vertex v if ku + v ∈ {1, 2, . . . , k}. This is an example of a
so-called (−k)-circulant graph (see [12]). Note that n has a factor k+1, which implies
that there are no loops, i.e., no vertex is adjacent to itself.

Lam and van Lint [13] showed that for m = 3 and k = 2, this digraph Γ on
nine vertices (which is depicted in their Fig. 3) is in fact the only 2-regular digraph
satisfying the equation A3 = J − I . Its eigenvalues are 2, −1 with multiplicity 4, and
1
2 ± 1

2

√−3 with multiplicity 2 each. It follows that Γ is strongly �-walk-regular for
� ≡ 0 and 1 (mod 3).

In general, observe (by induction) that there is a walk of length � from a vertex
u0 to a vertex u� if and only if there is an �-tuple (a0, a1, . . . , a�−1) ∈ {1, 2, . . . , k}�
such that u0 = ∑�−1

i=0 ai (−k)i +(−k)�u�. In fact, this gives a one-one correspondence
between {1, 2, . . . , k}� and the walks of length � starting at u0. By Lemma 7.1, it now
follows that Am = J + (−1)m I .

To conclude that the Hoffman polynomial of Γ is xm − (−1)m (and not a proper
divisor), we claim that the diameter D is at least m. To show this, observe that Ai

has row sums ki ; hence, every vertex has at most 1 + k + · · · + km−1 vertices at
distance at most m − 1. However, (A2)00 = 1, which implies that vertex 0 has at
most k + · · · + km−1 vertices at distance m − 1. Because this number is smaller than
n, this indeed shows that D ≥ m, and hence, the Hoffman polynomial has degree at
least m and therefore must be xm − (−1)m . Thus, the eigenvalues of Γ are k and the
complex mth-roots of (−1)m (including −1 itself). It also follows that Γ is strongly
�-walk-regular for � ≡ 0 and 1 (mod m).

Note that using circulants, Lam [12] constructed several other 01-matrices A such
that Am is a linear combination of J and I ; however, as digraphs they have loops (that
is, A does have ones on the diagonal). Note also that the particular case m = 2 is not
new: Jørgensen [11] constructed these strongly regular digraphs, unaware of Lam’s
work.

By taking the product of above examples and the all-ones matrix or their line
digraphs, thus adding an eigenvalue 0, we get examples with the maximum number
of real eigenvalues.

Example 8 Let A be the adjacency matrix of a digraph such that Am is a linear combi-
nation of I and J (so withμm = λm), as in Examples 7. Then, both its line digraph and
the digraph with adjacency matrix A ⊗ J are strongly (m + 1)-walk-regular. Besides
the eigenvalues of A, they have an extra eigenvalue 0, so starting from the digraphs
of Example 7, we obtain examples of strongly walk-regular digraphs with three and
four real eigenvalues, which is the maximum number according to Proposition 5.5.
Moreover, these digraphs are strongly �-walk-regular for � ≡ 1 (mod m).

Examples 7 and 8 show the typical behavior of the digraphs with a non-real eigen-
value that are strongly �-walk-regular for infinitely many �, as we shall see in the next
result.

Theorem 7.2 Let Γ be a strongly connected regular digraph with at least one non-
real eigenvalue. If Γ is strongly �-walk-regular for infinitely many �, then one of the
following cases holds:
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(i) Γ is a doubly regular tournament;
(ii) μ� = λ� or μ� = ν� for every � for which Γ is strongly �-walk-regular;
(iii) Γ is k-regular with four distinct eigenvalues k, ρe±iϕ , and θ , where θ is real and

0 < |θ | < ρ ≤ k.

Proof LetΓ be a k-regular strongly �-walk-regular digraph,with a non-real eigenvalue
ρeiϕ , where ρ > 0 and sin ϕ 
= 0. Also its complex conjugate ρe−iϕ is an eigenvalue
of Γ , and by applying (5.2), it follows that

μ� − λ� = − sin �ϕ

sin ϕ
ρ�−1 and μ� − ν� = sin(� − 1)ϕ

sin ϕ
ρ�. (7.1)

If Γ has only three distinct eigenvalues, then it is diagonalizable by Proposition
5.1, and hence, it is strongly regular, and hence, case (i) holds.

So we may assume from now on that Γ has at least four distinct eigenvalues, in
particular let θ be another eigenvalue. By applying Corollary 5.7, we find that

(
θ

ρ

)�

sin ϕ = θ

ρ
sin �ϕ − sin(� − 1)ϕ. (7.2)

Because this equation holds for infinitely many � and its right hand side is bounded in
�, it follows that |θ | ≤ ρ.

We now first consider the case that θ is non-real and aim to show that μ� = λ�

or μ� = ν�. By interchanging the roles of the eigenvalues in the above argument,
it follows that |θ | = ρ, and hence, θ = ρeiϕ

∗
for some ϕ∗ with sin ϕ∗ 
= 0 and

cosϕ∗ 
= cosϕ. Now, (7.2) reduces to the following two equations:

sin �ϕ∗ sin ϕ = sin ϕ∗ sin �ϕ, (7.3)

cos �ϕ∗ sin ϕ = cosϕ∗ sin �ϕ − sin(� − 1)ϕ. (7.4)

Now, let r = sin �ϕ/ sin ϕ. If r = 0, then by (7.1), we indeed have that μ� = λ�. So
we may assume that r 
= 0. Then, (7.3) and (7.4) imply that

r = sin �ϕ∗

sin ϕ∗ = cos �ϕ − cos �ϕ∗

cosϕ − cosϕ∗ . (7.5)

If sin ϕ∗ = ± sin ϕ, then ϕ∗ = ±ϕ +π , and then (7.5) implies that tan �ϕ = tan ϕ,
so (� − 1)ϕ is a multiple of π . Now, (7.1) indeed implies that μ� = ν�.

If sin ϕ∗ 
= ± sin ϕ, then (7.5) also implies that

cos �ϕ − cos �ϕ∗

cosϕ − cosϕ∗ = sin �ϕ − sin �ϕ∗

sin ϕ − sin ϕ∗ = sin �ϕ + sin �ϕ∗

sin ϕ + sin ϕ∗ .

Using these equations and sum-to-product trigonometric formulas, it follows that

tan �

(
ϕ + ϕ∗

2

)
= tan

ϕ + ϕ∗

2
and tan �

(
ϕ − ϕ∗

2

)
= tan

ϕ − ϕ∗

2
,
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which again shows that (� − 1)ϕ is a multiple of π and hence that μ� = ν�.
Next, assume that θ is real, with |θ | = ρ. For the sake of readability, we will only

consider the case that θ = ρ. The case that θ = −ρ is similar, but a bit more technical.
So we let θ = ρ. Now (7.2) reduces to

sin ϕ = sin �ϕ − sin(� − 1)ϕ,

which is equivalent to

sin
ϕ

2
cos

ϕ

2
= sin

ϕ

2
cos

(2� − 1)ϕ

2
.

Because sin ϕ
2 
= 0, this implies that �ϕ or (� − 1)ϕ is a multiple of 2π , and hence by

(7.1), we indeed have that μ� = λ� or μ� = ν�.
Also the case that θ = 0 gives case (ii). Indeed, if θ = 0, then (7.2) implies that

sin(� − 1)ϕ = 0 and hence that μ� = ν� by (7.1).
Finally, assume that we are not in any of the above cases and hence that θ is real,

with 0 < |θ | < ρ. We can rewrite (7.2) as

(
θ
ρ

)� =
(

θ
ρ

− cosϕ
)
sin �ϕ/ sin ϕ + cos �ϕ. (7.6)

This implies that if {�i }∞i=1 is an increasing sequence such that Γ is strongly �i -walk-
regular for every i , and limi→∞ sin �iϕ = 0, then also limi→∞ cos �iϕ = 0, which is
a contradiction. Thus, there is an increasing sequence {�i }∞i=1 such that Γ is strongly
�i -walk-regular and for which | sin �iϕ| > δ for every i and some δ > 0. Now, it
follows from (7.6) that limi→∞ cot �iϕ = (cosϕ −θ/ρ)/ sin ϕ. Thus, θ is determined
by this equation, and hence, we have the final case of the statement. 	

Corollary 7.3 Let �∗ > 1 and let Γ be a strongly connected regular digraph that is
strongly �∗-walk-regular with μ�∗ = λ�∗ or μ�∗ = ν�∗ , such that Γ is not strongly
regular. Then, Γ is strongly �-walk-regular for infinitely many �, and μ� = λ� or
μ� = ν� for each � such that Γ is strongly �-walk-regular. Moreover, if m is the
smallest integer such thatΓ is strongly m-walk-regular with m > 1, then the following
holds:

(i) If μm = λm, then Γ is strongly �-walk-regular for every � ≡ 0 and 1 (mod m);
(ii) If μm = νm, then Γ is strongly �-walk-regular for every � ≡ 1 (mod m − 1);

Proof If μ�∗ = λ�∗ , then A�∗ ∈ 〈I, J 〉, which clearly implies that Γ is strongly
�-walk-regular for every � ≡ 0 and 1 (mod �∗). Ifμ�∗ = ν�∗ , then A�∗ ∈ 〈A, J 〉, which
implies that Γ is strongly �-walk-regular for every � ≡ 1 (mod �∗ − 1). Moreover,
in both cases, each nonzero eigenvalue of Γ must have the same absolute value and
has multiplicity one in the Hoffman polynomial, so Γ is diagonalizable. Hence, if
Γ has non-real eigenvalues, then by Theorem 7.2 the result follows. If Γ has real
eigenvalues only, then it must have three distinct eigenvalues besides the degree, and
these must be 0 and ±ρ for some ρ. In this case, it follows that m = 3 and Γ is
strongly �-walk-regular for every odd �, with μ� = ν�, see also Sect. 6.1. 	


123



J Algebr Comb (2018) 47:623–639 639

Because the sum of the two non-trivial eigenvalues of a doubly regular tournament is
−1, we can apply the same construction methods as in Examples 5 and 6. In this case,
we obtain examples with eigenvalues as in the final case of Theorem 7.2.

Example 9 Consider a doubly regular tournament on n vertices and let A be its adja-
cencymatrix. Asmentioned before, its eigenvalues are k = 1

2 (n−1) and− 1
2 ± 1

2

√−n.
Then, the digraph with adjacency matrix J3n − I − A ⊗ J3 has distinct eigenvalues
3n+1
2 , 1

2 ± 3
2

√−n, and −1. It thus follows from the Hoffman polynomial that it is
strongly 3-walk-regular.

We suspect, however, that the digraphs of this example are only strongly �-walk-
regular for � = 3. It would therefore be interesting to find examples for case (iii) of
Theorem 7.2 that are strongly �-walk-regular for infinitely many � or to show that no
such examples exist.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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