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Abstract Weprove an explicit formula for the first nonzero entry in the n-th row of the
gradedBetti table of an n-dimensional projective toric variety associatedwith a normal
polytope with at least one interior lattice point. This applies to Veronese embeddings
of P

n . We also prove an explicit formula for the entire n-th row when the interior of
the polytope is one-dimensional. All results are valid over an arbitrary field k.
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1 Introduction

Let k be a field. In this article, we study syzygies of projectively embedded toric vari-
eties X/k. More precisely, we give explicit formulas in terms of the combinatorics
of the defining polytope for certain graded Betti numbers, which appear in the min-
imal free resolution of the homogeneous coordinate ring of X as a graded module,
obtained by repeatedly taking syzygies. These Betti numbers are typically gathered in
the graded Betti table:

0 1 2 3 4 . . .

0 1 0 0 0 0 . . .

1 0 κ1,1 κ2,1 κ3,1 κ4,1 . . .

2 0 κ1,2 κ2,2 κ3,2 κ4,2 . . .

3 0 κ1,3 κ2,3 κ3,3 κ4,3 . . .
...

...
...

...
...

...
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Here, κp,q is the number of degree p+q summands of the p-thmodule in the resolu-
tion. One alternatively defines κp,q as the dimension of the Koszul cohomology space
Kp,q(X, O(1)). The graded Betti table is expected to contain a wealth of geometric
information and is the subject of several important open problems and conjectures.
But the vast part of it is poorly understood.

For a number of entries, an explicit formula in terms of the defining lattice polytope
was known before. Examples of this can be found in [3,11]. But for this paper, the
most relevant result is that of Schenck, who proved [16] that for projective toric
surfaces coming from a lattice polygon with b lattice boundary points κp,2 = 0 for
all p ≤ b − 3. Hering proved in [11, Theorem IV.20] using a theorem of Gallego–
Purnaprajna [9, Theorem 1.3] that the next entry κb−2,2 is not zero. Both results were
already known in the case this polygon is equal to the triangle with vertices (0, d),
(d, 0), (0, 0). This polygon gives the d-fold Veronese embedding of the projective
plane, for which Loose [12] proved that the number of zeroes in the quadratic strand
equals 3d − 3 (not counting κ0,2 = 0 as a zero). This result was independently
rediscovered by Ottaviani and Paoletti [13], and they generalized this to the following
conjecture:

Conjecture 1 For the d-fold Veronese embedding of n-dimensional projective space
κp,q = 0 whenever p ≤ 3d − 3 and q ≥ 2.

This is known as property Np with p = 3d − 3. For d > n, this is generalized by
the following conjecture [7, p. 643, Conjecture 7.6] which the authors already proved
for q = n:

Conjecture 2 If we take a minimal free resolution of the line bundle OPn (b) on the
Veronese embedding of P

n of degree d with d ≥ b + n + 1 then κp,q = 0 for all
1 ≤ q ≤ n and

p <

(
d + q

q

)
−

(
d − b − 1

q

)
− q.

Syzygies ofVeronese embeddings are still an active area of research [2,6,10,14,15].
For a short introduction to syzygies and to toric varieties, we refer the reader to the
next section.

We will not prove this conjecture, but we will prove an explicit formula for
κ(d+n

n )−(d−b−1
n )−n,n which is the first nonzero entry on the n-th row. We also prove

a formula for the first nonzero entry in the n-th row of the Betti table of any projec-
tively normal toric variety of dimension n, if this row is not zero. Note that the n-th
row is the last nonzero row if it is not zero. We will work over an arbitrary field k. For
a convex lattice polytope �, we denote by �(1) the convex hull of the lattice points in
the topological interior of �.
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We are now ready to formulate our main result:

Theorem 3 Let X be a toric variety coming from an n-dimensional normal polytope
� ⊆ R

n. Let �(1) be the interior polytope of �. Let S = � ∩ Z
n, T = �(1) ∩ Z

n and
N = #S, N (1) = #T .

• If p < N − N (1) − n then κp,n = 0.

• If�(1) is not one-dimensional thenκN−N (1)−n,n = (t+N (1)−2
N (1)−1

)
where t is the number

of translations of T that are contained in S. (If N (1) = 0 then κN−N (1)−n,n = 0.)

• If �(1) is one-dimensional then ∀p ≥ 0: κp+N−N (1)−n,n = (p + 1)
( N−�
N (1)−p−1

)
where � is the number of lines parallel to �(1) that are not disjoint with S.

The first statement actually follows from Green’s linear syzygy theorem [8, The-
orem 7.1] combined with Koszul duality. The second statement already appeared for
n = 2 as a conjectural formula in [3], where more information on Koszul cohomology
of toric surfaces can be found. Recall that κp,q = 0 whenever q > n, and note that
if �(1) = ∅ then κp,q = 0 whenever q ≥ n as follows from [11, Proposition IV.5 p.
17–18].

Theorem 4 In the context of conjecture 2 the first nonzero entry on the n-th row
equals

κ(d+n
d )−(d−b−1

n )−n,n =
((b+2n+1

n

) + (d−b−1
n

) − 2(d−b−1
n

) − 1

)
.

These two theorems will be proved at the end of Sect. 2 using results from Sect. 3.

Corollary 5 For toric surfaces coming from polygons of lattice width two, we know
the entire Betti table explicitly.

κp,2 = max(p − N + N (1) + 3, 0)

(
N − 3

p

)
,

κp,1 = κp−1,2 + p

(
N − 1

p + 1

)
− 2A

(
N − 3

p − 1

)

where A = N/2 + N (1)/2 − 1 is the area of �. Of course κ0,0 = 1 and everything
else is zero.
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The second formula comes from [3, lemma 1.3], the first follows directly from our
Theorem 3.

Using [4, Theorem 1.3], one can deduce the following formula for the graded Betti
table of the canonical model of a tetragonal curve in a toric surface:

κg−p−2,1 = κp,2 = (g − p − 2)

(
g − 3

p − 2

)
+

2∑
i=1

max(p − bi − 1, 0)

(
g − 3

p

)
,

where b1, b2 are the tetragonal invariants introduced by Schreyer in [17, p. 127], and g
is the genus. Actually, this formula is true for all tetragonal curves as follows from the
explicit minimal free graded resolution in Schreyer’s article. We include this explicit
formula because it is not easy to find in the literature.

In Sect. 2, we explain toric varieties, syzygies, Koszul cohomology and we prove
these theorems using results from Sect. 3. We use Koszul duality [1, p. 21] which
expresses Betti numbers on the n-th row in terms of Betti numbers on the first row of
the Betti table of the Serre dual line bundle.

The core of the article is Sect. 3 where we construct an explicit basis for the last
nonzero entry on the first row of the graded Betti table of any graded module of
the form

⊕
q≥0 H

0(qL + M) for line bunldes L , M with H0(M) = 0, H0(L) �=
0, H0(L + M) �= 0 on any normal projective toric variety. This comes down to
constructing a basis of the kernel of the map

p∧
H0(L) ⊗ H0(L + M) →

p−1∧
H0(L) ⊗ H0(2L + M)

with p = dim H0(L+M)−1. Theorems 3 and 4 can then be proved from results from
Sect. 3, namely Theorem 9 (which actually also follows from Green’s linear syzygy
theorem [8, Theorem 7.1]), Corollary 21 and Theorem 22.

2 Toric varieties and graded Betti tables

2.1 Projectively normal toric varieties

We work over an arbitrary field k. By lattice points, we mean points of Z
n . Projective

toric varieties are built out of polytopes� ⊆ R
n that are the convex hull of a finite set of

lattice points. This works as follows. Suppose� is n-dimensional and let P1, . . . , PN�

be a list of all lattice points of �, we define an embedding

φ� : (A1\{0})n → P
N�−1 : (λ1, . . . , λn) �→

( n∏
i=1

λ
P1,i
i : . . . :

n∏
i=1

λ
PN�,i

i

)
,

where Pj,i is the i-th coordinate of Pj . Let X� be the closure of the image of φ�. If it
happens that a� ∩ Z

n + b� ∩ Z
n = (a + b)� ∩ Z

n for all positive integers a, b, then
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the polytope is called normal. In this case the projective toric variety corresponding
to � is just X� and it is projectively normal.

Example The d-fold Veronese embedding of projective space is given by a polytope
of the following form:

� = {(x1, . . . , xn) ∈ (R≥0)
n|x1 + · · · + xn ≤ d}

This gives the Veronese embedding of P
n into P

N−1 where N = #� ∩ Z
n = (n+d

d

)
.

For instance if n = 2 and d = 2 we get the embedding

A
1\{0} × A

1\{0} → P
5 : (x, y) �→ (x2 : xy : x : y2 : y : 1).

The monomials x2, xy, x , y2, y, 1 correspond to the lattice points of the triangle �

with vertices (2, 0), (0, 2), (0, 0).

1 x2

y2

x

xy

When taking theZariski closure of the image, this corresponds to the standardVeronese
embedding

P
2 → P

5 : (x : y : z) �→ (x2 : xy : xz : y2 : yz : z2).

If � is not normal then one can still take integer multiples q�, q ≥ 1, which will
be normal for sufficiently large q. One can then associate to � the toric variety Xq�

where q is large enough so that q� is normal. This variety does not depend on q (but
its embedding does). However, for simplicity we will restrict to the case when � is
normal. The homogeneous coordinate ring of X� is given by

⊕
q≥0

Vq� =
⊕
q≥0

H0(X, qL),

where by Vq� we mean the vector space spanned by the monomials (possibly with

negative exponents) xi11 . . . xinn corresponding to lattice points (i1, . . . , in) ∈ q�. By
L , we mean the very ample line bundle coming from the embedding into projective
space.
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2.2 Graded Betti tables

Given any projective variety X with homogeneous coordinate ring R = ⊕
q≥0

H0(X, qL), we can consider the graded Tor modules

ToriS∗H0(X,L)
(R, k).

Note that R is a gradedmodule over the symmetric algebra S∗H0(X, L). These graded
Tor modules can be computed either by taking a graded free resolution of R (syzygies)
or by taking a graded free resolution of k (Koszul cohomology). We will mainly work
with the latter. The graded Betti table is a table of nonnegative integers κp,q , in the
p-th column and the q-th row, where p, q ≥ 0. They are defined as the dimension
over k of the degree p + q part of Torp

S∗H0(X,L)
(R, k). In general, the table has the

following shape:
0 1 2 3 4 . . .

0 1 0 0 0 0 . . .

1 0 κ1,1 κ2,1 κ3,1 κ4,1 . . .

2 0 κ1,2 κ2,2 κ3,2 κ4,2 . . .

3 0 κ1,3 κ2,3 κ3,3 κ4,3 . . .
...

...
...

...
...

...

Example When � is the convex hull of (2, 0), (0, 2), (0, 0) we have the minimal
graded free resolution of R:

0 −→ F3
d3−→ F2

d2−→ F1
d1−→ S∗V�∩Z2

d0−→ R.

Here V�∩Z2 is the vector space spanned by the monomials x2, xy, x, y2, y, 1 corre-
sponding to the lattice points of�. The symmetric algebra S∗V�∩Z2 is the polynomial
ring in 6 variables x(2,0), x(1,1), x(1,0), x(0,2), x(0,1), x(0,0) and is the homogeneous
coordinate ring ofP5. The image of d0 corresponds to the ideal cutting out theVeronese
surface. This ideal is generated by six elements:

x(2,0)x(0,2) − x2(1,1), x(2,0)x(0,0) − x2(1,0), x(0,2)x(0,0) − x2(0,1),

x(2,0)x(0,1) − x(1,0)x(1,1), x(1,0)x(0,2) − x(0,1)x(1,1), x(1,1)x(0,0) − x(1,0)x(0,1).

These constitute a minimal set of generators of the ideal. So F1 is a free gradedmodule
of rank six over the polynomial ring S∗V�∩Z2 where the basis elements all have degree
two and are mapped by d0 to the generators of the ideal. This makes sure that d0 is a
degree-preserving morphism of modules. This means that κ1,1 = 6.

The image of d1 consists of the relations between these generators, called syzygies.
It turns out that there is a minimal generating set of eight syzygies of degree 3, so
that F2 is a rank 8 graded free module where the basis elements have degree 3. So
κ2,1 = 8. It turns out that F3 has rank 3 where the basis elements have degree 4. This
gives the graded Betti table:
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0 1 2 3 4 . . .

0 1 0 0 0 0 . . .

1 0 6 8 3 0 . . .

2 0 0 0 0 0 . . .
...

...
...

...
...

...

Note that κ0,0 = 1 because the polynomial ring S∗V�∩Z2 is a free module of rank one
over itself with the monomial 1 as a generator.

2.3 Koszul cohomology

Let L , N be line bundles on a complete variety X . Let S∗V = S∗H0(X, L) be the
symmetric algebra over H0(X, L), then

⊕
q≥0 H

0(X, qL + N ) is a graded module
over S∗V . We define the Koszul cohomology space Kp,q(X, N , L) as the homology
of the following sequence:

p+1∧
V ⊗ H0(X, (q − 1)L + N )

δp+1−→
p∧
V ⊗ H0(X, qL + N )

δp−→
p−1∧

V ⊗ H0(X, (q + 1)L + N )

where δp(v1 ∧ . . . ∧ vp ⊗ w) = ∑p
i=1(−1)iv1 ∧ . . . ∧ v̂i ∧ . . . ∧ vp ⊗ (viw). The

v̂i indicates that vi is removed from the wedge product. When N = 0 we write
Kp,q(X, L) = Kp,q(X, 0, L). We denote the dimension of Kp,q(X, N , L) (resp.
X p,q(X, L)) by κp,q(X, N , L) (resp. κp,q(X, L)). If L is the very ample line bundle
coming from a projective embedding this agrees with our earlier definition of κp,q

using syzygies.

Example For our Veronese example with n = d = 2, we will construct an explicit
element of the cohomology space K2,1(X, L):

y2 ∧ xy ⊗ xz − y2 ∧ yz ⊗ x2 + xy ∧ yz ⊗ yx ∈
2∧
V� ⊗ V�,

which is in the kernel of δ2, so it defines an element of K2,1(X, L).
We now turn to the proof of theorem 1 and corollary 2. To any n-dimensional

convex lattice polytope � ⊆ R
n , one can associate the inner normal fan � [5, p. 321]

whose rays ρ are in one-to-one correspondence with the facets of � and the torus-
invariant prime divisors Dρ . In general for any torus-invariant divisor D = ∑

ρ aρDρ

the vector space H0(X, D) has a basis that naturally corresponds to {P ∈ Z
n|∀ρ ∈

�(1) : 〈P, ρ〉 ≥ −aρ} where �(1) is the set of rays of the fan �. Multiplication
of these global sections corresponds to coordinatewise addition of lattice points. The
divisor whose global sections correspond to � gives the very ample line bundle of
our embedding into projective space. Note that in this setting nothing changes when
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extending the field k. In the next proof, we assume k algebraically closed. We also use
in the following proof that taking the pull-back of a line bundle through a birational
morphism of projective normal varieties preserves global sections.Wewill also use the
fact that adding

∑
ρ∈�(1) −Dρ to a divisor

∑
ρ aρDρ amounts to taking the interior

of the corresponding polytope (∗).

Proof of Theorem 3 using results from the next section This will rely on Koszul dual-
ity which requires smoothness, so let X ′ → X be a toric resolution of singularities
as in [5, p. 515–519] and let K = ∑

ρ∈�′(1) −Dρ be the canonical divisor of X ′. Let
L be the line bundle on X coming from its projective embedding. The pull-back of
L to X ′ (which we also denote by L) is globally generated on X ′ and hence nef. By
Demazure vanishing [5, p. 410] Hi (X ′, qL) = 0, ∀i, q ≥ 1. By Koszul duality [1, p.
21] we have

κN−1−n−p,n(X, L) = κN−1−n−p,n(X
′, L) = κp,1(X

′, K , L), ∀p ≥ 0.

The first equality follows because H0(X, qL) = H0(X ′, qL), ∀q ≥ 0 as tak-
ing the pull-back of L through X ′ → X preserves global sections. We claim that
κp,1(X ′, K , L) is the dimension of the kernel of the following map:

δ :
p∧
VS ⊗ VT →

p−1∧
VS ⊗ V(2�)(1)∩Zn

where by VS (resp. VT ) we mean a vector space with S (resp. T ) as a basis. This is
because H0(X ′, K ) = 0 and H0(X ′, L+K ) corresponds to T = �(1) ∩Z

n which we
know by (∗). Note that the image of δ is contained in

∧p−1 VS ⊗ VS+T . Now, all the
results of the theorem follow from Theorem 9, Corollary 21 and Theorem 22, except
when p = 0 and N (1) = 1, but then δ = 0 and the result is easy. For the case where
�(1) is one-dimensional, note that � (as in Theorem 3) equals N − #X , with X as in
Theorem 22. ��

By the same duality as in the proof of Theorem 3, it follows that κp,q = 0 whenever
q > n.

Proof of Theorem 4 Denote by κp,q(b; d) the dimension of the Kuszul cohomology
of the graded module

⊕
i≥0

H0(OPn (b + id)),

Let N = (n+d
n

)
be the number of lattice points in d� where

� = {(x1, . . . , xn) ∈ R≥0|x1 + · · · + xn ≤ d}

is the standard simplex of dimension n. As in the proof of theorem 3, we have duality:

κp,n(b; d) = κN−n−p−1,1(−b − n − 1; d).
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Strictly speaking, we cannot apply theorem [1, p. 21], but the proof obviously gener-
alizes and the vanishing condition will be satisfied because H1, . . . , Hn−1 of any line
bundle on P

n will vanish. This κN−n−p−1,1(−b − n − 1; d) is the dimension of the
kernel of

N−n−p−1∧
S ⊗ T →

N−n−p−2∧
S ⊗ S + T,

where T = (d − b− n− 1)� ∩Z
n and S = d� ∩Z

n so that X = (b+ n+ 1)� ∩Z
n .

Applying Theorem 9 we find that κp,n(b; d) = 0 whenever N − n − p − 1 ≥ #T =(d−b−1
n

)
, or equivalently p <

(n+d
n

) − (d−b−1
n

) − n. The formula for κp,n(b; d) when

p = (n+d
n

) − (d−b−1
n

) − n follows from Corollary 21. ��

3 Combinatorial proof

In this section, we do not require our polytopes to be normal. From now on instead
of working with spaces of monomials VS , VT etcetera, we replace every monomial
xi11 . . . xinn by the corresponding lattice point (i1, . . . , in). Let S and T ⊆ Z

n with T
finite, let p ≥ 0. We abusively write S (resp. T ) for a vector space with S (resp. T ) as
a basis. We are interested in the kernel of the following map:

δ :
p∧
S ⊗ T →

p−1∧
S ⊗ (S + T ) :

P1 ∧ . . . ∧ Pp ⊗ Q �−→
p∑

i=1

(−1)i P1 ∧ . . . ∧ P̂i ∧ . . . ∧ Pp ⊗ (Q + Pi ),

where
∧−1 of a vector space is zero. By Q + Pi , we mean coordinatewise addition

in Z
n .

Definition 6 Let S and T be finite subsets ofZ
n and p ≥ 0 an integer. If x ∈ ∧p S⊗T

then x can be uniquely written (up to order) as a linear combination (with nonzero
coefficients) of expressions of the form P1 ∧ . . . ∧ Pp ⊗ Q with P1, . . . , Pp ∈ S,
Q ∈ T and P1 > . . . > Pp for some total order on S. We define the support of x ,
denoted supp(x), as the convex hull of the set of points Pi occurring in the wedge part
of the terms of x .

Definition 7 A lattice pre-order on Z
n is a reflexive transitive relation ≤ on Z

n such
that ∀P1, P2 ∈ Z

n : P1 ≤ P2 or P2 ≤ P1 and ∀P1, P2, P3 ∈ Z
n : if P1 ≤ P2 then

P1 + P3 ≤ P2 + P3. We call ≤ a lattice order if it is anti-symmetric.

One way to obtain a lattice pre-order is to take a linear map L : R
n → R and set

P1 ≤ P2 if L(P1) ≤ L(P2). If the coefficients defining L are linearly independent
over Q, then it defines a lattice order. We write P1 < P2 if P1 ≤ P2 and not P2 ≤ P1,
and we write P1 ∼ P2 if P1 ≤ P2 and P2 ≤ P1. In the proof of the following lemma,
we will use the property that for any points P, PM , Q, Q′ ∈ Z

n and any pre-order on
Z
n , if P ≤ PM and Q ≤ Q′ then either P + Q < PM + Q′ or PM ∼ P and Q′ ∼ Q.
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Lemma 8 Let S and T be finite subsets of Zn, p ≥ 1. Let x ∈ ker δ be nonzero with δ

as above. Let ≤ be a lattice pre-order such that supp(x) has a unique maximum PM.
Let S′ = supp(x)\{PM } and T ′ the set of non-maximal points Q ∈ T . Finally, let
δ′ : ∧p−1 S′ ⊗ T ′ → ∧p−2 S′ ⊗ (S′ + T ′) be defined analogously to δ. Then there
exists a nonzero y ∈ ker δ′ such that

x = PM ∧ y + terms not containing PM in the ∧ part.

Proof Write

x =
∑
i

λi PM ∧ P2,i ∧ . . . ∧ Pp,i ⊗ Qi + terms not containing PM in the ∧ part,

without any redundant terms. Then define

y =
∑
i

λi P2,i ∧ . . . ∧ Pp,i ⊗ Qi .

All we have to prove now is that y ∈ ker(δ′). It is clear that supp(y) ∩ Z
n ⊆ S′. Let

us prove that every Qi in this expression is in T ′. We know that Qi ∈ T . If it is not in
T ′ then it is maximal. But then, applying δ, the term −P2,i ∧ . . . ∧ Pp,i ⊗ (PM + Qi )

of δ(x) has nothing to cancel against, contradicting the fact that δ(x) = 0. The reason
that it has nothing to cancel against is that all terms in δ(x) end with ⊗(P + Q) with
P ≤ PM and Q ≤ Qi so that P + Q < PM + Qi unless P ∼ PM , and Q ∼ Qi . As
PM is the unique maximum of supp(x) P ∼ PM implies P = PM . But if Q �= Qi

and P = PM then we still have P + Q �= PM + Qi , so that we have only one term
of δ(x) ending on ⊗(PM + Qi ), which has nothing to cancel against.

So y is in the domain of δ′. We now prove that δ′(y) = 0:

0 = δ(x) = −PM ∧ δ′(y) + terms not containing PM in the ∧ part.

Because terms of PM ∧ δ′(y) cannot cancel against terms without PM in the ∧ part,
δ′(y) must be zero. ��

Example OurVeronese example ofn = d = 2 becomes S=T ={(2, 0), (1, 1), (1, 0),
(0, 2), (0, 1), (0, 0)} and in the new notation the explicit cochain in

∧2 S⊗S becomes

x = (0, 2) ∧ (1, 1) ⊗ (1, 0) − (0, 2) ∧ (0, 1) ⊗ (2, 0) + (1, 1) ∧ (0, 1) ⊗ (1, 1).

If we take the pre-order coming from the linear map L(x1, x2) = x2 then PM = (0, 2)
is the unique maximum of supp(x) = {(0, 2), (1, 1), (0, 1)} and the lemma gives
y = (1, 1) ⊗ (1, 0) − (0, 1) ⊗ (2, 0). Indeed, x = (0, 2) ∧ y + (1, 1) ∧ (0, 1) ⊗ (1, 1)
and the last term does not have (0, 2) in the wedge part.
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PM

supp(x)

x1

x2

1 2

1

2

S

x1

x2

1 2

1

2

T

Theorem 9 Notation as above. Suppose #T ≤ p, then δ : ∧p S ⊗ T → ∧p−1 S ⊗
(S + T ) is injective.

Proof By induction on p. The case p = 0 is trivial as the domain of δ is zero (because
T = ∅).

Let p ≥ 1, and take a nonzero element x of the kernel. Let ≤ be a lattice order.
Now, apply the construction of Lemma 8 to obtain S′ and T ′ and a nonzero y ∈ ker δ′.
Since #T ′ < #T , we have #T ′ ≤ p − 1. Applying the induction hypothesis we get a
contradiction. ��
Note that this also follows from Green’s Linear syzygy theorem [8, Theorem 7.1]
applied to the graded module

⊕
q≥0 qS + T over the graded ring

⊕
q≥0 qS. We give

this direct proof because we rely on the same technique later.
We now want to construct elements of the kernel of δ when p = #T − 1. To this

end, we do the following construction: let X = {P ∈ Z
n|P + T ⊆ S} and consider

the elements of X as variables. To any monomial A = ∏
P∈X PaP of degree p with

variables in X , we will associate an element xA of the kernel of δ.
Let P1, . . . , Pp be a list of points in X such that each point P occurs aP times in

the list. Let Q1, . . . , Qp+1 be a list of all points of T . Now we define

xA =
∏
P

1

aP !
∑

σ∈Sp+1

sgn(σ )(P1 + Qσ(1)) ∧ . . . ∧ (Pp + Qσ(p)) ⊗ Qσ(p+1).

Up to sign, this will be independent of the choice of lists P1, . . . , Pp and
Q1, . . . , Qp+1.

Lemma 10 The xA we just constructed has integer coefficients and is in the kernel
of δ.

Proof Consider permutations σ, σ ′ ∈ Sp+1 as in the previous definition such that
σ({i |Pi = P}) = σ ′({i |Pi = P}) for all P ∈ X . We claim that the terms in xA
corresponding to σ and σ ′ will be equal. This is because in the wedge product the only
thing that changes is the order, and the change in sign caused by changing the order
is compensated by the change in sgn(σ ).

Now the number of bijectionsσ ′ with the property thatσ({i |Pi = P}) = σ ′({i |Pi =
P}), ∀P is equal to

∏
P aP !, hence the expression will have integer coefficients.
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We now prove that xA is in the kernel of δ. Obviously the sums Pi +Qσ(i) are all in
S. We claim that when applying δ everything cancels. Let C be the set of all ordered
pairs (σ, i) where σ ∈ Sp+1 and i ∈ {1, . . . , p}. Then

(∏
P

aP !)δ(xA)

=
∑

(σ,i)∈C
(−1)i sgn(σ )(P1 + Qσ(1)) ∧ . . . ∧ ̂(Pi + Qσ(i)) ∧ . . . ∧ (Pp + Qσ(p)))

⊗ (Qσ(p+1) + Qσ(i) + Pi ).

We now partition C into (unordered) pairs: (σ, i) and (σ ′, i ′) belong to the same pair
if either they are equal or the following conditions are met:

• i = i ′
• σ( j) = σ ′( j), for all j /∈ {i, p + 1}
• σ(i) = σ ′(p + 1) and σ ′(i) = σ(p + 1).

These conditions imply that σ ′−1 ◦ σ is a transposition and hence has sign −1. One
now easily sees that pairs in C yield terms that cancel. ��
Example Suppose S = {(2, 0), (1, 1), (1, 0), (0, 2), (0, 1), (0, 0)} and T = {(1, 0),
(0, 1), (0, 0)} and p = 2. Then X = {(1, 0), (0, 1), (0, 0)}. Take for example the
monomial A = (1, 0)(0, 1). If we take the lists (1, 0), (0, 1) and (1, 0), (0, 1), (0, 0)
we get:

xA =(1, 0) ∧ (1, 1) ⊗ (0, 1) − (1, 0) ∧ (0, 2) ⊗ (1, 0) + (2, 0) ∧ (0, 2) ⊗ (0, 0)

− (2, 0) ∧ (0, 1) ⊗ (0, 1) + (1, 1) ∧ (0, 1) ⊗ (1, 0) − (1, 1) ∧ (1, 1) ⊗ (0, 0).

Of course the last term is zero. Note that each term is of the form P ∧ Q ⊗ ((2, 2) −
P − Q) where P belongs to the lower right blue triangle and Q to the upper left one.

(1,0) (2,0)

(0,1)

(0,2)

(1,1)

(0,0)

S

(0,0) (1,0)

(0,1)

T

Example Suppose S = {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (3, 1)} and
T = {(0, 0), (1, 0), (0, 1), (1, 1)} so that X = {(0, 0), (1, 0), (2, 0)}, p = 3 and
consider the monomial A = (0, 0)2(2, 0), then we get

xA = − (0, 0) ∧ (1, 0) ∧ (3, 1) ⊗ (0, 1) + (0, 0) ∧ (1, 0) ∧ (2, 1) ⊗ (1, 1)
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− (0, 0) ∧ (1, 1) ∧ (2, 1) ⊗ (1, 0) + (0, 0) ∧ (1, 1) ∧ (3, 0) ⊗ (0, 1)

− (0, 0) ∧ (0, 1) ∧ (3, 0) ⊗ (1, 1) + (0, 0) ∧ (0, 1) ∧ (3, 1) ⊗ (1, 0)

− (1, 0) ∧ (0, 1) ∧ (3, 1) ⊗ (0, 0) + (1, 0) ∧ (0, 1) ∧ (2, 0) ⊗ (1, 1)

− (1, 0) ∧ (1, 1) ∧ (2, 0) ⊗ (0, 1) + (1, 0) ∧ (1, 1) ∧ (2, 1) ⊗ (0, 0)

− (0, 1) ∧ (1, 1) ∧ (3, 0) ⊗ (0, 0) + (0, 1) ∧ (1, 1) ∧ (2, 0) ⊗ (1, 0)

In this case, the first two wedge factors in each term are from the left blue square and
the third wedge factor is from the right blue square. In the definition, there are 24
terms but each term occurs twice and we divide by two so only twelve terms are left.

(

(0,0) (1,0) (2,0) (3,0)

0,1) (1,1) (2,1) (3,1)

S
(

(0,0) (1,0)

0,1) (1,1)

T

One way to get rid of the factor
∏

P
1
aP ! is to only sum over one element of each

equivalence class, where two permutations σ, σ ′ are equivalent if σ ′({i |Pi = P}) =
σ ′({i |Pi = P}) for all P ∈ X . So the construction works over any field.

Proposition 11 The xA for distinct monomials A are linearly independent and the
support of any linear combination of them is the convex hull of the union of the
supp(xA) occurring with nonzero coefficient.

Proof By induction on p. In the case p = 0, there is only one monomial namely the
constant monomial 1. The corresponding xA is ∧(∅)⊗ Q where Q is the unique point
of T . So the statement is obvious. So suppose p ≥ 1. Let x = ∑

j λ j xA j with the A j

distinct. We have to prove that

supp(x) = conv
(⋃

j

supp(xA j )
)

�= ∅.

To prove this equality, it is enough to prove that every linear map L : R
n → R attains

the same maximum on both sides of the equation. It is enough to show this when L|Zn

is injective (as these L are dense). Given such an L , let≤ be the order it induces onZ
n .

Let QM be the maximum of T for this order and PM ∈ X the greatest point occurring
as a variable in some monomial A j . We will prove that PM + QM is the maximum
of both sides of the equation, proving that L attains the same maximum on both, and
that both sides are non-empty. Obviously nothing greater than PM +QM can possibly
occur in any supp(xA j ). We have

x =
∑
j

PM |A j

λ j xA j +
∑
j

PM does not occur in A j

λ j xA j .
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For any A j containing PM , we define Bj as the monomial A j/PM of degree p − 1.
Using T ′ = T \{QM } we can associate to any Bj an element xBj so that xA j =
±(PM+QM )∧xBj plus termswhere everything in the∧ part is smaller than PM+QM .
By induction xBj �= 0 so PM + QM is the maximum of supp(xA j ). Finally

x = (PM + QM ) ∧
∑
j

PM |A j

± λ j xB j + terms without PM + QM in the ∧ part.

By induction the linear combination of the xBj is not zero so PM+QM is themaximum
of supp(x). ��

So far, we have studied the kernel of the map

δ :
p∧
S ⊗ T →

p−1∧
S ⊗ (S + T ) :

P1 ∧ . . . ∧ Pp ⊗ Q �−→
p∑

i=1

(−1)i P1 ∧ . . . ∧ P̂i ∧ . . . ∧ Pp ⊗ (Q + Pi ).

We now introduce the following maps

δi : S⊗p ⊗ T → S⊗(p−1) ⊗ (S + T ) :
P1 ⊗ . . . ⊗ Pp ⊗ Q �→ P1 ⊗ . . . ⊗ P̂i ⊗ . . . ⊗ Pp ⊗ (Pi + Q).

This time we look at the intersection of the kernels of the δi . If p = 0 there is nothing
to intersect so we put

⋂0
i=1 ker δi = T .

We introduce this new machinery because it helps us prove our main result.

Example Let S = T = {(1, 1), (1, 0), (0, 1), (0, 0)} then

x =(1, 0) ⊗ (0, 1) ⊗ (0, 0) − (1, 0) ⊗ (0, 0) ⊗ (0, 1)

− (0, 0) ⊗ (0, 1) ⊗ (1, 0) + (0, 0) ⊗ (0, 0) ⊗ (1, 1)

is in ker δ1 ∩ ker δ2.

Proposition 12 There is an injective map

ι :
p∧
S ⊗ T → S⊗p ⊗ T : P1 ∧ . . . ∧ Pp ⊗ Q

�→
∑
σ∈Sp

sgn(σ )Pσ(1) ⊗ . . . ⊗ Pσ(p) ⊗ Q

and ι(ker δ) ⊆ ⋂p
i=1 ker δi
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Proof Note that the definition of ι does not depend on any choices. It is injective as
cancelation is impossible. Let us prove the last assertion. We define

g :
p−1∧

S ⊗ (S + T ) → S⊗(p−1) ⊗ (S + T )

analogously to ι. If we can prove that δi ◦ ι = (−1)i g ◦ δ for all i then it follows that
ι(ker δ) ⊆ ⋂

i ker δi . Let x = P1 ∧ . . . ∧ Pp ⊗ Q, we compute

δi (ι(x)) =
∑
σ∈Sp

sgn(σ )Pσ(1) ⊗ . . . ⊗ P̂σ(i) ⊗ . . . ⊗ Pσ(p) ⊗ (Pσ(i) + Q)

g(δ(x)) =
p∑

j=1

∑
τ∈Sp−1

(−1) j sgn(τ )Pτ ′(1) ⊗ . . . ⊗ Pτ ′(p−1) ⊗ (Pj + Q),

where τ ′ = ( j j + 1 . . . p) ◦ τ . Here ( j j + 1 . . . p) maps every number from j up
to p − 1 to itself plus one and everything smaller than j to itself, and p is mapped
to j . For every τ ∈ Sp−1, we formally put τ(p) = p so that Sp−1 ⊆ Sp. There is a
bijection from Sp to {1, . . . , p} × Sp−1 mapping σ to ( j, τ ) where

σ ◦ (i i + 1 . . . p) = ( j j + 1 . . . p) ◦ τ.

Note that sgn(σ )(−1)p−i = sgn(τ )(−1)p− j . Using this bijection, one sees that
δi (ι(x)) = (−1)i g(δ(x)). This proves that δi ◦ ι = (−1)i g ◦ δ and hence that
ι(ker δ) ⊆ ker δi . ��

For any sequence P1, . . . , Pp of points in X = {P|P + T ⊆ S} one defines an
element of

⋂p
i=1 ker δi :

xP1,...,Pp :=
∑

σ∈Sp+1

sgn(σ )(P1 + Qσ(1)) ⊗ . . . ⊗ (Pp + Qσ(p)) ⊗ Qσ(p+1)

where Q1, . . . , Qp+1 is a list of all the points of T . Whenever we use this notation
we assume that #T = p + 1. Just as the xA are intended to be a basis of ker δ, the
xP1,...,Pp are intended to be a basis of

⋂p
i=1 ker δi .

Lemma 13 Consider the right groupactionof Sp on the set of sequences P1, . . . , Pp ∈
X by permutation. So P1, . . . , Pp · σ = Pσ(1), . . . , Pσ(p). For a given such sequence
let A be the monomial P1 . . . Pp, then

ι(xA) =
∑

σ̄∈Stab(P1,...,Pp)\Sp
xPσ(1),...,Pσ(p) .

(We sum over the right cosets of the stabilizer.)
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Proof It is enough to prove this equality in characteristic zero. We have

ι(xA)
∏
P

aP !

=ι
( ∑

σ∈Sp+1

sgn(σ )(P1 + Qσ(1)) ∧ . . . ∧ (Pp + Qσ(p)) ⊗ Qσ(p+1)

)

=
∑
τ∈Sp

∑
σ∈Sp+1

sgn(σ ◦ τ)(Pτ(1) + Qσ(τ(1))) ⊗ . . . ⊗ (Pτ(p) + Qσ(τ(p))) ⊗ Qσ(p+1)

=
∑
τ∈Sp

∑
σ ′∈Sp+1

sgn(σ ′)(Pτ(1) + Qσ ′(1)) ⊗ . . . ⊗ (Pτ(p) + Qσ ′(p)) ⊗ Qσ ′(p+1)

=
∑
τ∈Sp

xPτ (1),...,Pτ (p)

=
∏
P

aP !
∑

τ̄∈Stab(P1,...,Pp)\Sp
xPτ (1),...,Pτ (p)

The last equality follows because the order of the stabilizer is
∏

P aP !. The result
follows by removing the factor

∏
P aP !. ��

Lemma 14 The span of the xP1,...,Pp intersected with ι(ker δ) is generated by the
ι(xA). In particular, if the xP1,...,Pp are a basis of

⋂p
i=1 ker δi then the xA are a basis

of ker δ.

Proof Wehave a right group action of Sp on S⊗p⊗T , restricting to one on
⋂p

i=1 ker δi :
any σ ∈ Sp maps P1 ⊗ . . . ⊗ Pp ⊗ Q to sgn(σ )Pσ(1) ⊗ . . . ⊗ Pσ(p) ⊗ Q. Clearly any
element of ι(ker δ) is fixed by this action. The action of Sp on the set of sequences
P1, . . . , Pp in X from the previous lemma is compatible with the action on S⊗p⊗T in
the sense that xP1,...,Pp · σ = xPσ(1),...,Pσ(p) . Choose an element R j = P1, j , . . . , Pp, j

out of each orbit of the action on sequences.
Consider an element x of ι(ker δ) that is a linear combination of the xP1,...,Pp . We

prove that it is generated by the ι(xA). Write it as a linear combination of the xP1,...,Pp :

x =
∑
j

∑
σ̄∈Stab(R j )\Sp

λ j,σ̄ xPσ(1), j ,...,Pσ(p), j .

Applying the action on S⊗p⊗T to this expression permutes the λ j,σ̄ , for each j . Since
x is fixed by the action of Sp and the xP1,...,Pp are linearly independent (by Lemma
18 below), λ j,σ̄ doesn’t depend on σ . So x is a linear combination of the

∑
σ̄∈Stab(R j )\Sp

xPσ(1), j ,...,Pσ(p), j = ι(xA),

where A = P1, j . . . Pp, j . Note that we used the previous lemma in the last equal-
ity. This proves the first assertion. The second assertion follows from the first, the
injectivity of ι and Proposition 11. ��
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Having established a connection between the
∧p S ⊗ T context and the S⊗p ⊗ T

context, we now focus on the latter.

Definition 15 For any x ∈ ⋂p
i=1 ker δi and i ∈ {1, . . . , p}, we define suppi (x) to be

the convex hull of the set of lattice points occurring in the i-th factor of some term of
x .

The following lemma is analogous to Lemma 8.

Lemma 16 Let x ∈ ⋂p
i=1 ker δi and let ≤ be a lattice pre-order on Z

n. Fix an i and
suppose P ∈ suppi (x) is strictly greater than any other point of suppi (x). Let T

′ be the
set of non-maximal points in T . Let δ′

1, . . . , δ
′
p−1 : S⊗(p−1)⊗T ′ → S⊗(p−2)⊗(S+T ′)

be defined analogously to δ1, . . . , δp. Write

x =
∑
j

λ j P1, j ⊗ . . . ⊗ P(place i) ⊗ . . . ⊗ Pp, j ⊗ Q j + terms not having P

at place i

y =
∑
j

λ j P1, j ⊗ . . . ⊗ Pp, j ⊗ Q j (with P removed from place i).

Then y ∈ ⋂p−1
j=1 ker δ

′
j .

We omit the proof since it is analogous to that of Lemma 8.

Example Let S = T = {(1, 1), (1, 0), (0, 1), (0, 0)} then

x = (1, 0) ⊗ (0, 1) ⊗ (0, 0) − (1, 0) ⊗ (0, 0) ⊗ (0, 1)

− (0, 0) ⊗ (0, 1) ⊗ (1, 0) + (0, 0) ⊗ (0, 0) ⊗ (1, 1)

is in ker δ1 ∩ ker δ2. If we take the order coming from the linear map L(x1, x2) =
x2 then PM = (0, 1) is the unique maximum of supp2(x) = {(0, 1), (0, 0)}.
Applying the lemma with i = 2 we get y = (1, 0) ⊗ (0, 0) − (0, 0)⊗
(1, 0).

supp1(x)
x1

x2

S supp2(x)
x1

x2

S

PM

Lemma 17 If p ≥ #T then
⋂p

i=1 ker δi = 0.

Again the proof is analogous to that of Theorem 9.

Lemma 18 Let δi : S⊗p ⊗ T → S⊗(p−1) ⊗ (S + T ) be the usual maps, p = #T − 1.
Let x = ∑

j λ j xP1, j ,...,Pp, j be a linear combination with nonzero coefficients then
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suppi (x) is the convex hull of
⋃

j suppi (xP1, j ,...,Pp, j ). In particular, the xP1,...,Pp are
linearly independent.

One can prove this with the same technique as Proposition 11.

Lemma 19 Let � be a lattice polytope of dimension at least two with p + 1 lattice
points and let δi : (Zn)⊗p ⊗ (� ∩ Z

n) → (Zn)⊗(p−1) ⊗ Z
n be the usual maps. Then

for all x ∈ ⋂p
i=1 ker δi\{0} and i ∈ {1, . . . , p} we have

� − � ⊆ suppi (x) − suppi (x).

Note that the lemma can fail if � is one-dimensional. If n = 1, � = [0, 2] and
x = v0 ⊗v0 ⊗v2 −v0 ⊗v1 ⊗v1 −v1 ⊗v0 ⊗v1 +v1 ⊗v1 ⊗v0 then supp1(x) = [0, 1]
and the conclusion of the lemma fails.

Proof We prove this by induction on p. We can suppose i = 1 without loss of gen-
erality. Let x ∈ ⋂p

i=1 ker δi\{0} and take v ∈ (� − �)\(supp1(x) − supp1(x)) with
integer coordinates. Let P1, P2 ∈ � ∩ Z

n with P2 − P1 = v. Using a unimodular
transformation, we can suppose P1 = (0, 0, . . . , 0) and P2 = v = (d, 0, . . . , 0) for
some d > 0.
Case 1: �\[P1, P2] contains more than one lattice point.

Take a linear map L : R
n → R that does not attain a maximum at P1 or P2 on

�. We take L to attain its maximum on supp2(x) at only one point. This induces a
lattice pre-order ≤. We apply Lemma 16 for place 2 to obtain S′, T ′ and a nonzero
y ∈ ⋂p−1

j=1 ker(δ
′
j ) with supp1(y) ⊆ supp1(x), so [P1, P2] − [P1, P2] � supp1(y) −

supp1(y). If #T
′ = p we get a contradiction with the induction hypothesis and if

#T ′ < p we get a contradiction with Lemma 17. We needed the fact that �\[P1, P2]
contains more than one lattice point to ensure that T ′ is of dimension at least two, so
we can apply the induction hypothesis.
Case 2: �\[P1, P2] contains only one lattice point.

We can suppose this lattice point is (0,−1, 0, . . . , 0). Note that p = #T −
1 = d + 1. Define L1, L2 : Z

n → Z as follows: L1((x1, x2, . . .)) = −x1,
L2((x1, x2, . . .)) = x1 − dx2. We claim that L1 (resp. L2) attains its maximum on
supp1(x) at more than one lattice point of supp1(x). Indeed, applying Lemma 16
with L1 (resp. L2) and place 1 we get T ′ = {(1, 0, 0, . . . , 0), . . . , (d, 0, 0, . . . , 0)}
(resp. {(0, 0, . . . , 0), . . . , (d − 1, 0, 0, . . . , 0)}). In each case, the y we obtain leads
to a contradiction with Lemma 17, unless L1 (resp. L2) does not attain its maximum
on supp1(x) at a unique point of supp1(x) (in which case we cannot apply Lemma
16). Therefore L1 (resp. L2) attains its maximum at more than one lattice point of
supp1(x).
Case 2a: n = 2.

Let (x1, y1) and (x1, y1+1) be points of supp1(x) onwhich L1 reaches itsmaximum
and let (x2, y2) and (x2 + d, y2 + 1) be points of supp1(x) on which L2 reaches its
maximum. We know by maximality that x2 ≥ x1 and L2((x1, y1)) ≤ L2((x2, y2)). If
y2 ≤ y1 then [(x2, y2 + 1), (x2 + d, y2 + 1)] ⊆ supp1(x) and similarly if y2 ≥ y1
then [(x1, y1 + 1), (x1 + d, y1 + 1)] ⊆ supp1(x). In any case, we get a contradiction
with the fact that v = (d, 0) /∈ supp1(x) − supp1(x).
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∇L1

∇L2

(x1, y1)

(x1, y1 + 1)

(x2, y2)

(x2 + d, y2 + 1)

Case 2b: n ≥ 3.
Let π : Z

n → Z
n−2 be the projection that deletes the first two coordinates. So

π(�) = 0. Now δ1 = ∑
P∈Zn−2 δP where δP maps Q1 ⊗ . . . ⊗ Qp ⊗ Q to

Q2 ⊗ . . . ⊗ Qp ⊗ (Q + Q1) if π(Q1) = P and to zero otherwise.

As π(Q + Q1) = π(Q)+π(Q1) = P , there can’t be any cancelation between δP (x)
for different P . Therefore δP (x) = 0 for all P ∈ Z

n−2.
For any P ∈ Z

n−2 and Q0 ∈ π−1(0), we define a linear automorphism

αP,Q0 : (Zn)⊗p ⊗ T −→ (Zn)⊗p ⊗ T

: Q1 ⊗ . . . ⊗ Qp ⊗ Q �→
{

(Q1 + Q0) ⊗ . . . ⊗ Qp ⊗ Q if π(Q1) = P

Q1 ⊗ . . . ⊗ Qp ⊗ Q else.

[Recall that by Z
n (resp. T ) we mean the vector space with Z

n (resp. T ) as a basis.
So we define the linear map on basis elements and linearly extend them over the base
field.] For any P, P ′ ∈ Z

n−2 and Q0 we define

α′
P,P ′,Q0

: (Zn)⊗(p−1) ⊗ T −→ (Zn)⊗(p−1) ⊗ T

: Q1 ⊗ . . . ⊗ Qp−1 ⊗ Q �→
{
Q1 ⊗ . . . ⊗ Qp−1 ⊗ (Q + Q0) if P = P ′

Q1 ⊗ . . . ⊗ Qp−1 ⊗ Q else.

Then α′
P,P ′,Q0

◦ δP ′ = δP ′ ◦αP,Q0 , from which it follows that αP,Q0(x) is in ker(δP ′)

for all P ′ ∈ Z
n−2 and Q0 ∈ π−1(0). So αP,Q0(x) ∈ ker δ1 and if we define

α′′
P,Q0

: (Zn)⊗p−1 ⊗ T −→ (Zn)⊗p−1 ⊗ T

: Q1 ⊗ . . . ⊗ Qp−1 ⊗ Q �→
{

(Q1 + Q0) ⊗ . . . ⊗ Qp−1 ⊗ Q if π(Q1) = P

Q1 ⊗ . . . ⊗ Qp−1 ⊗ Q else,

then α′′
P,Q0

◦ δi = δi ◦ αP,Q0 for all i = 2, . . . , p. Therefore αP,Q0(x) ∈ ⋂p
i=1 ker δi .
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supp1(x)

suppP (x)

supp1(αP,Q0(x))

suppP (αP,Q0
(x))

For any P ∈ Z
n−2, we define suppP (x) as the convex hull of all points in π−1(P)

that occur in thefirst factor of some termof x .Of course this is atmost two-dimensional.
If we can prove that whenever this support is non-empty it contains more than 1 point
where L1 (resp. L2) attains its maximum, then we can perform the same reasoning as
in case 2a on suppP (x) to obtain a contradiction. If we choose a Q0 with L1(Q0) (resp.
L2(Q0)) high enough, then L1 (resp. L2) will attain its maximum on supp1(αP,Q0(x))
only at points of suppP (αP,Q0(x)). This means that there are at least two points of
suppP (αP,Q0(x))where L1 (resp. L2) attains itsmaximum. Since suppP (αP,Q0(x)) =
Q0 + suppP (x) the same is true for suppP (x), so we are done. ��
Theorem 20 If S = �′ ∩ Z

n, T = � ∩ Z
n and p = #T − 1 with �,�′ convex

and � a bounded lattice polytope of dimension greater than one, then the expressions
xP1,...,Pp with Pi ∈ X := {P|P + T ⊆ S} are a basis of ⋂p

i=1 ker δi and hence the xA
for monomials A of degree p with variables in X are a basis of ker δ.

Proof Let H be the set of all bounded convex lattice polytopes in Z
n that are either of

dimension greater than one or have just two lattice points. By Lemma 14, we only have
to prove the first statement. In fact we only have to prove that the xP1,...,Pp generate⋂p

i=1 ker δi byLemma 18.We prove it for all� ∈ H by induction on p = #�∩Z
n−1.

Suppose first p = 1, then T has just two points and we have to show that the kernel
of δ1 : S⊗T → S+T is generated by expressions of the form (P+Q1)⊗Q2−(P+
Q2) ⊗ Q1 where T = {Q1, Q2} and P ∈ X . Consider the map f : S × T → S + T
of sets given by addition of lattice points, then every point P ′ of S + T is reached
by at most two elements of S × T namely (P + Q1, Q2) and (P + Q2, Q1) with
P = P ′ − Q1 − Q2. We can write S ⊗ T as the direct sum of the linear span of
each f −1(P) with P ∈ S + T . The kernel of δ1 is the direct sum of the kernels of δ1
restricted to each span of f −1(P). The result easily follows.

Now for the induction step suppose p ≥ 2. Let QM be any extreme point of �

such that conv(� ∩ Z
n\{QM }) ∈ H . Using some unimodular transformations, one

can squeeze � into (R≥0)
n in such a way that QM = (xM , 0, . . . , 0) and all other

points of � have first coordinate smaller than xM . We can also make sure that the
smallest first coordinate in � is zero.

One can do all this as follows: first one chooses a linear form L : Z
n → Z that

attains its maximum on� only at QM . One can choose L with integer coefficients with
no prime factors that they all share. One then chooses a unimodular transformationU1 :
Z
n

∼=→ Z
n whose first component is L . Then U1(QM ) has its first coordinate greater

than that of any other point of U1(�). Next one chooses a unimodular transformation
U2 of the form (x1, . . . , xn) �→ (x1, x2 − a2x1, . . . , xn − anx1) with a2, . . . , an large
enough so that all the other coordinates of U2(U1(QM )) are smaller than those of
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the other points of U2(U1(�)). Finally, one uses a translation to map U2(U1(QM ))

to (xM , 0, . . . , 0) where xM is the greatest first coordinate on U2(U1(�)) minus the
smallest.

Claim: It is enough to prove the statement in the case where �′ = R
n .

Proof Suppose it is true for �′ = R
n , we prove it for arbitrary �′. If x ∈ ⋂p

i=1 ker δi
then it is a linear combination of some xP1,...,Pp . By Lemma 18 their supports are
contained in the supports of x , hence in �′. ��

Henceforth we assume �′ = R
n . We put the lexicographical ordering on (Z≥0)

n ,
meaning (x1, . . . , xn) < (x ′

1, . . . , x
′
n) if for the smallest i with xi �= x ′

i we have
xi < x ′

i .
So suppose there exists an x ∈ ⋂p

i=1 ker δi that is not a linear combination of the
xP1,...,Pp . We can translate the first factor so that supp1(x) ⊆ (R≥0)

n . We take x so that
the lexicographic maximum of supp1(x) is minimal. (We can do this because there are
no lexicographic infinite descents in (Z≥0)

n .) We will find a contradiction. Let P ′
M be

the maximum of supp1(x) and e its first coordinate. Let Qm ∈ � ∩ Z
n be some point

with first coordinate zero. By Lemma 19 QM −Qm ∈ �−� ⊆ supp1(x)−supp1(x).
It follows that e ≥ xM . So PM := P ′

M − QM ∈ (R≥0)
n because its first coordinate

e − xM is ≥ 0 and all the other coordinates are equal to those of P ′
M .

x1

x2

supp1(x) PM

e
x1

x2

Δ

QM

Qm

xM

We now apply Lemma 16 to x to obtain y ∈ ⋂p−1
i=1 ker δ′

i where δ′
i : (Zn)⊗(p−1) ⊗

T ′ → (Zn)⊗(p−2) ⊗Z
n are the usual maps and where T ′ = T \{QM }. This y satisfies

x = P ′
M ⊗ y plus terms whose first factor is < P ′

M .

By induction

y =
∑
j

λ j yP1, j ,...,Pp−1, j , for some Pi, j ∈ Z
n .

Using the fact that xPM ,P1, j ,...,Pp−1, j = (PM + QM )⊗ yP1, j ,...,Pp−1, j plus terms whose
first factor is smaller than PM + QM = P ′

M we see that P ′
M is the maximum of

supp1(x
′) where

x ′ =
∑
j

λ j xPM ,P1, j ,...,Pp−1, j .
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In x − x ′ the terms with P ′
M cancel so the maximum of supp1(x − x ′) is smaller than

P ′
M , contradicting the minimal choice of x . (The fact that PM ∈ (R≥0)

n is important
because it ensures that supp1(x − x ′) ⊆ (R≥0)

n .)
The last assertion of the theorem follows from Lemma 14.

Corollary 21 Let � and �′ be convex lattice polytopes with � of dimension greater
than 1 and T = � ∩ Z

n, S = �′ ∩ Z
n and p = #T − 1. If

δ :
p∧
S ⊗ T →

p−1∧
S ⊗ (S + T )

is the usual map then the dimension of ker δ is
(p+#X−1

p

)
where X = {P|P + T ⊆ S}.

This follows because the number of degree p monomials with variables in X is(p+#X−1
p

)
. We end with the case when � is one-dimensional. This time the formula

works for all p.

Theorem 22 Let � = conv((0, 0, . . . , 0), (d, 0, . . . , 0)) with d ≥ 0 and let �′ ⊆ Z
n

a bounded convex lattice polygon, then for all p ≤ d+1 the dimension of the kernel of
the usualmap δ is (d−p+1)

(#X
p

)
where X = {P|P+{(0, . . . , 0), (1, 0, . . . , 0)} ⊆ S},

S = �′ ∩ Z
n.

Proof LetT = �∩Z
n . Put a lattice order≤onZ

n such that (1, 0, . . . , 0) > (0, . . . , 0).
Let I = {(0, 0, . . . , 0), (1, 0, . . . , 0)}. For any P1 < . . . < Pp in X and Q ∈ T with
first coordinate in {p, . . . , d} we define

∑
i1,...,i p∈I

(−1)i1+...+i p (P1 + i1) ∧ . . . ∧ (Pp + i p) ⊗ (Q − i1 − . . . − i p), (1)

where we abusively write (−1)i1+...+i p for the power of −1 whose exponent is the
first coordinate of i1+ . . .+ i p. These expressions are in the kernel of δ. We will prove
that they are a basis of the kernel which proves the theorem because there are exactly
(d − p+ 1)

(#X
p

)
of these. We will do so by induction on #S. The case where p = 0 is

easy as the domain and kernel of δ are both just T and have the points in T as a basis.
So suppose p ≥ 1 and let x ∈ ker δ, we will show that it is a linear combination of
expressions like (1). Let PM be the maximum of S. If PM /∈ supp(x) we apply the
induction hypothesis to S′ = S\{PM } and we are done. So assume PM ∈ supp(x),
then by Lemma 8 we can write x = PM ∧ y plus terms not containing PM in the ∧
part. Here y ∈ ∧p S′ ⊗ T ′ where T ′ = {(0, 0, . . . , 0), . . . , (d − 1, 0, . . . , 0)}. Note
also that PM − (1, 0, . . . , 0) ∈ S as otherwise the terms in δ(x) where PM is removed
from the ∧ would have nothing to cancel against. This is because these would be the
only terms of δ(x) where the point after the ⊗ agrees with PM in all but the first
coordinate. Applying the induction hypothesis to y we get

y =
∑
j

λ j

∑
i1,...,i p−1∈I

(−1)i1+...+i p−1
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(P1, j + i1) ∧ . . . ∧ (Pp−1, j + i p−1) ⊗ (Q j − i1 − . . . − i p−1).

Therefore x can be written as (−1)px ′ plus terms not containing PM in the ∧ part
where

x ′ =
∑
j

λ j

∑
i1,...,i p∈I

(−1)i1+...+i p

(P1, j + i1) ∧ . . . ∧ (Pp−1, j + i p−1) ∧ (PM − (1, 0, . . . , 0) + i p)

⊗ (Q j + (1, 0, . . . , 0) − i1 − . . . − i p).

So we can apply the induction hypothesis to x − (−1)px ′ to conclude that x is a linear
combination of expressions like (1).

Finally, we show linear independence of the expressions, again by induction on #S.
the case p = 0 is again trivial, let p ≥ 1. Let

∑
i λi xi be a linear combination of our

expressions that yields zero. Each xi containing PM in its support can be written as
PM ∧ yi plus terms not containing PM . Then up to sign yi is an expression like (1)
but with p − 1 instead of p and with the set S\{PM } in stead of S. By the induction
hypothesis, the yi are linearly independent. But then it follows that PM cannot occur
at all in the wedge part of any xi ; otherwise, the linear combination could not yield
zero. And then one again applies the induction hypothesis with S\{PM } to obtain a
contradiction. ��
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