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Abstract We establish a bijection between the set of rigged configurations and the
set of tensor products of Kirillov–Reshetikhin crystals of type D(1)

n in full generality.
We prove the invariance of rigged configurations under the action of the combinatorial
R-matrix on tensor products and show that the bijection preserves certain statistics
(cocharge and energy). As a result, we establish the fermionic formula for type D(1)

n .
In addition, we establish that the bijection is a classical crystal isomorphism.
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1 Introduction

In this paper, we establish a bijection between rigged configurations and paths for
type D(1)

n and prove that it can be extended to a classical crystal isomorphism. Rigged
configurations are combinatorial objectswhichwere introduced byKerov,Kirillov and
Reshetikhin [14] through their insightful analysis of the Bethe Ansatz for quantum
integrable systems. Observing that the number of Bethe vectors is equal to the number
of irreducible components of the multiple tensor product of the vector representation
of sl2, they constructed a bijection from rigged configurations to standard tableaux.
This work was generalized to the symmetric tensor representations of sln in [19] and
to rectangular shape ones in [21]. In these two works, the charge statistic is introduced
for rigged configurations and it was shown to agree with Lascoux–Schützenberger’s
charge [25] for tableaux.

Paths [3] (sometimes called Kyoto paths to avoid confusion with Littelmann’s path
model [22]) also originated from quantum integrable systems; not from the Bethe
ansatz, but from Baxter’s corner transfer matrix [1]. Thanks to Kashiwara’s crystal
basis theory [10], the notion of a path was reformulated as an element of the tensor
product of crystal bases of certain finite-dimensional modules of quantum affine alge-
bras, called Kirillov–Reshetikhin (KR) modules [20] and then related with affine Lie
algebra characters [12,13]. In this paper, a path is a highest weight element in the
crystal; that is, an element that is annihilated by the Kashiwara operator ei for any
index i of the Dynkin diagram of the affine Lie algebra except 0.

There are two physical methods, the corner transfer matrix method and the Bethe
ansatz, which are used to analyze quantum integrable systems based on KR modules.
Combinatorially, they give rise to a conjectural equality of generating functions X =
M of paths with the energy statistic X and of rigged configurations with the charge
statistic M [8,9]. Although the equality X = M is yet to be proven bijectively in
full generality except for type A(1)

n , there is plenty of evidence for its correctness (for
proofs in special cases, see below). In fact, it was shown to be true when q = 1 and
the relevant affine algebra is of non-twisted type. In this case, X turns out to be a
branching number of KR modules with respect to the quantized enveloping algebra
corresponding to the underlying finite-dimensional simple Lie algebra. The relations
between characters were shown to be Q-systems [7,26]. They are known to imply
the fermionic formula M at q = 1 in a weak sense, meaning that it may contain the
binomial coefficient

(p+m
m

)
with p < 0 [8,17]. This last gap was filled eventually

in [5]. Naoi [27] showed X = M for types A(1)
n and D(1)

n using fusion products of the
current algebra and Demazure operators, but his proof is not bijective in nature.

One of the aims of the present paper is to prove X = M for type D(1)
n in full

generality by constructing an explicit bijection from paths to rigged configurations.
To explain previous developments of this bijective method, we note that KR crystals
are parameterized by two integers r, s, where r refers to a node of the Dynkin diagram
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of the underlying simple Lie algebra, Dn in our case, and s is any positive integer. Let
Br,s denote the corresponding KR crystal. The existence of Br,s and its combinatorial
structure is known for all non-exceptional types [6,28,30]. Returning to the history
of the bijective method, the simplest case when B = (B1,1)⊗k is treated in [32] and
the case when

⊗k
i=1 B1,si in [42], not only for type D(1)

n but also for non-exceptional

types. In type D(1)
n , the bijection for

⊗k
i=1 Bri ,1 was constructed in [38] and for the

single KR crystal B = Br,s in [35]. In fact, we rely on these two papers for many
properties of combinatorial procedures used in this paper.

In [39], a crystal structure on rigged configurations of simply-laced types was
defined. This led to the generalization of rigged configurations to unrestricted rigged
configurations, which form the completion under the crystal operators. Unrestricted
rigged configurations in type A(1)

n were characterized in [4]. This generalization turns
out to be extremely powerful. In particular, the bijection � from paths to rigged
configurations can be shown to extend to a crystal isomorphism.

Let us briefly explain how our bijection � from tensor products of KR crystals
to unrestricted rigged configurations is constructed. We consider the general case
B = Brk ,sk ⊗ · · · ⊗ Br2,s1 ⊗ Br1,s1 . As is revealed in [35], we regard an element
of the single KR crystal Br,s as a tableau, called a Kirillov–Reshetikhin tableau, of
r × s rectangular shape. For rk ≤ n − 2, we then define three procedures ls, lb, lh
on an element of B. The left-split ls splits off the leftmost column of the leftmost KR
crystal Brk ,sk . The left-box lb splits off the lowest box of the leftmost columnwhen the
leftmost KR crystal is a column, that is sk = 1. The left-hat lh deletes the box when
the leftmost KR crystal is a box, that is rk = sk = 1. (If some ri are n or n − 1, we use
a “spin” version of the operator lh called left-hat-spin lhs). These three operations on
the path side correspond to γ , β, δ (resp., δs in the spin case) on rigged configurations.
The bijection intertwines these operators and proceeds inductively on the total number
of boxes

∑k
i=1 ri si .

Our main results are threefold. Firstly, we show that the above bijection � is well-
defined (see Theorem 4.2). At the same time, Lusztig’s involution � on B is shown
to be related to θ , which exchanges riggings and coriggings of rigged configurations.
Secondly, we prove the R-invariance of rigged configurations (see Theorem 5.11). For
the tensor product of KR crystals, we have a nontrivial bijection R : Br1,s1 ⊗ Br2,s2 →
Br2,s2 ⊗ Br1,s1 , called the combinatorial R-matrix, that commutes with all of the
Kashiwara operators ei , fi . It can be applied to any two successive factors of amultiple
tensor product of KR crystals. R-invariance means that this application of R does not
have any effect on a rigged configuration. We prove this by using the combinatorial
R-matrix involving the spin representation Bn,1 and to reduce the problem to the R-
invariance for the type A(1)

n case, which was shown in [21]. In the proof, even though
we consider the R-invariance for highest weight elements, we need to use the fact that
the bijection is a classical crystal isomorphism [37] (see Theorem 4.3). Finally, we
show that under the bijection θ ◦�, the coenergy statistic on a path is transferred to the
cocharge on a rigged configuration (see Theorem 6.6), thereby proving the X = M
conjecture for type D(1)

n in a bijective fashion (see Corollary 6.7).
Let us address the question on why a bijective proof of the identity X = M is very

powerful. We give three reasons here. The first one is the computation of the image
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of R. Although R is defined naturally in a representation-theoretical fashion, it is
quite nontrivial combinatorially. However, denoting the bijection � from B1 ⊗ B2 by
�B1⊗B2 , R : B1⊗ B2 → B2⊗ B1 is simply realized as�−1

B2⊗B1
◦�B1⊗B2 thanks to the

R-invariance.As a second reason,wemention the application to box–ball systems [44].
These are certain integrable dynamical systems formulated on the tensor product of
KR crystals. Time evolution on the box–ball system is defined using R and considered
to be nonlinear. However in [18], it was found that � linearizes its motion. Finally, as
we mentioned before, the bijection in fact extends to a crystal isomorphism.

Rigged configurations of simply-laced types, and hence in particular type D(1)
n , are

of fundamental importance since those of non-simply-laced types can be constructed
from simply-laced types by Dynkin diagram foldings. On the level of crystals, this
is the virtual crystal construction carried out in [33,34]. For rigged configurations,
the virtual crystal construction is studied in [43]. In particular, the crystal operators
on rigged configurations for simply-laced types [39] are extended to non-simply-
laced types in [43]. The algorithm δ is known for arbitrary non-exceptional affine
algebras [32], as well as type E (1)

6 [31] and D(3)
4 [41]. Moreover, δ was shown to

commute with the virtual crystal construction for types B(1)
n and A(2)

2n−1 in [43] and

D(3)
4 in [41], all of which are constructed as foldings of type D(1)

n .
This paper is organized as follows. In Sect. 2, we review necessary facts from

crystal base theory, define KR crystals, and prove some results about the affine crystal
structure as well as properties of the left- and right-splitting map that we need. A
review of type D(1)

n rigged configurations is given in Sect. 3. Section 4 contains the
heart of this paper with a proof that the bijection� is well-defined. In Sect. 5, we prove
the R-invariance of the rigged configuration bijection. We conclude in Sect. 6 with a
proof that � preserves statistics (energy and cocharge), which implies the fermionic
formula of [8]. Appendix is reserved for an example of the bijection.

2 Crystals and tableaux

2.1 Affine algebra of type D(1)
n

We consider the Kac–Moody Lie algebra of affine type D(1)
n whose Dynkin diagram is

depicted in Fig. 1.We denote the index set of the Dynkin diagram by I = {0, 1, . . . , n}
and set I0 = I\{0}.

0

1
2 3 4

n− 2

n− 1

n

Fig. 1 The Dynkin diagram of type D(1)
n
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Let αi , α∨
i , and 	i (i ∈ I ) be the simple roots, simple coroots, and fundamental

weights of D(1)
n , respectively. Set
i = 	i −	0 (i ∈ I0), which are known as the level

0 fundamental weights. In particular, αi , α∨
i , and
i (i ∈ I0) can be identified with the

simple roots, simple coroots, and fundamental weights of the underlying simple Lie
algebra Dn . Using the standard orthonormal vectors εi (i ∈ I0) in the weight lattice
of type Dn , the simple roots are represented as

αi = εi − εi+1 (1 ≤ i ≤ n − 1),

αn = εn−1 + εn,
(2.1)

and the fundamental weights as


i = ε1 + · · · + εi (1 ≤ i ≤ n − 2),


n−1 = (ε1 + · · · + εn−1 − εn)/2,


n = (ε1 + · · · + εn−1 + εn)/2.

(2.2)

Let Q, Q∨, and P be the root, coroot, and weight lattices of type Dn , respectively.
Let 〈·, ·〉 : Q∨ × P → Z be the pairing such that 〈α∨

i ,
 j 〉 = 
 j (α
∨
i ) = δi, j is the

Kronecker delta. Note that 〈α∨
i , α j 〉 = α j (α

∨
i ) = Ai, j is the Cartan matrix of type

Dn . The above can also be extended to the affine type D(1)
n .

2.2 Crystals and Kashiwara–Nakashima tableaux

We refer to [10] for the basics of crystal basis theory. We denote by ei and fi the
Kashiwara raising and lowering operators, respectively. For an element b of a crystal
B, we use the following standard notation for the length of the i-strings through b:

εi (b) = max{m ≥ 0 | em
i (b) �= 0}, ϕi (b) = max{m ≥ 0 | f m

i (b) �= 0}.

They are related to the weight wt(b) by 〈α∨
i ,wt(b)〉 = ϕi (b) − εi (b).

For crystals B1, B2 of the same type, we can define their tensor product B2 ⊗ B1
as follows. As a set, it is the Cartesian product B2 × B1 of B2 and B1. The action of
the Kashiwara operators ei , fi on b2 ⊗ b1 ∈ B2 ⊗ B1 is given by

ei (b2 ⊗ b1) =
{

ei b2 ⊗ b1 if εi (b2) > ϕi (b1),
b2 ⊗ ei b1 if εi (b2) ≤ ϕi (b1),

fi (b2 ⊗ b1) =
{

fi b2 ⊗ b1 if εi (b2) ≥ ϕi (b1),
b2 ⊗ fi b1 if εi (b2) < ϕi (b1),

where the result is declared to be 0 if either of its tensor factors are 0. The weight is
defined as wt(b2 ⊗b1) = wt(b2)+wt(b1). Note that this is opposite to the convention
of Kashiwara for tensor products of crystals.
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Let B1 and B2 be two crystals with index set I . A bijection ψ : B1 → B2 is called
a crystal isomorphism if it is a bijection that commutes with ei and fi by defining
ψ(0) = 0.

The crystals that we are concerned with in this paper are U ′
q(D(1)

n )-crystals and
Uq(Dn)-crystals. For a subset J ⊆ I , we also use the terminology J -crystal to mean
the crystal over the quantized enveloping algebra corresponding to the Levi subalgebra
associated with J . Hence, an I0-crystal is nothing but a Uq(Dn)-crystal.

For a dominant integral weight λ, let B(λ) be the crystal basis of the highest weight
module of highest weight λ of Uq(Dn). B(λ) has a unique element uλ satisfying
ei uλ = 0 for all i ∈ I0. We call uλ the highest weight element. In order to perform
explicit calculations on the crystal B(λ), it is convenient to use the realization by
tableaux, called Kashiwara–Nakashima (KN) tableaux [16]. They are defined for
Uq(g)-crystals for Lie algebra g of type An, Bn, Cn and Dn . In all of these cases,
we start by looking at B(
1). In type Dn , the crystal graph B(
1) is given as follows:

1 �1 2 �2 � � � � � � � � �n − 2
n − 1

�
��n − 1

�
��n

n

�
��

�
��

n

n − 1

n − 1

n

�n − 2
� � � � � � � � �2 2 �1 1

Here b
i−→ b′ stands for fi b = b′ or equivalently b = ei b′. The weight is given

by wt
(

i
)

= εi and wt
(

ı
)

= −εi .

We now explain KN tableaux for B(λ). Suppose λ = ∑n
i=1 λiεi . Note that λ1 ≥

· · · ≥ λn−1 ≥ |λn| ≥ 0. We first assume that all λi are integers. The highest weight
element uλ corresponds to the tableau of partition shape (λ1, . . . , λn−1, |λn|) whose
entries in the i th row are n if i = n and λn < 0, and i otherwise. Note that we use
English convention for partitions and draw the Young diagram corresponding to a
partition with the largest row on the top. For a given tableau

t =

t1
t2
�

�

�

�

�

�

�

�

tr

tr+1
tr+2
�

�

�

�

�

�

�

�

t2r
�

�

�

�

tr ′

� � � � � � � � � � � � � � � � � � � � � � �

�

�

�

�

�

�

�

�
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�

tN
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

,

we introduce the so-called column reading word tN · · · t2t1 of t and regard it as an
element of B(
1)

⊗N as

t �−→ tN ⊗ · · · ⊗ t2 ⊗ t1 .
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Via this identification, we introduce an action of Kashiwara operators on t using the
tensor product rule. The whole set B(λ) is generated from uλ by applying fi (i ∈ I0).

Next we introduce a representation of elements of B(s
n) and B(s
n−1). We
consider B(
n) and B(
n−1) first. As a set, they are given by

B(
n) = {(s1, s2, . . . , sn) | si = ±, s1s2 · · · sn = +},
B(
n−1) = {(s1, s2, . . . , sn) | si = ±, s1s2 · · · sn = −}. (2.3)

The Kashiwara operators act by

ei (s1, . . . , sn) =
⎧
⎨

⎩

(s1, . . . ,+,−, . . . , sn) if i �= n, (si , si+1) = (−,+),

(s1, . . . , sn−2,+,+) if i = n, (sn−1, sn) = (−,−),

0 otherwise,
(2.4a)

fi (s1, . . . , sn) =
⎧
⎨

⎩

(s1, . . . ,−,+, . . . , sn) if i �= n, (si , si+1) = (+,−),

(s1, . . . , sn−2,−,−) if i = n, (sn−1, sn) = (+,+),

0 otherwise.
(2.4b)

The weight is given by

wt(s1, . . . , sn) = 1

2
(s1ε1 + · · · + snεn). (2.5)

In view of this, it is natural to associate with (s1, . . . , sn) a tableau whose shape has
half width and height n. In the i th row, we put si . We call it a spin column.

For general s, we embed B(s
n) (resp., B(s
n−1)) into B(
n)⊗s (resp.,
B(
n−1)

⊗s) by cs · · · c1 �−→ cs ⊗· · ·⊗c1 where c j are spin columns. In this way, we
represent elements of B(s
n) or B(s
n−1) by s spin columns. The highest weight
elements are given by

us
n =
+

+
�

�

�

+

+

+
�

�

�

+

+

+
�

�

�

+

+

+
�

�

�

+� � �

�

�

�

� � �

� � �

, us
n−1 =
+

+
�

�

�

−

+

+
�

�

�

−

+

+
�

�

�

−

+

+
�

�

�

−� � �

�

�

�

� � �

� � �

.

2.3 Kirillov–Reshetikhin crystals

In [28,30], it was shown thatKirillov–Reshetikhin (KR)modules have crystal bases for
any non-exceptional affineLie algebra g.We call themKirillov–Reshetikhin (KR) crys-
tals. KR modules are finite-dimensional U ′

q(g)-modules, where U ′
q(g) = Uq([g, g]).

The combinatorial structure of KR crystals is explicitly given in [6,40], which we
briefly recall in this section for type D(1)

n .
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KR crystals are parametrized by (r, s) (r ∈ I0, s ≥ 1). The KR crystal indexed
by (r, s) is denoted by Br,s . Since U ′

q(D(1)
n ) contains Uq(Dn) as a subalgebra, Br,s is

decomposed into Uq(Dn)-crystals. For 1 ≤ r ≤ n − 2, we have

Br,s ∼=
⊕

λ

B(λ) as Uq(Dn)-crystals (2.6)

where identifying the weight λ with the partition shape of the elements of B(λ), the
direct sum is taken over all Young diagrams obtained by removing vertical dominoes
from the rectangular shape (sr ). If r = n − 1, n, we have

Br,s ∼= B(s
r ) as Uq(Dn)-crystals. (2.7)

To define the affine Kashiwara operators e0 and f0, we first need a map σ that
is the analogue of the Dynkin diagram automorphism that interchanges nodes 0 and
1; see [40]. We begin by recalling the notion of ±-diagrams. A ±-diagram P is a
sequence of shapes λ ⊆ η ⊆ μ such that μ/η and η/λ are horizontal strips. We call
λ and μ the inner and outer shapes of P , respectively. We depict P as a skew shape
μ/λ, where we fill the boxes of μ/η with − and those of η/λ with +. Next we define
an involution S on ±-diagrams, where S(P) is the ±-diagram that interchanges the
number of columns of a given height h with only a + and those of height h containing
only −. In addition, it interchanges the number of columns of height 2 ≤ h ≤ r
containing ∓ with the number of columns containing no sign of height h − 2.

For J ⊆ I , we say an element b of a crystal is a J -highest weight element, if
ei b = 0 for all i ∈ J .

Proposition 2.1 ([6,40]) There exists a bijection κ from ±-diagrams to {2, . . . , n}-
highest weight elements in Br,s with 1 ≤ r ≤ n −2 as follows. Let P = (λ ⊆ η ⊆ μ).
Then we construct κ(P) as follows:

(i) Start with shape μ and add a 1 in every cell that contains a −;
(ii) Fill the remainder of the columns with 23 · · · k;
(iii) As we read the ±-diagram from bottom to top (in English convention), left to right,

for every + at height h that is encountered, do one of the following, moving in
the current tableau from bottom to top and left to right:
(a) if we are at a 1, replace it by h + 1;
(b) otherwise if one encounters a 2, replace the string 23 · · · k with 12 · · · h(h +

2) · · · k.

Wedefine σ : Br,s → Br,s for 1 ≤ r ≤ n−2 on {2, . . . , n}-highest weight elements
as σ = κ◦S◦κ−1 and extend it to all elements in Br,s bymaking it a {2, . . . , n}-crystal
isomorphism. Explicitly, we have

σ = far ◦ κ ◦ S ◦ κ−1 ◦ ea, (2.8)

where
eab = ea1 · · · ea�

b for a = a1 · · · a� (2.9)
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such that eab is {2, . . . , n}-highest weight and far b′ = fa�
· · · fa1b′. The map σ is an

involution on Br,s [40, Definition 4.2]. Then we define

e0 = σ ◦ e1 ◦ σ, (2.10a)

f0 = σ ◦ f1 ◦ σ. (2.10b)

Let us introduce the following convention. By c(i1, . . . , i�), we denote the spin
column whose ia th entry is − for 1 ≤ a ≤ � and + elsewhere. Let ct dt ′ stand for the
tableau whose left t columns are c and right t ′ columns are d.

Note that when r = n − 1, n, we can define σ as an involutive map from
Bn,s to Bn−1,s and vice versa [6, Definition 6.3]. This σ is also defined to be
a {2, . . . , n}-crystal isomorphism. A {2, . . . , n}-highest weight element of B(s
n)

(resp., B(s
n−1)) is given by the tableau c()αc(1, n)s−α (resp., c(n)αc(1)s−α). The
map σ is defined by [2, (2.7)]

σ : c()αc(1, n)s−α ←→ c(n)s−αc(1)α, (2.11)

or pictorially, we have

σ :

+ · · · + − · · · −
+ · · · + + · · · +
...

. . .
...

...
. . .

...

+ · · · + − · · · −
︸ ︷︷ ︸

α

︸ ︷︷ ︸
s−α

←→

+ · · · + − · · · −
+ · · · + + · · · +
...

. . .
...

...
. . .

...

− · · · − + · · · +
︸ ︷︷ ︸

s−α

︸ ︷︷ ︸
α

.

With this σ , we can again define the affine crystal operators e0 and f0 by (2.10).
In particular, we have Br,1 ∼= B(
r ) as I0-crystals for r = n − 1, n with the affine

crystal operators, given in [38], explicitly as

e0(s1, . . . , sn) =
{

(−,−, s3, . . . , sn) if (s1, s2) = (+,+),

0 otherwise,
(2.12a)

f0(s1, . . . , sn) =
{

(+,+, s3, . . . , sn) if (s1, s2) = (−,−),

0 otherwise.
(2.12b)

We prepare two lemmas that will be used later.We use the notation emax
i b = eεi (b)

i b.
In the following lemmas, we note that we read columns of aKN tableau from bottom to
top in accordance with our reading word. Spin columns are displayed in tuple notation
as in (2.3). The following lemma will be used in Sect. 6.

Lemma 2.2 (1) Let 2 ≤ r ≤ n − 2. Let b(α) = cs−αc′α ∈ Br,s (0 ≤ α ≤ s),
where c = r · · · 21 and c′ = nr · · · 31. Then ε0

(
b(α)

) = 2s − α, ϕ0
(
b(α)

) = 0,
and emax

0 b(α) is the tableau whose left α columns are 2nr · · · 3 and right (s − α)

columns are 12r · · · 3.
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(2) Let b(α) = c(n)s−αc(2)α ∈ Bn−1,s (0 ≤ α ≤ s). Then ε0
(
b(α)

) = s − α,
ϕ0
(
b(α)

) = 0, and emax
0 b(α) = c(2)αc(1, 2, n)s−α . Columns here are spin

columns.

Proof The {2, . . . , n}-highest weight element e(r+1)α ···(n−1)α f1α b(α) is the tableau
whose left (s − α) columns are r · · · 21 and right α columns are (r + 1) · · · 32. Note
that the Kashiwara operators appearing above commute with e0, f0. Thus, (1) follows
from [24, Lemma 9.4].

Next consider (2). Notice that eab(α) = c(n)s where a = (n − 1)α · · · 2α .
Using (2.11), we have

σ
(
b(α)

) = ( far ◦ σ ◦ ea)
(
c(n)s−αc(2)α

) = c(1, n)s−αc(1, 2)α = b′.

Since ε1(b′) = s − α and ϕ1(b′) = 0, we have the result for ε0 and ϕ0. We
then have es−α

1 b′ = c(2, n)s−αc(1, 2)α = b′′. Noting ea′b′′ = c()s−αc(1, n)α where
a′ = ns−α(n − 1)α(n − 2)s · · · 2s and calculating similarly, we obtain the desired
result. ��

For the next lemma, which will be used in the proof of Proposition 5.7, we need
to characterize the elements b ∈ Br,s for 1 ≤ r ≤ n − 2 such that εi (b) ≤ δi,n for
i ∈ I0. These are the elements that differ from the I0-highest weight element uλ by the
addition of a vertical strip whose (column) reading word is given by w = · · · nnnn,
where λ:=wt(b) − wt(w). Note that wt(w) ∈ {±εn, 0} and λ ∈ P+.

Example 2.3 Consider the {1, 2, 3, 4, 5, 6, 7}-highest weight element

b =

1 1 1 8
2 2 2 8
3 8
4 8
5
8

∈ B(2
2 + 
4 + 
6) ⊆ B6,4

of type D(1)
8 . We have

wt(b) = 2
2 + 
5 + 
7 − 
8,

w = 88888,

wt(w) = −ε8,

λ = 2
2 + 
5 = wt(b) + ε8.

Using the notation in the proof of Lemma 2.4 below, we have ξ = 4 since y5 = 6 and
yi = i for i ≤ 4.

Lemma 2.4 Consider b ∈ B(μ) ⊆ Br,s for 1 ≤ r ≤ n − 2 such that εi (b) ≤ δi,n for
all i ∈ I0. Then f0b is given by doing exactly one of the following:
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(i) Suppose there exists a column of height h ≥ 1 with column reading word
· · · nnnn. Then replace it with · · · nn21 of height h + 2 if this yields a valid
tableau and h < r .

(ii) Suppose there exists a column n of height 1 and a column of height h ≥ 1 with
column reading word nn · · · nn1. Then replace the largest column of height h
with the column of height h + 2 with column reading nnn · · · nnnn21 and the

column n with the column 1 if this yields a valid tableau and h < r .

(iii) In all other cases, slide in a vertical domino 1
2

from the left at height 0 unless

μ1 = s, in which case f0b = 0.

Proof We use the notation introduced just before the lemma. Let yi denote the heights
of cells of μ/λ read from top to bottom. Let ξ be the largest value such that y j = j
for all 1 ≤ j ≤ ξ (which could be 0). The following element is the {2, . . . , n}-highest
weight element in the same component as b:

eab:= (eyk · · · en−2en′) · · · (eyξ+1eyξ+1+1 · · · en−2en′′′)

(eyξ +1 · · · en−2en′′) · · · (ey1+1 · · · en−2en)b,

where k = |μ/λ| and n′′ = n −1, n depending on the parity of ξ (equivalently r since
the columnheights ofμmust also have the sameparity) andn′′′ = n, n−1, respectively
(i.e., reversed parity of ξ ). Let Pb:=κ−1(eab) be the corresponding ±-diagram.

We first assume that there are no n letters in the first row, that is, we are in Case (iii).
Note that we have eab = uμ, the corresponding±-diagram Pb is of outer shapeμwith
only a + in all columns, and ξ = 0 (note that all of these conditions are equivalent).
We first consider the case when μ1 = s. Then S(Pb) is also of outer shape μ with
only a − in all columns. Thus, κ

(
S(Pb)

)
is given by columns of the form 23 · · · h1,

and we obtain σ(b) by making the entry at height i an n (resp., n) if there is a n (resp.,
n) in the same column in b at height i + 1. Hence, there are no 1 nor 2 entries in σ(b),
and we have f1

(
σ(b)

) = 0. Therefore, f0b = 0 as desired.
Now we consider the case when μ1 < s. Here, S(Pb) contains s − μ1 columns

with a ± of height 2. Note that these are the only + signs occurring in S(Pb) since
eab = uμ. Thus, each of the + signs in these columns changes either a 2 to a 1 or a 1
to a 2 when computing κ

(
S(Pb)

)
, and we obtain n, n in σ(b) as in the previous case.

Hence, f1 changes the last 1 or 2 in the reading word in σ(b). So Pf1(σ (b)) differs
fromS(Pb) by removing the leftmost + sign, and therefore, f0b differs from b by the

addition of a column 1
x
, where x = 2 or n is the rightmost entry in the second row of

b, as desired.
Now assume we are in Case (ii), that is, there is a (necessarily unique) column n

and a column c = · · · nn1 of height h (we pick the largest leftmost such column if
several exist). Note that r must be odd, h ≤ ξ , and μ1 = s. We first consider the
case when ξ < r . Then Pb is of outer shape μ with only + in every column except
for a column of height ξ with no sign. There is exactly one column c′ with a + in
S(Pb), and the+ is at height ξ +1. Hence, κ

(
S(Pb)

)
is the tableau where the leftmost

column is of the form ξ + 2k · · · 32 and all other columns of height k are of the form
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1k · · · 32 (or only contain 1 if of height 1). Next we apply the sequence far . This will
change ξ + 2 to χ + 1, where χ is the height of the column to the right of c′. Note that
χ = 1 precisely when ξ = h and the column to the left of c has height strictly greater
than c (which is also precisely when Case (ii) applies and yields a valid tableau). It is
straightforward to check that σ(b) does not contain any additional 1 or 2 entries; more
explicitly, the other changed entries either become n or n. Thus, f1

(
σ(b)

)
changes the

2 to a 1 if Case (ii) applies and f1
(
σ(b)

) = 0 otherwise. Therefore, it is easy to see
that our claim follows using the fact that Pf1(σ (b)) has a − in all columns of shape μ′,
which is the outer shape of S(Pb). If ξ = r , then S(Pb) contains no + signs, and it
is easy to see that f1

(
σ(b)

) = 0 as there are no 1 nor 2 entries in σ(b).
Lastly, assume that there exists a column · · · nnnn of height ≥ 1 and we are not

in Case (ii). We first consider Case (iii), where either ξ > h or μ1 − μh+1 > 1 (if
�(μ) ≤ h, we consider μh+1 = 0). Therefore, Pb has a + in every nonempty column
except the leftmost column of height ξ . Hence, the leftmost + in S(Pb) is at height
ξ +1, and if ξ = r , then there is no such+. Moreover, the remaining s −μ1 number of
+ signs occurs at height 1. Thus, κ

(
S(Pb)

)
has a bottom left entry of ξ + 2 if ξ < r ,

of 2 if μ1 < s and ξ = r , or of r + 1 otherwise. Thus, from the description of a,
we have the bottom left entry x of σ(b) as follows. If ξ < r , then x = χ + 1, since
it transforms under fy j for each χ < j < ξ , where χ is the height of the column to
the right of the column which contains the leftmost + in S(Pb), similar to above. If
μ1 < s and ξ = r , then x = 2. Otherwise x = n or x = n depending on the parity
of ξ . In addition, all 1 and 2 entries, of which there are s − μ1 many of them, are
unchanged from κ

(
S(Pb)

)
. For j > ξ , all other changed entries are n, n in σ(b) as

above. If μ1 = s, then there are no additional + signs in S(Pb) other than the one at
height ξ + 1, and hence, there are no 1, 2 entries in σ(b). Therefore, f1

(
σ(b)

) = 0
and f0b = 0 as desired. Now if μ1 < s, then f1 changes the rightmost 1 or 2 in the
reading word in σ(b). Thus, Pf1(σ (b)) differs from S(Pb) by removing the leftmost
+ sign in a column of height 1. Thus, it is easy to see that f0b differs from b as
claimed.

Now we consider Case (i), so that ξ = h and μ1 − μh+1 = 1. The tableau σ(b) is
similar to the above except that the bottom left entry has to be 2 since it transforms
under fy j for all j . Thus in this case, Pf1(σ (b)) differs from S(Pb) by removing the
leftmost + sign at height h + 1. Thus, it can be easily checked that f0b is as claimed.

��

2.4 Lusztig’s involution on Br,s

Let w0 be the longest element of the Weyl group of type Dn . There exists a type Dn

Dynkin diagram automorphism τ : I0 → I0 satisfying

w0
i = −
τ(i) and w0αi = −ατ(i).

In fact, τ is the identity if n is even, and interchanges n − 1 and n and fixes all other
Dynkin nodes if n is odd.
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On aUq(Dn)-crystal B(λ), it is known [38,42] that there exists a unique involution,
called Lusztig’s involution, � : B(λ) → B(λ) satisfying

wt(b�) = w0 wt(b), (ei b)� = fτ(i)b
�, ( fi b)� = eτ(i)b

�. (2.13)

As seen from (2.13), � sends the I0-highest weight element of B(λ) to the I0-lowest
weight element, which is the element that satisfies fi b = 0 for all i ∈ I0. By defining
τ(0) = 0, we extend τ to the Dynkin diagram of type D(1)

n and the involution � on the
KR crystal Br,s . For a crystal B, let B� be the crystal with the same set as B, but with
the crystal structure given by (2.13). There is a natural isomorphism of crystals

(B2 ⊗ B1)
� ∼= B�

1 ⊗ B�
2 (2.14)

such that (b2 ⊗ b1)� = b�
1 ⊗ b�

2.

2.5 Left- and right-split on Br,s

In [35], we defined the filling map fill on Br,s for 1 ≤ r ≤ n − 2, s ≥ 1. For an
I0-highest weight element uλ, fill(uλ) is a tableau of rectangular shape (sr ) which
does not necessarily satisfy the conditions of KN tableaux in general. However, the
filling map is necessary for the path to rigged configuration bijection.

The filling map can be defined inductively by cutting the leftmost column.

Definition 2.5 Let λ = kp
p + kq
q +∑
0≤ j<q k j
 j (p > q, kp, kq > 0, kp +

kq +∑
0≤ j<q k j = s). Here we have set 
0 = 0. We define the map, which we call

left-split, ls : Br,s → Br,1 ⊗ Br,s−1 for 1 ≤ r ≤ n − 2, s ≥ 2 as follows. For λ define
a pair (c, λ′) of a column c of height r and a weight λ′ by:
(i) If p = r , then

c = r · · · 21,
λ′ = (kr − 1)
r + kq
q +

∑

j<q

k j
 j .

(ii) If p < r and kp ≥ 2, then

c = p + 1 · · · r p · · · 21,
λ′ = 
r + (kp − 2)
p + kq
q +

∑

j<q

k j
 j .

(iii) If p < r and kp = 1, then

c = p + 1 · · · rr · · · q(r − p + q + 1) · · · 21,
λ′ = 
r−p+q + (kq − 1)
q +

∑

j<q

k j
 j .
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We remark that one can regard c as an element of the I0-crystal Br,1 by embedding
into B(
1)

⊗r via the column reading. For uλ ∈ Br,s we define ls(uλ) = c ⊗ uλ′ ∈
Br,1 ⊗ Br,s−1. The image ls(b) for an arbitrary element b ∈ Br,s is defined in such a
way that ei , fi (i ∈ I0) commute with ls.

For Br,s with r = n −1 or n, the left-split map ls : Br,s → Br,1 ⊗ Br,s−1 is defined
for the unique I0-highest weight element us
r as ls(us
r ) = u
r ⊗ u(s−1)
r and
extended to any element again by the commutativity with ei , fi (i ∈ I0).

The right-split map rs : Br,s → Br,s−1 ⊗ Br,1 is defined by rs = � ◦ ls ◦� using
Definition 2.5 and (2.14). It also commutes with ei , fi (i ∈ I0). For us
r ∈ Br,s , the
right-split map is given by rs(us
r ) = u(s−1)
r ⊗ u
r . For the explicit form of rs(uλ)

for general uλ ∈ Br,s when r ≤ n − 2, we have the following proposition.

Proposition 2.6 Let λ = 
p + 
q + μ where p ≥ q and μ = ∑
a, ja≤q 
 ja . For

uλ ∈ Br,s (1 ≤ r ≤ n − 2, s ≥ 2), rs(uλ) is given by t ⊗ u
r where t is represented
as a KN tableau as follows. The first column is

p + 1 · · · r − 1rq · · · 21

and the other part is the KN tableau for uμ.

Proof For an I0-highest weight element u, let u
lowest−−−→ v represent that v is the

I0-lowest weight element corresponding to u.
(1) Consider the case when p = r . Write λ = 
r +μ. Then as an I0-crystal, we can

regard uλ as u
r ⊗uμ where u
r corresponds to the column c split in Definition 2.5 (i).

Since u
r ⊗ uμ
lowest−−−→ v−
r ⊗ v−μ, where vξ stands for the lowest weight element

of weight ξ , we see that the leftmost column of u�
λ is 1 · · · r − 1r and the rest is v−μ

in the KN tableau representation. Hence, by applying � ◦ ls we obtain u
q+μ, which
is the desired result. ��

To prove the other cases, we need the following lemma.

Lemma 2.7 Let r > p ≥ q. We have:
(1)

1 1
...

...

q
r − p + q + 1

...

r r − p + q
r
...

p + 1

lowest−−−→

r p + 1
...

...

r
q
...

1
1
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where the LHS is an I0-highest weight element of weight 
p + 
q , when viewed
inside B(
1)

⊗(p+q). Note that these are not KN tableaux.
(2)

p + 1
...

r
q
...

1

= ea

r − p + q
...

1

where

a = b0b1 · · ·br−p+1cn−r+p−q−1cn−r+p−q−2 · · · c1,
bi = (r − i)(r − i + 1) · · · (n − i − 2)(n − i − 1)2 · · · (n − 2)2(n − 1)n,

c j = (q + j)(q + j + 1) · · · (r − p + q + j − 1),

and for a word a ea is defined in (2.9). a contains only letters larger than q.

(2) Consider the case when r > p = q. We have λ = 2
p + μ. Then we can
regard uλ as u2
p ⊗ uμ, where u2
p corresponds to the LHS of Lemma 2.7 (1) with
p = q split two times by Definition 2.5 (ii) and (i). Then we have

uλ = u2
p ⊗ uμ
lowest−−−→ v−2
p ⊗ v−μ =

r p + 1
...

...

r
p
...

1 1

⊗ v−μ.

Hence, the rest of uλ by cutting the leftmost column is

p + 1
...

r
p
...

1

⊗ v−μ = eav−
r ⊗ v−μ = ea(v−
r ⊗ v−μ).
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Here we have used Lemma 2.7 (2). By applying �, we obtain

fa(u
r ⊗ uμ) = fa

⎛

⎜
⎝

1
...

r

⊗ uμ

⎞

⎟
⎠ =

1
...

p
r
...

p + 1

⊗ uμ

as desired.
(3) Finally consider the case when r > p > q. We follow the same procedure as (2)

and write λ = 
p +
q +μ. Then we can regard uλ as u
p+
q ⊗ uμ where u
p+
q

corresponds to the LHS of Lemma 2.7 (1). Its left column is split by Definition 2.5
(iii). By using Lemma 2.7 (2) again, we have

uλ = u
p+
q ⊗ uμ
lowest−−−→ v−
p−
q ⊗ v−μ =

r
...

1

⊗ ea(v−
r−p+q ⊗ v−μ).

Applying �, we obtain

fa(u
r−p+q ⊗ uμ) = fa

⎛

⎜
⎝

1
...

r − p + q

⊗ uμ

⎞

⎟
⎠ =

1
...

q
r
...

p + 1

⊗ uμ.

��

2.6 Paths and various operations on them

Let B be a tensor product of KR crystals. We start with the definition of a path of B.

Definition 2.8 A path of B is an I0-highest weight element of the crystal B. The set
of paths of B is denoted by P(B). We also set P(B, λ) = {b ∈ P(B) | wt(b) = λ}
for a dominant integral weight λ.

For later purposes, we introduce several operations on paths.

Definition 2.9 For a path b = bk ⊗bk−1⊗· · ·⊗b1 ∈ Brk ,sk ⊗Brk−1,sk−1 ⊗· · ·⊗Br1,s1 ,
we define the following operations:
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(1) Suppose that Brk ,sk = B1,1. Then we define the operation called left-hat by

lh(b) = bk−1 ⊗ · · · ⊗ b1 ∈ Brk−1,sk−1 ⊗ · · · ⊗ Br1,s1 .

(1’) Suppose that Brk ,sk = Brk ,1 and rk = n − 1, n. Then we define the operation
called left-hat-spin by

lhs(b) = bk−1 ⊗ · · · ⊗ b1 ∈ Brk−1,sk−1 ⊗ · · · ⊗ Br1,s1 .

(2) Suppose that Brk ,sk = Brk ,1 and 2 ≤ rk ≤ n − 2, so that bk has the form

bk =
t1
...

trk−1

trk

. Then we define the operation called left-box by

lb(b) = trk ⊗
t1
...

trk−1

⊗ bk−1 ⊗ · · · ⊗ b1 ∈ B,

where B = B1,1 ⊗ Brk−1,1 ⊗ Brk−1,sk−1 ⊗ · · · ⊗ Br1,s1 .
(3) Suppose that sk > 1. We define the operation called left-split by

ls(b) = ls(bk) ⊗ bk−1 ⊗ · · · ⊗ b1 ∈ B,

where B = Brk ,1 ⊗ Brk ,sk−1 ⊗ Brk−1,sk−1 ⊗ · · · ⊗ Br1,s1 . See Definition 2.5 for
ls in the single KR crystal.

Next we define right analogues of lh, lhs , lb, and ls. Let B = Brk ,sk ⊗ · · · ⊗ Br1,s1 .
For b ∈ P(B), we define �(b) = high(b�

1 ⊗· · ·⊗ b�
k) ∈ P(B�). Here high(b) denotes

the highest weight element in the same I0-component as b.

(1) We define right-hat rh : B ⊗ B1,1 → B by rh = high ◦ � ◦ lh ◦ � = � ◦ lh ◦ �.
(1’) We define right-hat-spin rhs : B ⊗ Br,1 → B, where r = n − 1, n, by rhs =

high ◦ � ◦ lhs ◦ � = � ◦ lhs ◦ �.
(2) We define right-box rb : B ⊗ Br,1 → B ⊗ Br−1,1 ⊗ B1,1 for 2 ≤ r ≤ n − 2 by

rb = � ◦ lb ◦ � = � ◦ lb ◦ �.
(3) We define right-split rs : B ⊗ Br,s → B ⊗ Br,s−1 ⊗ Br,1 for s ≥ 2 by rs =

� ◦ ls ◦ � = � ◦ ls ◦ �.
Proposition 2.10 When there are at least two KR crystals in the tensor product B,
the left operation lx commutes with the right one ry for any pair of (x, y) where
x, y = h, hs, b, s as long as they are well-defined.

Proof If rh or rhs are not involved, they clearly commute with each other since the left
operation only changes the leftmost component and the right one does the rightmost
one. Suppose the right operation is rh. It commutes with any left operations since
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�◦lh ◦�only changes the rightmost component andhigh commuteswith left operations.
The case of rhs is similar. ��

It is known [12] that for KR crystals Br,s, Br ′,s′
there exists an isomorphism of

crystals

R : Br,s ⊗ Br ′,s′ −→ Br ′,s′ ⊗ Br,s,

called combinatorial R-matrix. Note that R commutes with ei , fi (i ∈ I ).

3 Rigged configurations of type D(1)
n

3.1 Definition of rigged configurations

We define two classes of rigged configurations of type D(1)
n : rigged configurations and

unrestricted rigged configurations. Rigged configurations will turn out to be in bijec-
tion with the paths of Definition 2.8. Unrestricted rigged configurations are obtained
by defining the classical Kashiwara operators ei and fi for i ∈ I0 on the rigged con-
figurations and then considering the connected crystal components generated by the
rigged configurations (which turn out to correspond to the I0-highest weight vectors).

Let us prepare the definition of several combinatorial objects which constitute
rigged configurations and then give the defining conditions imposed on them.A rigged
configuration consists of a sequence of partitions ν = (

ν(1), . . . , ν(n)
)
, called a config-

uration, together with riggings J = (
J (1), . . . , J (n)

)
. More precisely, if the partition

ν(a) = (
ν

(a)
1 , . . . , ν

(a)
�

)
has � parts, then J (a) = (

J (a)
1 , . . . , J (a)

�

)
is a sequence of

integers called the riggings. The riggings are paired with the rows of the configura-
tion as the multisets

(
ν(a), J (a)

) = {(
ν

(a)
1 , J (a)

1

)
, . . . ,

(
ν

(a)
� , J (a)

�

)}
for each a ∈ I0.

We call the pairs
(
ν

(a)
i , J (a)

i

)
strings and associate the pair

(
ν(a), J (a)

)
to the node

a ∈ I0 of the Dynkin diagram of Dn . We denote by m(a)
i (ν) the number of rows

of length i of ν(a). We identify two rigged configurations (ν, J ) and (̃ν, J̃ ) when(
ν(a), J (a)

) = (
ν̃(a), J̃ (a)

)
as multisets for all a ∈ I0.

Rigged configurations also depend on the tensor product B = Brk ,sk ⊗ · · · ⊗
Br1,s1 . Let L = {(

L(a)
i

)}
a∈I0,i∈Z>0

be the number of components Ba,i within B,
also called the multiplicity array of B. We can define a configuration μ(L) =
(μ(1), . . . , μ(n−1), μ(n)) from L by m(a)

i (μ) = L(a)
i . Thus, the rigged configuration

(ν, J ) is described by the configuration and a sequence of riggings

(ν, J ) =
((

ν(1), J (1)), . . . ,
(
ν(n−1), J (n−1)),

(
ν(n), J (n)

))

together with additional data under certain constraints to be described below. We
denote by Q(a)

i (ν) the number of boxes in the first i columns of ν(a):

Q(a)
i (ν) =

∑

j≥1

min(i, j)m(a)
j (ν).

123



J Algebr Comb (2017) 46:341–401 359

Therefore, we have Q(a)∞ (ν) = |ν(a)|, where |ν(a)| is the total number of boxes in ν(a).
From the data μ(L) and ν, we define the vacancy number P(a)

i (μ(L), ν) (usually

abbreviated by P(a)
i (ν)) by the formula

P(a)
i (ν) = Q(a)

i

(
μ(L)

)+
∑

b∈I0

Aa,b Q(b)
i (ν)

= Q(a)
i

(
μ(L)

)− 2Q(a)
i (ν) +

∑

b∈I0
b∼a

Q(b)
i (ν),

(3.1)

where Aa,b is the Cartan matrix of Dn and a ∼ b means that the vertices a and b are
connected by a single edge in the Dynkin diagram.

Definition 3.1 Fix a multiplicity array L . Then (ν, J ) is a rigged configuration of
type D(1)

n if all the strings
(
ν

(a)
i , J (a)

i

)
and the corresponding vacancy numbers satisfy

the following condition for all a ∈ I0 and i ≥ 1

0 ≤ J (a)
i ≤ P(a)

ν
(a)
i

(ν). (3.2)

The weight λ of the rigged configuration is defined by the relation (sometimes called
the (L , λ)-configuration condition)

∑

a∈I0,i>0

im(a)
i (ν)αa =

∑

a∈I0,i>0

i L(a)
i 
a − λ. (3.3)

The set of rigged configurations of weight λ and multiplicity array L is denoted by
RC(L , λ). We also letRC(L) = ⊔

λ∈P+ RC(L , λ).

Example 3.2 The following object is a rigged configuration corresponding to the ten-
sor product B = B3,2 ⊗ B3,1 ⊗ B2,2 ⊗ B1,2 ⊗ B1,1 of type D(1)

5 :

1
1

2
1

0
1

0

0
1
1

0
1

1
0

0
1
1
1

0
0

0
0

0
0

0
0 .

Here we put the vacancy number (resp., rigging) on the left (resp., right) of the cor-
responding row of the configuration represented by a Young diagram. We order the
riggings for rows of the same length in the same partition weakly decreasingly from
top to bottom (since recall that we view

(
ν(a), J (a)

) = {(
ν

(a)
1 , J (a)

1

)
, . . . ,

(
ν

(a)
� , J (a)

�

)}

as multisets).

Note that if we expand the weight λ by the basis εi , we can rewrite (3.3) as follows:

λ =
∑

i∈I0

λiεi =
∑

a∈I0

(
|μ(a)|
a − |ν(a)|αa

)
. (3.4)
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Then we can use the expressions (2.1) and (2.2) to obtain the explicit expressions for
the weight λi . We write the weight of the rigged configuration by wt(ν, J ).

Following [39], we introduce the classical Kashiwara operators on the rigged con-
figurations and use them to define the unrestricted rigged configurations. For the string
(i, x) ∈ (ν(a), J (a)

)
, we call the quantity P(a)

i (ν) − x the corigging.

Definition 3.3 The unrestricted rigged configurations are obtained by all possible
applications of the Kashiwara operators fa (a ∈ I0) on the rigged configurations. Here
the Kashiwara operators fa and ea for a ∈ I0 on unrestricted rigged configurations
are defined as follows. Let x be the smallest rigging of

(
ν(a), J (a)

)
.

ea : Let � be the minimal length of the strings of
(
ν(a), J (a)

)
with the rigging x . If

x ≥ 0, define ea(ν, J ) = 0. Otherwise ea(ν, J ) is obtained by replacing the string
(�, x) by (�−1, x +1) while changing all other riggings to keep coriggings fixed.

fa : Let � be the maximal length of the strings of
(
ν(a), J (a)

)
with the rigging x . Then

fa(ν, J ) is obtained by the following procedure. If x > 0, add a string (1,−1) to(
ν(a), J (a)

)
. Otherwise replace the string (�, x) by (� + 1, x − 1). Change other

riggings to keep coriggings fixed. If the new rigging is strictly larger than the
corresponding new vacancy number, define fa(ν, J ) = 0.

Let RC(L) denote the set of all unrestricted rigged configurations generated from
RC(L) by the Kashiwara operators. Let

RC(L , λ) = {(ν, J ) ∈ RC(L) | wt(ν, J ) = λ}.

Example 3.4 Consider (ν, J ) in Example 3.2. Then wt(ν, J ) = 3
1 + 3
4 + 
5,

f4(ν, J ) =
1

1
2
1

0
1

0

0
1
1

1
2

1
0

1
2
1
1

−1
0

0
0

0
0

0
0 ,

and f2(ν, J ) = 0.

3.2 Operations δ, β and γ

The rigged configuration bijection

� : P(B, λ) → RC(L , λ)

is a bijection between paths, the set of I0-highest weight elements in a tensor products
of KR crystals B, and the set of rigged configurations. Here L is the multiplicity array
of B. In this section, we prepare the main ingredients of the bijection. In fact, we will
define the various maps not just onRC(L), but more generally on RC(L). One of the
basic operations is

δ : (ν, J ) �−→ {(ν′, J ′), k},
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where (ν, J ) and (ν′, J ′) are rigged configurations and k ∈ {1, 2, . . . , n, n, . . . , 2, 1}.
In the description, we call a string (�, x) of

(
ν(a), J (a)

)
singular if we have x =

P(a)
� (ν), that is, the rigging takes the maximal possible value. To begin with, we

consider the generic case (non-spin case).

Definition 3.5 Let us consider a rigged configuration (ν, J ) ∈ RC(L) corresponding
to the tensor product of the form B1,1 ⊗ B ′. The map

δ : (ν, J ) �−→ {(ν′, J ′), k}

is defined by the following procedure. Set �(0) = 1.

(1) For 1 ≤ a ≤ n − 2, suppose that �(a−1) is already determined. Then we search
for the shortest singular string in (ν(a), J (a)) that is longer than or equal to �(a−1).
(a) If there exists such a string, set �(a) to be the length of the selected string

and continue the process recursively. If there is more than one such string,
choose any of them.

(b) If there is no such string, set �(a) = ∞, k = a and stop.
(2) Suppose that �(n−2) < ∞. Then we search for the shortest singular string in

(ν, J )(n−1) (resp., (ν, J )(n)) that is longer than or equal to �(n−2) and define
�(n−1) (resp., �(n)) as in part (1).
(a) If �(n−1) = ∞ and �(n) = ∞, set k = n − 1 and stop.
(b) If �(n−1) < ∞ and �(n) = ∞, set k = n and stop.
(c) If �(n−1) = ∞ and �(n) < ∞, set k = n and stop.
(d) If �(n−1) < ∞ and �(n) < ∞, set �(n−1) = max(�(n−1), �(n)) and continue.

(3) For 1 ≤ a ≤ n − 2, assume that �(a+1) is already defined. Then we search for
the shortest singular string in (ν, J )(a) that is longer than or equal to �(a+1) and
has not yet been selected as �(a). Let �(a) be the length of this string if it exists
and set �(a) = ∞ otherwise. If �(a) = ∞, set k = a + 1 and stop. Otherwise
continue. If �(1) < ∞, set k = 1 and stop.

(4) Once the process has stopped, remove the rightmost box of each selected row
specified by �(a) or �(a). The result gives the output ν′.

(5) Define the new riggings J ′ as follows. For the rows that are not selected by �(a)

or �(a), take the corresponding riggings from J . In order to define the remaining
riggings,weuse B ′ to compute all the vacancynumbers for ν′. Then the remaining
riggings are defined so that all the corresponding rows become singular with
respect to the new vacancy number.

As we will see in Sect. 4, δ on the rigged configuration side corresponds to the
left-hat operation of Definition 2.9 on the path side. Although the above definition
only deals with paths of the form B1,1 ⊗ B ′, the essence of the rigged configuration
bijection is contained in the operation δ which was originally discovered by [14] for
type A(1)

n and generalized for type D(1)
n by [32].

The remaining maps involved in the rigged configuration bijection are the counter-
parts of left-box and left-split of Definition 2.9.

123



362 J Algebr Comb (2017) 46:341–401

Table 1 The operations on
rigged configurations and paths
and their correspondence, where
L is the multiplicity array of B

B RC(L)

ls γ

lb β

lh δ

Definition 3.6 Let B = Brk ,sk ⊗ Brk−1,sk−1 ⊗ · · · ⊗ Br1,s1 with multiplicity array L
and (ν, J ) ∈ RC(L).

(1) If Brk ,sk = Br,s with s > 1, then γ replaces a length s row of μ(r) by two rows
of lengths s − 1 and 1 of μ(r) and otherwise leaves (ν, J ) unchanged.

(2) If Brk ,sk = Br,1 with 1 < r ≤ n −2, then β removes a length one row from μ(r),
adds a length one row to each of μ(1) and μ(r−1) and adds a length one singular
string to each of

(
ν(a), J (a)

)
for 1 ≤ a < r .

We give a summary of the correspondence of the operations on the rigged configu-
ration side and the path side in Table 1. It will be shown in Proposition 4.1 that these
operations intertwine under �.

A formal definition of the rigged configuration bijection� and its inverse�−1 will
be given in Sect. 4. Roughly speaking, the algorithm for �−1 is given by successive
applications of the operators γ , β and δ and filling in the bottom leftmost unfilled
entry in B with k on each application of δ, where k is as given in Definition 3.5. The
algorithm for � is the reverse procedure of each step, where for δ−1 we add a box to
the largest singular row at most as long as the previously selected row. However, the
well-definedness of � and �−1 is a highly nontrivial fact and will be the subject of
Sect. 4. A detailed example of �−1 is given in “Appendix.”

Example 3.7 Consider the rigged configuration (ν, J ) of Example 3.2. Then (ν, J )

corresponds under �−1 to the following I0-highest weight element in B:

�−1(ν, J ) =
1 3
4
5

⊗
1
3
4

⊗ 1 2
2 1

⊗ 1 1 ⊗ 1 .

Remark 3.8 We can perform the composition δ ◦ β ◦ γ at once (see, for example,
[35,37]). Suppose that we consider Br,s with s > 1. Then δ ◦ β ◦ γ is a modification
of δ. Set �(r−1) = s and start from the corresponding part of Step (1) of Definition
3.5. For practical purposes, especially for hand computations, it is convenient to do
δ ◦ β ◦ γ simultaneously. However, for the proof of several important properties of
the rigged configuration bijection in Sect. 4, it is convenient to consider three separate
operations γ , β and δ.

In [35, Proposition 3.3], the following result is proved with the help of [15].

Proposition 3.9 Let uλ be the I0-highest weight element of Br,s (1 ≤ r ≤ n − 2) of
weight λ. Denote by λc the Young diagram obtained as the complement of λ within
the rectangle of height r and width s. Then �(uλ) has the following form:
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• ν(a) = λc for r ≤ a ≤ n − 2. ν(n−1) = ν(n) is obtained by replacing all dominoes
of λc by .

• ν(a−i) is obtained by removing the top i rows from λc. If i exceeds the length of
λc, we understand that ν(a−i) = ∅.

• All riggings are 0.

Note that all the vacancy numbers of �(uλ) are 0 so that the requirement (3.2) deter-
mines the riggings uniquely.

3.3 Dual operations on the rigged configurations

Definition 3.10 Let (ν, J ) ∈ RC(L). For each string
(
ν

(a)
i , J (a)

i

) ∈ (ν(a), J (a)
)
of a

given rigged configuration (ν, J ), the operation θ is defined by

θ : RC(L) −→ RC(L)
(
ν

(a)
i , J (a)

i

)
�−→

(
ν

(a)
i , P(a)

ν
(a)
i

(ν) − J (a)
i

)
∈
(
ν̃(a), J̃ (a)

)
,

where θ : (ν, J ) �−→ (̃ν, J̃ ).We then extend θ to all unrestricted rigged configurations
RC(L) by extending it as a classical crystal automorphism.

Rather nontrivially, we will show in Proposition 4.1(7) that the operator � on paths
corresponds to the operation θ on rigged configuration under the bijection�. By using
θ , we define the dual operations of γ , β and δ:

γ̃ :=θ ◦ γ ◦ θ,

β̃:=θ ◦ β ◦ θ,

δ̃:=θ ◦ δ ◦ θ.

We provide direct descriptions of these operators in the case when (ν, J ) ∈ RC(L).
Recall that for the string (ν

(a)
i , J (a)

i ) ∈ (ν(a), J (a)), the quantity P(a)

ν
(a)
i

(ν) − J (a)
i is

called the corigging. If the rigging is 0, we call such a string cosingular. Let B =
Brk ,sk ⊗ Brk−1,sk−1 ⊗ · · · ⊗ Br1,s1 , L of the corresponding multiplicity array, and
μ = μ(L).

γ̃ : If Brk ,sk = Br,s with s > 1, then γ̃ replaces a length s row of μ(r) by two rows of
lengths s − 1 and 1 of μ(r) and add 1 to the rigging of each string in (ν(r), J (r))

of length strictly less than s.
β̃: If Brk ,sk = Br,1, where 1 < r ≤ n−2, then β̃ removes a length one row fromμ(r),

adds a length one row to each of μ(1) and μ(r−1) and adds a length one cosingular
string to each of (ν(a), J (a)) for a < r .

δ̃: Suppose Brk ,sk = B1,1. This is a corigging version of δ. Instead of selecting
singular strings, it selects cosingular strings andmakes them into cosingular strings
of lengths shortened by 1. For unselected strings, it keeps coriggings constant by
changing riggings.
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Note that γ preserves riggings, whereas γ̃ preserves coriggings. Also note that β̃

preserves vacancy numbers since β preserves vacancy numbers [38, Lemma 4.2].
The following very important result is quite hard to prove.

Theorem 3.11 (Appendix C of [38]) Let L be a multiplicity array with L(1)
1 ≥ 2.

Then on RC(L) the operators δ and δ̃ commute:

[δ, δ̃] = 0.

We will also need the following propositions.

Proposition 3.12 We have the following relations on rigged configurations inRC(L):

(i) [δ, δ̃] = [δ, β̃] = [δ, γ̃ ] = 0;
(ii) [β, δ̃] = [β, β̃] = [β, γ̃ ] = 0;
(iii) [γ, δ̃] = [γ, β̃] = [γ, γ̃ ] = 0.

Proof The relation [δ, δ̃] = 0 is Theorem3.11. The relation [δ, β̃] = 0 is proven in [38,
Lemma 5.4], whereas [δ, γ̃ ] = 0 follows from the fact that γ̃ preserves coriggings,
specifically singular strings stay singular. The relations [β, β̃] = [β, γ̃ ] = 0 follow
from the fact that β and β̃ preserve vacancy numbers and that γ̃ preserves coriggings.
The relation [γ, γ̃ ] = 0 follows from the fact that γ and γ̃ preserve riggings and
coriggings, respectively. The remaining relations can be deduced by conjugation by
θ . ��
Proposition 3.13 Let 1 ≤ r ≤ n − 2, s ≥ 2. For uλ ∈ Br,s we have

�(rs(uλ)) = γ̃ (�(uλ)). (3.5)

Proof Let λ = kp
p + kq
q + ∑
0≤ j<q k j
 j (p > q, kp, kq > 0, kp + kq +∑

0≤ j<q k j = s). We prove the statement by dividing into the same cases as in
Definition 2.5.

ConsiderCase (i),where p = r . In this case, ls(uλ) = c⊗uλ−
r , where c = r · · · 21
byDefinition 2.5 (i). Hence, during the process of removing the leftmost column of uλ,
the corresponding rigged configuration never changes. Proposition 2.6 says that the
left component of rs(uλ) is uλ−
r . Therefore, the removing procedures of δ performed
to obtain the corresponding rigged configuration is completely parallel from uλ−
r

and from rs(uλ), which justifies (3.5).
Next consider Case (ii), where p < r and kp ≥ 2. In this case, the left component

of ls(uλ) is the same as the leftmost column of rs(uλ), which is p + 1 · · · r p · · · 1, the
leftmost column of the right component of ls(uλ) is r · · · 1, and the right s −2 columns
of ls(uλ) and the right s − 2 columns of the left component of rs(uλ) are the same.
Hence, the applications of δ to remove the leftmost column of uλ and the one of the
left component of rs(uλ) are completely parallel and arrive at Case (i). Thus, the proof
is done also in this case.

Finally, we consider Case (iii), where p < r and kp = 1. Divide further into two
cases: (a) s > 2 and (b) s = 2. First considerCase (a), and setλ = 
p+
q +
q ′ +. . .
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(r > p > q ≥ q ′). Just as in Case (ii), the right s −2 columns of uλ and the right s −2
columns of the left component of rs(uλ) are the same. Hence, it is sufficient to show
that the process of removing the leftmost column of the left component of rs(uλ) is
parallel to removing the left two columns of uλ. We list below the length of the row
in which a box is removed by the i th application of δ along the leftmost column of
the left component of rs(uλ). Here a stands for the position of the configuration when
we move along it in the increasing order of a during the process of δ while a the one
when we move in the decreasing order, and � is the length of the row in which a box
is removed.

When 1 ≤ i ≤ p − q:
if i is odd,
a = r − i + 1, . . . , r − 1 → � = s − 2 and a = r, . . . , q + i → � = s − 1;
if i is even,
a = r − i + 1, . . . , r → � = s − 2 and a = r − 1, . . . , q + i → � = s − 1.

When p − q < i ≤ r − q, set j = i − (p − q):
if i is odd,
a = r − i +1, . . . , r − j → � = s −2, a = r − j +1, . . . , r −1 → � = s −1
and a = r, . . . , q + i → � = s;
if i is even,
a = r − i + 1, . . . , r − j → � = s − 2, a = r − j + 1, . . . , r → � = s − 1
and a = r − 1, . . . , q + i → � = s.

When r − q < i ≤ r − q ′:
a = r − i + 1, . . . , r − i + p − q → � = s − 2.

When r − q ′ < i ≤ r :
no box is removed.

In view of [35, Proposition 3.3], we see that the above deletions are in fact parallel to
removing the left two columns of uλ, and hence the proof is done.

For Case (b), set λ = 
p + 
q (r > p > q) and z = (p + q)/2. We provide a
similar list.

When 1 ≤ i ≤ (p − q)/2:
a = r − i + 1, . . . , q + i → � = 1.

When (p − q)/2 < i ≤ r − z, set j = i − (p − q)/2:
if i is odd,
a = r − i + 1, . . . , r − 1 → � = 1 and a = r, . . . , p + j → l = 2;
if i is even,
a = r − i + 1, . . . , r → � = 1 and a = r − 1, . . . , p + j → � = 2.

When r − z < i ≤ r :
no box is removed.

��

3.4 Spin cases

Following [38], let us introduce the analogueof δ for the spin cases Br,1 where r = n−1
or n. Fix a multiplicity array L and let μ = μ(L). We introduce the embedding of the
unrestricted rigged configurations
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emb : RC(L) −→ RC(L ′)
(ν, J ) �−→ (ν′, J ′),

where ν
′(a)
i = 2ν(a)

i , J ′(a)
i = 2J (a)

i , and L ′ is determined by μ
′(a)
i = 2μ(a)

i for
μ′ = μ(L ′). Note that emb is a similarity map with a scaling factor of 2 as described
in [11, Theorem 3.1] in the following sense:

emb(ei b) = e2i
(
emb(b)

)
, (3.6a)

emb( fi b) = f 2i
(
emb(b)

)
, (3.6b)

wt
(
emb(b)

) = 2wt(b). (3.6c)

Remark 3.14 The image of emb is characterized by the condition that all parts of μ

and ν as well as all riggings are even.

The analogue of δ for the spin case is denoted by δs . It corresponds to removing an
entire spin column Br,1 for r = n − 1 or n and is defined as

δs = emb−1 ◦(δ ◦ β)n−2 ◦ δ ◦ β ◦ δ ◦ β(r) ◦ emb, (3.7)

where β(r) and β are given as follows:

• Define β(n) as the map which replaces a length two row of μ(n) by a length one
row, adds a length one row to each of μ(1) and μ(n−1), and adds a length one
singular string to each of (ν(a), J (a)) for a ≤ n − 2 and a = n − 1. The map
β(n−1) is defined in the same way with n and n − 1 interchanged.

• Define β as the map which removes a length one row from each of μ(n−1) and
μ(n), adds a length one row to each of μ(1) and μ(n−2), and adds a length one
singular string to each of (ν(a), J (a)) for a ≤ n − 2.

The following lemma is a straightforward computation.

Lemma 3.15 The maps β(r) and β preserve the vacancy numbers.

It was shown in [38] that δs is well-defined. Similarly, we define δ̃s = θ ◦ δs ◦ θ .

Proposition 3.16 We have the following relations on rigged configurations inRC(L):

(i) [δs, δ̃s] = [δs, δ̃] = [̃δs, δ] = 0,
(ii) [δs, β̃] = [δs, γ̃ ] = 0,
(iii) [̃δs, β] = [̃δs, γ ] = 0.

Proof We note that θ commutes with emb and emb−1. Additionally, we have

emb ◦δ = δ ◦ δ ◦ γ ◦ emb

as a similar statement and proof of [29, Lemma 3.5] holds for type D(1)
n . Hence, the

relations for (i) follow from Theorem 3.11, Proposition 3.12, and the definitions of δ̃s

and δs .
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Fix an 1 ≤ r ≤ n such that μ(r) has a row of length s > 2. Define γ̃ e by replacing
a length s row of μ(r) by two rows of length s − 2 and 2 of μ(r), leaving ν unchanged,
and preserving all colabels. Also for 1 ≤ r ≤ n − 2, define β̃e by removing a length 2
row from μ(r), adding a length 2 row to each of μ(1) and μ(r−1), and adding a length
2 string with rigging 0 to each of (ν(a), J (a)) for 1 ≤ a < r . It is straightforward to
verify that

emb ◦γ̃ = γ̃ e ◦ emb, emb ◦β̃ = β̃e ◦ emb .

We have [δ, γ̃ e] = [β, γ̃ e] = [β(m), γ̃ e] = [β, γ̃ e] = 0, for m = n − 1, n,
since γ̃ e preserves colabels and since Lemma 3.15 holds, similar to the proof of
Proposition 3.12. Hence, [δs, γ̃ ] = 0 follows from the definition of δs .

The proof of [δ, β̃e] = 0 follows the proof for [δ, β̃] = 0 given in [38, Lemma 5.4].
We need to show that for the selected strings �(a) (resp., s(a)) by δ in (ν, J ) (resp.,

β̃e(ν, J )), we have �(a) = s(a) for all a ∈ I0. The case for �
(a) = s(a) is similar. First,

we have that �(a) = 1 if and only if s(a) = 1 for any a ∈ I0 as δ selects the smallest
singular string and β̃e preserves the vacancy numbers and adds a string of length 2.
Note that we cannot have s(a) > �(a) because β̃e preserves the vacancy numbers and
possibly only adds a row of length 2 to ν(a). Next, suppose a is minimal such that
2 = s(a) < �(a); thus, we must have P(a)

2 = 0 as the rigging of the string added by

β̃e is 0 (i.e., β̃e adds a cosingular string of length 2). Hence, we must have m(a)
2 = 0.

From the definition of the vacancy numbers, we have

− P(a)
i−1 + 2P(a)

i − P(a)
i+1 = L(a)

i −
∑

b∈I0

Aabm(b)
i , (3.8)

and in particular for i = 2, we have

−P(a)
1 − P(a)

3 = L(a)
2 +

∑

b∼a

m(b)
2 .

Since P(a)
i ≥ 0 for all i > 0, we must have P(a)

1 = L(a)
2 = m(b)

2 = 0 for all b ∼ a.
Recall from the definition of δ that s(b) ≤ s(a) for all b < a, and hence s(a−1) ≤ 2.

If s(a−1) = 2, then by the assumption a is minimal such that s(a) < �(a), we have
2 = s(a−1) = �(a−1). However, this contradicts that m(a−1)

2 = 0, and therefore, we
must have s(a−1) = �(a−1) = 1. This implies that s(b) = �(b) = 1 for all b < a. If
m(a)

1 > 0, then �(a) = 1 because 0 ≤ x ≤ P(a)
1 = 0, which contradicts our assumption

that 2 < �(a). Hence, we have m(a)
1 = 0. Consider the case when a = 1, and (3.8) for

i = 1 results in

0 = L(1)
1 + m(2)

1 ,
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which is a contradiction since L(1)
1 > 0 as we are applying δ. Now consider the case

a > 1. Hence, (3.8) for i = 1 results in

0 = m(a−1)
1 + m(a+1)

1 + L(a)
1 ,

and therefore, m(a−1)
1 = 0, which is a contradiction. Thus, we have [δ, β̃e] = 0.

Nextwehave [β(m), β̃e] = [β, β̃e] = 0 as all thesemapspreserve vacancynumbers.
Thus, [δs, β̃

e] = 0 from the definition of δs . This proves (ii).
The remaining relations follow from conjugation by θ . ��

4 Proof of the well-definedness of the bijection

The main purpose of this section is to show that the bijection � is well-defined.
In the proof, we will use diagrams of the following kind as in [21]:

• A

C

•

B

• •

• •

•
D

•
i

We regard this as a cube with front face given by the large square. Suppose that the
square diagrams given by the faces of the cube except for the front face commute and
i is the injective map. Then the front face also commutes since we have

i ◦ B ◦ A = i ◦ D ◦ C

by diagram chasing.

Proposition 4.1 Let B = Brk ,sk ⊗ · · · ⊗ Br2,s2 ⊗ Br1,s1 be a tensor product of KR
crystals with multiplicity array L. Then there exists a unique family of injections
� : P(B, λ) → RC(L , λ) such that the empty path maps to the empty rigged config-
uration and satisfies the following sequence of commutative diagrams.
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(1) Suppose B = B1,1 ⊗ B ′. Let lh(B) = B ′ with multiplicity array lh(L). Then the
diagram

P(B, λ)
�

lh

RC(L , λ)

δ

⋃
μ P(lh(B), μ)

�

⋃
μ RC(lh(L), μ)

commutes.
(1’) Suppose B = Br,1 ⊗ B ′ for r = n − 1 or n. Let lhs(B) = B ′ with multiplicity

array lhs(L). Then the diagram

P(B, λ)
�

lhs

RC(L , λ)

δs

⋃
μ P(lhs(B), μ)

�

⋃
μ RC(lhs(L), μ)

commutes.
(2) Suppose B = Br,1 ⊗ B ′ with 2 ≤ r ≤ n − 2. Let lb(B) = B1,1 ⊗ Br−1,1 ⊗ B ′

with multiplicity array lb(L). Then the diagram

P(B, λ)
�

lb

RC(L , λ)

β

P(lb(B), λ)
�

RC(lb(L), λ)

commutes.
(3) Suppose B = Br,s ⊗ B ′ with s ≥ 2. Let ls(B) = Br,1 ⊗ Br,s−1 ⊗ B ′ with

multiplicity array ls(L). Then the diagram

P(B, λ)
�

ls

RC(L , λ)

γ

P(ls(B), λ)
�

RC(ls(L), λ)

commutes.
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(4) Suppose B = B ′ ⊗ B1,1. Let rh(B) = B ′ with multiplicity array rh(L). Then the
diagram

P(B, λ)
�

rh

RC(L , λ)

δ̃

⋃
μ P(rh(B), μ)

�

⋃
μ RC(rh(L), μ)

commutes.
(4’) Suppose B = B ′ ⊗ Br,1 for r = n − 1 or n. Let rhs(B) = B ′ with multiplicity

array rhs(L). Then the diagram

P(B, λ)
�

rhs

RC(L , λ)

δ̃s

⋃
μ P(rhs(B), μ)

�

⋃
μ RC(rhs(L), μ)

commutes.
(5) Suppose B = B ′ ⊗ Br,1 with 2 ≤ r ≤ n − 2. Let rb(B) = B ′ ⊗ Br−1,1 ⊗ B1,1

with multiplicity array rb(L). Then the diagram

P(B, λ)
�

rb

RC(L , λ)

β̃

P(rb(B), λ)
�

RC(rb(L), λ)

commutes.
(6) Suppose B = B ′ ⊗ Br,s with s ≥ 2. Let rs(B) = B ′ ⊗ Br,s−1 ⊗ Br,1 with

multiplicity array rs(L). Then the diagram

P(B, λ)
�

rs

RC(L , λ)

γ̃

P(rs(B), λ)
�

RC(rs(L), λ)

commutes.
(7) The diagram

P(B, λ)
�

�

RC(L , λ)

θ

P(B�, λ)
�

RC(L , λ)

commutes.
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Proof For B = Brk ,sk ⊗ · · · ⊗ Br2,s2 ⊗ Br1,s1 , we set

‖B‖ =
(
∑

i

ri si ,
∑

i

(ri − 1),
∑

i

(si − 1)

)

.

Weprove the statement by induction on the lexicographic order of‖B‖.More precisely,
at each induction level, we check that � is well-defined from (1), (1’), (2), (3) and
show that this � satisfies (4)—(7) for the next induction step.

The well-definedness of (1) is shown in [32].
The well-definedness of (1’) is shown in [38].
The well-definedness of (2) is shown in [38].
Now we prove the well-definedness of (3). When B = Br,s for 1 ≤ r ≤ n − 2,

the well-definedness of � and, in particular, (3) is established in [35, Theorem 5.9]
by directly computing the bijection based on Proposition 3.9 and checking that the
result agrees with the definition of the Kirillov–Reshetikhin tableau for the I0-highest
weight element of Br,s . When B = Br,s for r = n − 1 or n, both P(Br,s) andRC(L)

consist of a single element and the property is easy to check.
For more general B = Br,s ⊗ B ′ with s ≥ 2, consider the following diagram:

P(B)
�

�

ls

RC(L)

θ

γ

P(ls (B))
�

�

RC(ls(L))

θ

P(rs(B�))
� RC(rs(L))

P(B�)

rs

RC(L)

γ̃

We see that the left face and right face commute by definition and the back
face commutes by the induction hypothesis that (7) holds. We wish to show that
(� ◦ ls)(P(B)) ⊆ γ (RC(L)). If we have this relation, we can define �(P(B)) =
(γ −1 ◦ � ◦ ls)(P(B)) since γ is invertible on Im(γ ). Since � and θ are bijections, the
commutativity of the left, back and right faces of the above diagram shows that it is
enough to prove that (� ◦ rs)(P(B�)) ⊆ γ̃ (RC(L)).

Let us show (� ◦ rs)(P(B)) ⊆ γ̃ (RC(L)). For this, it is enough to check that the
strings of ν(r) of the image of � ◦ rs have strictly positive riggings. We prove this
claim by dividing into cases.

123



372 J Algebr Comb (2017) 46:341–401

When B = B1,1 ⊗ B ′ ⊗ Br,s , consider the following diagram:

P(B)
�

lh

rs

RC(L)

δ1

P(rs (B))
�

lh

RC(rs(L))

δ2

P(lh(rs(B)))
� RC(lh(rs(L)))

P(lh(B))
�

rs

RC(lh(L))

γ̃

The front face commutes by already proved (1), the left face commutes by definition
of lh and rs, and the bottom face and the back face commute by induction hypothesis.
There are two δ which we distinguish by denoting them by δ1 and δ2. By diagram
chasing, we see that (δ2 ◦ � ◦ rs)(P(B)) = (γ̃ ◦ δ1 ◦ �)(P(B)). Then by definition
of γ̃ , we see that the algorithm for δ1 and δ2 choose the same strings and the only
difference is the fact that, during the process of δ2, the riggings of the strings {(l, x) ∈(
ν(r), J (r)

) | l < s} are greater by 1 compared with the case of δ1. Since the riggings
of the elements of RC(L) are nonnegative, we see that the riggings for the strings of
ν(r) of the corresponding elements ofRC(rs(L)) which are shorter than s are strictly
positive. Therefore, we have (� ◦ rs)(P(B)) ⊆ γ̃ (RC(L)) in this case.

For B = Br ′,1 ⊗ B ′ ⊗ Br,s when r ′ = n − 1 or n, the same arguments as above go
through with δ and lh replaced by δs and lhs , respectively.

When B = Br ′,1 ⊗ B ′ ⊗ Br,s for 2 ≤ r ′ ≤ n − 2, consider the following diagram:

P(B)
�

lb

rs

RC(L)

β1

P(rs (B))
�

lb

RC(rs(L))

β2

P(lb(rs(B)))
� RC(lb(rs(L)))

P(lb(B))
�

rs

RC(lb(L))

γ̃

The front face commutes by already proved (2), the left face commutes by definition
of lb and rs, and the bottom face and the back face commute by induction hypothesis.
In this case, we have (β2 ◦ � ◦ rs)(P(B)) = (γ̃ ◦ β1 ◦ �)(P(B)). Recall that β does
not change riggings of untouched strings. Therefore, by definition of γ̃ we see that
the riggings for strings of ν(r) of the elements ofRC(rs(L)), which are shorter than s
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are greater by 1 compared with the corresponding elements ofRC(L). Therefore, we
have (� ◦ rs)(P(B)) ⊆ γ̃ (RC(L)) in this case.

Finally let us consider the case B = Br ′,s′ ⊗ B ′ ⊗ Br,s . In this case, we have the
following diagram:

P(B)

ls

rs

P(rs (B))
�

ls

RC(rs(L))

γ

P(ls(rs(B)))
� RC(ls(rs(L)))

P(ls(B))
�

rs

RC(ls(L))

γ̃

The left face commutes by definition of ls and rs, and the bottom face and the back
face commute by induction hypothesis. In this case, we have (γ ◦ � ◦ rs)(P(B)) =
(γ̃ ◦ � ◦ ls)(P(B)). Since γ does not change any strings, we see that riggings for
the strings of ν(r) of the elements ofRC(rs(L)) which are shorter than s have strictly
positive riggings. Therefore, we have (� ◦ rs)(P(B)) ⊆ γ̃ (RC(L)) in this case. This
completes the proof of (3).

We move to the proof of (4). We again divide into cases.
When B = B1,1, this follows from a special case of [38].
When B = B1,1 ⊗ B ′ ⊗ B1,1, consider the following diagram:

P(B)
�

rh

lh

RC(L)

δ̃

δ

P(lh (B))
�

rh

RC(lh(L))

δ̃

P(rh(lh(B)))
� RC(rh(lh(L)))

P(rh(B))
�

lh

RC(rh(L))

δ

(4.1)

The top face commutes by (1). The left face commutes by definition of lh and rh, and
the right face commutes by the fundamental relation [δ, δ̃] = 0 (Theorem 3.11). The
back and bottom faces commute by induction hypothesis. Since δ is injective, the front
face commutes.

When B = Br ′,1 ⊗ B ′ ⊗ B1,1 for r ′ = n − 1 or n, we have the same commutative
diagramas in (4.1)with lh and δ replacedby lhs and δs , respectively.The commutativity
[δs, δ̃] = 0 is shown in Proposition 3.16 (i).
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When B = Br ′,1 ⊗ B ′ ⊗ B1,1 for 2 ≤ r ′ ≤ n − 2, consider the following diagram
and similarly show the front face commutes, using Proposition 3.12 (ii):

P(B)
�

rh

lb

RC(L)

δ̃

β

P(lb (B))
�

rh

RC(lb(L))

δ̃

P(rh(lb(B)))
� RC(rh(lb(L)))

P(rh(B))
�

lb

RC(rh(L))

β

When B = Br ′,s′ ⊗ B ′ ⊗ B1,1 consider the following diagram and similarly show
the front face commutes, using Proposition 3.12 (iii):

P(B)
�

rh

ls

RC(L)

δ̃

γ

P(ls (B))
�

rh

RC(ls(L))

δ̃

P(rh(ls(B)))
� RC(rh(ls(L)))

P(rh(B))
�

ls

RC(rh(L))

γ

The proofs of (5) and (6) are parallel to the argument of (4). When B = Br,1, (5)
follows from [38].When B = Br,s , (6) follows fromProposition 3.13 for r ≤ n−2, and
from the fact that bothP(Br,s) andRC(L) consist of a single element for r = n−1, n.
We also need Propositions 3.12 and 3.16 (ii).

Case (4’) follows fromcases (4) and (5) by noting that δs is realized by a composition
of the doubling map, a sequence of n compositions of δ ◦ β, and a halving map.

Finally, we prove (7). We again divide into cases.
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When B = B1,1 ⊗ B ′, we can use the following diagram to show that the front face
commutes:

P(B)
�

�

lh

RC(L)

θ

δ

P(lh (B))
�

�

RC(lh(L))

θ

P(lh(B)�)
� RC(lh(L))

P(B�)
�

rh

RC(L)

δ̃

The proofs when B = Br,1 ⊗ B ′ or B = Br,s ⊗ B ′ are almost the same. ��
We can now state the main result of this section.

Theorem 4.2 Let B be a tensor product of KR crystals. Then � : P(B, λ) →
RC(L , λ) is a well-defined bijection.

Proof By Proposition 4.1, � is a well-defined injection. By [5] or [27], we have
|P(B, λ)| = |RC(L , λ)|, which proves that � is a bijection. ��

In order to generalize the rigged configuration bijection to include non-highest
weight elements, we invoke the following result stated in [37, Thm. 4.1].

Theorem 4.3 ([37]) The rigged configuration bijection � : P(B) → RC(L) can be
extended to a bijection � : B → RC(L) by requiring � to be a classical crystal
isomorphism:

[�, ei ] = [�, fi ] = 0 (i ∈ I0). (4.2)

Example 4.4 Consider the rigged configuration (ν, J ) in Example 3.2, f4(ν, J ) from
Example 3.4, and the tensor product of KR crystal elements in Example 3.7. We
have

�−1( f4(ν, J )
) =

1 3
4
5

⊗
1
3
5

⊗ 1 2
2 1

⊗ 1 1 ⊗ 1 = f4�
−1(ν, J ).

5 R-invariance of rigged configurations

In this section, we prove that the combinatorial R-matrix on unrestricted rigged con-
figurations is the identity under the bijection �. We do so in several steps. First we
show that the combinatorial R-matrix R : Bn,1 ⊗ Br,s → Br,s ⊗ Bn,1 corresponds to
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the identity map under� (see Proposition 5.7 which follows from Lemmas 5.2 and 5.5
and Proposition 5.6). The general statement (see Theorem 5.11) can then be deduced
by passing a spin column through enough times to reduce to the type A(1)

n case which
was proven in [21].

We begin with the R-matrix R : Bn,1 ⊗ Br,s → Br,s ⊗ Bn,1 for 1 ≤ r ≤ n − 2
in type D(1)

n . Let b ⊗ uη ∈ Bn,1 ⊗ Br,s be an I0-highest weight element, where
uη ∈ B(η) ⊆ Br,s is the unique I0-highest weight element of highest weight η. Note
that, for fixed η, the element b⊗uη is uniquely specified by the weight λ = wt(b⊗uη)

since the multiplicity of any weight space in B(
n) ∼= Bn,1 (as classical crystals) is
at most 1.

Let us introduce the following notation. Write λ = ∑
i∈I0 mi
i in terms of the

classical fundamental weights 
i , where all mi are nonnegative integers since λ is
dominant. Define λ = ∑

i∈I0\{n−1,n} mi
i . We can interpret λ as a partition (where
each fundamental weight
i for 1 ≤ i ≤ n−2 contributes a column of height i). Then
let λ

c
be the complement of the partition λ in the r × s rectangle. Similarly, ηc is the

complement of η (interpreted as a partition) in the r × s rectangle. The skew partition
λ

c
/ηc can have at most one box in each row. Denote the cells in λ

c
/ηc from top to

bottom (in English convention for partitions) by c1, c2, . . . , c�. Finally, η̊ is obtained
by replacing all of ηc by (recall that this is well-defined since η is obtained from
the r × s rectangle by removing vertical dominoes).

Note that mn−1 + mn = 1 due to the fact that r ≤ n − 2 and b ∈ Bn,1. Also,
� + mn−1 is even since b ∈ Bn,1 (it would be odd for b ∈ Bn−1,1).

We now define the configuration that we will show under the bijection � corre-
sponds to the I0-highest weight elements b ⊗ uη ∈ Bn,1 ⊗ Br,s for 1 ≤ r ≤ n − 2.
Recall that b⊗uη is uniquely determined by the two weights η and λ. Let ν = �(η, λ)

be the following configuration:

(i) For r ≤ a ≤ n − 2, ν(a) = λ
c
.

(ii) For 1 ≤ a < r , ν(a) is obtained from ν(n−2) by removing r − a rows starting
from longer rows.

(iii) If mn−1 = 0, then ν(n−1) (resp., ν(n)) is obtained from η̊ by adding the cells
c1, c3, . . . (resp., c2, c4, . . .) to the same row length as in λ

c
/ηc.

If mn−1 = 1, then ν(n−1) (resp., ν(n)) is obtained from η̊ by adding the cells
c2, c4, . . . (resp., c1, c3, . . .) to the same row length as in λ

c
/ηc.

Let us examine the vacancy numbers for elements ν ∈ �(η, λ). It is not hard to
check that P(a)

i (ν) = 0 for all 1 ≤ a ≤ n − 2 and i ≥ 0. Furthermore, from weight

considerations we have P(n−1)
i (ν) = mn−1 and P(n)

i (ν) = 1 − mn−1 for large i . Call
1 ≤ h1 ≤ h2 ≤ · · · ≤ h� the ordered row labels of the cells in ν(n−1)/η̊ and ν(n)/η̊.
Starting with the largest row in ν(n−1) (resp., ν(n)), the vacancy number switches
from 1 to 0 (or 0 to 1) whenever one of the row lengths hi is crossed. In particular,
P(n−1)

i (ν) + P(n)
i (ν) = 1 for all i ≥ 0.

123



J Algebr Comb (2017) 46:341–401 377

Example 5.1 We illustrate the construction of �(η, λ) with two examples. Consider
type D(1)

10 and B = B10,1 ⊗ B8,5. Let b = (+,−,+,+,+,−,+,+,+,+) and

uη =

1 1 1 1 1
2 2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7
8 8 8

,

where η = 
2 + 
6 + 3
8 and λ = 
1 + 
5 + 3
8 + 
10, and hence, m10 = 1
and m9 = 0. Thus, we have as partitions ηc = 221111 and λ

c = 2221111, and so

λ
c
/ηc = 1

2

,

where we have indicated the cells c1 and c2 in the construction by blue letters 1 and
2, respectively. Then �(b ⊗ uη) is equal to

where again we labelled the cells added to ηc in ν(n−2) and η̊ in ν(n−1) and ν(n) by
blue letters 1 and 2.

Next we consider b′ = (+,−,+,+,+,−,−,−,+,+) and μ:=wt(b′ ⊗ uη) =

1 + 
5 + 
6 + 2
8 + 
10. Note that λ �= μ and

μc/ηc =

1
2

3

4

.
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Then �(b′ ⊗ uη) is

Lemma 5.2 Consider the I0-highest weight element b ⊗ uη ∈ Bn,1 ⊗ Br,s of weight
λ with 1 ≤ r ≤ n − 2, where uη is the I0-highest weight element of highest weight η.
Then the rigged configuration

(ν, J ) = �(b ⊗ uη)

satisfies ν = �(η, λ) and J (a)
i = 0 for all 1 ≤ a ≤ n − 2 and i ≥ 0. J (n−1)

i and J (n)
i

are determined as follows. Since P(n−1)
i (ν) + P(n)

i (ν) = 1 either J (n−1)
i or J (n)

i can

contain 1’s and the other riggings must be 0. The number of 1’s in J (n−1)
i (or J (n)

i ) is

equal to the number of vertical dominoes in column i of λ
c
/ηc.

Proof Let us define d = emb(b). Let x be the letter in d at height h. Define δ′ =
β−1 ◦ δ−1 unless h = 1 in which case δ′ = δ−1. Thus, δ′ under the bijection �

corresponds to adding the letter x to the step in the path using the algorithm for δ−1,
except we terminate after adding the last box to (ν(h), J (h)). Let wi denote the row
length of ηc corresponding to the row in λ

c
/ηc containing the cell ci as given in the

construction �(η, λ) (recall � = |λc
/ηc|). Set w0 = ∞ and wi = 0 for all i > �.

Define w̃i = w�−i . In particular, we have wi ≤ wi+1 for all 0 ≤ i < �. Define
μ(x) = #{x ≤ x ′ ≤ n − 2 | x ′ ∈ d}.

First note that �(uη) is given by Proposition 3.9. Next we want to add b, which
by the definition of δs involves the doubling map emb. Hence, we need to double
�(uη). Denote the rigged configuration before having added the letter x by (ν, J ) and

(ν′, J
′
) = δ′(ν, J ). Suppose we are adding the letter x ≤ n − 1 to d at height h. ��

Claim We obtain δ′(ν, J ) from (ν, J ) by adding a box to a (singular) string of length
2w̃a−h to ν(a) for h ≤ a < x . Note that this is the (a − h + 1)th cell from the bottom
of λ

c
/ηc. Moreover, all riggings are 0.

We prove the claim by induction on h. Suppose the letter y was added at height
h − 1 in the previous step (which might be vacuous if x is at height 1 in which case
we set y = 0). Note that P(a)

i (ν) > 0 for all i such that 2w̃a−h < i ≤ 2w̃a−h+1 and
h − 1 ≤ a ≤ y < x .

Observe that the number ofminus signs appearing in b before position x is x−h. The
application of δ′ adds a box to the row of length 2w̃x−h−1 in ν(x−1). This follows from
the fact that no previous application of δ′ changed ν(x−1) (our induction hypothesis),
the description of ν as given in Proposition 3.9, and that all rows strictly longer than
2w̃x−h−1 are non-singular. Next δ′ adds a box to a row of length 2w̃x−h−2 in ν(x−2)

since all rows of length strictly between 2w̃x−h−2 and 2w̃x−h−1 are non-singular,
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ν(x−2) is the same as ν(x−1) with the top row removed, and we must select a row i
such that ν(x−2)

i ≤ 2w̃x−h−1 by the definition of δ′. A similar argument holds for ν(a)

for the remaining h ≤ a < x − 1 for the application of δ′. From (3.1), the resulting
riggings are all 0, and P(a)

i (ν′) > 0 for all i such that 2w̃a−h−1 < i ≤ 2w̃a−h and
h ≤ a ≤ x .

For x = n, n, the application of δ′ is similar to the above except we do not change
ν(n), ν(n−1), respectively.Next supposewe are adding x at height h with 1 ≤ x ≤ n−1.

Claim We obtain δ′(ν, J ) from (ν, J ) by the following steps:

(i) add a box to the largest odd length string in ν(a) for x ≤ a ≤ n − 2,
(ii) for both ν(n−1), ν(n), either add to the largest odd length row or the row of length

2wμ(x) depending on if there is an odd length row or not, respectively, and
(iii) add a box to a row of length 2w̃a−h in ν(a) for h ≤ a < n − 1.

We prove the claim by using induction on x (i.e., as x decreases). Note that the
largest singular row in ν(x) has length 2wμ(x) + 1, and it is the first row of ν(x).

By our induction assumption and the definition of δ′, we add a box to a row of
length 2wμ(x) + 1 in all ν(a) for x ≤ a ≤ n − 2. Thus, step (i) follows. For step (ii),
let a = n − 1, n. Note that if there exists an odd length row, then from our induction,
there is exactly one such row and it is of length 2wμ(x) +1. Therefore, we add a box to
this row. Otherwise all rows are currently of even length, so we add a box to a row of
length 2wμ(x). Note that P(a)

2wμ(x)
(ν) = 0 because we have only added boxes to ν(n−2)

in rows of length at least 2wμ(x) (i.e., the resulting rows are strictly larger and don’t

contribute to P(a)
2wμ(x)

(ν)). The proof of step (iii) of the claim is similar to the proof of
the previous claim for x ≤ n − 2.

From the aforementioned claims, it immediately follows that we obtain the desired
configuration of �(η, λ) after applying emb−1.

Let us now turn to the statement about the riggings. A straightforward check from
the above claim shows that all riggings are 0 in ν(a) for a ≤ n − 2. Next, each
removable domino in λ

c
/ηc corresponds to two consecutive minus signs in b, which

in turns corresponds to two barred letters x and x + 1. Note that when adding x , the
resulting vacancy number P(a)

2wμ(x)+2(ν
′) = 2 for either a = n − 1 or a = n since the

vertical domino implies we have an additional (as compared with�(uη)) contribution
of 6 boxes in ν(n−2), but only 2 boxes in ν(a). Hence, the corresponding rigging is 2.
From the above description of δ′, we do not change the corresponding row again when
we add the remaining letters; thus, emb−1(ν, J ) = �(b ⊗ uη) is the desired rigged
configuration. ��
Example 5.3 We consider B = B8,1⊗ B6,5 in type D(1)

8 and fix λ = 
1+2
6+
7.
We now look at the set {b⊗uη ∈ P(B) | wt(b⊗uη) = λ}.We start with η = 
2+2
6
and b = (+,−,+,+,+,+,+,−). Thus, we have
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Next we consider η′ = 
4 + 2
6 and b′ = (+,−,−,−,+,+,+,−), and we have

Finally, we take η′′ = 3
6 and b′′ = (+,−,−,−,−,−,+,−), so that

Let us now turn our attention to I0-highest weight elements in Br,s ⊗ Bn,1 for
1 ≤ r ≤ n − 2 of weight λ. They are of the form b ⊗ u with u:=u
n = (+, . . . ,+) ∈
Bn,1 being (the unique) I0-highest weight element and b ∈ B(μ) ⊆ Br,s for some
μ. Since ϕi (u) = 0 for 1 ≤ i ≤ n − 1 and ϕn(u) = 1, we have that the part of b
as a KN tableau without the letters n and n is highest weight of highest weight λ and
the skew shape μ/λ is a vertical strip. In b, the vertical strip μ/λ contains the letter n
and n in alternating order. Define η as follows. In column i of b, let x be the number
of removable n and n pairs and y the number of addable n and n pairs. Form a new
tableau with the same λ, but x and y interchanged for each column i . Then η is the
shape of this tableau.

Example 5.4 Consider type D(1)
10 and

1 1 1
2 2 10
3 3 10
4 4 10
5 5
6 10
7
10

⊗

+
+
+
+
+
+
+
+
+

= b ⊗ u ∈ B8,3 ⊗ B10,1.

Thus, we have wt(b ⊗ u) = λ = 
1 + 
5 + 
7 + 
9 and η = 
2 + 
6 + 
8.

We use (4.2) in order to simplify the proof of the following lemma (instead of
proving it directly using �).

Lemma 5.5 Consider the I0-highest weight element b ⊗ u ∈ Br,s ⊗ Bn,1 of weight λ

with 1 ≤ r ≤ n − 2 and η as defined above. Then the rigged configuration

(ν, J ) = �(b ⊗ u)
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is the same as in Lemma 5.2.

Proof Recall that �(u) is the empty rigged configuration ν(a) = ∅. Therefore, by the
combinatorial procedure of �, we see that the only difference between �(b ⊗ u) and
�(b) is that the riggings of ν(n) for the latter case is smaller than those for the former
case by 1 since there is a contribution to the vacancy number by the tensor factor Bn,1

to P(n)
i (ν). Thus, it is enough to show that for (̃ν, J̃ ) = �(b), we have ν̃ = �(η, λ)

and J̃ (a)
i = 0 whenever J (a)

i = 1 in Lemma 5.2 and J̃ (a)
i = −1 otherwise for a = 1, 2.

We are going to prove the lemma by induction on |μ/λ|. In fact, for simplicity we
prove the statement simultaneously for the case stated as well as with all letters n and
n as well as u
n and u
n−1 interchanged. The claim for �(b ⊗ u
n−1) is the same as
in Lemma 5.2 with (ν, J )(n−1) and (ν, J )(n) interchanged. The base case |μ/λ| = 0
follows directly from Proposition 3.9.

Now suppose that |μ/λ| > 0 and assume that the topmost cell in μ/λ is filled with
n (resp., n). Suppose this cell is at height h. Consider

b′ = eheh+1 · · · en−2en(b) (resp., b′ = eheh+1 · · · en−2en−1(b)).

Compared to b, the element b′ has a letter h instead of n (resp., n) in this cell, so
that λ

′ = λ + εh . Hence, by induction hypothesis �(b′) is given as stated by the
extension of the lemma. Furthermore, by Theorem 4.3 the Kashiwara operators ei and
� commute, so that it suffices to check that

eheh+1 · · · en−2en (̃ν, J̃ ) (resp., eheh+1 · · · en−2en−1(̃ν, J̃ ))

is indeed (̃ν′, J̃ ′) = �(b′) as stated in the extension of the lemma. Recall the action of
ei on rigged configurations as given in Definition 3.3. The smallest string with rigging
-1 in (̃ν, J̃ )(n) (resp., (̃ν, J̃ )(n−1)) is of length h, so that en (resp., en−1) removes a
box from this string. By the form of (̃ν, J̃ ) as stated in the lemma, it is not hard to
see that ei+1ei+2 · · · en−2en (̃ν, J̃ ) (resp., ei+1ei+2 · · · en−2en−1(̃ν, J̃ )) has a negative
rigging −1 of smallest length in a string of length h in the i th rigged partition for
each h ≤ i ≤ n − 2. This shows that ν̃

′(n−2) = (λ
′
)c as required and all ν̃

′(a) with
1 ≤ a < n − 2 are as desired. The cells c′

1, c′
2, . . . in the construction of ν̃

′(n−1) and

ν̃
′(n) are obtained from (λ

′
)c/(η′)c. There are two cases to consider:

(1) en (resp., en−1) removes one of the cells ci in (̃ν, J̃ )(a) fora = n (resp.,a = n−1).
(2) en (resp., en−1) does not remove any of the cells ci in (̃ν, J̃ )(a) for a = n (resp.,

a = n − 1).

Recall that the cells c j are those in λ
c
/ηc or alternatively η/λ.

In Case (1), the cell containing the letter n (resp., n) at height h, which is also ci , is
part of η and not part of a removable (n, n)-pair. Hence, η′ = η. This implies that the
list c′

1, c′
2, . . . is the same as the list c1, c2, . . ., but with ci missing. If in the algorithm

for (̃ν, J̃ ), the cell c1 is added to the ath rigged partition for a = n − 1 or n, then in
(̃ν′, J̃ ′), the cell c′

1 is added to the opposite rigged partition. All addable (n, n)-pairs
at height < h come in pairs of the same row length. Hence, still cells are added to the
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same rows. The cell ci is missing from the list c′
j and for j ≥ i , c′

j adds the same cell
as c j+1 to the same rigged partition, which proves the claim.

In Case (2), we have η′ = η + εh + εh+1 since the n (resp., n) removed by the
string of e j is part of a removable (n, n)-pair. Hence, (λ

′
)c/(η′)c compared to λ

c
/ηc

has an extra cell at height h + 1, which implies that the sequence c′
j compared to c j

has an extra cell c′
i . As in Case (1), the cells at height < h come in pairs and hence it

does not matter whether one first adds them to the ath rigged partitions for a = n − 1
or n or vice versa. Since c′

j contains an extra cell ci , c′
j for j > i adds the same cell

as c j−1 to the same rigged partition, which proves the claim. ��
To deal with the combinatorial R-matrices between two spin cases, we recall the

following result by Mohammad [2].

Proposition 5.6 ([2])For r = n−1, n, the I0-highest weight decomposition of Bn,1⊗
Br,s and Br,s ⊗Bn,1 is multiplicity free. As a consequence, the combinatorial R-matrix

R : Bn,1 ⊗ Br,s → Br,s ⊗ Bn,1

is uniquely determined by being an I0-crystal isomorphism.

By combining these results, we now establish the R-invariance of the rigged con-
figuration bijection for the case of Bn,1 ⊗ Br,s as follows:

Proposition 5.7 Consider an I0-highest element s1⊗b1 of Bn,1⊗ Br,s . Suppose that

R : s1 ⊗ b1 �−→ b2 ⊗ s2 ∈ Br,s ⊗ Bn,1

under the combinatorial R-matrix. Then we have

�(s1 ⊗ b1) = �(b2 ⊗ s2).

Proof If r = n − 1, n, this follows from Proposition 5.6 and Theorem 4.3.
Thus assume r ≤ n − 2. By Lemmas 5.2 and 5.5, it suffices to show that under the

combinatorial R-matrix, an I0-highest weight element in Bn,1 ⊗ Br,s corresponding
to the tuple (η, λ) goes to the I0-highest weight element in Br,s ⊗ Bn,1 with the same
tuple (η, λ) as given in the corresponding lemmas. We do so by induction on |λ| (from
largest to smallest) by either increasing |η| or decreasing |η/λ|.

Note that there is a unique element of weight s
r + 
n in both Bn,1 ⊗ Br,s and
Br,s ⊗ Bn,1, so that R(u
n ⊗ us
r ) = us
r ⊗ u
n . We set up the induction in several
steps. Let s1⊗uη ∈ Bn,1⊗Br,s be a highest weight element different from u
n ⊗us
r .
Perform one of the following steps to obtain a new s′

1 ⊗ uη′ closer to u
n ⊗ us
r by
induction:
Step 1 Suppose ϕ0(s1 ⊗ uη) > 0. Then let s′

1 ⊗ uη′ be the I0-highest weight element
in the same component as f0(s1 ⊗ uη).
Step 2 Suppose ϕ0(s1 ⊗ uη) = 0. Note that in this case η1 = s − 1 or s. Set b1 = uη

and repeat the following steps until ϕ0(s1⊗b1) > 0. Then let s′
1⊗uη′ be the I0-highest

weight element in the same component as f0(s1 ⊗ b1).
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(i) Let 1 ≤ h < n − 1 be minimal such that ϕh(s1 ⊗ b1) > 0.
(ii) Compute s′

1 ⊗ b′
1 = fh(s1 ⊗ b1).

(iii) Reset s1 ⊗ b1 to s′
1 ⊗ b′

1.

Step 3 If neither Step 1 nor Step 2 applies or yields a c = s1 ⊗ b1 with ϕ0(c) > 0,
we have η = (s − 1)
r + 
k for some 0 ≤ k < r and s1 = (+, . . . ,+) or
(+, . . . ,+,−,+, . . . ,+,−) with one minus in position n and the other in position
k or r . Note that, for fixed weight λ, these elements minimize |η| and there is a
unique I0-highest weight element corresponding to (η, λ) with minimal |η|. On the
Br,s ⊗ Bn,1 side, these are precisely the I0-highest weight elements b2 ⊗ u
n with
b2 ∈ B(s
r ) ⊆ Br,s (since minimization of |η| corresponds to maximization of |μ|).
Due to the uniqueness for a given weight class, they must map to each other under R.

We are now going to check for Steps 1 and 2 inductively, that if an I0-highest weight
element s1 ⊗ uη characterized by the tuple (η, λ) goes to (η′, λ′) under a given step,
then b2 ⊗ u
n corresponding to the same (η, λ) also goes to (η′, λ′) under the same
step.

We begin with Step 1. Suppose f0(s1 ⊗ uη) = s1 ⊗ f0(uη). Take s1 ⊗ uη of weight
λ. By the combinatorial rules for f0 on elements in Br,s provided in [40], we have
that η′ (resp., λ) is η (resp., λ) with a vertical domino added to rows 1 and 2. More
precisely, η′

i = ηi + 1 for i = 1, 2. Note also that η1 < s (and in particular r even)
and λ1 < η1 if η1 = s − 1 since otherwise f0 does not apply. Now take b2 ⊗ u
n

corresponding to (η, λ) with b2 ∈ B(μ). The action of f0 is given by Lemma 2.4. If
case Lemma 2.4(i) applies, we have μi = ηi = λi + 1 and η′

i = μ′
i + 1 = λ

′
i + 1 for

i = 1, 2, so that indeed η′
i = ηi + 1. Lemma 2.4(ii) does not apply since r cannot be

odd. If Lemma 2.4(iii) applies, we haveμi = λi +1 = ηi +1 andμ′
i = λ

′
i +1 = η′

i +1
with μ′

i = μi + 1 for i = 1, 2, so that again η′
i = ηi + 1. This proves the claim for

Step 1 with f0(s1 ⊗ uη) = s1 ⊗ f0(uη).
Step 1 with f0(s1 ⊗ uη) = f0(s1) ⊗ uη can only apply when η1 = s and s1 has

− in positions 1 and 2. Under f0 these two minus in s1 are turned into +, so that
λ′

i = λi + 1 for i = 1, 2, λ′
i = λi for i ≥ 3, and η′ = η. When r is even, the

correspondence gives μi = λi = s − 1 for i = 1, 2. Then Lemma 2.4(iii) applies and
yields μ′

i = s = λ
′
i = η′

i for i = 1, 2 as desired. When r is odd, the correspondence
yields η1 = s, λ1 = s − 1, and μ1 = s. Lemma 2.4(i) or (ii) applies, and it can again
be easily checked that η′ = η, proving Step 1 with f0(s1 ⊗ uη) = f0(s1) ⊗ uη.

Next consider Step 2. The algorithm of always picking the smallest applicable fh

and applying it has the following effect on s1 ⊗ uη. It raises the entries in the shortest
columns of uη and/or lowers the lowest minus signs in s1 until f0 is applicable. We
are going to consider several cases:

(a) No minus sign in s1 moves to positions 1 and 2.
(b) Only one minus sign in s1 moves to position 1 or 2.
(c) Two minus signs in s1 move to positions 1 and 2.

First consider Case (a). Note that ε0(s1) = 1, so that the sequence of fh must raise
the entries in at least the two shortest columns in order to achieve ϕ0(s1 ⊗ uη) > 0.
Let h1 ≤ h2 < r be the height of the two rightmost columns in η. Then the algorithm
for Step 2 adds a vertical domino to the leftmost column of height h2 in η and does
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the same to λ. On the other side b2 ⊗ u
n with b2 ∈ B(μ), the subpart of b2 of shape
λ is a tableau with i in row i , whereas μ/λ is filled with the letters n and n. Since we
only apply fh with 1 ≤ h ≤ n − 2, the letters n and n never change in b2. By the
correspondence between (η, λ) and μ as described before Example 5.4, the vertical
strip μ/λ has boxes at height h with h1 < h ≤ h2 and b2 contains letters n and n in
these cells. The steps in the algorithm add a vertical strip at height h2 to λ and as a
consequence push any letters n and/or n at height h2 +1 and h2 +2 one column to the
right. Hence, μ′ = μ+ εh2+1 + εh2+2 which implies that the correspondence between
(η′, λ′) and μ′ also holds, proving the claim.

Next consider Case (b). Let h1 ≤ h2 < r again be the height of the two rightmost
columns in η. The spin column s1 must have precisely one minus sign in position
1 ≤ h ≤ h2, which is either in position h1 or position h2. First consider that it is in
position h2 > h1. Then the algorithm for Step 2 adds a vertical domino to the column
of height h1 in η and moves the minus sign in s1 from position h2 to position h1 + 2.
This means η′ = η + εh1+1 + εh1+2 and λ

′ = λ + εh2 + εh1+1. On the b2 ⊗ u
n side,
the vertical strip μ/λ has boxes at heights h1 < h ≤ h2 − 2 and h2. The algorithm
for Step 2 on this side again changes λ

′ = λ + εh2 + εh1+1. The letters n and n in b2
in the rightmost column move up one, and the letter n at height h2 moves from the
second to last to last column. This implies η′ = η + εh1+1 + εh1+2 as before, proving
the claim.

Next consider Case (b) with a minus in s1 at height h1 ≤ h2 < r . In this case,
the algorithm for Step 2 adds a vertical domino at height h2 to η and λ, so that
η′ = η+εh2+1+εh2+2 and λ

′ = λ+εh2+1+εh2+2. On the b2 ⊗u
n side, the vertical
strip μ/λ has boxes at heights h1 ≤ h ≤ h2. The algorithm for Step 2 also changes
λ

′ = λ + εh2+1 + εh2+2 and pushes any n and n at height h2 + 1 and h2 one column
to the right. This implies that indeed η′ = η + εh2+1 + εh2+2 as desired.

Finally consider Case (c). In this case, there must be at least two minus signs in s1
in positions 1 ≤ i ≤ h2, where h1 ≤ h2 < r are again the heights of the rightmost
columns in η. The algorithm for Step 2 removes the lowest two minus signs in s1. Let
i1 < i2 be the positions of these two minus signs. Then λ

′ = λ+ εi1 + εi2 and η′ = η.
On the b2 ⊗ u
n side, the vertical strip μ/λ has boxes at height i1 ≤ i ≤ i2 − 2 and i2
if i1 ≤ i2 − 2 and at height i1 and i1 + 1 if i2 = i1 + 1. The algorithm of Step 2 also
changes λ

′ = λ + εi1 + εi2 . In addition, it moves the letters n and n in b2 up by one
in the last column of b2 and n at height i2 one column to the right if i1 ≤ i ≤ i2 − 2.
When i2 = i1 + 1, it moves the letters n and n in the last column of b2 up by two.
Comparing μ′ and λ

′
shows that indeed η′ = η as desired. ��

Finally, we prepare the following proposition to prove the R-invariance. Let u ∈
Bn,1 be the I0-highest weight element. For b ∈ B, we define T(b) by R(b ⊗ u) =
u′ ⊗ T(b). Here we view T : B → B as an operator by passing through u via the
combinatorial R-matrix.

Proposition 5.8 Suppose r2 ≤ r1. Let b2 ⊗ b1 ∈ Br2,s2 ⊗ Br1,s1 be an I0-highest
weight element. Then there exists an integer N such that TN (b2 ⊗ b1) belongs to
B(s2
r2)⊗ B(s1
r1) and the right factor is the I0-highest weight element. Moreover,

(i) if r2 ≤ n − 2 and r1 ≤ n − 1, then the left factor does not contain barred letters;
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(ii) otherwise, the left factor is the I0-highest weight element.

Proof We first assume r1, r2 ≤ n −2. Suppose b2 ⊗b1 ∈ Br2,s2 ⊗ Br1,s1 is I0-highest
weight. Then b1 = uμ where uμ is the I0-highest weight element of B(μ) ⊂ Br1,s1 .
In view of the description of the combinatorial R : Br1,s1 ⊗ Bn,1 → Bn,1 ⊗ Br1,s1

in terms of the pairs (η, λ) as described in the proof of Proposition 5.7, successive
applications of R take this uμ to us1
r1

. Thus, we can assume b1 = us1
r1
and

e
s1δi,r1+1
i b2 = 0 for i ∈ I0. (5.1)

We also know R(us1
r1
⊗ u) = u ⊗ us1
r1

. So we consider R(b2 ⊗ u) next. Consider

high(b2 ⊗ u). The left component may contain n, n pairs. If so, R : Br2,s2 ⊗ Bn,1 →
Bn,1 ⊗ Br2,s2 removes them. Therefore, we can assume that there do not exist any n, n
pairs. Once all n, n pairs are removed, suppose b2 ∈ B(λ). Then the right component
of R(b2 ⊗ u) belongs to B(λ′), where λ′ is strictly greater than λ in the dominance
order. Hence, we can assume λ = s2
r2 . From (5.1), the first barred letter in the
inverse column reading word of b2 is r1. Let R(b2 ⊗ u) = c ⊗ b̃2 ∈ Bn,1 ⊗ Br2,s2 .
Since c contains a −, the number of barred letters in b̃2 is at least one smaller than
that of b2. Therefore, the claim follows.

A similar argument when r2 ≤ n − 2 and r1 = n − 1 finishes the proof of (i). Case
(ii) is easier. ��

Example 5.9 Consider type D(1)
8 , B = B4,4 ⊗ B6,3 and

b2 ⊗ b1 =
1 1 1 1
2 2 7 4
3 5
4 8

⊗

1 1 1
2 2 2
3 3 3
4 4 4
5
6

.

Then we have

T(b2 ⊗ b1) =
1 1 1 1
2 2 2 7
3 3 7
4 5 7

⊗

1 1 1
2 2 2
3 3 3
4 4 4
5 5
6 6

, u′ = (+,−,−,−,−,−,+,−),

T
2(b2 ⊗ b1) =

1 1 1 1
2 2 2 2
3 3 3 7
4 6 7 6

⊗

1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6

, u′ = (+,−,−,+,+,−,−,+),
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T
3(b2 ⊗ b1) =

1 1 1 1
2 2 2 2
3 3 3 3
4 7 7 7

⊗

1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6

, u′ = (+,+,−,+,+,+,−,+),

where u′ is defined by R(b ⊗ u) = u′ ⊗ T(b) with b = b2 ⊗ b1. This illustrates
Case (i) of Proposition 5.8.

Example 5.10 Consider type D(1)
8 , B = B4,4 ⊗ B8,3 and

b2 ⊗ b1 =
1 1 1 8
2 2 2 7
3
4

⊗ u3
8 .

Then we have

T(b2 ⊗ b1) =
1 1 1
2 2 2
3 3
4 4

⊗ u3
8, u′ = (+,+,−,−,+,+,−,−),

T
2(b2 ⊗ b1) =

1 1 1 1
2 2 2 2
3 3 3
4 4 4

⊗ u3
8, u′ = (+,+,−,−,+,+,−,−),

T
3(b2 ⊗ b1) =

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

⊗ u3
8, u′ = (+,+,−,−,+,+,+,+).

This illustrates Case (ii) of Proposition 5.8.

The following property is one of the most profound properties of the rigged con-
figuration bijection.

Theorem 5.11 (R-invariance) Let B = Brk ,sk ⊗ · · · ⊗ Br2,s2 ⊗ Br1,s1 and let B ′ be
an arbitrary reordering of the factors of B. For a given element b ∈ B, suppose that
b′ ∈ B ′ is isomorphic to b under the combinatorial R-matrix:

R : b ∼= b′.

Then the corresponding unrestricted rigged configurations are invariant:

�(b) = �(b′).
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Proof We divide the proof into three steps.

Step 1ByTheorem4.3, we can assume that b is an I0-highest weight element. Suppose
that b = bk ⊗bk−1 ⊗bk−2 ⊗· · ·⊗b1 ∈ B. By the recursive structure of the algorithm
of the rigged configuration bijection �, we see that it is enough to consider the case
b′ = b̃k−1 ⊗ b̃k ⊗ bk−2 ⊗ · · · ⊗ b1, where R : bk ⊗ bk−1 ∼= b̃k−1 ⊗ b̃k . Then the
relationship between the � duality and the θ operation established in Proposition 4.1(7)
shows that it is enough to consider the case k = 2. Therefore, we concentrate on the
case when b = b2 ⊗ b1 is I0-highest weight.

Step 2 Let u ∈ Bn,1 be the I0-highest weight element and b = b2 ⊗ b1 ∈ B be
I0-highest weight. We shall show that

�(b ⊗ u) = �(u′ ⊗ T(b)), (5.2)

where R : b ⊗ u ∼= u′ ⊗ T(b). By Proposition 5.7, we have

�(b2 ⊗ b1 ⊗ u) = �(b2 ⊗ u′′ ⊗ b′
1),

where R : b1 ⊗ u ∼= u′′ ⊗ b′
1. Then by Proposition 4.1(7), we have

�(̂u ⊗ b̂1 ⊗ b̂2) = �(̂b′
1 ⊗ û′′ ⊗ b̂2),

where (b2 ⊗ b1 ⊗ u)� = û ⊗ b̂1 ⊗ b̂2 and (b2 ⊗ u′′ ⊗ b′
1)

� = b̂′
1 ⊗ û′′ ⊗ b̂2. Since

û′′ ∈ Bn,1, again by Proposition 5.7 we have

�(̂b′
1 ⊗ û′′ ⊗ b̂2) = �(̂b′

1 ⊗ b̂′
2 ⊗ û′),

where R : û′′ ⊗ b̂2 ∼= b̂′
2 ⊗ û′. Note that (̂b′

1 ⊗ b̂′
2 ⊗ û′)� = u′ ⊗ T(b) since � is

involutive. Therefore by Proposition 4.1(7), we obtain (5.2).

Step 3 Let b2 ⊗ b1 ∈ B be I0-highest weight and R(b2 ⊗ b1) = b̃1 ⊗ b̃2. Then we
have

b2 ⊗ b1 ⊗ u � u′ ⊗ T(b2 ⊗ b1) and b̃1 ⊗ b̃2 ⊗ u � u′ ⊗ T(b̃1 ⊗ b̃2).

Thus by Step 2, we have

�(b2 ⊗ b1 ⊗ u) = �(u′ ⊗ T(b2 ⊗ b1)) and �(b̃1 ⊗ b̃2 ⊗ u) = �(u′ ⊗ T(b̃1 ⊗ b̃2)).

Since �(b2 ⊗ b1 ⊗ u) = �(b̃1 ⊗ b̃2 ⊗ u) is equivalent to �(b2 ⊗ b1) = �(b̃1 ⊗
b̃2), the claim is reduced to showing �(T(b2 ⊗ b1)) = �(T(b̃1 ⊗ b̃2)). Thanks to
Proposition 5.8, we are left to show �(b2 ⊗ b1) = �(b̃1 ⊗ b̃2) when either b2 ⊗ b1 or
b̃1 ⊗ b̃2 has the property described in the proposition. If r1, r2 ≤ n − 2, this R-matrix
is nothing but type A by [24, Proposition 9.1] and the R-invariance of type A case
is already treated in [21, Lemma 8.5]. If r1 = n, by Proposition 5.8 both factors are
I0-highest weight and the images of� are empty.When r1 = n −1, then by symmetry
we can interchange in all arguments n − 1 and n (including in the definition of T), so
that this case reduces to the r1 = n case. ��
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Theorem 5.11 means that the rigged configuration bijection gives an explicit algo-
rithm to compute the combinatorial R-matrices. It is noteworthy that the rigged
configuration bijection gives not only the combinatorial R-matrices for twofold tensor
products but also much more general reorderings of multiple tensor products by only
computing � and �−1. In the following, we give one such example.

Example 5.12 Consider the following element of B = B3,3 ⊗ B2,4 ⊗ B2,2 of type
D(1)
5 :

b =
1 1 2
2 2
5 5

⊗ 1 2 3 3
2 3 4 1

⊗ 1 3
3 4

.

The corresponding unrestricted rigged configuration is

0
0

−1

−1
−1
−1

−2
−2

−2

1
1
1

0
0

3

0
0

0

0
0

−2.

From this unrestricted rigged configuration, we can obtain the image in B ′ = B2,2 ⊗
B2,4 ⊗ B3,3 as follows:

b′ = 1
5

⊗ 1 1 3 3
2 2 5 1

⊗
1 2 3
2 3 4
3 4 2

.

Then by Theorem 5.11, we have R : b ∼= b′. In this way, we can obtain the combina-
torial R-matrices as R = �−1

B′ ◦ �B .

6 Energy function and fermionic formula

6.1 Involution ς and energy function

In [23], the involution ς on Br,s (1 ≤ r ≤ n − 2, s ≥ 1) was shown to exist, which is
the unique map satisfying

ς(ei b) = en−iς(b), (6.1a)

ς( fi b) = fn−iς(b), (6.1b)

for any i ∈ I, b ∈ Br,s . We need the following lemma later.
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Lemma 6.1 For uλ ∈ B(λ) ⊆ Br,s , ς(uλ) belongs to B(s
r ) and is given as follows.
To λ associate a tuple μ = (λ′

s, λ
′
s−1, . . . , λ

′
1, r, . . . , r) with 2s entries, where λ′ is the

transpose of the partition λ. Denote the j th entry of μ by μ j . Let t be the KN tableau
for ς(uλ). Then the kth column of t is given by

n − μ2k−1 + 1 · · · n − 1nn · · · nn(n − μ2k) · · · (n − r + 2)(n − r + 1).

Proof Since uλ is the unique element of Br,s of weight λ satisfying ei uλ = 0 for
i = 1, . . . , n, the element ς(uλ) should be the unique element of −w

An−1
0 λ satisfying

eiς(uλ) = 0 for i = 0, 1, . . . , n − 1, where w
An−1
0 is the longest element of the

Weyl group of An−1 ⊆ Dn . One checks that t is an allowed KN tableau [16] of the
desired weight. Hence, it is sufficient to show that ei t = 0 for i = 0, 1, . . . , n −1. For
i = 1, . . . , n − 1, this is immediate. To see e0t = 0, calculate the {2, . . . , n}-highest
weight element in the same component as t , which is the tableau whose columns are
all 23 · · · r + 1, and hence σ(t) = t with σ as in (2.8). In view of the definition of e0
given in (2.10), we have e0t = 0, since e1t = 0. ��

We need an involution ς also on Bn−1,s and Bn,s . When n is odd, it becomes a
map from Bn−1,s to Bn,s and vice versa. To incorporate this situation, we introduce
η defined to be 0 if n is even and 1 otherwise. Then there exists a map ς : Bn−1,s →
Bn−1+η,s (resp., Bn,s → Bn−η,s) satisfying (6.1). In fact, it is characterized by (6.1)
and defining the image of us
n−1 (resp., us
n ) to be the unique element in Bn−1+η,s

(resp., Bn−η,s) of weight −w
An−1
0 (s
n−1) (resp., −w

An−1
0 (s
n)).

For a multiple tensor product of KR crystals B = Brk ,sk ⊗ · · · ⊗ Br1,s1 , we define

ς(b) = ς(bk) ⊗ · · · ⊗ ς(b1)

for b = bk ⊗ · · · ⊗ b1 ∈ B

Proposition 6.2 For any I0-highest weight element uλ of a single KR crystal Br,s , we
have (rs ◦ς)(uλ) = (ς ◦ rs)(uλ).

Proof The case when r = n − 1 or n is straightforward. Both rs ◦ς and ς ◦ rs send
us
n−1 (resp., us
n ) to v−(s−1)w0
n−1⊗v−w0
n−1 (resp., v−(s−1)w0
n ⊗v−w0
n )where
w0 is the longest element of An−1 ⊆ Dn and vτ stands for the unique element in the
crystal of weight τ .

Suppose r ≤ n − 2. In this case, (rs ◦ς)(uλ) is given by cutting the rightmost
column of ς(uλ). From Proposition 2.6, we see rs(uλ) = t ⊗ u
r , where the tableau
t is described in the proposition. We use all the notation for t from Proposition 2.6.
Hence, (ς ◦ rs)(uλ) = ς(t) ⊗ ς(u
r ). By Lemma 6.1, the right components of
(rs ◦ς)(uλ) and (ς ◦ rs)(uλ) agree. We prove that the left components also agree by
decreasing induction on p, where p is as in Proposition 2.6 for t . If p = r , the claim
is true, since in this case t is I0-highest weight and the agreement can be shown
by Lemma 6.1. Suppose p < r . Let t ′ be the tableau that differs from t only in the
first columnwith p + 1 · · · r − 1rq · · · 21 replaced by p + 3 · · · r − 1rq · · · 21. These
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tableaux are connected in the crystal graph as t ′ = ea2 f0 fa1 t where

a1 = b(2, 1 + μ≥2) · · · b(p − 2, 1 + μ≥p−2)b(p, 1 + μ≥p),

a2 = b(p, μ≥p) · · · b(4, μ≥4)b(2, μ≥2),

b( j, a) = ja( j − 1)a( j + 1)a ja and μ≥c = ∑�(μ)
j=c μ j . (See (2.9) for the definition

of ea. The definition of fa is similar.) In fact, the tableau fa1 t has the following form.
The first column is

1 2 p + 3 · · · r − 1 r (q + 2) · · · 43,

and the entries in the other part of t are shifted by 2. Thus, f0 removes 1 2 from the
first column.

Since ς(ea2 f0 fa1 t) = en−a2 fn fn−a1 t , where for a = a1 · · · am , n − a stands for
(n −a1) · · · (n −am), we are left to show that en−a2 fn fn−a1 t agrees with the first s −1
columns of ς(uλ) of Lemma 6.1 with λ′

1 replaced by λ′
1 + 2. This can be checked

directly. ��
In Sect. 2.6, we defined the combinatorial R-matrix R : Br2,s2 ⊗ Br1,s1 →

Br1,s1 ⊗ Br2,s2 . In addition, there exists a function H : Br2,s2 ⊗ Br1,s1 → Z, called
the local energy function, unique up to a global additive constant. It is constant on I0-
components and satisfies for all b2 ∈ Br2,s2 and b1 ∈ Br1,s1 with R(b2⊗b1) = b′

1⊗b′
2

H(e0(b2 ⊗ b1)) = H(b2 ⊗ b1) +

⎧
⎪⎨

⎪⎩

1 if ε0(b2) > ϕ0(b1) and ε0(b′
1) > ϕ0(b′

2),

−1 if ε0(b2) ≤ ϕ0(b1) and ε0(b′
1) ≤ ϕ0(b′

2),

0 otherwise.
(6.2)

We shall normalize the local energy function by the condition H(us2
r2
⊗us1
r1

) = 0.

For a crystal Br,s , the intrinsic energy DBr,s : Br,s → Z is defined as follows.When
r ≤ n − 2, we define DBr,s (b) = (rs − |λ|)/2 for b ∈ B(λ) ⊆ Br,s (see (2.6)). When
r = n − 1, n, there is only one I0-component (see (2.7)) and we set DBr,s (b) = 0 for
b ∈ Br,s . On the tensor product B = Bk ⊗ · · · ⊗ B1 of single KR crystals B j , there is
an intrinsic energy function DB : B → Z defined in [9, (3.8)] and [33, Section 2.14]
by

DB =
∑

1≤i< j≤k

Hi Ri+1Ri+2 · · · R j−1 +
k∑

j=1

DB j π1R1R2 · · · R j−1. (6.3)

Here Ri and Hi denote the combinatorial R-matrix and local energy function, respec-
tively, acting on the i th and (i +1)th tensor factors counting from the right. Also π1 is
the projection onto the rightmost tensor factor. The intrinsic energy DB is constant on
any I0-component of B. Let B ′ be the same tensor product of KR crystals as B except
that the i th and (i + 1)th positions are interchanged. Let b′ = b′

k ⊗ · · · ⊗ b′
1 ∈ B ′

be such that b′
i+1 ⊗ b′

i = R(bi+1 ⊗ bi ) and b′
j = b j for j �= i, i + 1. Then we
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have DB(b) = DB′(b′). Similarly, let B ′ be any reordering of the tensor factors of
B. The image b′ of b under the compositions of the combinatorial R-matrices does
not depend on the order of applications due to the Yang–Baxter equation, and we also
have DB(b) = DB′(b′), see [9, Prop. 3.9] and [33, Prop. 2.15]. In what follows we
often drop the subscript B from DB(b).

In [23,24], we proved the following formula on the intrinsic energy D under the
assumption that the KR crystals Br j ,s j appearing in B satisfy r j ≤ n − 2.

Proposition 6.3 ([23,24]) For an I0-highest weight element b in B, we have

D(b) = D(ς(b)) + |B| − |λ(b)|
2

, (6.4)

where |B| = ∑k
j=1 r j s j , λ(b) is the weight of b and |μ| = ∑n

j=1 μ j if μ =∑n
j=1 μ jε j .

However, if one extends the definition of |B| suitably and examines the proof of [23,
Prop. 3.1] carefully, one understands that it is valid even when B contains Bn−1,s or
Bn,s . In fact, setting |B| = ∑k

j=1|B j | where

|Br,s | = |s
r | =

⎧
⎪⎨

⎪⎩

rs if r ≤ n − 2,

(n − 2)s/2 if r = n − 1,

ns/2 if r = n,

one checks that the aboveproposition remains true.When theweightλ(b)of an element
b ∈ B satisfies |λ(b)| = |B|, we call b maximal. Note that if b = bk ⊗ · · · ⊗ b1 is
maximal, then b j is maximal for any j . If b ∈ Br,s is a maximal I0-highest weight
element, then b = us
r . Recall that high(b) is the I0-highest weight element in the
same I0-component as b.

Lemma 6.4 We use the notation b(α) in Lemma 2.2 indicating the dependences of
r, s explicitly as br,s(α). If r ≤ n − 1 and α ≤ s, then we have

H(bn−1,s′
(α) ⊗ us
r ) = α.

Proof Suppose 2 ≤ r ≤ n − 2. By weight consideration, we see R(bn−1,s′
(α) ⊗

us
r ) = br,s(α) ⊗ us′
n−1 . Using Lemma 2.2 and (6.2), one finds

H(bn−1,s′
(α) ⊗ us
r ) − α = H

(
emax
0 (bn−1,s′

(α) ⊗ us
r )
)
.

Since emax
0 (bn−1,s′

(α) ⊗ us
r ) belongs to the same I0-component as us′
n−1 ⊗ us
r ,
we obtain the desired result.

The cases r = 1 or n − 1 are similar. ��
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Proposition 6.5 Suppose the rightmost factor of B is a KR crystal Br,s such that
s ≥ 2. For an I0-highest weight element b ∈ B, we have

D(b) = D
(
rs(b)

)
. (6.5)

Proof First we reduce the proposition to the case when b maximal. Substituting rs(b)

into b in (6.4), using Proposition 6.2 and noting that rs preserves the weight, we obtain
D(b)− D

(
rs(b)

) = D
(
ς(b)

)− D
(
rs
(
ς(b)

))
. Since rs commutes with ei , fi for i ∈ I0

and D is constant on I0-components, we have

D(b) − D
(
rs(b)

) = D
(
(high ◦ ς)(b)

)− D
(
rs
(
(high ◦ ς)(b)

))
.

From Proposition 6.3, we know that applying high ◦ ς finitely many times sends any
b to a maximal element. Hence, we have reduced the proposition to showing (6.5) for
all maximal elements of B.

Next we reduce the proposition to showing a certain relation for the energy function
H . Suppose b is a maximal I0-highest weight element in B. Then the rightmost factor
b1 of b is also an I0-highest weight element and maximal. Hence, b1 = us
r . Denote
it simply by u. Let rs(u) = u1 ⊗ u0 ∈ Br,s−1 ⊗ Br,1, then u1 = u(s−1)
r , u0 = u
r

as in Sect. 2.5. So we have

b = bk ⊗ · · · ⊗ b2 ⊗ u,

rs(b) = bk ⊗ · · · ⊗ b2 ⊗ u1 ⊗ u0.

For consistency, we regard the rightmost factor of rs(b) as the 0th and the left adjacent
one as the first factor. Define u(0)

1 = π0R0(u1 ⊗ u0) and for j ≥ 2

b(0)
j = π0R0R1 · · · R j−1

(
rs(b)

)
, b(i)

j = πi Ri Ri+1 · · · R j−1(b) for i = 1, 2.

For the definition of Ri and πi , see the explanations after (6.3). With this notation,
one calculates

D(rs(b)) − D(b) =
k∑

j=2

(
H(b(2)

j ⊗ u1) + H(b̃(2)
j ⊗ u0) − H(b(2)

j ⊗ u)
)

.

Here b̃(2)
j is the right component of R(b(2)

j ⊗ u1), and we have used

u(0)
1 = u(s−1)
r

b(0)
j = b(1)

j = us j 
r j
for b j ∈ Br j ,s j ,

H(u1 ⊗ u0) = 0 = D(us′
r ′ ) for us′
r ′ ∈ Br ′,s′
.
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Finally, suppose b ⊗ us
r is a maximal I0-highest weight element of Br ′,s′ ⊗ Br,s

and let b̃ be the right factor of R(b ⊗ u(s−1)
r ). To complete the proof, it is sufficient
to show that

H(b ⊗ u(s−1)
r ) + H(b̃ ⊗ u
r ) = H(b ⊗ us
r ). (6.6)

We show this by dividing into the following cases:

(i) r, r ′ ≤ n − 2, (ii) r ≤ n − 2, r ′ = n, (iii) r ≤ n − 2, r ′ = n − 1,

(iv) r = r ′ = n, (v) r = n, r ′ = n − 1, (vi) r = r ′ = n − 1.

For (i), recall that the value of the energy function for maximal elements for type
D(1)

n is equal to that for type A(1)
n−1 [24, Section 9]. Since (6.6) is true for type A(1)

n−1,
the proof is done for this case.

For (ii), since b is maximal, it should agree with us′
r ′ and also b̃ = us′
r ′ . Hence,
both sides of (6.6) are 0. (iv) and (v) are similar.

For (iii), suppose r ≥ 3 first. The possibilities for b are b̂(α) for some 0 ≤ α ≤
min(s, s′), where b̂(α) is the tableauwhose left (s′−α) half columns are 12 . . . (n−1)n
and right α half columns are 1 . . . (r − 1)(r + 1) . . . nr . Suppose α ≤ s − 1. If
b = b̂(α), then b̃ = b̂(0). Since fa(b̂(α) ⊗ us
r ) = bn−1,s′

(α) ⊗ us
r , where
a = (2α3α . . . (r − 1)α), we have α + 0 = α for (6.6) from Lemma 6.4. Now suppose
α = s. If b = b̂(s), then b̃ = b̂(1). Noting that f((n−1)...(r+1)r)(b̂(s) ⊗ u(s−1)
r ) =
b̂(s − 1) ⊗ u(s−1)
r , we have (α − 1) + 1 = α for (6.6) this time. The cases r = 1, 2
are similar. (vi) is also similar. ��

6.2 Preservation of statistics

Similar to the intrinsic energy, there is a statistic called cocharge on the set of rigged
configurations given by cc(ν, J ) = cc(ν) +∑a,i |J (a,i)|, where

cc(ν) = 1

2

∑

a,b∈J

∑

j,k≥1

(αa | αb)min( j, k)m(a)
j m(b)

k . (6.7)

Let �̃ = θ ◦ �, where θ : RC(L , λ) → RC(L , λ) with θ(ν, J ) = (ν, J̃ ) being
the function that complements the riggings, meaning that J̃ is obtained from J by
complementing all partitions J (a,i) in the m(a)

i × p(a)
i rectangle.

Theorem 6.6 Let B = Brk ,sk ⊗ · · · ⊗ Br1,s1 be a tensor product of KR crystals and
λ a dominant integral weight. The bijection �̃ : P(B, λ) → RC(L(B), λ) preserves
the statistics, that is D(b) = cc(�̃(b)) for all b ∈ P(λ, B).
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Proof We define a map

col : B = Brk ,sk ⊗ · · · ⊗ Br1,s1 −→ (Brk ,1)⊗sk ⊗ · · · ⊗ (Br1,1)⊗s1

as follows. If s1 > 1, apply rs to B first. Exchange Br1,s1−1 and Br1,1 by using the
combinatorial R-matrix so that we have Br1,1 ⊗ Br1,s1−1 at the rightmost two factors.
If s1−1 > 1, apply again rs and R so that we have (Br1,1)⊗2⊗Br1,s1−2 at the rightmost
three factors. Continuing this procedure, we have (Br1,1)⊗s1 at the rightmost s1 factors.
Next applying a sequence of combinatorial R-matrices, bring Br2,s2 to the rightmost
factor. We then apply a similar procedure to the rightmost Br2,s2 and bring (Br2,1)⊗s2

back to the original position. At this point, we have (Br2,1)⊗s2 ⊗ (Br1,1)⊗s1 at the
rightmost (s1 + s2) factors. Continuing these, we arrive at the image of col.

Since rs and R commute with ei , fi (i ∈ I0), col restricts to the map from P(B, λ)

to P(col(B), λ). By Proposition 6.5 and the invariance of D by the combinatorial
R-matrix, we have D(b) = D(col(b)) for b ∈ P(B, λ).

Finally, note that for (ν, J ) ∈ RC(L(B), λ) we have cc(ν, J ) = cc(γ (ν, J )). In
view of �̃ ◦ rs = γ ◦ �̃ and Theorem 5.11, the proof is reduced to the case when all
the components of B are of column type Br j ,1. The corresponding statement is proven
in [38, Theorem 5.1]. ��

An immediate corollary of Theorem 4.2 and Theorem 6.6 is the equality

∑

b∈P(B,λ)

q D(b) =
∑

(ν,J )∈RC(L(B),λ)

qcc(ν,J ).

The left-hand side is in fact the one-dimensional configuration sum

X (B, λ) =
∑

b∈P(B,λ)

q D(b).

The right-hand side can be simplified slightly by observing that the generating function
of partitions in a box of width p and height m is the q-binomial coefficient

[
m + p

m

]
= (q)p+m

(q)m(q)p
,

where (q)m = (1 − q)(1 − q2) · · · (1 − qm). Hence, the right-hand side becomes the
fermionic formula

M(B, λ) =
∑

ν∈C(L(B),λ)

qcc(ν)
∏

i≥1
a∈I0

[
m(a)

i + P(a)
i

m(a)
i

]
,

where m(a)
i and P(a)

i are as defined in Sect. 3. This proves the following result con-
jectured in [8,9].
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Corollary 6.7 Let B = Brk ,sk ⊗ · · · ⊗ Br1,s1 be a tensor product of KR crystals of
type D(1)

n and λ a dominant integral weight. Then we have

X (B, λ) = M(B, λ).
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7 Appendix: Example of the rigged configuration bijection

In this section, we provide an example of the algorithm �−1. The reader may easily
infer from the following example the meaning of the correspondence between the
operators summarized in Table 1.

Example 7.1 Consider the unrestricted rigged configuration r1 ∈ RC(L(B)) for B =
B3,2 ⊗ B3,3 ⊗ B2,3 of type D(1)

5 :

0
0

0
0

0
0
0
1

−1
0

0
1

1
1
1
0
0

1
1

1
−1
0

−1
−1
0

−1
−1

−1
1
0

1
0

∅

.

In the above diagram, we show the partition μ(a) as defined in Sect. 3.1 over the cor-
responding rigged partition (ν(a), J (a)) in order to make it easier to see the operations
γ and β. In �−1, let us remove the B3,2 part first. We begin by applying γ and obtain
r2:=γ (r1) which looks as follows:

0
0

0
0

0
0
0
1

−1
0

0
1

2
2
1
0
0

1
1

1
−1
0

−1
−1
0

−1
−1

−1
1
0

1
0

∅

.
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The changes are the shape ofμ(3) and the resulting change of the vacancy numbers for
P(3)
1 (ν) which makes the length 1 strings of (ν, J )(3) non-singular.1 This operation

corresponds to

ls : B3,2 −→ B3,1 ⊗ B3,1. (7.1)

Then r3:=β(r2) looks as follows:

0
0
0

× 0
0
0

1
1
1
1
2

×
−1
0
1

0
1

2
2
1
0
0

×
1
1

1
−1
0

−1
−1
0

−1
−1

−1
1
0 ×

1
0

×

.

This corresponds to

lb : B3,1 −→ B1,1 ⊗ B2,1. (7.2)

Note that the vacancy numbers for ν(3) do not change. Since β adds length 1 singular
strings to (ν, J )(1) and (ν, J )(2), applying δ removes the boxes with “×” in the above
diagram.2 Then δ gives the following rigged configuration r4:=δ(r3) together with the

output letter 5 which fills the bottom left corner of B3,2 as
5

.

0
0

0
0

1
1
0
1

−1
0

0
1

1
1
1
1
1

1
1
1

−1
0

−1
−1
−1

−1
−1

−1
1
1

1
1

∅

.

Since the above δ determines B1,1 of (7.2), we start to apply γ , β, and δ corresponding
to B2,1 of (7.2). Since γ (r4) = r4, the unrestricted rigged configuration r5:=β(r4)
looks as follows:

1 In general, if we consider γ for Br,s , the strings in (ν, J )(r) which are shorter than s become non-singular.
2 In general, if we consider β for Br,1, the next δ removes length 1 singular strings of
(ν, J )(1), (ν, J )(2), . . . , (ν, J )(r−1) added by β.
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0
0
0

× 0
0
0

1
1
0
1

×
−1
0

0
1

1
1
1
1
1

1
1
1

−1
0

−1
−1
−1

−1
−1

−1
1
1

1
1

×

.

This corresponds to

lb : B2,1 −→ B1,1 ⊗ B1,1. (7.3)

Then δ removes the boxes with “×” in the above diagram which determines one of
B1,1 in (7.3). As the result, we obtain the following unrestricted rigged configuration

r6:=δ(r5) and the output letter within B3,2 as 3
5

:

1
1

0
0

0
0
0
2

−1
0
0

1

1
1
1
0
0

1
1
1

−1
0

−1
−1
−1

−1
−1

−1
1
1

1
1

×

.

The next δ removes the box with “×” in the above diagram and determines the
remaining B1,1 in (7.3). As the result, we obtain the following unrestricted rigged

configuration r7:=δ(r6) and the output letter within B3,2 as
1
3
5

:

0
0

0
0

0
0
0
2

−1
0
0

1

1
1
1
0
0

1
1
1

−1
0

−1
−1
−1

−1
−1

−1
1
1

1
1

∅

.

Next we determine the remaining B3,1 in (7.1). r8 = (δ ◦ β)(r7) is the following

unrestricted rigged configuration with the output letter in B2,3 as
1
3
5 1

:
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1 0

0
0
2

−1
0

1

1
0
0

1
−1
0

−1
−1

−1
−1 1 1

∅

.

r9 = (δ ◦ β)(r8) is the following unrestricted rigged configuration with the output

letter in B2,3 as
1
3 3
5 1

:

1 0
0
1

−1
1

1
1

1
−1 0 −1 0 0

.

r10 = δ(r9) is the following unrestricted rigged configuration with the output letter in

B2,3 as
1 1
3 3
5 1

:

0 0
0
1

−1
1

1
1

1
−1 0 −1 0 0

∅
.

For the KN tableau representation of the rectangular tableau, we need to apply the

inverse of the filling map of Definition 2.5 to obtain
1 3
3
5

. If we further determine

B3,3 and B2,3 in this order, we obtain the empty rigged configuration and the following
path

�−1(r1) =
1 3
3
5

⊗
1 1 1
2 3 4
3 5 3

⊗ 1 1 3
2 2 5

.

Summary As we see in the above example, the algorithm �−1 is recursively defined
as follows. Suppose that we consider the unrestricted rigged configuration (ν, J ) asso-
ciated with the tensor product of type

B = Br,s ⊗ B ′.
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Then we determine b ∈ Br,s by the following procedure. In correspondence with the
operation

ls : Br,s −→ Br,1 ⊗ Br,s−1, (7.4)

we apply γ to the unrestricted rigged configuration. Then apply lb on Br,1 in (7.4)

lb : Br,1 −→ B1,1 ⊗ Br−1,1, (7.5)

which on the rigged configuration side corresponds to β. Finally we use lh and δ to
remove B1,1 of (7.5). In order to process the remaining Br−1,1 of (7.5), we apply β

and δ repeatedly for (r − 1)-times. We fill the leftmost column of Br,s from bottom
to top by the letters obtained by δ during this procedure. In order to determine the
remaining Br,s−1 of (7.4), we repeat the same procedure for the first column and fill
the remaining columns of Br,s from left to right. Once Br,s is fully determined, we
proceed to the leftmost rectangle of B ′ and repeat the same procedure used for Br,s .
In this manner, we obtain the filling of shape B, which we denote by b ∈ B. Then we
define

�−1 : (ν, J ) �−→ b.

The inverse procedure � is obtained by reversing all the steps of �−1.
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