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Abstract For each rank metric code C ⊆ K
m×n , we associate a translation structure,

the kernel of which is shown to be invariant with respect to the equivalence on rank
metric codes.When C isK-linear, we also propose and investigate other two invariants
called its middle nucleus and right nucleus. When K is a finite field Fq and C is a
maximum rank distance code with minimum distance d < min{m, n} or gcd(m, n) =
1, the kernel of the associated translation structure is proved to be Fq . Furthermore,
we also show that the middle nucleus of a linear maximum rank distance code over Fq

must be a finite field; its right nucleus also has to be a finite field under the condition
max{d,m − d + 2} �

⌊ n
2

⌋ + 1. Let D be the DHO-set associated with a bilinear
dimensional dual hyperoval over F2. The setD gives rise to a linear rank metric code,
and we show that its kernel and right nucleus are isomorphic to F2. Also, its middle
nucleus must be a finite field containing Fq . Moreover, we also consider the kernel
and the nuclei of Dk where k is a Knuth operation.
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1 Introduction

Let K be a field. The set K
m×n of all m × n matrices over K is a K-vector space. The

rank metric distance on the K
m×n is defined by

d(A, B) = rk(A − B) for A, B ∈ K
m×n,

where rk(C) stands for the rank of C .
A subset C ⊆ K

m×n is called a rank metric code. The minimum distance of C is

d(C) = min
A,B∈C,A �=B

{d(A, B)}.

When C is a K-linear subspace of K
m×n , we say that C is a K-linear code and its

dimension dimK(C) is defined to be the dimension of C as a subspace over K.
There are several interesting structures in finite geometry, cryptography and coding

theory, which can be equivalently described in the context of rank metric codes. First,
a quasifield is an algebraic structure with two binary operations which are often called
its addition and multiplication. Quasifields are quite similar to skewfields, but with
some weaker conditions. Quasifields of finite order are strongly related to translation
planes in finite geometry. A quasifield of order qn with kernel Fq can be viewed as a
subset C of qn matrices in F

n×n
q satisfying that the zero matrix is in C and d(C) = n.

This subset C is often called a spreadset. In particular, when C is Fq -linear, it defines
a finite semifield, which is a quasifield with two-sided distributivity. For more details
on quasifields and semifields, we refer to [21,22,26].

Another interesting topic is from cryptography and coding theory: A function f :
F2n → F2m is called almost perfect nonlinear (abbreviated to APN), if #{x : f (x +
a) + f (x) = b} = 0 or 2 for all a ∈ F

∗
2n and b ∈ F2m . APN functions are of interest

in the design of S-boxes, which are basic components of symmetric key algorithms.
When n = m, except for the six families of APN monomials, most known families of
APN functions are quadratic, i.e., f (x) = ∑

i≤ j ai j x
2i+2 j

. It is easy to see that the
map given by x �→ f (x + a) + f (x) + f (a) for each nonzero a can be viewed as a
matrix Ma of rank n − 1 in F

n×n
2 . Furthermore, all Ma together with the zero matrix

form a F2-linear code C in F
n×n
2 and d(C) = n − 1. We refer to [5,36] for recent

surveys on APN functions.
A quadratic APN function can be viewed geometrically as a special type of dimen-

sional dual hyperoval (DHO for short). Every known DHO is splitting, which means
that it can be described as a setD of matrices, called aDHO-set, in F

n×m
q for certain q,

n andm. ADHO-setD has an important property that the difference of any two distinct
matrices in it is of rank n−1, whenceD is also a rank metric code and d(D) = n−1.

Rank metric codes are also useful in the construction of error-correcting codes for
random network coding and of some transversal designs [24,39].

Let C ⊆ F
m×n
q . When d(C) = d, it is well known that

#C ≤ qmax{m,n}(min{m,n}−d+1),
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which is the Singleton bound for the rank metric distance; see [10]. When equality
holds, we call C a maximum rank distance (MRD for short) code. It is clear that
the spreadset derived from a quasifield of order qn is an MRD code in F

n×n
q and its

minimum distance is n. For MRD codes with minimum distance less than min{m, n},
there are a few known constructions. The first and most famous family is due to
Gabidulin [18] and Delsarte [10] who found it independently. This family is later
generalized by Kshevetskiy and Gabidulin in [25], and we often call themGeneralized
Gabidulin codes. Recent constructions of MRD codes can be found in [8,19,30,38].
Also, in [29] some relationship between linear MRD codes and different geometric
objects like linear sets of a projective space and generalized Segre varieties were
pointed out.

In general, it is difficult to tell whether two rankmetric codes with the same parame-
ters are equivalent or not. For quasifields, in particular for semifields, there are several
classical invariants such as kernel, left, right and middle nuclei. Originally, they are
defined as algebraic substructures of quasifields or semifields. However, they can also
be translated into the language ofmatrices. Formore information on the nuclei of finite
semifields, we refer to [31]. These invariants are quite useful in telling the equivalence
between two semifields, and many classification results on semifields are also based
on certain assumptions on the sizes of their nuclei; see [31–34], for instance. Hence,
it is quite natural to ask whether there are also such invariants for other rank metric
codes, especially for MRD codes and DHO-sets.

The organization and the main results of this paper are as follows: In Sect. 2,
we introduce several important concepts including the equivalence on rank metric
codes together with translation structures. In Sect. 3, we associate with a rank metric
code C a point–line incidence translation structure T (C), i.e., an incidence structure
with an equivalence relation defined on the set of lines and with a group acting sharply
transitively on its points.We investigate properties of the kernel K of such an incidence
structure. In Sect. 4, the middle nucleus and the right nucleus of a linear rank metric
code are introduced and proved to be invariants under codes equivalence. Relations
between the middle nucleus and the right one of a rank metric code are investigated.
In Sect. 5, we look at the kernel and the nuclei of an MRD code C ⊆ F

m×n
q . We show

that its kernel is Fq under the condition that its minimum distance d < min{m, n}
or gcd(m, n) = 1. Moreover, we also prove that the middle nucleus of C is always
a finite field and its right nucleus is a finite field if max{d,m − d + 2} �

⌊ n
2

⌋ + 1.
For the case m = n, we determine the middle (right) nuclei of generalized (twisted)
Gabidulin codes.

In Sect. 6, we introduce dimensional dual hyperovals and associated DHO-sets.
We deal with some related concepts as well as the opposite operation ◦ and the
adjoint operation † defined on a DHO-set. We observe that, by choosing an appro-
priate bases, this latter operation gives rise to the adjoint code D
 of D. We
completely determine the kernel of the translation structure derived from an arbi-
trary DHO. Finally, we concentrate on splitting bilinear DHOs D. For the DHO-set
D associated with such a D, we determine the middle (right) nuclei of Dk for
k ∈ {◦,
, ◦
,
◦,
 ◦ 
}.
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2 Preliminaries

In this section, we introduce several important concepts and results on rank metric
codes and basic facts on translation structures.

First, let us fix several notations. For any matrix M , we use Mt to denote the
transpose of M and rk(M) is the rank of M . We also use Om,n to denote anm×n zero
matrix over a field. If the numbers of rows and columns are clear from the context, we
simply write it as O . We always use Latin letters in bold, such as x, y, z to represent
(row) vectors.

Let C be a rank metric code in K
m×n . The adjoint code of C is the code

C
 := {Xt : X ∈ C}.

Let 〈·, ·〉 be the symmetric bilinear form on the set of m × n matrices defined by

〈M, N 〉 := Tr(MNt ).

The Delsarte dual code of a K-linear code C is

C⊥ := {M ∈ K
m×n : 〈M, N 〉 = 0 for all N ∈ C}.

One important result proved by Delsarte [10] is that the Delsarte dual code of a
linear MRD code is still MRD. Also, if d > 1, then

d(C⊥) = min{m, n} − d + 2. (1)

For the trivial case d = 1, C = K
m×n and C⊥ consists of a zero matrix.

For any matrix M over a field K and γ ∈ Aut(K), we define Mγ = (mγ

i j ).
Let m, n be two integers larger than 1. An isometry on K

m×n is a bijection which
preserves the rank distance. In [43, Theorem 3.4], it is proved that if ϕ is an isometry
on K

m×n , then there are A ∈ GL(m, K), B ∈ GL(n, K), C ∈ K
m×n and γ ∈ Aut(K)

such that
ϕ(X) = AXγ B + C (2)

for all X ∈ K
m×n , or (when m = n)

ϕ(X) = A(Xt )γ B + C (3)

for all X ∈ K
m×n .

As the isometries on K
m×n keep the rank distance, following the definition in

[9] we should use isometry as the equivalence on rank metric codes. However, for
convenience, we use the following two definitions in this paper. Two rank metric
codes C1 and C2 ⊆ K

m×n are equivalent if there are A ∈ GL(m, K), B ∈ GL(n, K),
C ∈ K

m×n and γ ∈ Aut(K) such that

C2 = {AXγ B + C : X ∈ C1}. (4)
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Whenm = n, we say that C1 and C2 are strongly equivalent if C2 is equivalent either to
C1 or to C


1 . Therefore, if m �= n, isometry and equivalence are the same; otherwise,
m = n, isometry is the same as strong equivalence.

An equivalence map from a rank metric code C to itself is called an automorphism.
All automorphisms together form the automorphism group of C.

When C1 and C2 are linear, by letting X = O in (4) we see that C ∈ C2 and
C2 − C := {Y − C : Y ∈ C2} = C2, which means that we may always assume that
C = O .

The first example of a linear MRD code of m × n matrices existing for arbitrary
value of the minimum distance d was exhibited by Delsarte in [10] and independently
by Gabidulin in [18], and it was later generalized by Kshevetskiy and Gabidulin in
[25]. We often call them (generalized) Gabidulin codes.

Precisely, a generalized Gabidulin code is defined as follows: It is well known that,
under a given basis of Fqn over Fq , each element a of Fqn can be written as a (column)
vector v(a) in F

n
q . Let α1, . . . , αm be a set of linear independent elements of Fqn over

Fq , where m ≤ n. Then

{
(v( f (α1)), . . . , v( f (αm)))t : f ∈ Gk,s

}
(5)

is the original generalized Gabidulin code, where

Gk,s = {a0x + a1x
qs + · · · + ak−1x

qs(k−1) : a0, a1, . . . , ak−1 ∈ Fqn }, (6)

with n, k, s ∈ Z
+ satisfying k < n and gcd(n, s) = 1. To get the minimum distance

of this code, we only have to look at the number of the roots of each f ∈ Gk,s .
All members of Gk,s are of the form f (x) = ∑n−1

i=0 ai xq
i
, where ai ∈ Fqn . A

polynomial of this form is called a linearized polynomial (also a q-polynomial because
its exponents are all powers of q). They are equivalent to Fq -linear transformations
from Fqn to itself, i.e., elements of E = EndFq (Fqn ). We refer to [27] for their basic
properties.

A semifield S is an algebraic structure satisfying all the axioms of a skewfield
except (possibly) the associative law of multiplication. It is not difficult to show that
the additive group of a semifield S is an elementary abelian group; see [23]. The
additive order of the nonzero elements in S is called the characteristic of S. Hence, any
finite semifield can be represented by (Fq ,+, ∗) with a prime power q. Here (Fq ,+)

is the additive group of the finite field Fq and x ∗ y = ω(x, y), where ω is a mapping
from Fq × Fq to Fq satisfying that

(x + y) ∗ z = x ∗ z + y ∗ z,

x ∗ (y + z) = x ∗ y + x ∗ z

for all x, y, z ∈ Fq . That means the map x �→ x ∗ y and x �→ y ∗ x also give rise
to two linearized polynomials over a certain subfield of Fq . By definition, these two
maps must be invertible for y �= 0. Hence, from them we can derive two MRD codes
consisting of q − 1 nondegenerate matrices with the zero matrix. For instance, if we

123



318 J Algebr Comb (2017) 46:313–340

take the finite field Fpn which is obviously a semifield, then we can get a set of pn

matrices in F
n×n
p defined by the (left, right) multiplication in Fpn .

The left, middle and right nuclei of a semifield S are the following subsets:

Nl(S) = {a ∈ S : (a ∗ x) ∗ y = a ∗ (x ∗ y) for all x, y ∈ S},
Nm(S) = {a ∈ S : (x ∗ a) ∗ y = x ∗ (a ∗ y) for all x, y ∈ S},
Nr (S) = {a ∈ S : (x ∗ y) ∗ a = x ∗ (y ∗ a) for all x, y ∈ S}.

For a rank metric code C ∈ K
m×n provided that C is finite, the rank weight distri-

bution of C is a sequence of numbers

A j := #{M : M ∈ C, rk(M) = j}

for j = 0, 1, . . . ,min{m, n}. In general, it is difficult to determine the rank weight
distribution of a given code. However, MRD codes with the same parameters have the
same rank weight distribution which is completely known. Without loss of generality,
we assume that n � m and C is an MRD code in F

m×n
q with minimum distance d. Of

course, A j = 0 for j < d. In [10,18], it is proved that

Ad+� =
[

m

d + �

]

q

�∑

t=0

(−1)t−�

[
� + d

� − t

]

q
q(�−t

2 )
(
qn(t+1) − 1

)
, (7)

for � = 0, 1, . . . , n − d, where
[m
j

]
q
is the Gaussian binomial coefficient. In fact, we

can prove the following result without doing complicated calculation of (7).

Lemma 2.1 Let C be an MRD code in F
m×n
q with minimum distance d. Assume that

O ∈ C. For any 0 � � � m − d, we have Ad+� > 0, i.e., there always exists at least
one matrix C ∈ C such that rk(C) = d + �.

Proof As all MRD codes with the same parameters have the same rank distribution,
we only have to look at the code defined by (5). Let us denote this code by Ck where
k = m − d + 1.

Clearly, for k = 1, all matrices in C1 are of full rank. Assume that our lemma
holds for Ck0 . As Gk0,s ⊆ Gk0+1,s , there exists matrix of rank r in Ck0+1 for r =
m,m − 1, . . . ,m − k0 + 1. On the other hand, Ck0+1 is an MRD code which means
that there must be matrices of rankm−k0 in it. Hence, the lemma also holds for Ck0+1.
By induction, we complete the proof. ��

Finally, we turn to the introduction of a particular incidence structure which is
called a translation structure.

Let P be a nonempty set, whose elements are called points, and let L be a family
of subsets of P , whose elements are called lines or blocks. The pair (P,L) forms
an incidence structure. A permutation on P is called a collineation of the incidence
structure (P,L), if it is also a permutation on L and preserves the incidence relation.

An incidence structure T = (P,L) with parallelism is a point–line geometry
endowed with an equivalence relation defined on the set L of lines. We denote this
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relation with the symbol ||. A translation of T is a collineation τ such that Lτ ||L for
all lines L of T. The translations of T form a group T . We call (T, T ) a translation
structure if

(a) the group T acts sharply transitively on the points of T;
(b) if L is a line of T, then the stabilizer TL of L in T is transitive on the points of L .

The group T is called the translation group of T. We say that T is a central trans-
lation structurewhen T is abelian. Two translation structures T1 and T2 are said to be
isomorphic if they are isomorphic as incidence structures, i.e., there is a one-to-one
map σ from the points (lines) of T1 to the points (lines) of T2 such that a point x is in
a line L if and only if σ(x) is in σ(L).

Translation planes are classical examples of a translation structure in which two
points are incident with a unique line. Translation structures were introduced byAndré
in [2]; see [3] too. In [2], the following canonical representation is given for (T, T ).

Let x be a fixed point of T. For any line L incident with x , define TL = {τ ∈ T :
Lτ = L} and put S = {TL : L is incident with x}.

For each line M of T there is an element τ of T and a line L incident with x such
that M = Lτ . Thus, the coset TLτ is the set of the elements of T which map x to a
point of M and for each point y of M there is exactly one element μ of TLτ such that
xμ = y.

Let S(T,S) be the point–line structure whose points are the elements of T and
whose lines are the cosets of elements of S. For each point y, let τy be the element
of T which maps x to y and let βx be the map from T to S(T,S) defined by y �→ τy
and M �→ TLτy if and only if M = Lτy . Then βx is an isomorphism between T and
S(T,S). It is worth noticing that the construction does not depend, up to isomorphism,
on the choice of the point x .

We say that the incidence structure S(T,S) satisfies the covering property, if

⋃

x∈L
TL = T . (8)

The kernel K of S is the set of all endomorphisms κ of T such that T κ
L ⊆ TL for all

L incident with x . If T is abelian, then K is a ring (not necessarily commutative) with
identity. We will use the exponential notation so that the sum and the multiplication of
K are defined by τκ+λ = τκτλ and τκλ = (τ κ)λ for all τ ∈ T, and λ, κ ∈ K . Then,
the group T is a K -module and each element of S is a submodule of T .

3 Translation structures from rank metric codes

In this part, we define a translation structure from a set of m × n matrices. Let C be a
subset of K

m×n and 0 denote the zero vector. We define

S(∞) := {(0, y) : y ∈ K
n},

S(M) := {(x, xM) : x ∈ K
m}, for M ∈ C.
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Let S(C) := {S(M) : M ∈ C ∪ {∞}}. From it we derive an incidence structure on
K

m+n , in which the lines are defined by

S(M) + (0,b), for M ∈ C,b ∈ K
n,

S(∞) + (a, 0), for a ∈ K
m .

It is routine to verify that this is a translation structure and the additive group of K
m+n

is its translation group. Let us denote this translation structure by T (C).
According to definition, the kernel K ofT (C) is the set of all endomorphisms of the

group (Km+n,+) such that S(M)μ ⊆ S(M) for every M ∈ C∪{∞}. For convenience,
we also say that K is the kernel.

Lemma 3.1 Suppose that C1 and C2 are two equivalent rank metric codes in K
m×n.

Then the derived translation structures T (C1) and T (C2) are isomorphic. In partic-
ular, their kernels KC1 and KC2 are isomorphic.

Proof Suppose that C1 and C2 are equivalent. By definition we have that C2 =
{AMσ B + C : M ∈ C1} where A ∈ GL(m, K) and B ∈ GL(n, K) are nonsingu-
lar, C ∈ K

m×n and σ ∈ Aut(K). The semilinear map

α : (x, y) ∈ K
m × K

n �→ (xσ A−1, yσ B + xσ A−1C) ∈ K
m × K

n,

is an isomorphism between T (C1) and T (C2) with KC2 = α−1KC1α. ��
By the definition of kernel, the following result is easy to get:

Lemma 3.2 Let Im+n denote the identity matrix of order m + n. The set of matrices
{aIm+n : a ∈ K}, which forms a field isomorphic to K, belongs to the kernel K of
T (C).

By Lemma 3.2, the field K is in the kernel K of T (C). It is interesting and natural
to ask whether K is necessarily a field and whether K contains some extra elements.
We proceed to investigate these two questions in the rest part of this section.

Lemma 3.3 Assume that the zero matrix is in C. Then each element in the kernel K
of T (C) can be expressed in the form

(
N1 Om,n

On,m N2

)
,

where N1 ∈ End((Km,+)), N2 ∈ End((Kn,+)) and Om,n (resp. On,m) denotes the
zero map in Hom((Km,+), (Kn,+)) (resp. Hom((Kn,+), (Km,+))).

Proof Let μ be an arbitrary element of K . As an endomorphism of the additive group
of K

m+n , μ can be written as

(
N1 N4
N3 N2

)
,
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where N1 ∈ End((Km,+)), N2 ∈ End((Kn,+)), N3 ∈ Hom((Kn,+), (Km,+)) and
N4 ∈ Hom((Km,+), (Kn,+)). Note that

S(∞)μ = {(yN3, yN2) : y ∈ K
n}.

Together with Sμ(∞) ⊆ S(∞), we get yN3 = 0 for every y ∈ K
n . Hence, N3

is the zero mapping. Similarly, we can also show that N4 = Om,n by looking at
S(Om,m)μ ⊆ S(Om,m). ��
Proposition 3.4 Let C be a rank metric code containing 0.

(a) Let K and K
 denote the kernels of T (C) and T (C
), respectively. Then

K ∩ Aut((Km+n,+)) ∼= K
 ∩ Aut((Km+n,+)).

(b) Assume that C is linear. The group of automorphisms of (Km+n,+) stabilizing
T (C⊥) contains a subgroup which is isomorphic to K ∩ GL(m + n, K).

Proof (a). By Lemma 3.3, we know that an element μ in K ∩ Aut(Km+n) can be
written as

(
N1 Om,n

On,m N2

)
,

where N1 ∈ Aut((Km,+)) and N2 ∈ Aut((Kn,+)).
Due to the definition of kernels, for every M ∈ C and x ∈ K

m ,

(x, xM)μ = (xN1, xMN2) = (y, yN−1
1 MN2) = (y, yM),

where y = xN1. Hence,

N−1
1 MN2 = M,

which implies that
Nt
2M

t (Nt
1)

−1 = Mt . (9)

Hence,

μ′ :=
(

(Nt
2)

−1

(Nt
1)

−1

)

is in the kernel of T (C
). Therefore, the map μ �→ μ′ is a bijection on the kernels of
T (C) and T (C
).
(b). By Lemma 3.3, we know that an arbitrary element μ in K ∩ GL(m + n, K) can
be written as

(
N1 Om,n

On,m N2

)
,

where N1 ∈ GL(m, K) and N2 ∈ GL(n, K).
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By definition, we again have

N−1
1 MN2 = M.

Hence,

Tr(M((Nt
1)

−1NNt
2)

t ) = Tr(MN2N
t N−1

1 ) = Tr(N−1
1 MN2N

t ) = Tr(MNt ) = 0,

for each M ∈ C and N ∈ C⊥. Therefore, the map

μ̃ : (x, y) �→ (x(N−1
1 )t , yNt

2)

is a bijective K-linear transformation on K
m+n which stabilizes the translation struc-

ture T (C⊥), because the above calculation shows that if N ∈ C⊥ then we have
S(N )μ̃ = S(Nt

1(N (N−1
2 )t )) and Nt

1(N (N−1
2 )t ) ∈ C⊥. Finally, it is immediate to ver-

ify that the map μ �→ μ̃ is an injective homomorphism from K ∩GL(m + n, K) into
the stabilizer of T (C⊥) in GL(m + n, K). ��
Theorem 3.5 Assume that a rank metric code C contains the zero matrix and

{xM : M ∈ C} = K
n (10)

for each nonzero x ∈ K
m. Then the kernel K ofT (C) is a skewfield and each element

of K can be expressed in the form

(
N1

N2

)
,

with N1 ∈ Aut((Km,+)) and N2 ∈ Aut((Kn,+)). In particular, if K is finite, then
the kernel K is a finite field containing K, N1 ∈ GL(m, K) and N2 ∈ GL(n, K).

Proof Let μ be an arbitrary element of K . By Lemma 3.3, μ can be written in the
form

(
N1 On,m

Om,n N2

)
,

where N1 ∈ End((Km,+)) and N2 ∈ End((Kn,+)).
Claim Suppose that μ does not map all elements in K

m+n to the zero vector. Then N2
is not the zero map.

By way of contradiction, we assume that N2 = On,n . Then we get

S(M)μ = {(xN1, 0) : x ∈ K
m} ⊆ S(M), (11)

for all M ∈ C. It implies that yM = 0 for each y ∈ {xN1 : x ∈ K
m} and any

M ∈ C. As N1 �= Om,m , there exists a nonzero vector z ∈ {xN1 : x ∈ K
m}. Thus

{zM : M ∈ C} = {0}. It contradicts (10).
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Nextwe proceed to show that both N1 and N2 are bijection. Byway of contradiction,
let us assume that N1 is not invertible. There exists a nonzero vector x ∈ K

m such that
xN1 = 0. Thus, for any M ∈ C,

(xN1, (xM)N2) = (0, 0),

because of S(M)μ ⊆ S(M). By (10), we see that N2 must be a zero map which
contradicts the proved claim.

Now we know that N1 is invertible. Hence, for any nonzero vector x ∈ K
m and,

the vector y := xN1 is also nonzero. Again from S(M)μ ⊆ S(M), we get

(xN1, xMN2) = (y, xMN2) = (y, yM).

By the above equation, we see that the set {xMN2 : M ∈ C} and {yM : M ∈ C} must
be the same. By (10), we further obtain that

K
n = {xMN2 : M ∈ C} = {zN2 : z ∈ K

n}.

That means N2 is also invertible.
To summarize, we have proved that μ ∈ K \ {0} is always invertible and clearly

the inverse of an element in K also belongs to K . Together with the fact that K is a
ring, we have shown that K is a skewfield.

When K is finite, it is clear that K is also finite. Hence, K is a finite field. By
Lemma 3.2, the set of matrices {aIm+n : a ∈ K} forms a subfield of K and μ is now
also a K-homomorphism of the vector space K

m+n . Therefore, N1 and N2 are both
nondegenerate matrices over K. ��

In fact, when (10) does not hold, there exist rank metric codes C ⊆ K
m×n such that

the kernel K of T (C) is not a skewfield.

Example 3.6 Let C be a set of matrices, each of which satisfies that the entries in its
last row and last column are all 0. It is straightforward to verify that T (C) does not
satisfy the covering property and its kernel K contains the matrices

La,b =

⎛

⎜⎜⎜
⎝

a · · · 0 0
...

. . .
... 0

0 · · · a 0
0 0 0 b

⎞

⎟⎟⎟
⎠

for a, b ∈ K. As La,0 · L0,b equals the zero matrix, its kernel K cannot be a skewfield.

By Proposition 3.4(a) and Theorem 3.5, we can directly get the following result.

Corollary 3.7 Let C be a rank metric code in K
m×n. Assume that C contains the zero

matrix and (10) holds for C. Then there is a bijection between the kernels of T (C)

and T (C
).
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Corollary 3.8 Let C1 and C2 be in F
m×n
q . Assume that both C1 and C2 contain the zero

matrix and (10) holds for C1 and C2. Suppose that C1 is strongly equivalent to C2. Then
their kernels are isomorphic.

Proof If C1 is equivalent to C2, then the result follows directly from Lemma 3.1; if C1
is equivalent to C


2 , then its kernel KC1 is isomorphic to the kernel KC

2
of T (C


2 ).
Together with Corollary 3.7, we see that the kernels of T (C1) and T (C2) are of the
same size. ��

4 Nuclei of a rank metric code

Let C ⊆ K
m×n be a K-linear rank metric code. We define the middle nucleus of C as

the following set of matrices of order m:

Nm(C) = {Z ∈ K
m×m : ZC ∈ C for all C ∈ C}.

In the same way we say that the right nucleus of C is the following set:

Nr (C) = {Y ∈ K
n×n : CY ∈ C for all C ∈ C}.

In particular, when C defines a finite semifield S, Nm(C) (resp. Nr (C)) is exactly the
middle (resp. right) nucleus of S. In [28], the middle nucleus (resp. right nucleus) is
called left (resp. right) idealiser of C.

It is straightforward to note that invertible elements in these sets define two sub-
groups of the automorphism group of the translation structure T (C) fixing S(O) and
S(∞), respectively.

The middle and right nuclei of semifields are invariants under isotopy, which is the
most widely investigated equivalence on semifields. They also play very important
roles in distinguishing and the classification of semifields. Hence, it is natural to
consider their properties for general rank metric codes.

Proposition 4.1 For two equivalent linear rank metric codes C1 and C2 inK
m×n, their

right (resp. middle) nuclei are also equivalent.

Proof Suppose that C1 and C2 are equivalent. By definition this means that there exists
γ ∈ Aut(K), A ∈ GL(m, K) and B ∈ GL(n, K) such that

C2 = {AMγ B : M ∈ C1}.

An element Z ∈ K
m×m belongs to the middle nucleus Nm(C1) if and only if

AZγ A−1 belongs to Nm(C2); this means that Nm(C1) and Nm(C2) are also equivalent.
A similar argument can be used to prove that also Nr (C1) is equivalent to Nr (C2). This
concludes the proof. ��

Of course, we can also definemiddle and right nuclei for nonlinear codes. However,
through the proof of Proposition 4.1, we see that the nuclei of nonlinear codes are
not necessarily invariants under the isometry. If we just restrict the equivalence to
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the “restricted equivalence” ∼′ in the sense that C1 ∼′ C2 whenever there are A ∈
GL(m, K) and B ∈ GL(n, K) such that C2 = {AMγ B : M ∈ C1}, then C1 ∼′ C2
implies that Nr (C1) and Nr (C2) are isomorphic and Nm(C1) and Nm(C2) are also
isomorphic.

In the rest of this paper, we restrict ourselves to the investigation of the nuclei of
linear rank metric codes.

When C is K-linear, it is routine to verify that Nm(C) and Nr (C) are subrings of
K

m×m and K
n×n, respectively. Moreover, they both contain the zero map and K as a

subfield. Hence, the code C can be seen as a left module (resp. a right module) over
Nm(C) (resp. Nr (C)).

Regarding the adjoint and Delsarte dual operation we have the following results.

Proposition 4.2 Let C be a linear rank metric code in K
m×n. Let C
 (resp. C⊥) be

the adjoint (resp. Delsarte dual) code of C. Then the following statements hold:

(a) Nm(C
) = Nr (C)
 and Nr (C
) = Nm(C)
;
(b) Nm(C⊥) = Nm(C)
 and Nr (C⊥) = Nr (C)
.

Proof By definition, (a) can be readily verified.
For (b), we first observe that if Z ∈ Nm(C) then Zt belongs to Nm(C⊥); indeed, let

N ∈ C⊥, i.e., Tr(CNt ) = 0 for all C ∈ C. We have

Tr(C(Zt N )t ) = Tr(C(Nt Z)) = Tr((CNt )Z) = Tr(Z(CNt )) = Tr((ZC)Nt ) = 0

for eachC ∈ C. Since theDelsarte dual operation is involutory,wehave that Nm(C)
 =
Nm(C⊥).

It is not difficult to see that the adjoint operation and the Delsarte duality commute,
i.e., C⊥
 = C
⊥. With this in mind we have the following

Nr (C⊥)
 = Nm(C⊥
) = Nm(C
⊥) = Nm(C
)
 = Nr (C).

This concludes the proof. ��
As in the previous section on kernels, we are curious about the conditions under

which middle or right nucleus of a code is a field.

Lemma 4.3 Let C be a linear rank metric code of Km×n with m � n and its minimum
distance d �

⌊m
2

⌋+ 1. Assume that there is at least one full rank matrix in C. For any
element Z ∈ Nm(C), assume that there exists a nonzero C0 ∈ C such that ZC0 = O.
Then Z is the zero matrix O. In particular, when C is a finite set, all nonzero matrices
in Nm(C) are invertible and Nm(C) is a field.

Proof By ZC0 = O , thematrix Z ∈ K
m×m cannot have full rank. Thatmeans d ′ < m,

where d ′ := rk(Z).
By way of contradiction, we assume that Z �= O . As a full rank matrix M is

assumed to be in C, we have ZM �= O . Since ZM ∈ C, rk(ZM) � d and d ′ � d.
Again from ZC0 = O we also have that rk(C0) � m − d ′. Together with d ′ � d

we have
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d � rk(C0) � m − d ′ � m − d.

This contradicts the assumption that d �
⌊m
2

⌋ + 1.
Now we suppose that C is finite. If Z is degenerate, then ZM ′ is not full rank for

every M ′ ∈ C, which implies that ZC � C. Since C is finite and linear, there exists
a nonzero matrix C0 such that ZC0 = O . From the previous part, we know that Z
must be zero. Hence, the nonzero matrices in Nm(C) are all nondegenerate. As Nm(C)

is finite, closed under addition and multiplication and it contains the identity matrix,
Nm(C) is a field. ��

By transposition we get:

Lemma 4.4 Let C be a linear rank metric code of K
m×n with

⌊ n
2

⌋ + 1 � m � n and
its minimum distance d �

⌊ n
2

⌋ + 1. Assume that there is at least one full rank matrix
in C. For any element Z ∈ Nr (C), assume that there exists C0 ∈ C \ {O} such that
C0Z = O. Then Z is the zero matrix. In particular, when C is a finite set, all nonzero
matrices in Nr (C) are invertible and Nr (C) is a field.

5 Kernels and nuclei of MRD codes

In this section, we investigate the kernel and nuclei of an MRD code over a finite field.

5.1 Kernels of MRD codes

First, let us consider the kernel of an MRD code.

Theorem 5.1 Let C be an MRD code in F
m×n
q . Then T (C) satisfies the covering

property, i.e., for any nonzero vector x ∈ F
m
q and any y ∈ F

n
q , there is at least one

matrix M ∈ C such that xM = y.

Proof Without loss of generality, we assume that x = (1, 0, . . . , 0); otherwise, we
choose an invertible matrix L such that xL = (1, 0, . . . , 0) and left multiply its inverse
matrix L−1 by M ∈ C to get another MRD code.

Assume, by way of contradiction, that there is an element y ∈ F
n
q such that xM �= y

for all M ∈ C. Suppose that the minimum rank distance of C is d andm � n. It means
that there are qn(m−d+1) matrices in C.

For each z ∈ F
n
q , we take Uz := {M ∈ C : xM = z}. It is clear that

∑

z∈Fnq
#Uz = qn(m−d+1),

and

#Uy = 0.
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From them, we can derive that

max
z∈Fnq

{#Uz} � qn(m−d+1)

qn − 1
> qn(m−d). (12)

Let z̄ be the vector such that #Uz̄ = maxz∈Fnq {#Uz}.
Now let us look at the matrices in Uz̄. As x = (1, 0, . . . , 0), the first row of each

M ∈ Uz̄ equals z̄. For anym−d rows except for the first one, by (12), we see that there
must exist two matrices M and M ′ in Uz̄ such that these m − d rows are the same. It
follows that the rank of M − M ′ is at most d − 1, which contradicts the assumption
that C is an MRD code.

For them > n case, we can similarly prove that there exist two matrices M and M ′
in which the first �m

n (n − d) + 1� rows are the same, which contradicts the minimum
distance of C. ��

Theorem 5.1 can also be derived from the fact that any MRD code of F
m×n
q with

minimum distance d is an (n − d + 1)-design of index 1 in F
m×n
q ; see [10, Section 5]

for more details.

Corollary 5.2 Let C be an MRD code in F
m×n
q with O ∈ C, such that gcd(m, n) = 1

or the minimum distance d < min{m, n}. Then, the kernel K of T (C) is Fq .

Proof By Lemma 3.2, K contains a subfield isomorphic to Fq . By Theorems 3.5
and 5.1, we know that K is a finite field. Let us say K = Fqr for a positive integer r .
By the definition of the kernel the set S(C) can be viewed as a set of K -subspaces in
K

m × K
n . That means each matrix M in C can also be viewed as a matrix over Fqr .

It implies that r divides m and n.
When gcd(m, n) = 1, it is clear that r must be 1. When the minimum distance

d < min{m, n}, r = 1 can be derived from the fact that there exist matrices of rank
min{m, n} and min{m, n} − 1 in C by Lemma 2.1. ��

It is worth pointing out that whenmin{m, n} = d, the kernel ofT (C) can be strictly
larger than Fq . For instance, whenm = n = d, an MRD code C is exactly a semifield,
and the kernel of T (C) corresponds to the so-called left nucleus of the semifield.
There always exist semifields of order qn with left nucleus larger than q, for instance
the famous Albert’s twisted fields [1,4].

When C is not an MRD code, there are also examples whose kernels are strictly
larger than Fq .

Example 5.3 Let n = 4. Let C be a set of 4 × 4 matrices over Fq derived from the
following set of linearized polynomials in Fq4 [X ]:

{a0X + a1X
q2 : a0, a1 ∈ Fq4}.

Let c be an element of Fq2 . For any a0, a1, x ∈ Fq4 , we always have

a0(cx) + a1(cx)
q2 = c(a0x + a1x

q2).

It implies that Fq2 is a subfield of the kernel of C.

123



328 J Algebr Comb (2017) 46:313–340

5.2 Nuclei of MRD codes

For the nuclei of MRD codes, we can prove the following results:

Theorem 5.4 Let C be a linearMRD code inF
m×n
q with m � n andminimum distance

d > 1. Then the following statements hold:

(a) Its middle nucleus Nm(C) is a finite field.
(b) When max{d,m − d + 2} �

⌊ n
2

⌋ + 1, its right nucleus Nr (C) is a finite field.

Proof (a) When d �
⌊m
2

⌋+1, it is already proved in Lemma 4.3, because C is a finite
set and there is at least one full rank matrix in C by Lemma 2.1; when d <

⌊m
2

⌋ + 1,
we look at its Delsarte dual C⊥. By (1), its distance

d(C⊥) = m − d + 2 > m −
⌊m
2

⌋
+ 1 �

⌊m
2

⌋
+ 1.

Again by Lemma 4.3, we have Nm(C⊥) is a finite field. As Nm(C⊥) = Nm(C)

(Proposition 4.1 (b)), Nm(C) is also a finite field.

(b) When d �
⌊ n
2

⌋ + 1, we get it by Lemma 4.4; otherwise m − d + 2 �
⌊ n
2

⌋ + 1,
we have that Nr (C⊥) is a finite field. From Nr (C⊥) = Nr (C)
 (Proposition 4.1 (b)),
we see that Nr (C) is also a finite field. ��
Remark 5.5 (a) When the minimum distance of an MRD code C is d = 1, C is the

whole space K
m×n . Then Nm(C) = K

m×m and Nr (C) = K
n×n .

(b) When the conditions in Theorem 5.4 are satisfied for a linear MRD code C, it can
be viewed as a left vector space over Nm(C) as well as a right vector space over
Nr (C).

When m = n, it is easy to get the following result from Theorem 5.4.

Corollary 5.6 Let C be a linear MRD code in F
n×n
q and let the minimum distance

d > 1. Then its middle nucleus and right nucleus are both finite fields.

In general, Theorem 5.4 (b) does not hold when max{d,m − d + 2} <
⌊ n
2

⌋ + 1.
Let us look at an example with m = 2, n = 4, q = 2 and d = 2.

Example 5.7 Let Fq2
∼= K ⊆ F

2×2
q (for instance, K = Fq [T ], where T is an irre-

ducible operator over Fq ).
A rank metric code C ⊆ F

2×4
2 is defined as

C := {(B1, B2) : B1, B2 ∈ K},

where (B1, B2) stands for the 2 × 4 matrix whose first 2 × 2 block is B1 and second
2 × 2 block is B2.

Clearly, all nonzero matrix in C is of full rank. As there are totally 16 matrices in
C and qmax{m,n}(min{m,n}−d+1) = 16, C is an MRD code.
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Let

Z =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ .

Then CZ ⊆ C for each C ∈ C. However, rk(Z) = 2.

5.3 Nuclei of known linear MRD codes

Observe that when n = m, it does not matter which linearly independent elements
α1, . . . , αn are chosen in (5), because the derived codes are equivalent bymultiplying a
certain invertible matrix. Thus, a generalized Gabidulin code can be directly described
as the set of polynomials in (6). Now let us first restrict ourselves toMRDcodes defined
through sets of linearized polynomials.

BesidesGk,s defined by (6), there are two other sets of linearized polynomials which
defineMRDcodes for arbitrary values of n and k. Thesewere recently obtained in [38].
Precisely, let n, k, h ∈ Z

+ and k < n. Let η be in Fqn such that Nqn/q(η) �= (−1)nk .
Then the set

Hk(η, h) =
{
a0x + a1x

q + · · · + ak−1x
qk−1 + ηaq

h

0 xq
k : a0, a1, . . . , ak−1 ∈ Fqn

}

(13)

is an Fq -linear MRD code of size qnk ; these are called twisted Gabidulin codes.
Also in [38] the following generalization of these examples was mentioned. Let

n, k, s, h ∈ Z
+ satisfying that gcd(s, n) = 1 and let η be inFqn such that Nqsn/qs (η) �=

(−1)nk . Then the set

Hk,s(η, h) =
{
a0x + a1x

qs + · · · + ak−1x
qs(k−1) + ηaq

h

0 xq
sk : a0, a1, . . . , ak−1 ∈ Fqn

}

is an Fq -linear MRD code of size qnk . These sets Hk,s(η, h) latter are known as
generalized twisted Gabidulin codes after [30], where they were intensively studied.
Precisely, in [30] the automorphism group of a generalized twisted Gabidulin code
was completely determined and it was proven that the relevant family contains the two
known classes Gk,s and Hk(η, h) of MRD codes as proper subsets.

Let C and C ′ be two set of q-polynomials over Fqn . It is clear that C and C ′ define
two rank metric codes in F

n×n
q and they are equivalent if there exist two permutation

q-polynomials L1, L2 and ρ ∈ Aut(Fq) such that C ′ = {L1 ◦ f ρ ◦ L2(x) : f ∈ C },
where (

∑
ai xq

i
)ρ := ∑

aρ
i x

qi and the symbol L ◦L ′ for two q-polynomials L and L ′
denotes the polynomial L(L ′(x)). In particular, the automorphism group of the code
derived from C consists of all (L1, L2, ρ) fixing C . From the proof of Theorem 4.4
in [30], the automorphism group ofHk,s(η, h) can be completely determined.
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Theorem 5.8 Let n, k, s, h ∈ Z
+ satisfying gcd(n, s) = 1 and 2 ≤ k ≤ n − 2. Let

η be in Fqn satisfying Nqsn/qs (η) �= (−1)nk . Then (L1, L2, ρ) is an automorphism of
Hk,s(η, h) if and only if there exist c, d ∈ F

∗
qn and r ∈ {0, 1, . . . , n − 1} such that

L1 = cxq
r
, L2 = dxq

n−r
and

ηcq
h−1dq

r+h−qr+sk = ηρqr . (14)

In what follows we will determine the middle nucleus and the right one of
Hk,s(η, h). To this aim, it makes sense first to describe the nuclei in the context
of q-polynomials over Fqn .

With regard to this, denote byC ⊆ E = EndFq (Fqn ) the set of q-polynomials defin-
ing a code C ⊆ F

n×n
q . Clearly, we have that Nm(C) ∼= Nm(C ) = {ϕ ∈ E : f ◦ ϕ ∈

C for all f ∈ C } and Nr (C) ∼= Nr (C ) = {ϕ ∈ E : ϕ ◦ f ∈ C for all f ∈ C },
where the symbol ◦ stands for the composition of maps. By definition and Theo-
rem 5.4, for each f ∈ Nm(C ) and each g ∈ Nr (C ), (x, f, id) and (g, x, id) are both
automorphisms of C .

By Theorem 5.8, we can get the following results:

Corollary 5.9 LetHk,s(η, h) be a generalized twisted Gabidulin code. Then we have

(a) if η = 0, then Hk,s(0, h) = Gk,s and Nm(Gk,s) = Nr (Gk,s) ∼= Fqn ;

(b) if η �= 0, then Nm(Hk,s(η, h)) ∼= F
gcd(n,sk−h)
q and Nr (Hk,s(η, h)) ∼= F

gcd(n,h)
q .

Proof To determine the middle nucleus, we only have to check the automorphisms of
the form (x, f, id). Let ρ to be the identity map, L1 = x and L2 = dx . If η = 0, then
(14) is always satisfied; otherwise, (14) becomes

ηdq
h−qsk = η,

which holds if and only if d ∈ F
gcd(n,sk−h)
q .

To determine the right nucleus,we letρ to be the identitymap, L2 = x and L1 = cx .
Now if η = 0, then (14) is always satisfied; otherwise, we have

ηcq
h−1 = η,

which holds if and only if c ∈ F
gcd(n,h)
q . ��

Now let us turn to linear MRD codes in F
m×n
q with m < n. Most of MRD codes

with 1 < k < n − 1 and m < n are in the following form:

{
(v( f (α1)), . . . , v( f (αm)))t : f ∈ Hk,s(η, h)

}
, (15)

where α1, . . . , αm are linear independent. Several new constructions of MRD codes
which are not in this form are presented recently in [19], and they are proved to be
not equivalent to any Gabidulin code. However, we do not know whether they are
equivalent to a generalized twisted Gabidulin code (15) or not.
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Let ξ be a primitive element of F
∗
qn and

H :=
{(

v( f (1)), v( f (ξ)), . . . , v( f (ξn−1))
)t : f ∈ Hk,s(η, h)

}
,

then by multiplying a suitable m by n matrix L of rank m on the left of elements in
H, we can get (15). In other words, the MRD code (15) is the image of H under a
projection from F

n×n
q to F

m×n
q .

In (5), if η = 0, i.e., Hk,s(η, h) = Gk,s , its middle and right nuclei are determined
very recently in [28]; see [35] for the calculation of the middle nuclei too. Notice that,
in [28], the (generalized) Gabidulin code is described as the adjoint of (5). Hence, the
right (resp. left) idealiser there is exactly the middle (resp. right) nucleus of (5). By
Corollary 5.9 and the following lemma which can be directly obtained by definition,
we can also easily show that the right nucleus of (5) always contains Fqn .

Lemma 5.10 Let C be a rank metric code in K
m×n. Let L be an � × m matrix with

� < m. Then

Nr (C) ⊆ Nr ({LC : C ∈ C}).

For the middle nucleus of a projection of a given code, it seems difficult to get any
general result similar to Lemma 5.10. After a projection, the new middle nucleus is in
the set of matrices of a smaller size. However, it is not necessary that the cardinality
of the middle nucleus is getting smaller. For instance, the map from F

2
pn to itself given

by

(x, y) �→
(
(a pk x + x pk a) + α(bpk y + y p

k
b)σ , ay + bx

)
,

for any a, b ∈ Fpn , where 2 � p, 2 �
n

gcd(n,k) , σ ∈ Aut(Fpn ) and α is a nonsquare in
Fpn , comes from the commutative semifields constructed in [48]. The middle nucleus
of this semifield, which is exactly the middle nucleus of the derived MRD code, is
Fpgcd(n,k) if σ is nontrivial or Fp2 gcd(n,k) if σ is trivial. If we project it to the last n rows,
then we only have the matrices corresponding to

(x, y) �→ (ay + bx).

It is easy to show that the middle nucleus of this new set of matrices is Fpn . Hence, if
2 gcd(n, k) < n, the new middle nucleus is larger than the original one.

By looking at the projection of rank metric codes, we may also find some small
structures just as we have shown for some semifields. The idea of projection and
lifting has been already applied several times in the constructions of APN functions
and semifields; see [6,7,17,20,37].

As the middle nuclei and the right ones are both invariant with respect to the
equivalence on rank metric codes, we may also consider the set of the middle (resp.
right) nuclei of every projection of a rank metric code. More precisely, let C be a rank
metric code in K

m×n . For any l < m and any l-dimensional subspace U of K
m , we
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choose a matrix LU ∈ K
l×m whose rows form a basis of U . It is not difficult to see

that for a given subspaceU , distinct ways of choosing LU do not affect Nm(LUC) and
Nr (LUC) up to equivalence. The middle nuclei spectrum of a linear rank metric code
C ⊆ K

m×n is the multiset defined by

{∗ (l, Nm(LUC)) : 1 < l < m,U is an l-dimensional subspace of K
m ∗}

.

Similarly, we can define the right nuclei spectrum of C. It is clear that these two spectra
are both invariants with respect to the equivalence on rank metric codes. Hence, they
are useful for telling whether two codes are equivalent or not.

It is in general also not easy to compute these spectra for a linear rank metric code.
We can use computer to get them for some MRD codes with small parameters.

Example 5.11 Let q = 3, m = n = 4, k = 2 and s = h = 1. Let η be a root of
X4 − X3 − 1 ∈ F3[X ]. Then Hk,s(η, h) defines an MRD code C in F

4×4
3 .

For l = 3, there are totally 40 subspaces U of dimension l in F
4
3. For each of such

subspace U , our MAGMA program shows that Nm(LUC) ∼= F3 and Nr (LUC) ∼= F3.
When l = 2 and 1, for each subspace U of dimension l, we have LUC = F

l×4
3 from

which it follows Nm(LUC) = F
l×l
3 and Nr (LUC) = F

4×4
3 .

If we take η = 0, thenHk,s(η, h) = Gk,s = G2,1. Let us use C′ to denote the MRD
code in F

4×4
3 corresponding to it. For each subspace U of dimension 3, Lemma 4.1

and Theorem 4.5 in [28] tell us that Nm(LUC′) ∼= F3 and Nr (LUC′) ∼= F34 . Again
when l = 1, 2, for each subspace U of dimension l, we have LUC′ = F

l×4
3 which

means Nm(LUC′) = F
l×l
3 and Nr (LUC′) = F

4×4
3 .

6 Dimensional dual hyperovals, their kernels and nuclei

Let U be an (n + r)-dimensional vector space over Fq with n > 1 and r ≥ 1. A
collection D of n-dimensional subspaces of U for n ≥ 2 is called a dimensional dual
hyperoval of rank n (abbreviated to DHO) if the following conditions are satisfied:

(D1) dim(X1 ∩ X2) = 1, for each pair of elements X1 and X2 in D;
(D2) X1 ∩ X2 ∩ X3 = {0}, for any mutually distinct Xi ∈ D (i ∈ {1, 2, 3});
(D3) #D = qn−1 + qn−2 + · · · + q + 2. (Observe that #D = 2n if q = 2.)

Theambient space ofD, denoted by the symbol 〈D〉, is the subspace ofU spanned by
the elements ofD. The subspaces inD are called the components. Often, aDHOof rank
n is viewed projectively and called an (n − 1)-dimensional dual hyperoval. Yoshiara
[44] shows that n − 1 ≤ r ≤ n(n − 1)/2 if q �= 2 and n − 1 ≤ r ≤ n(n − 1)/2+ 2 if
q = 2 (however, it is conjectured the upper bound n(n−1)/2 also holds when q = 2).

Up to now, no DHO over a field of odd characteristic is discovered. For any n ≥ 2
and any even 2-power q, DHOs of rank n over Fq are known. There are various
constructions of DHOs, see [11,13,14,41,42,45,46], for instance.

By applying all the translations of the ambient space V := 〈D〉 to the subspaces in
an DHO D, we obtain a translation structureTD. According to definition, its kernel K
is the set of all endomorphisms of the group (V,+) such that Xμ ⊆ X , for all X ∈ D.
In the following we determine the kernel of TD.
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Proposition 6.1 Let D be a DHO of rank n and V := 〈D〉 the ambient space of D.
Then the kernel K of TD is isomorphic to Fq .

Proof Clearly, K is a subring of EndFq (V ) and {λ1V | λ ∈ Fq} is a subfield of K .
On the other hand, by Conditions (D1), (D2) and (D3), it is straightforward to see

that, for any X ∈ D, each point in X\{0} is covered by exactly one of the 1-dimensional
subspaces in {X ∩ Y : X,Y ∈ D}. Furthermore, every element μ ∈ K fixes each 1-
dimensional subspace X ∩ Y , X,Y ∈ D. It follows that, if we regard X \ {0} as a
projective space, then by the fundamental theorem of projective geometry, μ induces
a scalar on X . By Condition (D2), μ induces the same scalar on V . ��

We say that D splits over the r -dimensional subspace Y ⊆ U , if U = X ⊕ Y for
all X ∈ D; all known DHOs split over some subspace of their ambient space. In such
a case we can identify U with the Cartesian product {(x, y) : x ∈ X, y ∈ Y }. In
particular, when q = 2, it is not difficult to verify that there exists an injective map β

from X into Hom(X,Y ) such that every member of D can be written in the following
fashion

X (a) := {(x, xβ(a)) : x ∈ X},

for some a ∈ X . In particular, {(x, 0) : x ∈ X} = X (0), as β(0) is the zero map.
The subset {β(a) : a ∈ X} of Hom(X,Y ) ∼= F

n×r
2 satisfies the following properties

corresponding to Conditions (D1) and (D2) stated above for a DHO:

(P1) The rank of β(a) − β(b) is n − 1 for distinct a,b ∈ X .
(P2) For each a ∈ X , the map sending any b ∈ X \ {a} to the kernel of β(a) − β(b)

is a bijection from X \ {a} to the set of 1-dimensional subspaces of X .

Conversely, a subset of Hom(X,Y ) indexed by the elements in X and satisfying
Conditions (P1) and (P2) stated above determines a DHO of rank n over F2 which
contains X as a member and splits over Y . In some references, such as [14], such a set
is called a DHO-set.

Hence, if q = 2 and D is a DHO of rank n in U which splits over Y , its associated
DHO-set is D = {β(a) : a ∈ X}. In view of Condition (P1), D can be seen as a
rank metric code in Hom(X,Y ) ∼= F

n×r
2 (containing the zero matrix) with minimum

distance n − 1 and #D = 2n . We observe that D is an MRD code when r = n − 1.
Also, we have that TD = T (D) and as a consequence of Proposition 6.1, we may
state the following result.

Corollary 6.2 Let D be a DHO-set associated with a DHO D of rank n in U :=
〈D〉 ∼= F

n+r
2 . Then the kernel of T (D) is F2.

6.1 Bilinear DHOs, their kernels and nuclei

A DHO D is called bilinear if the map β mentioned above is F2-linear, or in other
words, if the subspace Y ⊆ U can be chosen in such away that the DHO-set associated
with D turns out to be an abelian group. Bilinear DHOs only exist for q = 2, and in
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such a case we have that D is a linear code in F
n×r
2 , containing the zero matrix, with

minimum distance d = n − 1 and dimension n. Also, X \ {0} is a disjoint union of
ker(β(a)) \ {0} with a ∈ X \ {0}.

Before going on with linear codes associated with DHO-sets, let us consider again
the slightly more general situation.

Suppose that the rank metric code C ⊂ F
n+r
q is a Fq -subspace of dimension � of

F
n×r
q . Also in this case there exists a Fq -linear injection β : F

�
q → F

n×r
q such that

C = {β(a) : a ∈ F
�
q}. In thisway one can set up a bilinearmapσ(·, ·) : F

n
q×F

�
q → Fq ,

via the rule σ(x, y) = xβ(y).
From β, we may define a new map β◦ : F

n
q → F

�×r
q (called the opposite to β) and

hence a new bilinear function by the following rule

xβ◦(y) = yβ(x) for x ∈ F
�
q , y ∈ F

n
q .

We put C◦ = {β◦(x) : x ∈ F
n
q} and refer to it as the opposite code to C.

On the other hand, we have another map β† from F
�
q to F

r×n
q . Precisely, fix two

nondegenerate symmetric bilinear forms bFnq (·, ·) on F
n
q and bFrq (·, ·) on F

r
q , and for

each a ∈ F
�
q denote by β†(a) the adjoint operation of β(a) with respect to bFnq and

bFrq , i.e., the element in F
r×n
q satisfying the equation

bFrq (xβ
†(a), y) + bFnq (x, yβ(a)) = 0 for x ∈ F

n
q , a ∈ F

�
q , y ∈ F

r
q .

We set C† := {β†(a) : a ∈ F
m
q }.

Appropriate Fq -bases of F
n
q and F

r
q can be chosen in such a way that C† = C
,

which is exactly the adjoint code of C. When r = n and C defines a finite semifield S,
then C◦ and C
 correspond to the spreadsets associated with the semifields obtained
from S applying the so-called Knuth operations introduced in [23]. Also in [23], Knuth
noted that there are in total five semifields which can be derived from S using ◦ and

, and there is a group G isomorphic to S3 acting on these six semifields.

In a similarway, startingwith anFq -linear rankmetric codeD := {β(a) : a ∈ X} ⊆
F
n×r
q , where X and Y are n-dimensional and r -dimensional over Fq , respectively, and

β is an injective Fq -linear map from X to HomFq (X,Y ), we can also get at most five
other rankmetric codes by replacing the semifieldmultiplication x ∗ y with the bilinear
form b(x, y) = xβ(y) over the subspace X . The precise approach can be found in [16];
see [11] for the special case of bilinear DHOs with X = Y . For the convenience of
the reader, we include some details here:

For D := {β(a) : a ∈ X} ⊆ F
n×r
q , we write

D := {X (a) : a ∈ X},

where X (a) = {(x, xβ(a)) : x ∈ X} for a ∈ X .
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Let

D◦ := {β◦(a) : a ∈ X} and D
◦ := {X◦(a) : a ∈ X},

where X◦(a) = {(x, xβ◦(a)) : x ∈ X} for a ∈ X .
In particular, whenD is a bilinear DHO-set, taking a = 0 in Condition (P2), we see

that each b is mapped bijectively to the unique nonzero element in ker(β(b)), whence
the rank of β◦(b) is also n−1 for each b ∈ X \ {0}, i.e., Condition (P1) is satisfied for
D

◦. It is straightforward to verify that Condition (P2) also holds. Therefore, we have
proved the following result.

Lemma 6.3 Let D be a bilinear DHO. Then D
◦ is a bilinear DHO as well.

On the other hand, we have another map β† from X to HomFq (Y, X). Precisely, fix
two nondegenerate symmetric bilinear forms bX (·, ·) on the subspace X and bY (·, ·)
on Y , and for each a ∈ X consider the adjoint β†(a) of β(a) with respect to bX and
bY . We set

D† := {β†(a) : a ∈ X} and D
† := {X†(a) : a ∈ X},

where X†(a) = {(y, yβ†(a)) : a ∈ X} ⊆ Y ⊕ X . Since, as observed before, we can
choose appropriate Fq -bases of X and Y in such a way that D† = D
, we simply
denote D

† and D† by D

 and D
, respectively, in the rest of this paper.

In particular, whenD is a bilinear DHO-set, Condition (P1), i.e., dim(ker(β†(a)) =
1 for every element a ∈ X \ {0}, is satisfied. However, Condition (P2) is not satisfied
in general.

Summing up, starting from D or D, and using the opposite operation ◦ and the
adjoint operation 
, we obtain up to six objects D, D

◦, D

, D

◦
, D

◦ and D

◦
◦ =
D


◦
 as well as at most six subspaces of bilinear forms D,D◦,D
,D◦
,D
◦ and
D◦
◦ = D
◦
. We call each element in {id, ◦,
, ◦
,
◦, ◦
◦,
 ◦ 
} a Knuth
operation.

In particular, when D is a bilinear DHO of rank n in F
2n
2 which splits over one of its

elements, as pointed by Edel in [16], all these six objects D
k for a Knuth operation k

are bilinear DHOs if D

 is a DHO. Moreover, D
 is a DHO if and only if D is doubly

dual, i.e., X1 + X2 has codimension 1 inU and X1 + X2 + X3 = U for three different
X1, X2, X3 ∈ D, where U is the ambient space of D; see [12,40].

Remark 6.4 ADHOD is symmetric, ifD
◦ = D, i.e., ifD is determined by an injective

Fq -linear map β : X → Hom(X,Y ) such that (x)β(a) = (a)β(x) for all x, a ∈ X ,
where X ∼= F

n
2 and Y

∼= F
r
2. ADHOD is alternating, if aβ(a) = 0 for each a ∈ X . It is

not difficult to verify that an alternating dual hyperoval is symmetric. In [13, Theorem
2.4] (partial results can also be found in [15,47]), Dempwolff and Edel proved that
an alternating DHO determined by a monomorphism β : X → Hom(X,Y ) where
X ∼= F

n
2 and Y ∼= F

r
2 is equivalent to a quadratic APN function from F

n
2 to F

r
2. A

function f : F
n
2 → F

r
2 is called almost perfect nonlinear or APN function for short, if

it satisfies that for any a ∈ X \ {0} and b ∈ Y the equation

f (x + a) + f (x) = b
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has at most two solutions. A function f : F
n
2 → F

r
2 is called quadratic if the map

from F
n
2 × F

n
2 to F

r
2 defined by

(x, y) �→ f (x + y) + f (x) + f (y)

is bilinear. APN functions have the optimal properties for offering resistance against
differential cryptanalysis, and they have been intensively studied by many mathemati-
cians. For recent surveys on APN functions, we refer to [5,36].

Next we consider the links among the kernels and the nuclei of D,D◦,D
,D◦
,

D
◦ and D◦
◦ = D
◦
. Similar results for the kernels and the nuclei of semifields
are well known, see [26,31].

Lemma 6.5 Let C be an Fq-linear subset of size qn in F
n×r
q . Let K (C◦) denote the

kernel of the translation structure T (C◦) associated with C◦. If at least one of Nr (C)

and K (C◦) is a field, then Nr (C) ∼= K (C◦).

Proof As C is Fq -linear and #C = qn , C forms an n-dimensional vector space over
Fq . Thus, there exists an Fq -linear injection β : F

n
q → F

n×r
q such that

C = {β(a) : a ∈ F
n
q}.

Let Z be in Nr (C). According to definition, for any y ∈ F
n
q , β(y)Z ∈ C. It means

that there exists a map ζ from F
n
q to itself such that β(y)Z = β(ζ(y)). Moreover, it is

straightforward to verify that ζ is also Fq -linear, which implies that ζ corresponds to
a matrix NZ ∈ F

n×n
q . By calculation, for any x, y ∈ F

n
q , we have

(y, yβ◦(x))
(
NZ O
O Z

)
= (yNZ , yβ◦(x)Z) = (yNZ , xβ(y)Z) = (yNZ , xβ(yNZ )),

which equals (yNZ , yNZβ◦(x)) ∈ C◦. Hence, the matrix

(
NZ O
O Z

)

is in K (C◦). We also have to prove that this matrix is uniquely determined by Z :

• Assume that Nr (C) is a field. It means that Z is of full rank and ζ is a bijection,
which implies that NZ is also of full rank and uniquely determined by Z .

• Assume that K (C◦) is a field. By Lemma 3.3, Z and NZ are both invertible. Hence,
NZ is uniquely determined by Z as well.

Now let us show that every element in K (C◦) corresponds to a unique element in
Nr (C). Let

(
N1 O
O N2

)
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be an arbitrary element in K (C◦). Then it is straightforward to get

(yN1, yN1β
◦(x)) = (yN1, yβ◦(x)N2)

for all x, y ∈ F
n
q , from which it follows that

xβ(yN1) = xβ(y)N2.

Thus, N2 is in Nr (C). Under the assumption that at least one of Nr (C) and K (C◦) is
a field, we can show that N2 is invertible from which it follows that N1 is uniquely
determined by N2.

Therefore, Nr (C) ∼= K (C◦). ��
By Lemma 6.5 and Proposition 4.2, we obtain the following results.

Theorem 6.6 Let C be an Fq-linear subset of size qn in F
n×r
q . Assume that the kernels

of the translation structures associated with C, C◦, C
, C◦
, C
◦ and C
◦
 are all
fields. Then we have

(a) Nr (C) ∼= K (C◦) ∼= Nm(C
);
(b) Nr (C◦) ∼= K (C) ∼= Nm(C◦
);
(c) Nr (C
◦) ∼= K (C
) ∼= Nm(C
◦
);
(d) Nr (C
◦
) ∼= K (C◦
) ∼= Nm(C
◦);
(e) Nr (C
) ∼= K (C
◦) ∼= Nm(C);
(f) Nr (C◦
) ∼= K (C
◦
) ∼= Nm(C◦).

By Proposition 6.1, we easily get the following result.

Corollary 6.7 Let D be a bilinear DHO of rank n with ambient space of dimension
n + r over F2. The right nucleus of the DHO-set associated with D is F2.

Regarding the middle nucleus of a bilinear DHO-set, in [13], the following result
was proven.

Proposition 6.8 [13, Proposition 3.9(b)] LetD be the associated DHO-set of a bilin-
ear DHO of rank n with n > 2. Then there exists a positive integer � dividing n in
such a way that the middle nucleus of D is isomorphic to F2� .

About the theorem above, we warn the reader that in [13] the middle nucleus
is called the nucleus of the DHO. Also in [13], the following results are obtained.
For r = n − 1, projections of spreads of commutative semifields provide examples
with various sizes of middle nuclei, see [13, Example 6.3]. Furthermore, when D is
alternating, the elements in Nm(D)must be in a special form and Nm(D) is isomorphic
toF2 orF4. If the second case occurs, then nmust be even. See [13, Proposition 3.9(f)].

In the final part, let us concentrate on the case thatD is aDHO-set inF
n×n
2 associated

with a bilinear DHO. From Proposition 6.1 and Corollary 6.7, we see that the kernels
and the nuclei K (D◦) ∼= Nr (D) ∼= Nm(D
) and K (D) ∼= Nr (D◦) ∼= Nm(D◦
) in
case (a) and (b) in Theorem 6.6 are all isomorphic to F2. By Theorem 6.8, the kernels
and the nuclei K (D
◦) ∼= Nr (D
) ∼= Nm(D) and K (D
◦
) ∼= Nr (D◦
) ∼= Nm(D◦)
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in (e) and (f) are all isomorphic to finite fields containing F2. By duality, the same
result holds true for kernels and nuclei (c) and (d). Indeed, we can prove the following
more general result.

Lemma 6.9 Let D be a DHO of rank n ≥ 3 with ambient space V = F
2n
q . Let σ(·, ·)

be a nondegenerate symmetric bilinear form on V and set D
† = {X† : X ∈ D},

where X† = {v ∈ V : σ(x, v) = 0, x ∈ X}. Then, K (D†) � Fq .

Proof Clearly, K = {ω1V : ω ∈ Fq} lies in K (D†). Let ε be an element of K (D†). As
D is a DHO, we see that for each X ∈ D and each point P ∈ X , there exists a unique
X ′ ∈ D with X ∩ X ′ = P . So for each X ∈ D

† and each hyperplane H ⊂ V of V
such that X ⊂ H , there exists a unique X ′ ∈ D

† such that X + X ′ = H . Therefore, ε
fixes each hyperplane of V/X and hence each point of this space. By the fundamental
theorem of projective geometry ε inducesμ1V/X on V/X for someμ ∈ Fq . Similarly,
if we take X ′ ∈ D

† \ {X}, then ε induces μ′1V/X ′ on V/X ′, for some μ′ ∈ Fq .
Let v ∈ V \ {X + X ′}. Then, vε = μv + x = μ′v + x ′, with x ∈ X and x ′ ∈ X ′.

Hence, (μ − μ′)v ∈ X + X ′, i.e., μ = μ′. So ε induces μ1V/(X∩X ′) on V/(X ∩ X ′).
As V = 〈D〉, we have ⋂

X∈D† = 0. This forces ε = μ1V . ��
Let V = F

n
2 × F

n
2. As observed in Sect. 6.1, we may set σ((x, y), (x ′, y′)) =

xy′ + yx ′. It is then easy to see that the adjoint operation on D with respect to σ is
exactly 
. Hence, as a direct consequence of Lemma 6.9, we have the following.

Proposition 6.10 Let D be the DHO-set associated with a bilinear DHO D of rank
n in the ambient space of dimension 2n, where n > 2. Then the kernel of Dk is
isomorphic to F2 for any Knuth operation k ∈ {
, ◦
}.
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