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Abstract We develop the technique of reduced word manipulation to give a range of
results concerning reduced words and permutations more generally. We prove a broad
connection between pattern containment and reduced words, which specializes to our
previous work for vexillary permutations.We also analyze general tilings of Elnitsky’s
polygon and demonstrate that these are closely related to the patterns in a permutation.
Building on previous work for commutation classes, we show that reduced word
enumeration is monotonically increasing with respect to pattern containment. Finally,
wegive several applications of thiswork.We show that a permutation and apattern have
equally many reduced words if and only if they have the same length (equivalently, the
same number of 21-patterns) and that they have equally many commutation classes if
and only if they have the same number of 321-patterns.We also apply our techniques to
enumeration problems of pattern avoidance and give a bijection between 132-avoiding
permutations of a given length and partitions of that same size, as well as refinements
of these data and a connection to the Catalan numbers.
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1 Introduction

The reduced words of a permutationw are strings of positive integers that describe the
ways to write w as a product of adjacent transpositions. These data have connections
to Coxeter groups of other types and an influence on the structure of various objects
related to permutations. Additionally, the Bruhat order on the symmetric group can
be defined in terms of reduced words, and thus they are key to understanding the
structure of this important poset (see, for example, [11,13–15,22,30] for progress on
elucidating this architecture and that of related objects).

In [29], we revealed a powerful relationship between reduced words and permuta-
tion patterns in the case of a vexillary permutation. That result had a range of algebraic,
topological, and enumerative applications, addressing questions about commutation
classes of reduced words, tilings of certain families of polygons, and the topological
structure of a family of algebraic objects. In the present work, we expand the manip-
ulative techniques on reduced words that we debuted in [29]. This will enable us to
show that the main result of [29] is a special case of a broader phenomenon. Moreover,
we employ these methods and that general phenomenon to give enumerative results
about reduced words and commutation classes of permutations and the patterns that
contain them, extending Stanley’s analysis of reduced word enumeration in [26] and
our own work in [29,30].

There are many ways to represent permutations, including reduced words and one-
line notation. The latter is the most natural presentation for questions about patterns,
a concept that gained broad attention after work of Simion and Schmidt [23], and that
has since become popular in many guises (see, for example, Kitaev’s text [16] and
the various special journal issues devoted to the topic, including [24]). The first hint
of a direct connection between reduced words and permutation patterns appeared in
[5], where Billey, Jockusch, and Stanley proved that 321-avoidance was equivalent to
avoiding i(i ± 1)i factors in reduced words. We gave a broader relationship between
reduced words and permutation patterns in [29], showing that a permutation p is
vexillary if and only if, roughly speaking, reduced words of p can appear as isolated
factors in reduced words of w, for all w containing p. That result had a number of
applications, notably involving tilings of the polygon X (w), whose rhombic tilings
were shown to be in bijection with commutation classes of reduced words of w by
Elnitsky [12].

The “manipulation” in the title of this paper refers to the techniques we employ
in this work. More precisely, our approach to analyzing features of a permutation
(and its reduced words) will often include shortening it via a sequence of targeted
position and value swaps, where these swaps correspond to right and leftmultiplication
(respectively) by adjacent transpositions. This technique can be highly revealing about
the reduced words of a permutation, as we shall see in subsequent sections, and can
expose enumerative phenomena that have been hitherto unrecognized.

In Sect. 2 of this paper, we discuss terminology and symbols relevant to this work,
including examples of the basic objects under examination here. Section 3 introduces
the main manipulative techniques we apply to reduced words and gives the first main
result of these efforts in Theorem 3.9. That theorem gives the broad relationship
described earlier, between containment of a p-pattern and the influence of p’s reduced

123



J Algebr Comb (2017) 46:189–217 191

words on the reduced words of the larger permutation. The next two sections of the
paper are concerned with applications of Theorem 3.9 and, more generally, with the
manipulative techniques used in the proof of that result. To be precise, Sect. 4 shows
how pattern containment influences the tiling of a particular polygon used in the study
of Coxeter groups, with the culminating result given in Corollary 4.18. In Sect. 5,
we apply our manipulative techniques to enumerative questions about commutation
classes of permutations and to the number of reduced words of a permutation as they
relate to those of its patterns. Each of these quantities is monotonically increasing with
respect to pattern containment (Proposition 5.2; Theorem 5.3), and we can describe
exactly when equality occurs in each case (Theorems 5.5, 5.7). We also show how
our methods can be employed to enumeration problems of pattern avoidance and
demonstrate this by giving a bijection between 132-avoiding permutations of length �

and partitions of � (Theorem 5.15). This bijection has additional implications, related
to the number of restricted partitions and to the Catalan numbers (Corollaries 5.17,
5.20).

2 Definitions and notation

We are concerned with the symmetric group, also known as the finite Coxeter group of
type A. In this section,we introduce the relevant definitions andnotation, and additional
background on these objects can be found in the literature, such as in [7,19].

We writeSn for the symmetric group on {1, . . . , n}, and a permutation w ∈ Sn is
represented in one-line notation as the word w = w(1)w(2) · · ·w(n).

The adjacent transpositions in Sn are {σi : 1 ≤ i < n}, where σi transposes i and
i + 1 and fixes all other letters. These involutions generate Sn and obey the Coxeter
relations

σiσ j = σ jσi if |i − j | > 1, and (1)

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n − 2. (2)

The relation in Eq. (1) is a commutation, and the relation in Eq. (2) is a braid. Because
{σi : 1 ≤ i < n} generates Sn , each w ∈ Sn can be written as a product of adjacent
transpositions, where we view permutations as maps and thus σiv transposes the
positions of the values i and i + 1 in v, whereas vσi transposes the values in positions
i and i + 1 in v.

Definition 2.1 If w = σi1 · · · σi� for � minimal, then � = �(w) is the length of w, the
product

σi1 · · · σi�

is a reduced decomposition of w, and the string

i1 · · · i�
is a reduced word of w. The set of all reduced words of w is denoted R(w).

123



192 J Algebr Comb (2017) 46:189–217

We will use sans-serif typeface for reduced words, thus distinguishing them from
permutations in one-line notation.

Note that length can be calculated by counting inversions: �(w) = ∣
∣{i < j : w(i) >

w( j)}∣∣.
Reduced decompositions and reduced words are in obvious bijection with each

other, and the terms “commutation” and “braid” transfer to the context of reduced
words in the natural way.

Example 2.2 Consider 3241 ∈ S4. Its reduced decompositions are σ2σ1σ2σ3,
σ1σ2σ1σ3, and σ1σ2σ3σ1, and thus

R(3241) = {2123,1213,1231}.

The first two elements of R(3241) differ by a braid, while the latter two elements
differ by a commutation.

Reduced words are strings, and we will sometimes view them as nothing more than
that.

Definition 2.3 A factor in a string is a consecutive substring. Shifting a string by x
means adding a fixed value x to each symbol in the string. When specificity is not
needed, we will suppress the expression “by x”.

A permutation in one-line notation is itself a string, and we will have use for the
following concept.

Definition 2.4 Two strings, whose letters are drawn from a totally ordered set, are
isomorphic if their symbols appear in the same relative order. We use ≈ to denote this
(equivalence) relation.

Example 2.5 42135 ≈ 82(−4)π
√
95.

The notion of isomorphic strings is central to the definition of permutation patterns.

Definition 2.6 Fix p ∈ Sk . A permutation w contains a p-pattern, denoted p ≺ w,
if p ≈ w(i1) · · · w(ik) for some i1 < · · · < ik . This w(i1) · · · w(ik) is an occurrence
of p, and we may denote w(i j ) by 〈p( j)〉. If w does not contain a p-pattern, then w

avoids p or is p-avoiding, denoted p ⊀ w. For a set of patterns P , write

P Î w ⇐⇒ p ≺ w for all p ∈ P.

Pattern containment depends on there being at least one occurrence of the pattern,
but the (positive) multiplicity of occurrences is unimportant.

Example 2.7 The permutation 42135 contains the pattern 213, and it does so in five
ways: 425 ≈ 415 ≈ 435 ≈ 213 ≈ 215. The permutation 45132 is 213-avoiding, so
213 ⊀ 45132.
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Theorem 3.9 of this article gives a potential relationship between elements of R(p)

and elements of R(w) when p ≺ w. That result, which will specialize to the main
result of [29], involves an object that is most easily described as a set of the “barred”
patterns introduced by West in [32].

Definition 2.8 A barred pattern p is a permutation p in which some letters are dec-
orated by bars. A permutation w contains p, denoted p ≺ w, if w has an occurrence
of the undecorated portion of p that is not also part of a larger p-pattern.

Example 2.9 Let w = 42135 and p = 3214. Thus 3214 ≺ 42135 because 〈213〉 =
213 is not part of any 3214-pattern in w. We could not have drawn this conclusion
from 〈213〉 = 415, because of 〈3214〉 = 4215 in w.

Note that barred patterns can also be expressed in the more general language of
mesh patterns, as introduced in [9].

Our work in [29] gave a new definition of vexillary permutations. The feature
of non-vexillary permutations that caused trouble was that a 2143-pattern could be
“spread out,” both in position and value by inserting a letter between the 1 and the 4
to yield the permutation 21354. Let us capture this phenomenon more precisely.

Definition 2.10 Fix p ∈ Sk . A barred pattern q is a spread of p if its undecorated
portion is isomorphic to p itself and if q ∈ Sk+1 is obtained by inserting a letter
(barred in q) to transform a 2143-pattern in p into a 21354 pattern. In the degenerate
case, when p avoids 2143, the only spread of p is p itself. Write p+ for the set of
spreads of p.

Note that a permutation may have more than one spread.

Example 2.11 251364+ = {2613475, 2614375, 2614375, 2613475}.

3 Influence of patterns on reduced words

The main result of [29] was a relationship between containing a pattern p and impli-
cations for one’s reduced words in terms of the reduced words of p. That relationship,
presented here as Corollary 4.1, held if and only if p was vexillary; that is, if and only
if p avoided 2143. Vexillary permutations were introduced independently by Lascoux
and Schützenberger [18] and by Stanley [26]. There are several equivalent definitions
of vexillary, such as 2143-avoidance, the one given in the main result of [29], and
others as discussed in [19].

In Theorem 3.9 below, we establish that elements of R(p) appear as particular
factors in elements of R(w) if and only if p+ Î w. Moreover, these factors should not
be unduly influenced by their prefix or suffix, as expressed in the following definitions.

Definition 3.1 Fix w ∈ Sn and consider s ∈ R(w), where s = abc is the concate-
nation of three (possibly empty) strings with a ∈ R(u) and c ∈ R(v). The factor b is
isolated on [m, m′] in s if there are integers m ≤ r ≤ t ≤ m′ such that

(1) the smallest letter appearing in b is r and the largest letter appearing in b is t ,
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(2) �(uσi ) > �(u) and �(σiv) > �(v) for all i ∈ [r, t], and
(3) there are two particular increasing patterns in each of u and v:

(a) in u, an increasing sequence of length r − m + 1 ends in position r , and an
increasing sequence of length m′ − t + 1 begins in position t + 1, and

(b) in v, an increasing sequence of length r − m + 1 ends with the value r , and
an increasing sequence of length m′ − t + 1 begins with the value t + 1.

While the concept of a factor is relatively common, isolation is unusual enough—
and important enough in the context of this work—to merit some examples.

Example 3.2 Consider the reduced word s = 12325 ∈ R(243165).

(a) Define the factor b = 2 so that a = 1 and c = 325. Thus r = t = 2. This b is
not isolated on [1, 2] in s because, in the language of Definition 3.1, u = 213456
and �(uσ1) < �(u).

(b) Now define the factor b = 2 so that a = 123 and c = 5. Thus r = t = 2.
This b is isolated on [1, 2] in s because u = 234156 and v = 123465, and both
�(uσi ) > �(u) and �(σiv) > �(v) for all i ∈ [1, 2].

Note that Definition 3.1 fixes a mistake in [29], in which it was inadvertently
assumed that patterns would not begin or end with fixed points. In the language of
Definition 3.1 above, we would have m = r and m′ = t for such a situation, and so
requirement (3) of the definition would be trivial. It should be noted that the applica-
tions of the main result of [29] are unaffected by this correction, and many of them
do not even involve patterns with initial or concluding fixed points. Also, if we were
to think of permutations as actions on Z that involve only finitely many elements,
then requirement (3) of Definition 3.1 would again be trivial, because there would be
increasing sequences of infinite length beginning or ending with any position or value.

Example 3.3 (a) Consider the reduced word 23 ∈ R(13425). Let b = 3, a = 2,
and c = ∅. Thus r = t = 3. Consider m = 2 and m′ = 4. In the language of
Definition 3.1, u = 13245 and v = 12345. First note that �(uσ3) > �(u) and
�(σ3v) > �(v). Also, u has an increasing sequence of length r − m + 1 = 2
ending in position r = 3 (the sequence 12), and an increasing sequence of length
m′ − t + 1 = 2 beginning in position t + 1 = 4 (the sequence 45). Similarly, v
has the necessary increasing sequences. Thus this b is isolated on [2, 4] in 23.

(b) In contrast, consider the reduced word 234 ∈ R(13452). Again let b = 3 and
a = 2, and so we now have c = 4. Again r = t = 3, and we continue to consider
m = 2 and m′ = 4. In the language of Definition 3.1, u = 13245 and v = 12354.
As before, �(uσ3) > �(u) and �(σ3v) > �(v), and although u has the required
increasing sequences, the permutation v does not; specifically, it has no increasing
sequence whose minimum value is t + 1 = 4. Thus this b is not isolated on [2, 4]
in 234.

In our usage, the range [m, m′] of Definition 3.1 will be predetermined, as described
below.

Definition 3.4 Fix p ∈ Sk . A reducedword for p that has been shifted by x is isolated
in some s if it is isolated on [x + 1, x + k − 1] in s.
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The importance of isolation arises from the following result, which describes when
pattern containment might be affected by products of adjacent transpositions.

Lemma 3.5 Fix permutations p and w for which w has a p-pattern occupying posi-
tions P and using values V . If {i, i + 1} � V , then

p ≺ σiw.

If { j, j + 1} � P, then

p ≺ wσ j .

Proof If {i, i + 1} � V , then σiw, which transposes the positions of the values i and
i +1 in w, has a p-pattern occupying positions P . If { j, j +1} � P , then wσ j , which
transposes the values in positions j and j + 1 in w, has a p-pattern using values V . �

The following example demonstrates necessity of the hypotheses in Lemma 3.5.

Example 3.6 Consider 231 ≺ 4231, for which P = {2, 3, 4} and V = {1, 2, 3}. The
permutation

σ3(4231) = 3241

has a 231-pattern in occupying positions P , and

(4231)σ1 = 2431

has a 231-pattern using values V . On the other hand, the following permutations are
all 231-avoiding:

σ1(4231) = 4132,

σ2(4231) = 4321,

(4231)σ2 = 4321,

(4231)σ3 = 4213.

The influence of isolation in Lemma 3.5 will be important to the proof of Theo-
rem 3.9. Indeed, that argument will be constructive and will involve manipulation of
the permutation w via the following mechanism.

Corollary 3.7 Fix permutations p and w and suppose that elements of R(p) appear
as shifted isolated factors in elements of R(w). Then p ≺ w. Moreover, if w has a
p-pattern in positions P and using values V , then for {i, i+1} � V and { j, j+1} � P,

• elements of R(p) appear as shifted isolated factors in elements of R(σiw), and
• elements of R(p) appear as shifted isolated factors in elements of R(wσ j ).

Proof This can be proved by induction on �(w) − �(p). �
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The next lemma gives the basis of the inductive argument in the proof of Theo-
rem 3.9.

Lemma 3.8 Suppose there is an occurrence of p in w that either occupies consecutive
positions or uses consecutive values. Then elements of R(p) appear as shifted isolated
factors in elements of R(w).

Proof Suppose that p ∈ Sk and 〈p〉 occupies positions {x + 1, . . . , x + k} of w. Let
w′ be the permutation obtained by writing the letters of 〈p〉 in increasing order and
leaving all other letters fixed. Thus �(w′) = �(w)− �(p). Consider any s ∈ R(p) and
t ∈ R(w′), and let s′ be the shift of s by x . Then the word ts′ represents a product of
adjacent transpositions that produces w. This word has length �(w′) + �(p) = �(w),
so ts′ ∈ R(w), as desired. If s′ were not isolated in ts′, then w would not have a
p-pattern in positions {x + 1, . . . , x + k}. Thus s′ must be isolated.

The case of 〈p〉 using consecutive values is analogous, with the shifted reduced
word of p occurring as a factor on the left side in the reduced word of w. �

We are now ready for themain result of this section. Its proof is inductive, measured
by how far the occurrences of p are from satisfying the hypothesis of Lemma3.8.When
p+ Î w, the proof constructs an element of R(w) that contains an isolated shift of
any R(p) element as a factor.

Theorem 3.9 Elements of R(p) appear as shifted isolated factors in elements of R(w)

if and only if p+ Î w.

Proof Fix p ∈ Sk .
First suppose that elements of R(p) appear as shifted isolated factors in elements

of R(w). Then, by Corollary 3.7, we have p ≺ w. Let abc ∈ R(w) be such a reduced
word, where b is a shifted element of R(p) that is isolated in abc. Then b ∈ R(p′),
where

p′(i) =
{

p(i − x) + x if i ∈ [x + 1, x + k] and
i otherwise,

for some x . The letters of a act on p′ by lengthening the permutation via transpo-
sitions of consecutive values. Because b is isolated and a is reduced, this procedure
never transposes two values that are both in the pattern occurrence. Similarly, the
reduced word c acts on that resulting permutation by lengthening it via transpositions
of consecutive positions, never transposing two positions that are both in the pattern
occurrence. The conclusion of these actions yields the permutation w. Consider any
2143-pattern in p. The “lengthening” requirement of both a and c makes it impos-
sible to move some y ∈ (〈2〉, 〈3〉) into the middle of a 2143-pattern in p unless it is
swapping positions with some other y′ ∈ (〈2〉, 〈3〉). Thus the only such values in w

must have been in p itself, and so p+ Î w.
For the remainder of the proof, suppose that p+ Î w. We will induct on a statistic

gap defined as follows. For a given 〈p〉 in w, let

gappos(〈p〉, w) =
(

w−1(〈p(k)〉) − w−1(〈p(1)〉)
)

− (k − 1)
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measure any excessive positional span of 〈p〉 in w, and

gapval(〈p〉, w) = (〈k〉 − 〈1〉) − (k − 1)

measure any excessive value span. Both are nonnegative, and gappos(〈p〉, w) = 0 if
and only if 〈p〉 appears in consecutive positions of w, while gapval(〈p〉, w) = 0 if
and only if 〈p〉 uses consecutive values in w. Now set

gap(p, w) = min〈p〉 in w

{

gappos(〈p〉, w) + gapval(〈p〉, w)
}

.

If gap(p, w) = 0, then some 〈p〉 appears in consecutive positions in w and with
consecutive values. By Lemma 3.8, then, the result holds.

Assume, inductively, that the result holds for all q+ Î v with gap(q, v) <

gap(p, w). Fix an occurrence 〈p〉 in w for which gap(p, w) = gappos(〈p〉, w) +
gapval(〈p〉, w).

Call each 〈p(i)〉 a pattern entry. Call x /∈ 〈p〉 a position gap if it appears between
〈p(1)〉 and 〈p(k)〉 in the one-line notation of w, and a value gap if 〈1〉 < x < 〈k〉.
If either gappos(〈p〉, w) or gapval(〈p〉, w) is 0 then we can apply Lemma 3.8 and be
done, so assume that both are positive. Fix x to be the minimal position gap.

If x is less than all pattern entries appearing to its left, then multiply w on the right
by adjacent transpositions to produce w′ in which x has been shifted to the left of
the p-pattern, and the rest of the one-line notation is unchanged. This w′ contains an
occurrence of p having the same values as 〈p〉 in w, but its positional span is one
less than that of 〈p〉 in w. Thus gap(p, w′) < gap(p, w), and, because we never
transposed two pattern entries in a single move, the result follows from the inductive
hypothesis and Corollary 3.7.

If x is greater than all pattern entries appearing to its right, then in fact all position
gaps are greater than those pattern entries. Multiply w on the right by adjacent trans-
positions to produce w′ in which the rightmost position gap has been shifted to the
right of the p-pattern. Again, then, gap(p, w′) < gap(p, w), and the result follows
from the inductive hypothesis and Corollary 3.7.

It remains to address when the following two situations occur simultaneously: a
pattern entry less than x appears to the left of x in w, and a pattern entry greater than
x appears to the right of x in w. Note that this implies existence of some m for which
〈m〉 < x < 〈m + 1〉.

Suppose that the pattern entries that are both less than x and to its left appear in
increasing order inw. The following procedure, which we call (†), acts on a particular
p-pattern and position gap in a permutation, and loops as necessary. Note that it never
transposes two pattern entries in a single move.

• If y = 〈m〉 is to the left of x in w (necessarily the rightmost smaller pattern entry
appearing to the left of x), thenmultiplyw on the right by adjacent transpositions to
producew′ inwhich x has been shifted leftward until it abuts y. Eachmultiplication
removes an inversion, shortening the permutation at each step.Moreover, the values
of 〈p〉 still form a p-pattern in w′, as do the values of 〈p〉 with the exception of
now using x instead of y. If y had been the leftmost pattern entry in w, then the
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revalued p-pattern has fewer position gaps than 〈p〉 had in w, so the result follows
from the inductive hypothesis and Corollary 3.7. Otherwise, iterate (†) using this
new p-pattern in w′ and the position gap y < x .

• If y = 〈m〉 is to the right of x in w, then multiply w on the left by elements of
{σi : y ≤ i < x} to produce w′ in which {y, y + 1, . . . , x} appear in increasing
order and no other letters have moved. By definition of x and m, this w′ contains a
p-pattern in the same positions as 〈p〉 in w, and the only value that differs is some
y′ > y now acting as “m” in the pattern. If gap(p, w′) < gap(p, w), then the
result follows from the inductive hypothesis and Corollary 3.7. Otherwise, because
the number of position gaps and value gaps have not changed with this revalued
p-pattern, the measure gap(p, w′) is obtained on it. Now iterate (†) using this new
p-pattern in w′ and the position gap y < x , which necessarily appears no further
to the right in w′ than x had appeared in w.

When all pattern entries that are both greater than x and to its right forman increasing
sequence in w, the argument is similar to (†), with one additional step. Let x ′ be the
maximal position gap that does not appear to the left of x . Because x ′ ≥ x , we in
fact have that all pattern entries that are both greater than x ′ and to its right appear in
increasing order in w. Apply a procedure to x ′ and its rightward larger pattern entries,
analogous to the previous argument for x and its leftward smaller pattern entries.

We have now addressed all scenarios except one: when neither x’s leftward smaller
pattern entries nor its rightward larger pattern entries forms an increasing sequence;
that is,

w = · · · 〈p(a)〉 · · · 〈p(b)〉 · · · x · · · 〈p(c)〉 · · · 〈p(d)〉 · · · ,

for some

〈p(b)〉 < 〈p(a)〉 < x < 〈p(d)〉 < 〈p(c)〉.

But this means exactly that p+ �Î w, which is a contradiction. �
There are two things in particular to observe about Theorem 3.9. First, if p+ Î w

andabc ∈ R(w)withb a shifted isolated reducedword of p, then in factwe can replace
b by that same shift of any reduced word of p. Second, the proof of Theorem 3.9 is
constructive; that is, if p+ Î w then the proof produces reduced words of w that
contain shifted reduced words of p as isolated factors.

4 Combinatorial influence of patterns on reduced words

One immediately corollary to Theorem 3.9 recovers the main result of [29].

Corollary 4.1 ([29, Theorem 3.8])A permutation p is vexillary if and only if for every
w � p, elements of R(p) appear as shifted isolated factors in elements of R(w).

Proof Combine Theorem 3.9 with the fact that p is vexillary if and only if p+ = {p}.
�
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Theorem 3.9 also has applications for other objects, defined on a particular partition
of the reduced words of a permutation.

Definition 4.2 Fix a permutation w and define a relation ∼ on the set R(w) such
that s ∼ t if and only if s and t differ by a sequence of commutations. This ∼ is
an equivalence relation, and the classes it defines are the commutation classes of w,
denoted C(w).

Example 2.2 (continued). Observe that 1213 ∼ 1231. Thus the commutation classes
of 3241 ∈ S4 are {2123} and {1213,1231}, and |C(3241)| = 2.

The commutation classes of a permutation do not take braids into account, but we
can interpret the influence of thosemoves bymeans of a graph defined on commutation
classes.

Definition 4.3 The graph of commutation classes (or, simply, “graph” for our pur-
poses) of a permutation w has vertex set C(w), and an edge between classes when
representatives of those classes differ by a braid move.

Example 4.4 Because the reduced words 2123 and 1213 differ by a braid move, we
have

G(3241) =
{2123}

{1213,1231}
.

The sum of the letters in a reduced word is constant within a commutation class, and
braid moves change the parity of this sum. Therefore, the graph G(w) is bipartite. It
is also connected (see, for example, [12]).

In fact, we can say more about G(w) in light of Theorem 3.9.

Corollary 4.5 If p+ Î w, then G(p) is a subgraph of G(w).

Despite the natural definition of the classes C(w), they are not especially well
understood. For example, we cannot yet enumerate |C(n(n − 1) · · · 21)|. In [12],
Elnitsky defined a polygon X (w)whose rhombic tilings are in bijection with elements
of C(w). This gives another perspective for working with commutation classes and
can be quite fruitful. Indeed, we used Elnitsky’s polygon in [29] to show that pattern
containment affects the number of these classes.

Proposition 4.6 ([29, Theorem 5.10]) If p ≺ w then |C(p)| ≤ |C(w)|.
We now define Elnitsky’s polygon, and refer the reader to [12] for more details.

Definition 4.7 Fix a permutation w ∈ Sn . Elnitsky’s polygon, denoted X (w), is an
equilateral 2n-gon in which the sides are labeled 1, . . . , n, w(n), . . . , w(1) in coun-
terclockwise order from the top, the left half (labeled 1, . . . , n) is convex, and sides
are parallel if and only if they have the same label. Any polygon of this form is an
Elnitsky polygon.
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Fig. 1 The two ways to tile a
sub-hexagon in Elnitsky’s
polygon

Note that Elnitsky polygons permit a type of degeneracy when w has fixed points,
in which circumstance the left and right borders of the polygon may coincide for
one or more edges. Similarly, the left and right borders may intersect in a vertex if
{w(1), . . . , w(r)} = {1, . . . , r} for w ∈ Sn and some r < n.

The specific angles in X (w) are unimportant. One could also replace the equilateral
requirement by a rule that all parallel sides be congruent, but this adds no complexity
to the object or the tilings of it that we will consider.

Example 4.8

X (3241) =

1

2

3

4 1

4

2

3

Elnitsky looked at rhombic tilings of X (w).

Definition 4.9 Fix a permutation w. Let T (w) be the set of rhombic tilings of X (w)

where all edges are congruent and parallel to edges of X (w).

Define a graph with vertex set T (w) and an edge between two tilings if they differ
only in the tiling of a single sub-hexagon, as in Fig. 1. Elnitsky proved in [12] that
this graph is in bijection with the graph G(w) of commutation classes. In particular,
this means that T (w) is in bijection with C(w). The details of Elnitsky’s bijection are
useful to this work, and we review them here. Note that this is a slight variation of
Elnitsky’s original bijection.

Proposition 4.10 ([12, Theorem 2.2]) Fix w ∈ Sn and T ∈ T (w). Label the rhombi
in T by 1, 2, . . . from right to left, always labeling a rhombus that shares two edges
with the rightmost border of X (w) or with tiles that have already been labeled. Use
this labeling to create a string s�(w) · · · s2s1, where si = j if the edges of tile i are j th
and ( j +1)st in a path of length n from the topmost to the bottommost vertex in X (w).
The map T → s�(w) · · · s2s1 gives a bijection between T (w) and C(w) because a
given T produced all reduced words within a single commutation class of w.
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Example 4.11 Elnitsky’s bijection for 3241 ∈ S4 is

{2123} � T1 = {1213,1231} � T2 =

because of T1’s unique labeling

1

2

3

4

corresponding to {2123}, and the two possible labelings of T2

2

1

3

4

and

2

1

3

4

corresponding to {1213,1231}.
The breadth of Theorem 3.9 enables us to use more generic tiles in Elnitsky’s

polygon.

Definition 4.12 Fix a permutationw and tile X (w) by other Elnitsky polygons, always
oriented so that the lefthand path from the highest to the lowest vertex is convex. Let
T ∗(w) be the set of such tilings, called paw tilings of X (w), and call each tile in
T ∈ T ∗(w) a paw.

Note that T (w) ⊆ T ∗(w) because each rhombus is an X (21)-paw.

Example 4.13 Figure 2 gives an element of T ∗(352641). It has two X (21)-paws, one
X (312)-paw, and one X (3421)-paw. All tile edges have been labeled for clarity.

In any tiling of X (w), the edges of a tile refer to its parallel edges along the border
of X (w).

The procedure described in Elnitsky’s bijection (Proposition 4.10) builds a reduced
word in a single direction. More precisely, labeling rhombi from the righthand side of
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Fig. 2 A paw tiling of
X (352641), described in
Example 4.13

1

2

3

4

5

6 1

4

6
2

5

3

5
1

4
4
1

X (w) corresponds to multiplying w on the right by adjacent transpositions (equiva-
lently, reducing the length of w by swapping adjacent positions). Recall the algorithm
laid out in the proof of Theorem 3.9. Whenever possible, the statistic gap(p, w) was
reduced by means of position swaps (that is, right multiplication by adjacent transpo-
sitions). This was done intentionally, to match the rightward favoritism of Elnitsky’s
bijection. However, there were two scenarios in the proof of Theorem 3.9 that required
value swaps (that is, left multiplication). These were, using the terminology of that
proof, the second bullet point of the loop (†), and its analogue when the leftward
smaller pattern entries to x have a descent, but the rightward larger ones do not.

Definition 4.14 Suppose that p ≺ w, and let S be a set of values forming a p-pattern
in w. Call (p, w) a value-stable pair if w = w′v for some permutations w′ and v such
that

• �(w) = �(w′) + �(v) and
• a p-pattern occurs in consecutive positions of w′, and the set of values forming
that pattern in w′ is S.

The p-pattern formed by S is the value-stable occurrence of the pair.

Note that requiring (p, w) to be value-stable is more restrictive than requiring that
p+ Î w.

Example 4.15 • The pair (352641, 3421) is value-stable because 352641 =
(352164)(123564). The value-stable occurrence that appears consecutively in
352164, which is also present in 352641, is 3521.
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Fig. 3 Tiling X (321) with an
X (312)-paw and a rhombus

• The pair (241365, 21354) is not value-stable.

Using Elnitsky’s bijection, Theorem 3.9 has an immediate implication for the paw
tilings in the context of value-stable pairs.

Corollary 4.16 If (p, w) is value-stable, then there is a paw tiling of X (w) that
contains an X (p)-paw.

Unfortunately, the converse to Corollary 4.16 is false. For example, there is a paw
tiling of the convex hexagon X (321) that contains an X (312)-paw, as shown in Fig. 3.
To understand when the converse to Corollary 4.16 might be true, we need a notion
of “isolation” for paws.

Definition 4.17 Consider a permutationw and an X (p)-paw in some T ∈ T ∗(w). Let
S ⊆ T ∗(w) be the paw tilings containing this particular X (p)-paw in this particular
position, and tiling the rest of X (w) by rhombi. If no element of S has a rhombus
sharing two edges with the righthand side of the X (p)-paw, then the X (p)-paw is
isolated in T .

Observe that an X (k · · · 21)-paw is necessarily isolated because no rhombus can
share two edges with its convex righthand side.

Example 4.3 (continued). The X (3421)-paw in Fig. 2 is isolated, but the X (312)-paw
is not because of its potential (in fact, required) adjacency to the rhombus with edges
{1, 4}.

The factor isolation described inTheorem3.9 reveals, now, a biconditional analogue
to Corollary 4.16. In other words, Corollary 4.18 describes exactly when we can fit an
isolated X (p)-paw into a paw tiling of X (w).

Corollary 4.18 There is a paw tiling of X (w) containing an isolated X (p)-paw if and
only if the pair (p, w) is value-stable. Moreover, the edges of this isolated X (p)-paw
are {i1, . . . , ik} if and only if {i1, . . . , ik} form a value-stable occurrence of p in w.

Because the permutation k · · · 21 is vexillary, and because X (k · · · 21) is a convex
2k-gon, we usedCorollary 4.1 to study zonotopal tilings of X (w) in [29]; that is, tilings
by convex paws. In particular, there is a zonotopal tiling of X (w) containing a 2k-gon
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with sides labeled i1 < · · · < ik if and only if ik · · · i1 form a (k · · · 21)-pattern in w

[29, Theorem 6.4]. Theorem 3.9 and Corollary 4.18 here now allow us to generalize
that result completely.

5 Enumerative applications

We now turn our attention and techniques to enumerative questions. In particular,
we give applications of this work in two directions—an analysis of the influence of
permutation patterns on |R(w)| and |C(w)|, and a sampling of how it can be applied to
enumerative questions about pattern avoidance. That latter discussion gives an elegant
bijection between partitions and a class of pattern avoiding permutations, as well as
a refinement of the Catalan numbers. Moreover, and perhaps most interestingly, it
demonstrates how our work here can give a new framework for analyzing problems
of pattern avoidance enumeration.

5.1 Enumerative influence of patterns on reduced words

In [26], Stanley showed that |R(w)| is a linear combination of the number of standard
Young tableaux of certain shapes. For example, if w is vexillary, then |R(w)| is equal
to the number of standard Young tableaux of a single shape λ(w). In [6], Billey and
Pawlowski defined further classes of permutations based on how many shapes have
nonzero coefficients in the sum. While these collections R(w) can be enumerated, it
is often complicated to do so. Moreover, the results do not give any indication of how
|R(p)| and |R(w)| might be related (if at all) when p ≺ w, whereas Theorem 3.9
suggests that indeed some relationship is likely. Similarly, as mentioned earlier in this
article, the number |C(w)| of commutation classes of a permutation is very poorly
understood outside of a few special cases.

In this section, we look at both |R(w)| and |C(w)| from the perspective of pattern
avoidance. We will show that they are both monotonically increasing with respect
to pattern containment, and we will completely characterize the p ≺ w for which
equality is maintained, in each case.

Certainly Theorem 3.9 implies the following result.

Corollary 5.1 If p+ Î w then |R(p)| ≤ |R(w)|.
We can actually strengthen Corollary 5.1 to a property about any p ≺ w, regardless

of whether w contains all of p+.
Consider the following algorithm, which we defined in [29].

Algorithm MONO
INPUT: p ≺ w and T ∈ T (p) labeled as described in Proposition 4.10.
OUTPUT: T ′ ∈ T (w).

Step 0. Set w0 := w, p0 := p, T0 := T , T ′
0 := ∅, and i := 0.

Step 1. If pi = e, then let T ′
i+1 be T ′

i together with any tiling of X (wi ). OUTPUT
T ′

i+1.
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Step 2. Set ji so that tile i has edges pi ( ji ) > pi ( ji + 1).
Step 3. Define r and s so that wi (r) = 〈pi ( ji )〉 and wi (s) = 〈pi ( ji + 1)〉.
Step 4. Let wi+1 be obtained from the one-line notation of wi be writing

{wi (r), . . . , wi (s)} in increasing order and leaving all other values
unchanged.

Step 5. The shapes X (wi+1) and X (wi ) differ in a paw whose lefthand (respec-
tively, righthand) boundary is part of the righthand boundary of X (wi+1)

(respectively, X (wi )). Let ti be a rhombic tiling of this paw, and define T ′
i+1

to be T ′
i together with ti .

Step 6. Set i := i + 1 and GOTO Step 1.

ThisMONO gives an injection T (p) ↪→ T (w), yielding the following result.

Proposition 5.2 ([29, Theorem 5.10]) If p ≺ w then |C(p)| ≤ |C(w)|.
In fact, an analogous property holds for reduced words.

Theorem 5.3 If p ≺ w then |R(p)| ≤ |R(w)|.
Proof Suppose p ≺ w and fix a tiling T ∈ T (p), with T ′ ∈ T (w) a corresponding
tiling fromMONO. This T describes a commutation class of reduced words that arise
from labeling T , and such a labeling depends on choices about the order in which
commuting tiles are labeled via Elnitsky’s procedure. Consider one such labeling of
T . It induces a labeling on the tiles of T ′ viaMONO, where any collection of rhombi in
T ′ that come from a single (or empty, as inStep 1 of the algorithm) tile in T are labeled
consecutively via Elnitsky’s procedure. This gives an injection R(p) ↪→ R(w), and
thus R(p) ≤ R(w). �

Figure 4 gives an example of the injection described in the proof of Theorem 5.3.
Having established that the numbers of both reduced words and of commutation

classes are monotonically increasing with respect to pattern containment, it is natural
to wonder when equality is maintained in either case, and if any criteria exist for that to

1
2

3

4

5

6

1
2

3
4

5

6

7

8

Fig. 4 Demonstration of the injection R(52143) ↪→ R(6213574), as indicated by tile labels. Thick borders
in X (6213574) bound the images of the rhombi from the tiling of X (52143), and dashed edges give a (in
fact, the only for each setting in this example) rhombic tiling of the induced paw
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occur. In fact, we can describe such conditions for each statistic, determining precisely
which p ≺ w preserve the number of reduced words (respectively, commutation
classes), and which do not. We prelude those results with a simple proposition.

Proposition 5.4 |R(w)| = 1 if and only if, for fixed ε ∈ {±1} and some m ≤ m′,

w(i) =
{

i if i /∈ [m, m′], and

i + ε otherwise, taking values cyclically in [m, m′].

Proof The only reduced words that support no commutations or braids are words of
the form

m(m + 1)(m + 2) · · · (m′ − 1)

or

(m′ − 1)(m′ − 2)(m′ − 3) · · ·m

for some m ≤ m′. �
Note that if m = m′ in Proposition 5.4, then the reduced word is empty and the

permutation w is the identity.
We can now completely characterize the conditions on p ≺ w for which |R(p)| is

equal to |R(w)|. The theorem only addresses the case when these sets have more than
one element, since Proposition 5.4 has already described what must occur when they
both have size 1.

Theorem 5.5 Suppose p ≺ w. Then |R(p)| = |R(w)| > 1 if and only if �(p) = �(w).

Proof Suppose throughout the proof that p ≺ w, and fix an occurrence 〈p〉 of p in w

Suppose �(p) = �(w). Then every inversion in w is an inversion in this 〈p〉, and
thus w fixes all letters not in 〈p〉. Define x1 ≤ y1 < x2 ≤ y2 < · · · and P1, P2, . . .

so that 〈p〉 = P1P2 · · · , where Pi uses the letters [xi , yi ]. Then elements of R(w) are
words on

⋃

i

[xi, yi),

and we have a bijection R(w) → R(p) defined letter-wise by

j �→
{

j − xi + 1 if xi ≤ j < yi .

Thus |R(p)| = |R(w)|.
Now consider |R(p)| = |R(w)| > 1. Suppose �(p) < �(w). Then there is an

inversion with values x > y such that, without loss of generality, the value x is not
part of 〈p〉. Choose the positions of this inversion to be as close together as possible,
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so that everything appearing between x and y in w is both greater than x and part of
〈p〉. That is,

w = Ax ByC,

where B ⊆ 〈p〉 and x < b for all b ∈ B. Because |R(p)| = |R(w)|, if we multiply
w on the right by adjacent transpositions to remove inversions, then any resulting w′
in which x is immediately to the left of y can contain no other descents. In particular,
this is true for

w′ = Axy BC.

Thus Ax is an increasing sequence of values, as is y BC . Combining this with the
relationship between x and B means that, in fact,

Ax BC

is an increasing sequence of values. Thus w has the form of one of the permutations
described in Proposition 5.4, contradicting the fact that |R(w)| > 1. Therefore, we
must in fact have that �(p) = �(w). �

Theorem 5.5 says that any complexity to w besides its containment of p will
introduce additional reduced words. To clarify the practicality of this result, we offer
the following corollary.

Corollary 5.6 Suppose p ≺ w. Then |R(p)| = |R(w)| > 1 if and only if w has a
p-pattern that can be partitioned as 〈p〉 = P1P2 · · · , where all letters of Pi are less
than all letters of Pi+1 for all i , and all letters not in this 〈p〉 are fixed by w.

Just as reduced word enumeration was shown to be monotonic in Theorem 5.3 and
further refined in Theorem 5.5, we can also refine the commutation class monotonicity
from Proposition 5.2.Whereas Theorem 5.3 showed that enumeration of 21-patterns is
the crux to equality of |R(p)| and |R(w)|, the analogous result for |C(p)| and |C(w)|
will rely on enumeration of 321-patterns.

Theorem 5.7 Suppose p ≺ w. Then |C(p)| = |C(w)| if and only if the permutations
p and w contain the same number of 321-patterns.

Proof Suppose throughout the proof that p ≺ w, and fix an occurrence 〈p〉 of p in w.
Suppose that p and w contain the same number of 321-patterns, so every 321-

pattern in w is part of this 〈p〉. We want to show that the MONO algorithm is both
surjective and a function. Consider some T ∈ T (p). Because 321-patterns in w occur
within 〈p〉, each X (q)-paw thatMONO produces from a rhombus in T has q avoiding
321. Thus these paws each have exactly one rhombic tiling. Similarly, in Step 1 of
MONO, the permutation w�(p) must also be 321-avoiding, and thus |T (w�(p))| = 1.
Therefore, MONO is a function; that is, it maps T ∈ T (p) to a single, well-defined
T ′ ∈ T (w). Now consider U ′ ∈ T (w). If p = e then w is 321-avoiding and has only
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T = ∈ T (w)

z

y

xz

y

x

U = ∈ T (w)

z

y

xz

y

x

Fig. 5 Two tilings of the {x, y, z} sub-hexagon that must appear in element of T (w), as described in the
proof of Theorem 5.7

one commutation class, so certainly |C(p)| = |C(w)|. Otherwise, there is an i such
that 〈p(i)〉 > 〈p(i + 1)〉. Moreover, because w has no more 321-patterns than p has,
the segment from 〈p(i)〉 to 〈p(i + 1)〉 in the one-line notation of w is 321-avoiding.
Thus the paw created by this segment has a unique rhombic tiling, which must be
what we see in U ′. Let w′ be the permutation obtained by rewriting this segment in
increasing order, so X (w′) is X (w) without that paw, and let p′ = pσi , so X (p′)
is what remains after positioning a rhombus with edges {p(i), p(i + 1)} along the
rightmost border of X (p). Iterating this procedure with p′ and w′ yields a unique
tiling U ∈ T (p) such that MONO produces U ′ from U . Thus MONO is surjective,
and so we do indeed have |C(p)| = |C(w)|.

Now consider |C(p)| = |C(w)|. Suppose that x > y > z is a 321-pattern in w. By
Corollary 4.18, there are elements of T (w) that are identical except for the tiling of
a sub-hexagon with edges {x, y, z}, as depicted in Fig. 5. Consider T ′ ∈ T (w). For
some T ∈ T (p) to produce this particular {x, y, z} sub-hexagon unambiguously via
MONO, there is an i such that, as defined by the algorithm,

wi = · · · 〈pi ( j)〉 · · · x · · · y · · · 〈pi ( j + 1)〉 z · · · ,

where pi ( j) > p j ( j + 1), and

wi+1 = · · · y x z · · · .

To obtain this wi+1, we must have that x and y are the two largest elements in the
segment 〈pi ( j)〉 · · · x · · · y · · · 〈pi ( j + 1)〉 of wi . For MONO to be a function, this
segment must avoid 321. Therefore, y �> 〈pi ( j + 1)〉. Moreover, because x and y are
maximal in this segment, we have y �< 〈pi ( j + 1)〉. Thus y = 〈pi ( j + 1)〉. Because
〈pi ( j)〉 > p j ( j + 1) = y, and x is the largest value in the segment, we must in fact
have x = 〈pi ( j)〉. Therefore, x and y are both values in 〈p〉. A similar argument for
the hexagon tiling in U ′ shows that z must be part of 〈p〉 as well. Therefore, every
321-pattern in w is also a 321-pattern in 〈p〉, and so p and w have equally many
321-patterns. �
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Both Theorems 5.5 and 5.7 can be stated in terms of patterns in p and w: Theo-
rem 5.5 requires equally many 21-patterns, and Theorem 5.7 requires equally many
321-patterns. This suggests that patterns may play an even deeper, “meta,” role in
structural aspects of the symmetric group. Additionally, note that this equinumerable
requirement is somewhat orthogonal to typical forays into pattern containment and
avoidance, where one only cares about whether a pattern occurs, and not how often it
does so.

5.2 Enumeration of 132-avoiding permutations by length

Permutation patterns appear throughout combinatorics, typically in theorem state-
ments of two varieties: characterization results (such as Corollary 4.1, because
“vexillary” is equivalent to 2143-avoiding) and enumerative results. This latter class
has received several decades of consistent attention (see, for example, [4,8,17,23,25]).

Definition 5.8 Fix a permutation p. Let

Sn(p) = {w ∈ Sn : w avoids p}.

There is great interest in understanding |Sn(p)| for different p. For example, it is
well known and has been proved in many contexts, that

p ∈ S3 �⇒ |Sn(p)| = Cn, (3)

where

Cn = 1

n + 1

(
2n

n

)

is the nth Catalan number. For more information about Catalan numbers, including
their enumeration of S3 pattern avoidance, the reader is encouraged to read [28] and
entry A000108 of [21].

This section will show that partitions and a collection of pattern avoiding permu-
tations are in bijection with each other and thus are equinumerous. Parts of size 0 are
typically suppressed in partition enumeration—otherwise there would be infinitely
many partitions of a given size. Similarly, it will be useful in the upcoming enumer-
ation of pattern avoidance by length to suppress a certain kind of fixed point in our
enumeration of pattern avoidance.

To motivate our convention, consider permutations v ∈ Sn and v′ ∈ Sn+1 defined
by

v′(x) =
{

v(x) if x ≤ n, and

n + 1 if x = n + 1.

If p ∈ Sk with p(k) �= k, then v ∈ Sn(p) if and only if v′ ∈ Sn+1(p). Moreover,
�(v) = �(v′) and R(v) = R(v′). In other words, in the context of enumerating
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p-avoidance by length, the permutations v and v′ are essentially the same. When
p(1) �= 1, a similar statement can be made about v ∈ Sn and v′ ∈ Sn+1 defined by

v′(x) =
{

1 if x = 1, and

v(x − 1) if x > 1.

Thus, to enumerate pattern avoidance by length, we define a set that sidesteps this
overcounting.

Definition 5.9 For p ∈ Sk , set

S(p) =
⋃

n

⎧

⎨

⎩
w ∈ Sn :

w avoids p,

w(n) �= n if p(k) �= k, and
w(1) �= 1 if p(1) �= 1

⎫

⎬

⎭
.

In the applications of this section, we focus on 132-avoidance. However, other
patterns are similarly susceptible to our techniques and results, and we will conclude
the paper with a brief indication of how that might proceed.

The pattern 132 ∈ S3 appears in both an enumerative result (as described in (3))
and a characterization result (entry P0003 of [31]).

Theorem 5.10 ([19,20]) A permutation is 132-avoiding if and only if it is dominant.

For information about the significance of dominant permutations, the reader is
referred to [19,20]. In this paper, we will show an enumerative connection between
dominant permutations and partitions. In fact this is not the only relationship between
these two objects, since a permutation is dominant if and only if its Lehmer code is
non-increasing (see, for example, [1] and [27]).

To facilitate our enumeration below, we highlight a crucial aspect of 132-avoidance
that arises from Theorem 3.9.

Remark 5.11 The permutation 132 has one reduced word: R(132) = {2}. Moreover,
because 132+ = {132}, Definition 3.1 and Theorem 3.9 imply that w contains a 132-
pattern if and only if w has a reduced word axc for some letter x , such that a ∈ R(u)

and c ∈ R(v), where �(usx−1) > �(u) and �(sx−1v) > �(v).

We now use the techniques and results of this paper to analyze 132-avoiding per-
mutations of a given length, and we show— bijectively—that these are enumerated
by the partition numbers [21, A000041]. The theory of integer partitions is a highly
active area of combinatorial research, treated, for example, in the texts [2,3] and in a
spectacular number of papers.

Definition 5.12 Let p(n) = ∣
∣{λ � n}∣∣.

For example, p(4) = 5 because there are five partitions of 4. Drawn as Young
diagrams anchored at the upper-left corners, these are as follows.
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In order to study pattern avoidance by length, we consider the following sets, the
collection of which partitions S(p).

Definition 5.13 Fix a permutation p and let

S(p; �) = S(p) ∩ {w : �(w) = �}.

Example 5.14 (a) Some of these sets are finite: S(132; 4) = {23451, 51234, 4213,
3241, 3412}.

(b) Others are infinite:

S(321; 3) = {2341, 4123, 3142, 2413, 23154, 21453, 31254, 21534, . . .}.

We conclude this paper with an application of Theorem 3.9. Theorem 5.15 below
gives a direct connection between partitions and 132-avoiding permutations and
recovers a result (proved by other means) of Claesson, Jelínek, and Steingrímsson
[10, Proposition 11]. Next, we refine Theorem 5.15 to give a bijective relationship
between restricted partitions and 132-avoiding permutations with prescribed first let-
ters. Finally, we use this to give a connection to Catalan numbers in Corollary 5.20,
writing those values as sums of quantities of 132-avoiding permutations.

In light of the multitude and breadth of open problems in the study of pattern
avoidance enumeration, it seems highly likely that our techniques can provide new
insight into this high-interest field.

Theorem 5.15 For any integer � ≥ 0,

|S(132; �)| = p(�).

The statement of this result is quite elegant in its simplicity, and its connection
between two objects of such significant interest. Moreover, its bijective proof has a
variety of implications. Before giving that proof, we discuss a few of those conse-
quences.

We begin by introducing notation used in [27].

Definition 5.16 Let pk(n) be the number of partitions of n into exactly k parts.

The bijection given below in the proof of Theorem 5.15 has the following implica-
tion for the number of these restricted partitions.

Corollary 5.17 pk(�) =
∣
∣
∣S(132; �) ∩ {w : w(1) = k + 1}

∣
∣
∣.
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Note the connection between these results and [27, Exercise 1.125]. The binary
sequences in that setting describe vertical and horizontal steps around the southeast
edge of a partition, the inversions in such a sequence are in bijectionwith the squares of
the shape, and the number of 1s refers to the height (orwidth, depending on convention)
of the shape. Thus, in light of our results here, these strings can also describe classes
of 132-avoiding permutations.

Another way to refine the result of Theorem 5.15 involves the following sets.

Definition 5.18 Partition S(p; �) by defining

S(p; �, d) = S(p; �) ∩ {w : elements of R(w) have d distinct letters}.

Example 5.19 (a) S(132; 4, 3) = {4213, 3241, 3412}, whereas S(132; 4, 4) =
{23451, 51234}.

(b) S(321; 3, 2) = ∅ and S(321; 3, 3) = S(321; 3).
The bijection in the proof of Theorem 5.15 shows that

∣
∣S(132; �, d)

∣
∣ = ∣

∣{λ � � : λ fits inside the staircase shape δd+1 but not inside δd}∣∣.

These values for small � and d are given in Table 1 and were obtained using Sage.
Because the sets S(132; �, d) partition S(132; �), we have

∣
∣S(132; �)

∣
∣ =

�
∑

d=0

∣
∣S(132; �, d)

∣
∣.

Moreover, we know from (3) that the Catalan numbers can be refined by this statistic
∣
∣S(132; �, d)

∣
∣.

Table 1 The values
∣
∣S(132; �, d)

∣
∣ for 0 ≤ �, d ≤ 11

� = 0 1 2 3 4 5 6 7 8 9 10 11

d = 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0

2 0 0 2 1 0 0 0 0 0 0 0 0

3 0 0 0 2 3 3 1 0 0 0 0 0

4 0 0 0 0 2 2 6 7 6 4 1 0

5 0 0 0 0 0 2 2 4 8 12 15 17

6 0 0 0 0 0 0 2 2 4 6 12 15

7 0 0 0 0 0 0 0 2 2 4 6 10

8 0 0 0 0 0 0 0 0 2 2 4 6

9 0 0 0 0 0 0 0 0 0 2 2 4

10 0 0 0 0 0 0 0 0 0 0 2 2

11 0 0 0 0 0 0 0 0 0 0 0 2
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Corollary 5.20

Cn =
∑

0≤d<n
0≤�≤(n

2)

∣
∣S(132; �, d)

∣
∣.

In other words, Cn is the sum of all values weakly northwest of the entry � = (n
2

)

and d = n − 1 in the extension of Table 1.

Example 5.21

∑

0≤d<4

0≤�≤(42)

∣
∣S(132; �, d)

∣
∣ =

∑

0≤d<4

∑

0≤�≤6

∣
∣S(132; �, d)

∣
∣

= (1) + (1) + (2 + 1) + (2 + 3 + 3 + 1)

= 14

= C4.

We conclude this section with the proof of Theorem 5.15. We divide the argument
into a sequence of lemmas in order to highlight the features of the bijection involved
in the proof of the theorem.

Throughout our arguments, we consider partitions to be tableaux with a particular
filling.

Definition 5.22 The antidiagonal filling of a partition λ is defined so that all squares
along the highest antidiagonal (that is, southwest to northeast) are labeled 1, all squares
along the next highest antidiagonal are labeled 2, and so on. Equivalently, if the rows
are indexed from top to bottom and the columns are indexed from left to right, then
the square in row r and column c is labeled r + c − 1.

An example of this filling appears in Fig. 6.

Definition 5.23 For any partition λ with the antidiagonal filling, its reading word,
denoted read(λ), is obtained by concatenating the entries of the rows of λ, from
bottom to top, and from left to right within each row.

Continuing the example depicted in Fig. 6,

read (7, 4, 4, 2, 1) = 545345623451234567.

Fig. 6 Antidiagonal filling of
the partition (7, 4, 4, 2, 1) � 18 1 2 3 4 5 6 7

2 3 4 5
3 4 5 6
4 5
5
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Lemma 5.24 For any partition λ with the antidiagonal filling, the word read(λ) is
reduced.

Proof To be unreduced, wemust be able to apply commutation and braidmoves to this
word to obtain a newwordwith either xx or,without loss of generality, x(x−1)x(x−1)
as factors. Antidiagonal fillings impose strict rules on read(λ). In particular, any two
appearances of x in read(λ) are separated by an appearance of x − 1. Neither x can
pass over this x − 1 to reach the other, so we cannot encounter an xx factor. Similarly,
we cannot see · · · x · · · x − 1 · · · x · · · x − 1 · · · without x − 2 appearing between the
two copies of x − 1, and thus the factor x(x − 1)x(x − 1) does not arise either. �

Lemma 5.24 means that read(λ) defines a permutation. Moreover, the length of
this permutation is equal to the size of λ, because it is equal to the number of letters
in read(λ).

Definition 5.25 Write π(λ) for the permutation for which read(λ) is a reduced word.

Continuing our example, read(λ) ∈ R(65472381). Thus π(7, 4, 4, 2, 1) =
65472381 ∈ S8. Note that this permutation is 132-avoiding.

Lemma 5.26 The map λ �→ π(λ) is injective.

Proof Let λ be a partition having k parts, and kth part of size i . Suppose that π(λ) =
π(λ′). By construction, the permutation π(λ) sends 1 to k + 1. Thus, λ and λ′ must
have the same number of rows. If λ �= λ′, then it suffices to assume that their bottom
rows have different lengths, say i and i ′, respectively, where i < i ′. By definition
of the filling and construction of the permutation, the leftmost values in the one-line
notation of π(λ) are (k + 1)(k + 2) · · · (k + i). Moreover, the next value, the image of
i + 1, must be less than k + 1. The leftmost values in the one-line notation of π(λ) are
(k + 1)(k + 2) · · · (k + i ′). Since i ′ > i , this is a contradiction. Therefore, λ = λ′. �

We now show the connection between 132-patterns and the permutations {π(λ)}.
Lemma 5.27 S(132) = {π(λ)}.
Proof Fix w ∈ S(132) and let s ∈ R(w) be its lexicographically greatest reduced
word. View s as the concatenation of maximally long factors of consecutively increas-
ing values:

(

x1(x1 + 1)(x1 + 2) · · · (x1 + i1)
)(

x2(x2 + 1)(x2 + 2) · · · (x2 + i2)
) · · ·.

Suppose that x j ′+1 = x j ′ − 1 for all j ′ < j , and consider x j+1. The word is reduced,
so x j+1 �= x j + i j . Also, i j is maximal, so x j+1 �= x j + i j +1. If x j+1 > x j + s j +1,
then s would not be maximal because x j+1 and x j + i j could commute. Similarly,
if x j+1 ∈ [x j , x j + i j − 1], then commutation moves to slide x j+1 leftward and a
braid move to change x j+1(x j+1 + 1)x j+1 into (x j+1 + 1)x j (x j+1 + 1) would again
contradict the maximality of s. Thus x j+1 < x j . Define u and v as in Definition 3.1, so
that uσx j v = w. The choice of j means that �(uσx j −1) > �(u). To be 132-avoiding, the
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letter x j cannot be isolated on [x j −1, x j ] (see Remark 5.11). Thus, �(σx j −1v) < �(v).
Because s is lexicographically maximal, x j+1 = x j − 1 for all j .

Suppose that i j < i j−1. Obtain s′ from s by sliding the factor (x j−1 + i j +
1) · · · (x j−1 + i j−1) to the right of x j + i j = x j−1 − 1 + i j via a sequence of
commutations. In s′, the letter x j−1 + i j + 1 is isolated on [x j−1 + i j , x j−1 + i j + 1],
meaning that w /∈ S(132) – a contradiction. Finally, if a non-empty s has minimal
letter m > 1, then any appearance of m would be isolated on [m − 1, m]. Thus, by the
previous discussion, xJ = 1 for the maximal value of J . The word s as described is
exactly read(i J + 1, i J−1 + 1, . . . , i1 + 1). Thus S(132) ⊆ {π(λ)}.

For the reverse inclusion, first suppose that λ = (�) has only one part. Then
read(λ) = 12 · · · � and π(λ) = 234 · · · �(� + 1)1, which is certainly 132-avoiding.
Suppose, inductively, that for any partition μ having fewer than k parts, the permu-
tation π(μ) is 132-avoiding. Let λ be a partition having k parts and kth part of size
i . Let μ be the partition obtained from λ by removing the last part. By construc-
tion, π(λ) = u · π(μ), where u = σkσk+1 · · · σk+i−1. The leftmost values in the
one-line notation of π(λ) are (k + 1)(k + 2) · · · (k + i). The only inversions in π(λ)

that do not appear in π(μ) arise because k now appears to the right of the values
{k + 1, k + 2, . . . , k + i}. For π(λ) to introduce a 132-pattern, then, we would need
〈32〉 = (k + j)k for some j ∈ [1, i]. However, no value less than k appears to the
left of this k + j , so there can be no such 132-pattern. Hence π(λ) ∈ S(132) and so
{π(λ)} ⊆ S(132). �

We are now ready to prove the main result of this section.

Proof of Theorem 5.15 Lemmas 5.24 and 5.26 give a bijective correspondence
between partitions and a particular class {π(λ)} of permutations. Lemma 5.27 shows
that this class is exactly S(132). Therefore, we have a bijection between partitions
and elements ofS(132), and, more precisely, between partitions of � and elements of
S(132; �). �

By the symmetry of their reduced words, this section’s manipulations and enumer-
ative results about 132-avoidance can be recast in terms of 213-avoidance. However,
despite expression (3), we cannot replace 132 there by any other element of S3 in
those statements. Our techniques would still apply for those other patterns, but the
details—and the enumerations—would differ. In the final section of this paper, we give
a glimpse of how this would work, and state enumerative results about 231-avoidance.

6 Final remarks

It is clear from this work that reduced word manipulation is ripe for application in
many settings. Here we have focused only on the symmetric group, but the technique
could certainly be employed in other Coxeter groups and to other structural questions.
The breadth of applications we have encountered so far is highly promising, and we
are optimistic that these methods will continue to yield fruitful results.

For example, if one were to enumerate 231-avoiding permutations (that is, stack-
sortable permutations, [17]) by length, one would be looking for factors x(x + 1) to
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be unisolated on [x, x + 1]. This means, among other things, that if the letters x and
x +1 each appear only once in a reduced word, then their relative order is forced: They
would have to appear as (x + 1) · · · x. On the other hand, if x and y each appear only
once in a reduced word and |x − y| > 1, then their relative order does not matter. This
produces the following enumerations of 231-avoiding permutations inSn by length.

∣
∣{w ∈ Sn(231) : �(w) = 1}∣∣ = n − 1
∣
∣{w ∈ Sn(231) : �(w) = 2}∣∣ =

(
n − 1

2

)

∣
∣{w ∈ Sn(231) : �(w) = 3}∣∣ =

(
n − 1

3

)

+ n − 2

∣
∣{w ∈ Sn(231) : �(w) = 4}∣∣ =

(
n − 1

4

)

+ (n − 2)(n − 3)

∣
∣{w ∈ Sn(231) : �(w) = 5}∣∣ =

(
n − 1

5

)

+ (n − 2)

(
n − 3

2

)

+ n − 3
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