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Abstract We study an algebra encoding a twice-iterated Pieri rule for the representa-
tions of the general linear group and prove that it has the structure of a cluster algebra.
We also show that its cluster variables invariant under a unipotent subgroup generate
the highest weight vectors of irreducible representations occurring in the decomposi-
tion of the tensor product of two irreducible representations of the general linear group
one of whom is labeled by a Young diagram with less than or equal to two rows.
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1 Introduction

1.1 Main results

Let us consider the complex general linear group GLd , the group of d × d invertible
matrices over the complex number field C, and its maximal unipotent subgroup Ud

consisting of unit upper triangular matrices. For a Young diagram λ, we write V λ
d

for the irreducible polynomial representation of GLd labeled by λ and write �(λ)
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for the number of rows in λ. If λ has only one row of length k, then we often write
λ = (k). Note that the symmetric power Symk

C
d ofCd can be taken as an irreducible

representation of GLd labeled by the Young diagram (k).
The Pieri rule in representation theory describes the decomposition of the tensor

product V λ
d ⊗ V (k)

d and also, using the reciprocity explained in [10,13], the decompo-
sition of an irreducible representation V λ

d of GLd as a representation of its subgroup
GLd−1. See, for example, [6,7,18].

In this paper, we study an algebra, called the twice-iterated Pieri algebra and
denoted by An,m , encoding the Pieri rule iterated twice. We investigate its explicit
cluster algebra structure and relation with the tensor product decomposition problem.

Main Theorem (1) The twice-iterated Pieri algebra An,m admits the structure of a
cluster algebra of type Ar where r = m − 1 if m ≤ n and r = n if m ≥ n + 1.

(2) The cluster variables invariant under U2 ⊂ GL2 generate the highest weight
vectors of the isomorphic copies of V λ

m occurring in the decomposition

Vμ
m ⊗ V ν

m =
⊕

λ

(
V λ
m

)⊕cλ
μν where �(μ) ≤ min(n,m) and �(ν) ≤ 2. (1.1)

The case (1.1) is important in the tensor product decomposition problem in that,
by applying the decomposition rule for this case repeatedly, one can obtain the full
description of the celebrated Littlewood–Richardson rule for all polynomial represen-
tations of GLm . See [11, §§6-7].

1.2 Twice-iterated Pieri algebra

In Sect. 2, using classical invariant theory, we construct and study the twice-iterated
Pieri algebraAn,m , which provides collective descriptions of (i) the decomposition of
the tensor products of the form

Vμ
m ⊗ V (a)

m ⊗ V (b)
m =

⊕

λ

(
V λ
m

)⊕p(λ,μ,a,b)
(1.2)

for Young diagrams μ with less than or equal to min(n,m) rows and nonnegative
integers a and b and (ii) the restriction of GLn+2 irreducible representations to the
subgroup GLn+1 and further to GLn

V λ
n+2 ↓GLn+2

GLn
=

⊕

μ

(
Vμ
n

)⊕q(λ,μ) (1.3)

for Young diagrams λ with less than or equal to min(n + 2,m) rows.
The algebraAn,m provides an example of an algebra with straightening laws (ASL),

or more generally Hodge algebra. Its finite presentation is well compatible with the
combinatorics of Young tableaux, and such combinatorial properties can be explained
in the context of a flat degeneration ofAn,m to an affine semigroup ring defined over a
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distributive lattice. Also, with an appropriate condition on n and m, the algebra An,m

can carry the branching information for other classical groups as well. We refer the
reader to [15,16,22] for these directions.

1.3 Cluster algebra

In Sects. 3 and 4, using the presentation of the algebraAn,m given in Sect. 2, we prove
that it admits another nice algebraic structure, the structure of a cluster algebra, which
makes an interesting connection between highest weight vectors in the branching
decomposition and highest weight vectors in the tensor product decomposition.

Cluster algebras, introduced by Fomin and Zelevinsky, are commutative algebras
with generators called cluster variables and relations constructed via involutive oper-
ations called mutations. To define a (skew-symmetric) cluster algebra (of geometric
type) A = A(z0, Q0), we need initial data (z0, Q0) consisting of a quiver Q0 and a
set z0 of certain elements in the algebra indexed by the vertices of Q0. The elements
of z0 form only a subset of the generating set of A, and the full set of generators and
relations of the algebra can be obtained bymutating the initial data. It is known that the
coordinate ring of any Bruhat cell is isomorphic to a so-called upper cluster algebra
[1], and that the multi-homogeneous coordinate ring of any partial flag algebra has the
structure of a cluster algebra [5,19].

In this paper, while the algebra we consider is closely related to the coordinate
rings mentioned above, we will take a more direct computational approach to obtain
explicit expressions of its cluster variables. One of the main difficulties in proving our
results is to find appropriate initial data which can produce all the cluster variables
in a systematic way. To find such data, we will modify the poset structure of the
generating set for An,m studied in [15] and obtain an initial quiver by gluing small
quivers associated with the Grassmannian of two-dimensional subspaces in C

4. We
will explicitly compute all the cluster variables for the algebra An,m .

1.4 Tensor product algebra

Finally, inSect. 5,we focus on the cluster variables ofAn,m invariant under themaximal
unipotent subgroupU2 of GL2 and show that they generate the highest weight vectors
of the isomorphic copies of V λ

m occurring in the decomposition of the tensor product
(1.1).

More precisely, we show that the U2-invariant ring A
U2
n,m is indeed a special case

of the GLm tensor product algebras studied by Howe et al. [11,12], and prove that
the U2-invariant cluster variables of the algebra An,m form a generating set of the
GLm tensor product algebra encoding the Littlewood–Richardson rule for the tensor
products of the form (1.1). It would be an interesting problem to find other classes
of the tensor product algebras and associated highest weight vectors have the kind of
algebraic interpretations as our results.
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2 Twice-iterated Pieri algebra

In this section, we define the twice-iterated Pieri algebra and study its finite presenta-
tion.

2.1 Twice-iterated Pieri algebra

Once and for all, we fix two integers n ≥ 1 and m ≥ 2. Let us consider the coordinate
ring C[Mn+2,m] of the space

Mn+2,m ∼= C
n+2 ⊗ C

m

of complex (n+ 2)×m matrices. We will fix the coordinates xi j of the spaceMn+2,m
and then identify the coordinate ring ofMn+2,m with the polynomial ring in nm + 2m
indeterminates. We let GLn+2 × GLm act on the ring by

((g1, g2) · f )(X) = f (gt1Xg2) (2.1)

for (g1, g2) ∈ GLn+2 × GLm , f ∈ C[Mn+2,m] and X ∈ Mn+2,m .
In considering the restriction of GLn+2 to its subgroup GLn and the action of GL2

on C[Mn+2,m], we use the following embedding of GLn and GL2 in GLn+2: for
Y ∈ GLn and Z ∈ GL2,

[
Y 0
0 I2

]
∈ GLn+2and

[
In 0
0 Z

]
∈ GLn+2 (2.2)

where Id is the d × d identity matrix.
Now let Ud be the maximal unipotent subgroup of GLd consisting of upper tri-

angular matrices with 1’s on the diagonal. We shall consider the ring of polynomials
f ∈ C[Mn+2,m] such that

((u1, u2) · f )(X) = f (X)

for X ∈ Mn+2,m and (u1, u2) ∈ Un ×Um .

Definition 2.1 The twice-iterated Pieri algebra An,m is the ring of polynomials in
C[Mn+2,m] invariant under the subgroup Un ×Um of GLn+2 × GLm

An,m = C[Mn+2,m]Un×Um

with respect to the action (2.1).

Howe and Lee [10] studied the module structure of a polynomial ring over multiple
copies of the general linear groups. Focusing on a case with three copies of GLm , we
have
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C[Mn+2,m]Un×1 = C[Mn,m]Un×1 ⊗ C[M1,m] ⊗ C[M1,m] (2.3)

∼=
⊕

μ,a,b

Vμ
m ⊗ V (a)

m ⊗ V (b)
m

as a GLm × GLm × GLm module. Here, we used the fact that as a GLq -module,

C[Mp,q ]Up×1 ∼=
⊕

η

(V η
p )Up ⊗ V η

q
∼=

⊕

η

V η
q (2.4)

where the summation runs over Young diagrams ηwith not more than min(p, q) rows.
See, for example, [6,7]. Therefore, the summation in (2.3) runs over Young diagrams
μ with not more than min(n,m) rows and nonnegative integers a and b. Then, by
takingUm-invariant polynomials in the algebra C[Mn+2,m]Un×1, we obtain the twice-
iterated Pieri algebra An,m consisting of the highest weight vectors of irreducible
representations V λ

m of GLm in the tensor products Vμ
m ⊗ V (a)

m ⊗ V (b). Since the
multiplicities of irreducible representations in such tensor products can be described
by applying the Pieri rule twice, we call An,m the twice-iterated Pieri algebra.

2.2 Homogeneous components

On the other hand, from the decomposition of the polynomial ring

C[Mn+2,m] ∼=
⊕

λ

V λ
n+2 ⊗ V λ

m

as a GLn+2 × GLm module, by taking Un ×Um invariants, we have

An,m ∼=
⊕

λ

(V λ
n+2)

Un ⊗ (V λ
m)Um

where the summation runs over λ with �(λ) ≤ min(n + 2,m). Since the Un-invariant
vectors in V λ

n+2 are the highest weight vectors of GLn-irreducible representations
Vμ
n , our twice-iterated Pieri algebra An,m also carries the branching rules under the

restriction of GLn+2 to its subgroup GLn .
To study the ring structure of An,m in this context, let us write Td for the maximal

torus of GLd consisting of diagonal matrices. Since Ud is normalized by Td in GLd ,
we can consider the Tn × Tm-eigenspaces

W (μ, λ) = {
f ∈ An,m : ((s, t) · f )(X) = sμtλ f (X) for (s, t) ∈ Tn × Tm

}

where sμ = ∏
j s

μ j
j and tλ = ∏

j t
λ j
j . Here, s and t are diagonal matrices in Tn

and Tm with entries s1, . . . , sn and t1, . . . , tm , respectively; μ = (μ1, . . . , μn) and
λ = (λ1, . . . , λm) are Young diagrams identified with dominant weights for GLn and
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GLm , respectively. Then, we have the decomposition

An,m =
⊕

(μ,λ)

W (μ, λ),

which provides a multi-grading structure on the algebra An,m . With highest weight
theory (see, for example, [6, § 3.2]), it is straightforward to see that W (μ, λ) consists
of the highest weight vectors of the isomorphic copies of the irreducible represen-
tation Vμ

n of GLn appearing in the irreducible representation V λ
n+2 of GLn+2. As a

consequence, the dimension of the space W (μ, λ) equals the multiplicity of Vμ
n in

V λ
n+2. See [15].
Moreover,with an appropriate condition onn andm, the algebraAn,m also describes

the branching rules for other classical groups. For example, when n = �−1 andm = �,
the algebra An,m carries the information on the decomposition of every irreducible
representation of the symplectic group Sp2� as a representation of its subgroup Sp2�−2.
For further details in this direction, we refer the reader to [15,16,22].

We remark that one can also construct an algebra encoding both tensor products
and branchings of Pieri type for the general linear groups at the same time. It turns
out such an algebra, called the double Pieri algebra, carries a nice algebraic structure
with interesting connections with tensor product decomposition problems for other
classical groups. These results will be discussed in separate articles. See [9].

2.3 Standard monomial basis

In [15], one of the present authors investigated explicit presentations of algebras encod-
ing branching rules for classical groups. Here, we summarize and modify some of the
results relevant for us.

For X ∈ Mn+2,m and a subset I = {r1, r2, . . . , rh} of {1, 2, . . . , n + 2}, we let
δI (X) denote the minor of X = (xi j ) with row indices r1, r2, . . . , rh and column
indices 1, 2, . . . , h:

δI (X) = det

⎡

⎢⎢⎢⎣

xr11 xr12 · · · xr1h
xr21 xr22 · · · xr2h
...

...
. . .

...

xrh1 xrh2 · · · xrhh

⎤

⎥⎥⎥⎦ (2.5)

In considering subsets I = {r1, r2, . . . , rh} of {1, . . . , n + 2} for δI , we assume that
their entries are in increasing order, i.e., r1 < r2 < · · · < rh . Let us focus on the
following subsets of {1, . . . , n + 2}

I4 j+1 := {1, 2, . . . , j, n + 2}, I4 j+2 := {1, 2, . . . , j, n + 1},
I4 j+3 := {1, 2, . . . , j, n + 1, n + 2}, I4 j := {1, 2, . . . , j − 1, j}.

for 0 ≤ j ≤ n, with the conventions I1 = {n+2}, I2 = {n+1}, and I3 = {n+1, n+2}.
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Definition 2.2 Writing L j for the collection

L j = {
I4 j+1, I4 j+2, I4 j+3, I4( j+1), I4( j+1)+1, I4( j+1)+2

}
, (2.6)

we define Ln,m as follows:

(1) if m ≤ n, then

Ln,m = {I4m} ∪
⋃

0≤ j≤m−2

L j ;

(2) if m = n + 1, then

Ln,m =
⋃

0≤ j≤n−1

L j ;

(3) if m ≥ n + 2, then

Ln,m = {I4n+3} ∪
⋃

0≤ j≤n−1

L j .

Notation 2.3 When there is no danger of confusion, we denote by δi the minor δIi
whose rows are indexed by Ii ∈ Ln,m.

In order to describe a C-basis for the twice-iterated Pieri algebra, we define the
standard monomials for An,m to be monomials in δ�’s which are not divisible by
δ4 j+3δ4( j+1) for any j . Then, for a standard monomial

δ�1δ�2 . . . δ�r ,

we can define its shape to be the skew Young diagram λ/μ where λ is, after the
reordering of the product so that |I�1 | ≥ |I�2 | ≥ · · · ≥ |I�r |, the transpose of the
Young diagram (|I�1 |, |I�2 |, . . . , |I�r |) and μ = (d1, . . . , dn) where di is the number
of times i’s appearing in the sets I�1 , . . . , I�r .

Proposition 2.4 (1) The twice-iterated Pieri algebra An,m is generated by

Gn,m := {
δi : Ii ∈ Ln,m

}
.

(2) The standard monomials for An,m form a C-basis for the space An,m. More
precisely, the standard monomialsAn,m of shape λ/μ form aC-basis of the space
W (λ, μ).

We can identify each standard monomial of shape λ/μ with a semistandard Young
tableau of shapeλ/μ by concatenating the indices I�’s of the factors δ�’s in the standard
monomial. This canbeunderstood as a skewversionof thewell-knowncorrespondence
between weight vectors of an irreducible GLn module with highest weight λ and
semistandard Young tableaux of shape λ [15]. In what follows, we sketch the proof of
the above results.
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2.4 Straightening laws

When proving Proposition 2.4, we find that the following poset structure on the set
Ln,m is useful. First, for each j , we impose a partial order on L j defined in (2.6) using
the Hasse diagram in Fig. 1 whose nodes increase from bottom to top.

Next, we want to define a poset structure on the set Ln,m (Definition 2.2) using the
ordinal sum of posets L j . Recall that the ordinal sum P ⊕ Q of two posets P and Q
is the poset on the union P ∪ Q such that x ≤ y in P ⊕ Q if x, y ∈ P and x ≤ y in
P , or x, y ∈ Q and x ≤ y in Q, or x ∈ P and y ∈ Q [20, § 3.2].

Definition 2.5 We define the following poset structure on the set Ln,m .

(1) If m ≤ n, then

Ln,m = {I4m} ⊕ Lm−2 ⊕ Lm−1 ⊕ · · · ⊕ L1 ⊕ L0.

(2) If m = n + 1, then

Ln,m = Ln−1 ⊕ Ln−2 ⊕ · · · ⊕ L1 ⊕ L0.

(3) If m ≥ n + 2, then

Ln,m = {I4n+3} ⊕ Ln−1 ⊕ Ln−2 ⊕ · · · ⊕ L1 ⊕ L0.

Then, for each incomparable pair (I4 j+3, I4( j+1)) in Ln,m , we find a relation called
straightening law. That is,

δI4 j+3δI4( j+1) = δI4( j+1)+1δI4 j+2 − δI4( j+1)+2δI4 j+1 . (2.7)

First, it is easy to verify that δi for Ii ∈ Ln,m are invariant under the action ofUn ×Um .
Then, we observe that for each monomial in δi ’s, by using the above identities, we

Fig. 1 Hasse diagram for L j
I4j+1

I4j+2

I4j+3 I4(j+1)

I4(j+1)+1

I4(j+1)+2
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can replace the factors δI4 j+3δI4( j+1) with linear combinations of standard monomials.
By applying such replacements as many times as necessary, we can express every
monomial in δi ’s as a linear combinationof standardmonomials, thereby ‘straightening
out’ all nonstandard monomials. Finally, by using a counting argument obtained from
representation theory or by showing directly that standard monomials are linearly
independent, we can prove Proposition 2.4. For more details, see [15].

3 Cluster algebra structure: base cases

In this section, we show that some small twice-iterated Pieri algebras admit the struc-
ture of a cluster algebra. Recall that we fix two integers n ≥ 1 and m ≥ 2 for the
algebra An,m .

Theorem 3.1 (1) The twice-iterated Pieri algebrasA1,m with m ≥ 2 andA2,2 admit
the structure of a cluster algebra of type A1.

(2) The twice-iterated Pieri algebrasA2,m with m ≥ 3 admit the structure of a cluster
algebra of type A2.

Let us briefly review some basic concepts of (skew-symmetric) cluster algebras (of
geometric type). For details, we refer the reader [2–4,17,21]. Then, for each case, we
will define an initial seed and show that all the cluster variables obtained by sequences
of mutations form a generating set of the algebra An,m .

3.1 Cluster algebras

For two positive integers c ≤ d, let F be a field of rational functions in c variables over
C(zc+1, . . . , zd). A seed is a pair (z, Q) consisting of a generating set z = {z1, . . . , zd}
of F and a finite quiver Q without loops or 2-cycles with vertex set {1, . . . , d}. The
vertices i of Q will be called mutable if 1 ≤ i ≤ c and frozen if c + 1 ≤ i ≤ d.
The variables zi ∈ z are associated with the vertices i of Q, and they will be called
(mutable or frozen) cluster variables.

A cluster algebra is a commutative ring generated inside F with generators obtained
from an initial seed via iterative processes of seed mutations described below. For a
mutable vertex k of Q, by applying the mutation μk at k to (z, Q) we obtain a new
pair μk(z, Q) = (z′, Q′) consisting of a set z′ and a quiver Q′ = μk(Q). Here, z′ is
obtained from z by replacing the element zk with

z′k =
∏

i→k zi + ∏
k→ j z j

zk
(exchange relation) (3.1)

where the products runs for all arrows i → k and k → j , respectively, and Q′ =
μk(Q) is defined as follows: (i) for each subquiver i → k → j , add an arrow i → j ,
(ii) reverse all arrows starting from or ending at k, (iii) remove the arrows in a maximal
set of pairwise disjoint 2 cycles. It is known that μk(z, Q) is again a seed and that μk

is an involution.
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In describing mutations, we often find matrices are more convenient than quivers.
Let B = (bi j ) be the antisymmetric matrix associated with Q, i.e., bi j = −b ji is
the number of arrows from vertex i to vertex j in Q. Here we note that the rows and
columns of B are labeled by the vertices of Q. If we write μk(B) = (b′

i j ) for the
matrix associated with μk(Q), then we have

b′
i j =

{−bi j if i = k or j = k,

bi j + |bik |bk j+bik |bk j |
2 otherwise.

(3.2)

A cluster algebra is of finite-type X if the quiver under consideration is mutation-
equivalent to an orientation of a finite-type Dynkin diagram of type X . We say an
algebra admits the structure of a cluster algebra with an initial seed (z0, Q0) if the
cluster variables obtained by applying all possible sequences of mutations to (z0, Q0)

form a generating set for the algebra.

3.2 Case n = 1

The poset structure of the generating set G1,2 = {δi : Ii ∈ L1,2} for the algebra A1,2
can be illustrated via the Hasse diagram in Fig. 1 with j = 0. These six generators
satisfy the following relation:

δ3δ4 = δ2δ5 − δ1δ6. (3.3)

We define the initial quiver Q0 for the algebra A1,2 as shown in Fig. 2 with one
mutable variable z5 = δ5, therefore of type A1, and four frozen variables z1 = δ1,
z3 = δ3, z4 = δ4 and x6 = δ6. Then, there is only one possible mutation, and after the
mutation at 5, we obtain a new quiver μ5(Q0) in Fig. 3 with the new cluster variable

z′5 = (z1z6 + z3z4)/z5,

which can be, using (3.3), simplified to z′5 = δ2.
Consequently, all the cluster variables we have are nothing but the elements in

the generating set G1,2 of the algebra A1,2. We also note that, from this presentation,

Fig. 2 Initial quiver forA1,2

1 5

3

4

6
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Fig. 3 After the mutation at 5

1 5

3

4

6

Fig. 4 Initial quiver forA2,3

1

3

4

5

7

8

9 10

this algebra is isomorphic to the homogeneous coordinate ring for the Grassmannian
Gr(2, 4) of two-dimensional subspaces in C

4.
Next, if n = 1 and m > 2, then in addition to the elements in G1,2, there is one

more generator δ7 inA1,m . By taking z7 = δ7 as an additional frozen variable, we can
easily see that the algebra A1,m is again isomorphic to a cluster algebra of type A1.

3.3 Case n = 2

Now let us first consider the algebra A2,3. The poset structure of the generating set
G2,3 may be realized as the ordinal sum of two Hasse diagrams in Fig. 1 with j = 0
and j = 1:

L2,3 = L1 ⊕ L0. (3.4)

There are ten generators with two relation among them:

δ3δ4 = δ2δ5 − δ1δ6 and δ7δ8 = δ6δ9 − δ5δ10. (3.5)

Motivated by the realization of the generating set for A2,3 given in (3.4), we want
to construct a quiver by gluing two quivers forA1,2. Let us define the initial quiver Q0
for the algebra A2,3 as shown in Fig. 4, which is of type A2. The set z0 of the initial
cluster variables consists of two mutable variable z5 = δ5 and z9 = δ9 and six frozen
variables z� = δ� for � = 1, 3, 4, 7, 8, 10.

Next, let us consider the following mutations of the initial quiver Q0

μ5(Q0), (μ9 ◦ μ5)(Q0), and μ9(Q0),
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which provide new cluster variables

z′5 := μ5(z5) = (z3z4z9 + z1z7z8)/z5, z′9 := (μ9 ◦ μ5)(z9) = (z′5 + z1z10)/z9,

and z′′9 := μ9(z9) = (z7z8 + z5z10)/z9.

expressed as Laurent polynomials in initial variables zi ∈ z0.
After simplifying them using the identities (3.5), we end up with

z′5 = (δ2δ9 − δ1δ10), z′9 = δ2,

and z′′9 = δ6,

which are polynomials in the generators of A2,3.
Using the fact that cluster algebras of type A2 can have only five cluster variables,

we know that there are no other cluster variables we can obtain by other sequences
of mutations. Therefore, all the cluster variables the initial seed (z0, Q0) can produce
are the elements in the generating set G2,3 for the algebra A2,3 and one additional
element (δ2δ9 − δ1δ10) which is a polynomial in the elements of G2,3. This shows that
the twice-iterated Pieri algebraA2,3 is isomorphic to a cluster algebra of type A2 with
the initial seed (z0, Q0).

Finally, when n = 2 and m > 3, in addition to the elements in G2,3, there is one
more generator δ11 for A2,m . By taking z11 = δ11 as an additional frozen variable,
we can easily see that the algebra A2,m has the structure of a cluster algebra of type
A2. If n = 2 and m = 2, by comparing the generators and straightening laws of A2,2
with those of A1,3, it is straightforward to see that A2,2 has the structure of a cluster
algebra of type A1.

4 Cluster algebra structure: general case

In this section, we prove the following general statement.

Theorem 4.1 The twice-iterated Pieri algebra An,m admits the structure of a cluster
algebra of type Ar where r = m − 1 if m ≤ n and r = n if m ≥ n + 1.

From Definition 2.5, our generating set of An,m for m ≥ n + 2 consists of the
generators of An,n+1 with one additional element which is not involved with any
straightening laws. Similarly, the presentation of An,m for m ≤ n can be obtained
from that ofAm−1,m . Therefore, all the cases can be derived from the casem = n+1.

Recall that if m = n + 1, the algebra An,m is a subalgebra of the polynomial ring
C[xi j ] generated by the following minors (see Eq. (2.5) and Notation 2.3):

{δi : 1 ≤ i ≤ 4n + 2},

and that δi ’s satisfy

δ4 j−1δ4 j = δ4 j−2δ4 j+1 − δ4 j−3δ4 j+2
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for 1 ≤ j ≤ n.
To prove Theorem 4.1 for m = n + 1, we will show that starting from a subset of

the generating set Gn,m of the algebra An,m , it is possible to produce all the missing
generators by mutations, and that also all the other cluster variables are in fact poly-
nomials in δi ’s. Therefore, the cluster variables form a complete generating set of the
algebra An,m .

4.1 Initial seed

Let us consider the quiver Q0 given in Fig. 5 with the repeating middle part as shown
in Fig. 6 and the collection z0 of initial cluster variables zi indexed by the vertices i
of Q0. More precisely, z0 consists of

(1) n mutable variables z4 j+1 for 1 ≤ j ≤ n,
(2) (2n + 2) frozen variables

(a) z1 and z4n+2,
(b) z4 j−1 and z4 j for 1 ≤ j ≤ n.

In Figs. 5 and 6, the vertices associated with frozen variables are put in rectangular
boxes.

In computing cluster variables, we need to keep track of various mutations, and it
is more convenient to work with matrices corresponding to mutated quivers. Using
(3.2), we obtain the matrix B0 corresponding to the initial quiver Q0 in Fig. 7. Here,
since arrows between two frozen vertices do not affect seed mutation, we ignore the
corresponding data and consider the (3n + 2) × n matrix B0.

1

3

4

5

7

8

9

...

...

...

11

13

12

4n− 5

4n− 3

4n− 4

4n+ 1

4n

4n− 1

4n+ 2

Fig. 5 Initial quiver Q0

Fig. 6 Repeating middle part of
Q0

4t − 1

4t + 1

4t

4t + 3

4t + 5

4t + 4

4t+ 7

4t+ 9

4t+ 8
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5 9 13 · · · 4n− 7 4n− 3 4n+ 1⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 −1 0 0 · · · 0 0 0

5 0 −1 0 · · · 0 0 0

9 1 0 −1 · · · 0 0 0

13 0 1 0 · · · 0 0 0

4n− 7 0 0 0 · · · 0 −1 0

4n− 3 0 0 0 · · · 1 0 −1

4n+ 1 0 0 0 · · · 0 1 0

4n+ 2 0 0 0 · · · 0 0 −1

3 1 0 0 · · · 0 0 0

7 −1 1 0 · · · 0 0 0

11 0 −1 0 · · · 0 0 0

4n− 5 0 0 0 · · · −1 1 0

4n− 1 0 0 0 · · · 0 −1 1

4 1 0 0 · · · 0 0 0

8 −1 1 0 · · · 0 0 0

12 0 −1 0 · · · 0 0 0

4n− 4 0 0 0 · · · −1 1 0

4n 0 0 0 · · · 0 −1 1

Fig. 7 Matrix B0 for Q0

4.2 Mutations

For each � with 1 ≤ � ≤ n, we define the following sequences of mutations

μ[k,�] = μ4k+1 ◦ · · · ◦ μ4�+5 ◦ μ4�+1 for k = �, � + 1, . . . , n.

Lemma 4.2 When themutationμ[k,�] is applied to the initial seed (z0, Q0), the entries

of the column labeled by the vertex (4k + 1) in the matrix μ[k,�](B0) = (b†i j ) are all
zero except the following entries:

(1) if k = � < n,

b†4�−3,4�+1 = b†4�+3,4�+1 = b†4�+4,4�+1 = 1,

b†4�−1,4�+1 = b†4�,4�+1 = b†4�+5,4�+1 = −1;

(2) if k = � = n,

b†4n−3,4n+1 = b†4n+2,4n+1 = 1 and b†4n−1,4n+1 = b†4n,4n+1 = −1;
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(3) if � + 1 ≤ k ≤ n − 1,

b†4k+3,4k+1 = b†4k+4,4k+1 = b†4�−3,4k+1 = 1,

b†4k−3,4k+1 = b†4k+5,4k+1 = −1;

(4) if � + 1 ≤ k = n,

b†4�−3,4n+1 = b†4n+2,4n+1 = 1andb†4n−3,4n+1 = −1.

Proof (1) & (2) These two cases with k = � follow directly from the definition of the
mutation μ[�,�] = μ4�+1 at the vertex (4� + 1). We obtain the column (4� + 1) of
μ4�+1(B0) simply by changing the sign of the entries in the column (4� + 1) of B0.

(3) Let us prove the case �+1 ≤ k ≤ n−1 by induction.When k = �+1, the entries
of the column labeled by (4� + 5) in the matrix μ[�+1,�](B0) can be verified by direct
computation.Now, assuming that the statement is true for k such that �+1 ≤ k ≤ n−2,
let us keep track of the entries in the column labeled by (4k + 5) in the matrices
μ[k−1,�](B0), μ[k,�](B0), and μ[k+1,�](B0).

Since the column labeled by (4k + 5) in B0 is not affected by the mutation μ[k−1,�]
yet, in the matrix μ[k−1,�](B0) = (bi j ), we have the following nonzero entries:

b4k+3,4k+5 = b4k+4,4k+5 = b4k+9,4k+5 = 1, (4.1)

b4k+1,4k+5 = b4k+7,4k+5 = b4k+8,4k+5 = −1.

By the induction hypothesis, the column labeled by (4k + 1) in μ[k,�](B0) contains
nonzero entries in the rows labeled by (4k + 3), (4k + 4), (4� − 3), (4k − 3), and
(4k + 5). Because the mutation μ4k+1 changes only the sign of the entries in the
column labeled by (4k + 1), we know that the nonzero entries in the column labeled
by (4k + 1) in μ[k−1,�](B0) = (bi j ) are

b4k+3,4k+1 = b4k+4,4k+1 = b4�−3,4k+1 = −1, (4.2)

b4k−3,4k+1 = b4k+5,4k+1 = 1.

Now we apply μ4k+1 to μ[k−1,�](B0) and use the identities (4.1) and (4.2) to see
that nonzero entries of the matrix μ[k,�](B0) = (b′

i j ) are

b′
4k+7,4k+5 = b′

4k+8,4k+5 = b′
4�−3,4k+5 = −1,

b′
4k+1,4k+5 = b′

4k+9,4k+5 = 1.

Finally, we apply μ4k+5 to obtain the nonzero entries in the column (4k + 5) of the
matrix μ[k+1,�](B0) = (b′′

i j ):

b′′
4k+7,4k+5 = b′′

4k+8,4k+5 = b′′
4�−3,4k+5 = 1

b′′
4k+1,4k+5 = b′′

4k+9,4k+5 = −1.
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This shows that the statement is true for k + 1.
(4) For the case � + 1 ≤ k = n, we note that the column labeled by (4n + 1) in

B0 is not affected by the mutation μ[n−2,�] yet. Therefore, in μ[n−2,�](B0) = (bi j ) we
have

b4n,4n+1 = b4n−1,4n+1 = 1 and b4n+2,4n+1 = b4n−3,4n+1 = −1. (4.3)

Also, by setting k = n − 1 in the result (3), we know that the nonzero entries in the
column labeled by (4n − 3) in the matrix μ[n−1,�](B0) = μ4n−3(μ[n−2,�](B0)) are in
the rows (4� − 3), (4n − 1), 4n, (4n − 7), and (4n + 1). By exchanging the sign of
them, we have the following in μ[n−2,�](B0):

b4n−1,4n−3 = b4n,4n−3 = b4�−3,4n−3 = −1, (4.4)

b4n−7,4n−3 = b4n+1,4n−3 = 1.

Now we apply μ4n−3 to μ[n−2,�](B0) and use the identities (4.3) and (4.4) to
compute the following nonzero entries in μ[n−1,�](B0) = (b′

i j ):

b′
4n−3,4n+1 = 1andb′

4n+2,4n+1 = b′
4�−3,4n+1 = −1,

and then finally, by applying μ4n+1 to μ[n−1,�](B0), in μ[n,�](B0) = (b′′
i j ) we have

b′′
4�−3,4n+1 = b′′

4n+2,4n+1 = 1 and b′′
4n−3,4n+1 = −1.

��

Using the above computation of the matrix μ[k,�](B0), we can further compute the
cluster variables generated by the mutations μ[k,�].

4.3 Cluster variables

Let ẑ = {zi : 1 ≤ i ≤ 4n + 2} be the set of indeterminates satisfying

z4 j−1z4 j = z4 j−2z4 j+1 − z4 j−3z4 j+2

for 1 ≤ j ≤ n. We note that

ẑ = z0 ∪ {z4 j+2 : 0 ≤ j ≤ n − 1}. (4.5)

Proposition 4.3 In considering the cluster algebra with the initial seed (z0, Q0), the
cluster variables generated by the (n + 1 − �) sequences μ[k,�] of mutations for
� ≤ k ≤ n are
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det

[
z2 z1
z10 z9

]
, det

[
z2 z1
z14 z13

]
, . . . , det

[
z2 z1

z4n+2 z4n+1

]
, z2 when� = 1;

det

[
z6 z5
z14 z13

]
, . . . , det

[
z6 z5

z4n+2 z4n+1

]
, z6 when� = 2;

...

det

[
z4n−6 z4n−7
z4n+2 z4n+1

]
, z4n−6 when� = n − 1;
z4n−2 when� = n.

Proof We prove it by induction. For the base case k = �, if k = � < n, then we apply
μ4�+1 to the initial seed. From the case (1) in Lemma 4.2, we have

z′4�+1 = (z4�−3z4�+3z4�+4 + z4�−1z4�z4�+5) /z4�+1,

and using substitutions

z4�+3z4�+4 = z4�+2z4�+5 − z4�+1z4�+6 and

z4�−1z4�+5 = z4�−2z4�+1 − z4�−3z4�+2

we obtain z′4�+1 = z4�−2z4�+5 − z4�−3z4�+6. If k = � = n, then using the case (2) in
Lemma 4.2, we have

z′4n+1 = (z4n−3z4n+2 + z4n−1z4n) /z4n+1.

From the identity z4n−1z4n = z4n+1z4n−2 − z4n+2z4n−3, we conclude that z′4n+1 =
z4n−2.

Next, assuming that the statement is true for � + 1 ≤ k ≤ n − 2, we want to verify
the cases k = n − 1 and k = n. From the case (3) of Lemma 4.2,

z′4(n−1)+1 = (
z4�−3z4n−1z4n + z′4n−7z4n+1

)
/z4n−3

and after substitutions

z4n−1z4n = z4n−2z4n+1 − z4n−3z4n+2 and

z′4(n−2)+1 = z4�−2z4n−3 − z4�−3z4n−2

we obtain z′4(n−1)+1 = z4�−2z4n+1 − z4n+2z4�−3. Similarly, from the case (4) of
Lemma 5.1, we can compute

z′4n+1 = (z4�−3z4n+2 + z′4n−3)/z4n+1

= (z4�−3z4n+2 + (z4�−2z4n+1 − z4�−3z4n+2))/z4n+1

= z4�−2.

��
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Note that the number of cluster variables in the statement together with the initial
mutable variables is exactly the number of cluster variables for a cluster algebra of type
An , namely n(n + 3)/2. Therefore, the cluster variables given in Proposition 4.3 and
the initial mutable variables make a complete list of the cluster variables. Moreover,
the set of these cluster variables contains all the generators of the algebra and some
polynomials in the generators. This shows that the twice-iterated Pieri algebraAn,n+1
admits the structure of a cluster algebra of type An .

5 GLn tensor product algebras

In this section, we study the cluster variables of the twice-iterated Pieri algebra An,m

in the context of the decomposition of the tensor product of two irreducible represen-
tations of GLm .

5.1 GLm tensor product algebra

In [11,12], Howe et al. studied a family of algebras, called the GLm tensor product
algebras, encoding the decomposition of tensor products of two irreducible represen-
tations of GLm

Vμ
m ⊗ V ν

m =
⊕

λ

(V λ
m)⊕cλ

μν (5.1)

with conditions on the number of rows in μ and ν. Here, the multiplicity cλ
μν of V

λ
m is

theLittlewood–Richardson coefficient. In particular, such algebras aremulti-graded by
triples (λ, μ, ν) of dominant weights ofGLm or Young diagramswith notmore thanm
rows, and the (λ, μ, ν)-homogeneous component consists of the highestweight vectors
of the isomorphic copies of V λ

m occurring in the tensor product Vμ
m ⊗ V ν

m . Explicit
expressions of such highest weight vectors labeled by the Littlewood–Richardson
tableaux (LR tableaux) of shape λ/μ and content ν are investigated in [11,12].

The subring of the twice-iterated Pieri algebra An,m consisting of the polynomials
invariant under the maximal unipotent subgroupU2 of GL2, with respect to (2.1) and
(2.2), is indeed an example of the GLm tensor product algebra. Note that

AU2
n,m = C[Mn+2,m]Un×U2×Um = C[Mn,m ⊕ M2,m]Un×U2×Um ,

and then, using (2.4), we have

AU2
n,m

∼=
(
C[Mn,m]Un ⊗ C[M2,m]U2

)Um

∼=
(

⊕

μ

Vμ
m ⊗

⊕

ν

V ν
m

)Um

∼=
⊕

μ,ν

(
Vμ
m ⊗ V ν

m

)Um (5.2)
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where μ and ν are Young diagrams with not more than min(n,m) and min(2,m)

rows, respectively. Then, the Um-invariant vectors in the tensor product Vμ
m ⊗ V ν

m
are exactly the highest weight vectors of the irreducible components occurring in the
decomposition of Vμ

m ⊗ V ν
m .

5.2 U2-invariant cluster variables

Let us consider the action of the subgroup U2 of GL2, as given in (2.1) and (2.2),
on the last two rows of (xi j ) ∈ Mn+2,m . The following result can be verified by
straightforward computations.

Lemma 5.1 Among the cluster variables for the twice-iterated Pieri algebra An,m,
after setting zi = δi in (4.5), the following are invariant under the action of U2.

(1) δ4 j for 1 ≤ j ≤ m if m ≤ n; for 1 ≤ j ≤ n if m ≥ n + 1.
(2) δ4 j+2 for 0 ≤ j ≤ m − 1 if m ≤ n; for 1 ≤ j ≤ n if m ≥ n + 1.
(3) δ4 j+3 for 0 ≤ j ≤ m − 2 if m ≤ n + 1; for 1 ≤ j ≤ n if m ≥ n + 2.
(4) δ4(k+1)+1δ4(�−1)+2 − δ4(k+1)+2δ4(�−1)+1 for 1 ≤ � ≤ k ≤ m − 2 if m ≤ n; for

1 ≤ � ≤ k ≤ n − 1 if m ≥ n + 1.

Our next task is to show that theseU2-invariant cluster variables form a generating
set of theGLm tensor product algebraAU2

n,m . In [8,12], Howe et al. constructed highest
weight vectors fT of the isomorphic copies of V λ

m in the decomposition of Vμ
m ⊗ V ν

m
attached to LR tableaux T on the skew Young diagram λ/μ with content ν. They
showed that these vectors fT formaC-basis for the (λ, μ, ν)-homogeneous component
of the GLm tensor product algebra, and therefore, every element in the GLm tensor
product algebra can be expressed as a linear combination of suchhighestweight vectors
attached to LR tableaux. Moreover, for each LR tableau T there is an associated
monomial mT such that mT is equal to the initial monomial in( fT ) of the highest
weight vector fT with respect to a certain monomial order. For our case with �(ν) ≤ 2,
it is

mT =
∏

i≥1

xμi
i i ·

∏

j≥1

(
y
α j
1 j y

β j
2 j

)

where α j and β j are the numbers of boxes in the j th row of T filled with 1’s and
2’s, respectively. Note that one can obtain mT directly from T by replacing the empty
boxes, boxes with 1’s, and boxes with 2’s in the i th row of T with xii ’s, y1i ’s, and
y2i ’s, respectively. For instance,
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which represents the monomial

mT = x411x
2
22x

1
33y

3
11y

2
12y

2
22y

1
13y

1
23y

2
24.

They further showed that the initial monomial in(h) of any element h in the GLm

tensor product algebra equals to the monomial mT associated with some LR tableau
T . See [8,12] for more details.

In order to apply these results to our AU2
n,m ⊂ C[Mn+2,m], first we write ycd for

xn+c,d for c = 1 and 2, so that the coordinates of the space Mn+2,m are given as

Mn+2,m =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 · · · x1m
x21 x22 · · · x2m
...

...
. . .

...

xn1 xn2 · · · xnm
y11 y12 · · · y1m
y21 y22 · · · y2m

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

For a monomial order, let us use the graded lexicographic order based on xab > ycd
for all xab and ycd ; xab > xcd and yab > ycd if and only if b < d or b = d and a < c.
With respect to this order, the initial monomials of the U2-invariant cluster variables
are

(1) in(δ4 j ) = ∏ j
i=1 xii ,

(2) in(δ4 j+2) = y1, j+1 · ∏ j
i=1 xii ,

(3) in(δ4 j+3) = y1, j+1 · y2, j+2 · ∏ j
i=1 xii ,

(4) in(δ4(k+1)+1δ4(�−1)+2 − δ4(k+1)+2δ4(�−1)+1) = y1,� · y2,k+2 · ∏k+1
i=1 xii∏�−1

i=1 xii .

Theorem 5.2 The U2-invariant cluster variables for An,m form a generating set of
the GLm tensor product algebra A

U2
n,m.

Proof It is enough to show that the initial monomials of elements h ∈ A
U2
n,m are the

products of the initial monomials of the U2 invariant cluster variables. Then, the U2-
invariant cluster variables form a SAGBI basis for AU2

n,m , and therefore, they generate
the algebra A

U2
n,m . Using the result of [8,12], since the initial monomial in(h) of

h ∈ A
U2
n,m is equal to a monomial attached to some LR tableau, we want to show

that for each LR tableau T , its associated monomial mT is the product of the initial
monomials of the U2-invariant cluster variables.

Recall that each of the LR tableaux T accounting for the multiplicity cλ
μν of V λ

m in
the decomposition of Vμ

m ⊗ V ν
m in (5.2) satisfies, in addition to the semistandardness

condition, the Yamanouchi condition. That is, the number of 1’s in its first r rows is
at least as large as the number of 2’s in the first r + 1 rows for all r .

If a LR tableau T contains a column having both 1’s and 2’s or a column with only
empty boxes, then the monomialmT attached to T is divisible by in(δ4 j+3) or in(δ4 j ′)
for some j or j ′. Now after removing all such columns of T , if there is a column with
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2’s in the pth row, then by the Yamanouchi condition, there should be 1’s in the qth
row for some q < p. Let us focus on two columns containing 1’s and 2’s in the pth
and qth rows, respectively. If q = p−1, then the monomial corresponding to this pair
of columns equals to in(δ4q−1) · in(δ4q). Note that δ4q−1 and δ4q are invariant cluster
variables underU2. If q < p−1, then the monomial corresponding to T can be further
divisible by the initial monomial of	pq = δ4(p−1)+1δ4(q−1)+2 − δ4(p−1)+2δ4(q−1)+1.
After removing pairs of columns in T corresponding to the initial monomials of	pq ’s,
the only possible columns are those with only 1’s and this shows thatmT can be further
divisible by in(δ4 j+2)’s. Therefore, the monomialmT for LR tableau T is the product
of the initial monomials of U2 invariant cluster variables, and such cluster variables
form a SAGBI basis for the algebra An,m . ��

Let us illustrate our argument in the proof in the language of Young tableaux. For
m = 4 and n = 3, theU2-invariant cluster variables for the twice-iterated Pieri algebra
An,m are

(1) δ4, δ8, δ12;
(2) δ2, δ6, δ10, δ14;
(3) δ3, δ7, δ11;
(4) 	31 = δ9δ2 − δ10δ1, 	41 = δ13δ2 − δ14δ1, 	42 = δ13δ6 − δ14δ5.

Using (2.5) and Notation 2.3, we can identify the determinants δi of submatrices of

X =

⎡

⎢⎢⎢⎢⎣

x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
y11 y12 y13 y14
y21 y22 y24 y24

⎤

⎥⎥⎥⎥⎦

with column tableaux whose empty box in the j th row, 1’s, and 2’s in the column
tableaux indicating the j th, 4th and 5th rows of X , respectively. Then, theU2-invariant
cluster variables can be drawn as

δ4 = , δ8 = , δ12 = , δ2 = 1 , δ6 =
1

, δ10 =
1

, δ14 =

1

,

δ3 = 1
2

, δ7 =
1
2

, δ11 =
1
2

, 	31 =
2

· 1 −
1

· 2 ,

	41 =

2

· 1 −

1

· 2 , 	42 =

2

·
1

−

1

·
2

.

Note that, with this tableau notation, the first terms of the U2-invariant cluster
variables are LR tableaux, and every LR tableau associated with the multiplicity of
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V λ
4 in the decomposition of Vμ

4 ⊗ V ν
4 for μ and ν such that �(μ) ≤ 3 and �(ν) ≤ 2

can be realized as a concatenation of those LR tableaux appearing in the U2-invariant
cluster variables. For example, the following LR tableau

T = 1 1 1 1
1 1 2 2

1 2
2 2

can be, after its columns are rearranged, considered as the concatenation of smaller
LR tableaux

1
2

1

2

1
2

1
2

1
2

1 1 .

We observe that the first factor appears in the expression of theU2-invariant δ11δ12 =
δ13δ10 − δ14δ9 by (2.7). That is,

1
2

· =

2

·
1

−

1

·
2

and its related monomial is exactly in(δ11δ12) = in(δ13δ10). This shows that the
monomial mT associated with the LR tableau T can be realized as the product of the
initial monomials of U2-invariant cluster variables

mT = in(δ11δ12) · in(	42) · in(δ12) · in(δ7) · in(δ23) · in(δ22).

In fact, using a similar argument, we can explicitly compute a SAGBI basis for the
GLm tensor product algebras of more general types. We refer the reader to [14].
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