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Abstract Given a framed quiver, i.e., one with a frozen vertex associated with each
mutable vertex, there is a concept of green mutation, as introduced by Keller. Maximal
sequences of such mutations, known as maximal green sequences, are important in
representation theory and physics as they have numerous applications, including the
computations of spectrums of BPS states, Donaldson–Thomas invariants, tilting of
hearts in derived categories, and quantumdilogarithm identities. In this paper,we study
such sequences and construct a maximal green sequence for every quiver mutation
equivalent to an orientation of a type A Dynkin diagram.

Keywords Quiver · Cluster algebra · Maximal green sequence

1 Introduction

A very important problem in cluster algebra theory, with connections to polyhedral
combinatorics and the enumeration of BPS states in string theory, is to determine
whether a given quiver has a maximal green sequence. In particular, it is open to
decide which quivers arising from triangulations of surfaces admit a maximal green
sequence, although progress for surfaces has been made in [7,8,17] and in the physics
literature in [1]. In [1], they give heuristics for exhibiting maximal green sequences for
quivers arising from triangulations of surfaces with boundary and present examples of
this for spheres with at least 4 punctures and tori with at least 2 punctures. They write
down a particular triangulation of such a surface and show that the quiver defined by
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this triangulation has a maximal green sequence. In [7,8], this same approach is used
on surfaces of any genus with at least 2 punctures. In [17], it is shown that there do
not exist maximal green sequences for a quiver arising from any triangulation of a
closed once-punctured genus g surface. It is still unknown the exact set of surfaces
with the property that each of its triangulations defines a quiver admitting a maximal
green sequence.

Outside the class of quivers defined by triangulated surfaces, there has also been
progress in proving that certain quivers do not have maximal green sequences. In [5],
it is shown that if a quiver has non-degenerate Jacobi-infinite potential, then the quiver
has no maximal green sequences. This is used in [5] to show that a certain McKay
quiver has no maximal green sequences, and in [22] it is shown that the X7 quiver has
no maximal green sequences. Other work [18] illustrates that it is possible to have two
mutation-infinite quivers that are mutation equivalent to one another where only one
of the two admits a maximal green sequence.

Even for cases where the existence of maximal green sequences is known (e.g.,
for quivers of type A), the problem of exhibiting, classifying, or counting maximal
green sequences has been challenging and serves as our motivation. By a quiver of
type A, we mean any quiver that is mutation equivalent to an orientation of a type
A Dynkin diagram. In the case where Q is acyclic, one can find a maximal green
sequence whose length is the number of vertices of Q, by mutating at sources and
iterating until all vertices have been mutated exactly once. In general, maximal green
sequences must have length at least the number of vertices of Q. However, even for the
smallest non-acyclic quiver, i.e., the oriented 3-cycle (of type A3), a shortest maximal
green sequence is of length 4. (While we were in the process of revising this paper,
it was shown in [9] that the shortest possible length of a maximal green sequence
for a quiver Q of type An is n + t where t = #{3-cycles ofQ}. See Remark 6.7 and
Sects. 8.1 and 8.3 for more details.) With a goal of gaining a better understanding of
such sequences, in this paper we explicitly construct a maximal green sequence for
every quiver of type A. As any triangulation of the disk with n + 3 marked points
on the boundary defines a quiver of type An , our construction shows that the disk
belongs to the set of surfaces each of whose triangulations define a quiver admitting
a maximal green sequence. We remark that the latter result has also been proved in
[9] by constructing maximal green sequences of type An quivers of shortest possible
length. Additionally, the maximal green sequences constructed in [9] are almost never
the same as the maximal green sequences constructed in this paper.

In Sect. 2, we begin with background on quivers and their mutations. This section
includes the definition of maximal green sequences, which is our principal object of
study in this paper. Section 3 describes how to decompose quivers into direct sums
of strongly connected components, which we call irreducible quivers. We remark that
this definition of direct sum of quivers, which is based on a quiver gluing rule from
[1], coincides with the definition of a triangular extension of quivers appearing in [2].
Using this notion of direct sums in Theorem 3.12, we show that for certain direct sums
of quivers, to construct a maximal green sequence, it suffices to construct a maximal
green sequence for each of their irreducible components. We refer to the class of
such quivers for which Theorem 3.12 holds as t-colored direct sums of quivers (see
Definition 3.1). In Sect. 4, we show that almost all quivers arising from triangulated
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surfaces (with 1 connected component) which are a direct sum of at least 2 irreducible
components are in fact a t-colored directed sum.

For type A quivers, irreducible quivers have an especially nice form as trees of
3-cycles, as described by Corollary 5.2. This allows us to restrict our attention to
signed irreducible quivers of type A, which are defined in and studied in Sect. 5. We
then construct a special mutation sequence for every signed irreducible quiver of type
A in Sect. 6, which we call an associated mutation sequence. This brings us to the
main theorem of the paper, Theorem 6.5, which states that this associated mutation
sequence is a maximal green sequence. Section 6 also highlights how the results of
Sect. 3 can be combined with Theorem 6.5 to get maximal green sequences for any
quiver of type A (see Corollary 6.8).

The proof of Theorem 6.5 is somewhat involved. The proof of Theorem 6.5 essen-
tially follows from two important lemmas (see Lemmas 7.2, 7.3). Our proof begins by
attaching frozen vertices to a signed irreducible typeA quiver Q to get a framed quiver
̂Q (see Sect. 2 for more details). We then apply the associated mutation sequence μ

alluded to above, which is constructed in Sect. 6, but decompose it into certain sub-
sequences as μ = μ

n
◦ · · · ◦ μ

1
◦ μ

0
and apply each mutation subsequence μ

k
one

after the other. In Lemma 7.2, we explicitly describe, for the resulting intermediate
quivers, the full subquiver that will be affected by the next iteration of mutations μ

k
.

We will refer to this full subquiver of μ
k−1

◦ · · · ◦ μ
1
◦ μ

0
(̂Q) affected by μ

k
as Rk .

Lemma 7.3 then explicitly describes how each of these full subquivers, Rk , is affected
by the mutation sequence μ

k
. Together, these lemmas lead us to conclude that the

associated mutation sequence μ = μ
n

◦ · · · ◦ μ
1
◦ μ

0
is a maximal green sequence.

Furthermore, these two lemmas imply that the final quiver μ
n
◦ · · · ◦μ

1
◦μ

0
(̂Q) is

isomorphic (as a directed graph) to

̂

Q, the co-framed quiver where the directions of
arrows between vertices of Q and frozen vertices have all been reversed. In particular,
such an isomorphism is known as a frozen isomorphism since it permutes the vertices
of Q while leaving the frozen vertices fixed. We refer to this permutation, of vertices
of Q, as the permutation induced by a maximal green sequence (we refer the reader
to Sect. 2 for precise definitions of these notions). One of the benefits of proving
Theorem 6.5 using the two lemmas mentioned in the previous paragraph is that we
exactly describe the permutation that is induced by an associatedmutation sequence of
a signed irreducible quiver of type A. (See the last paragraph in Sect. 2 and Definition
7.1.) This is a result that may be of independent interest.

Finally, Sect. 8 ends with further remarks and ideas for future directions, including
extensions to quivers arising from triangulations of surfaces other than the disk with
marked points on the boundary.

2 Preliminaries and notation

The reader may find excellent surveys on the theory of cluster algebras and maximal
green sequences in [5,14]. For our purposes, we recall a few of the relevant definitions.
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Fig. 1 An example of quiver mutation

A quiver Q is a directed graph without loops or 2-cycles. In other words, Q is a
4-tuple ((Q)0, (Q)1, s, t), where (Q)0 = [M] := {1, 2, . . . , M} is a set of vertices,
(Q)1 is a set of arrows, and two functions s, t : (Q)1 → (Q)0 are defined so that
for every α ∈ (Q)1, we have s(α)

α−→ t (α). An ice quiver is a pair (Q, F) with
Q a quiver and F ⊂ (Q)0 frozen vertices with the additional restriction that any
i, j ∈ F have no arrows of Q connecting them.We refer to the elements of (Q)0\F as
mutable vertices. By convention, we assume (Q)0\F = [N ] and F = [N+1, M] :=
{N + 1, N + 2, . . . , M}. Any quiver Q can be regarded as an ice quiver by setting
Q = (Q,∅).

Themutation of an ice quiver (Q, F) at a mutable vertex k, denoted μk , produces
a new ice quiver (μk Q, F) by the three step process:

(1) For every 2-path i → k → j in Q, adjoin a new arrow i → j .
(2) Reverse the direction of all arrows incident to k in Q.
(3) Delete any 2-cycles and arrows between frozen vertices created during the first

two steps.

We show an example of mutation in Fig. 1 depicting themutable (resp. frozen) vertices
in black (resp. blue).
Sincewewill focus on quivermutation in this paper, it will be useful to define a notation
for arrows obtained by reversing their direction. Given α ∈ (Q)1 where s(α)

α→ t (α),
formally define αop to be the arrow where s(αop) = t (α) and t (αop) = s(α). With
this notation, step (2) in the definition of mutation can be rephrased as: if α ∈ (Q)1
and s(α) = k or t (α) = k, replace α with αop.

The information of an ice quiver can be equivalently described by its (skew-
symmetric) exchange matrix. Given (Q, F), we define B = B(Q,F) = (bi j ) ∈
Z
N×M := {N × M integer matrices} by bi j := #{(i α→ j) ∈ (Q)1} − #{( j α→ i) ∈

(Q)1}. Furthermore, ice quiver mutation can equivalently be defined asmatrix muta-
tion of the corresponding exchange matrix. Given an exchange matrix B ∈ Z

N×M ,
the mutation of B at k ∈ [N ], also denoted μk , produces a new exchange matrix
μk(B) = (b′

i j ) with entries

b′
i j :=

{−bi j : if i = k or j = k
bi j + sgn(bik)[bikbk j ]+ : otherwise

where [x]+ = max(x, 0). For example, the mutation of the ice quiver above (here
M = 4 and N = 3) translates into the following matrix mutation. Note that mutation
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of matrices (or of ice quivers) is an involution (i.e., (μk ◦ μk)(B) = B).

B(Q,F) =
⎡

⎣

0 2 0 0
−2 0 1 0
0 −1 0 −1

⎤

⎦

μ2�−→
⎡

⎣

0 −2 2 0
2 0 −1 0

−2 1 0 −1

⎤

⎦ = B(μ2Q,F).

In this paper, we focus on successively applying mutations to a fixed ice quiver. As
such, if (Q, F) is a given ice quiver, we define an admissible sequence of (Q, F),
denoted i = (i1, . . . , id), to be a sequence of mutable vertices of (Q, F) such that
i j 	= i j+1 for all j ∈ [d − 1]. An admissible sequence i = (i1, . . . , id) also gives rise
to amutation sequence, which we define to be an expression μ = μid ◦ · · · ◦μi1 with
i j 	= i j+1 for all j ∈ [d − 1] that maps an ice quiver (Q, F) to a mutation equivalent
one1. Let Mut((Q, F)) denote the collection of ice quivers obtainable from (Q, F)

by a mutation sequence of finite length where the length of a mutation sequence is
defined to be d, the number of vertices appearing in the associated admissible sequence
i = (i1, . . . , id). Given a mutation sequence ν of Q ∈ Mut(̂Q), we define the support
of ν, denoted supp(ν), to be the set ofmutable vertices of Q appearing in the admissible
sequence which gives rise to ν.

Given a quiver Q, we focus on successively mutating the framed quiver of Q, which
we now define. Following references such as [5, Section. 2.3], given a quiver Q, we

define its framed (resp. coframed) quiver to be the ice quiver ̂Q (resp.

̂

Q) where

(̂Q)0 (= (
̂

Q)0) := (Q)0 
[N +1, 2N ], F = [N +1, 2N ], and (̂Q)1 := (Q)1 
{i →
N + i : i ∈ [N ]} (resp. (

̂

Q)1 := (Q)1 
 {N + i → i : i ∈ [N ]}). We will denote
elements of Mut(̂Q) by Q. In the sequel, we will often write frozen vertices N + i of
Q ∈ Mut(̂Q) as i ′. Thus, F = [N ]′ where S′ := {x ′ : x ∈ S} for any S ⊂ (Q)0. In
this paper, we consider ice quivers Q ∈ Mut(̂Q) up to frozen isomorphism (i.e., an
isomorphism of quivers that fixes frozen vertices). Such an isomorphism is equivalent
to a simultaneous permutation of the rows and of the first N columns of the exchange
matrix BQ .

A mutable vertex i of an ice quiver Q ∈ Mut(̂Q) is said to be green (resp. red) if
all arrows of Q connecting an element of [N ]′ and i point away from (resp. toward)

i . Note that all mutable vertices of ̂Q are green and all vertices of

̂

Q are red. By the
sign coherence of c- and g-vectors for cluster algebras [10, Theorem 1.7], it follows
that given any Q ∈ Mut(̂Q) each mutable vertex of Q is either red or green.

Let μ = μid ◦ · · · ◦ μi1 be a mutation sequence of ̂Q. Define {Q(k)}0≤k≤d to be

the sequence of ice quivers where Q(0) := ̂Q and Q( j) := (μi j ◦ · · · ◦ μi1)(
̂Q). (In

particular, throughout this paper, we apply any sequence of mutations in order from
right to left.) A green sequence of Q is an admissible sequence i = (i1, i2, . . . id)
of ̂Q such that i j is a green vertex of Q( j − 1) for each 1 ≤ j ≤ d. The admissible
sequence i is amaximal green sequence of Q if it is a green sequence of Q such that

1 In the sequel, we will identify an admissible sequence with the mutation sequence it defines.
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in the final quiver Q(d), the vertices 1, 2, . . . , N are all red2. In other words, Q(d)

contains no green vertices. Following [5], we let green(Q) denote the set of maximal
green sequences of Q3.

Proposition 2.10 of [5] shows that given any maximal green sequence μ of Q, one

has a frozen isomorphism Q(d) ∼=

̂

Q. Such an isomorphism amounts to a permutation

of the mutable vertices of

̂

Q, (i.e., Q(d) =

̂

Qσ for some permutation σ ∈ SN where

̂

Qσ is defined by the exchange matrix Bσ = B ̂

Q

σ that has entries (Bσ)i, j=Bi ·σ, j ·σ ).

We call this the permutation induced by μ. Note that we can regard σ as an element
S2N where i · σ = i for any i ∈ [N + 1, 2N ].

3 Direct sums of quivers

In this section, we define a direct sum of quivers based on notation appearing in [1,
Section. 4.2].We also show that, under certain restrictions, if a quiver Q can be written
as a direct sum of quivers where each summand has a maximal green sequence, then
the maximal green sequences of the summands can be concatenated in some way to
give a maximal green sequence for Q. Throughout this section, we let (Q1, F1) and
(Q2, F2) be finite ice quivers with N1 and N2 vertices, respectively. Furthermore, we
assume (Q1)0\F1 = [N1] and (Q2)0\F2 = [N1 + 1, N1 + N2].
Definition 3.1 Let (a1, . . . , ak) denote a k-tuple of elements from (Q1)0\F1 and
(b1, . . . , bk) a k-tuple of elements from (Q2)0\F2. (By convention, we assume that
the k-tuple (a1, . . . , ak) is ordered so that ai ≤ a j if i < j unless stated otherwise.)
Additionally, let (R1, F1) ∈ Mut((Q1, F1)) and (R2, F2) ∈ Mut((Q2, F2)).We define
the direct sum of (R1, F1) and (R2, F2), denoted (R1, F1) ⊕(b1,...,bk )

(a1,...,ak )
(R2, F2), to be

the ice quiver with vertices

(

(R1, F1) ⊕(b1,...,bk )
(a1,...,ak )

(R2, F2)
)

0
:= (R1)0 
 (R2)0 = (Q1)0 
 (Q2)0

= [N1 + N2] 
 F1 
 F2

and arrows

(

(R1, F1) ⊕(b1,...,bk )
(a1,...,ak )

(R2, F2)
)

1
:= (R1, F1)1 
 (R2, F2)1 


{

ai
αi→ bi : i ∈ [k]

}

.

2 Note that since we identify an admissible sequence with the mutation sequence defined by it, we have
that maximal green sequences are identified with maximal green mutation sequences, as they are referred
to in [19].
3 By identifying maximal green sequences with maximal green mutation sequences, we abuse notation and
write an element of green(Q) either as an admissible sequence i = (i1, . . . , id ) or as its corresponding
mutation sequence μ = μid ◦ · · · ◦ μi1 .
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Observe that we have the identification of ice quivers

̂
Q1 ⊕ (b1,...,bk )

(a1,...,ak )
Q2 ∼= ̂Q1 ⊕ (b1,...,bk )

(a1,...,ak )
̂Q2,

where the total number of vertices M = 2(N1 + N2) in both cases.
We say that (R1, F1) ⊕(b1,...,bk )

(a1,...,ak )
(R2, F2) is a t-colored direct sum if t =

#{distinct elements of{a1 . . . , ak}} and there does not exist i and j such that

#{ai α→ b j } ≥ 2.

Remark 3.2 Our definition of the direct sum of two quivers coincides with the defi-
nition of a triangular extension of two quivers introduced by Amiot in [2], except
that we consider quivers as opposed to quivers with potential. We thank S. Ladkani
for bringing this to our attention. He uses this terminology to study the representation
theory of a related class of quivers with potential, called class P by Kontsevich and
Soibelman [16, Section. 8.4].

Remark 3.3 The direct sum of two ice quivers is a non-associative operation as is
shown in Example 3.5.

Definition 3.4 We say that a quiver Q is irreducible if

Q = Q1 ⊕ (b1,...,bk )
(a1,...,ak )

Q2

for some k-tuple (a1 . . . , ak) on (Q1)0 and some k-tuple (b1, . . . , bk) on (Q2)0 implies
that Q1 or Q2 is the empty quiver. Note that we define irreducibility only for quivers
rather than for ice quivers because we later only study reducibility when F = ∅.
Example 3.5 Let Q denote the quiver shown in Fig. 2. Define Q1 to be the full sub-
quiver of Q on the vertices 1, . . . , 4, Q2 to be the full subquiver of Q on the vertices
6, . . . , 11, and Q3 to be the full subquiver of Q on the vertex 5. Note that Q1, Q2,

and Q3 are each irreducible. Then

Q = Q1 ⊕ (5,8,11,8,9,11)
(1,1,1,3,4,4) Q23

where Q23 = Q2⊕ (5)
(6) Q3 so Q is a 3-colored direct sum. On the other hand, we could

write

Q = Q12 ⊕(5,5)
(1,6) Q3

where Q12 = Q1 ⊕(8,11,8,9,11)
(1,1,3,4,4) Q2 so Q is a 2-colored direct sum. Additionally, note

that

Q1 ⊕ (5,8,11,8,9,11)
(1,1,1,3,4,4) Q23 = Q1 ⊕ (5,8,11,8,9,11)

(1,1,1,3,4,4)

(

Q2 ⊕ (5)
(6) Q3

)

	=
(

Q1 ⊕ (5,8,11,8,9,11)
(1,1,1,3,4,4) Q2

)

⊕ (5)
(6) Q3
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Fig. 2 The quiver Q used in
Example 3.5

where the last equality does not hold because Q1 ⊕ (5,8,11,8,9,11)
(1,1,1,3,4,4) Q2 is not defined as

5 is not a vertex of Q2. This shows that the direct sum of two quivers, in the sense of
this paper, is not associative.

Our next goal is to prove that Q has a maximal green sequence if Q is a t-colored
direct sum and each of its summands has a maximal green sequence (see Proposi-
tion 3.12). Before proving this, we introduce a standard form of t-colored direct sums
of ice quivers with which we will work:

(R, F) = ̂Q1 ⊕ (b(1)
1 ,...,b(1)

r1 ,...,b(t)
1 ,...,b(t)

rt )

(a1,...,a1,...,at ,...,at )
Q2 (1)

where Q2 ∈ Mut(̂Q2), a1, . . . , at ∈ (Q1)0\[N1]′, b(1)
1 , . . . , b(1)

r1 , . . . , b(t)
1 , . . . , b(t)

rt ∈
(Q2)0\[N2]′, andμ is a fixedmutation sequenceμid ◦· · ·◦μi1 where supp(μ) ⊂ (Q1)0.

We consider the sequence of mutated quivers (R(k), F), for each k ∈ [0, d], where
R(k) := μik ◦ · · · ◦ μi1R. By convention, k = 0 implies that the empty mutation
sequence has been applied to (R, F) so R(0) = R. For every k ∈ [0, d], we define
Q1(k) := (μik ◦ · · · ◦ μi1)(

̂Q1) and the following set of arrows

A(k) :=
{

α ∈ (R(k), F)1 : s(α) or t (α)∈(Q1(k))0 \ [N1]′ and the other end of
α is in {a′

1, . . . , a
′
t }∪{b(1)

1 , . . . , b(1)
r1 , . . . , b(t)

1 , . . . , b(t)
rt }

}

.

Observe that the sets A(k) only contain arrows in the partially mutated quivers
which have exactly one of their two ends incident to a vertex in (Q1)0. The next
lemma illustrates how the set of arrows A(k − 1) transforms into the set A(k).

Lemma 3.6 If (i
α→ j) ∈ A(k), but α, αop /∈ A(k − 1), then there is a 2-path

i
α1→ ik

α2→ j in (R(k−1), F) and exactly one of the arrows α1, α2 ∈ (R(k−1), F)1
belongs to A(k − 1).
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Proof By the definition of quivermutation, the arrow (i
α→ j) ∈ A(k) ⊂ (R(k), F)1 =

(μik R
(k−1), F)1 was originally in A(k − 1), was the reversal of an arrow originally in

A(k − 1), or resulted from a 2-path.
By hypothesis, we must be in the last case. By the definition of A(k), either the

source or target of α is in (Q1(k))0 \ [N ′
1] but not both. Hence, the 2-path i

α1→ ik
α2→ j

must contain one arrow from (Q1(k))0 \ [N ′
1] to itself and one arrow in A(k − 1). �


In the context of this lemma, we refer to this unique arrow in A(k − 1) as α. We
use Lemma 3.6 to define a coloring function to stratify the set of arrows A(k). This
will allow us to keep track of their orientations as will be needed to prove a crucial
lemma (see Lemma 3.10).

Definition 3.7 Let (R, F) be a t-colored direct sum with a direct sum decomposition
of the form shown in (1) and let μ be a mutation sequence where supp(μ) ⊂ (Q1)0.
Define a coloring function by

f 0 : A(0) −→ {a1, . . . , at }
α �−→ s(α).

We say that α ∈ A(0) has color f 0(α) in (R, F). Now, inductively we define a
coloring function on each ice quiver (R(k), F) where k ∈ [0, d]. Define f k : A(k) →
{a1, . . . , at } by

f k(α) =
⎧

⎨

⎩

f k−1(α) : if α, αop /∈ A(k − 1)
f k−1(αop) : if α /∈ A(k − 1), αop ∈ A(k − 1),
f k−1(α) : if α ∈ A(k − 1).

We say that α ∈ A(k) has color f k(α) in (R(k), F).

Example 3.8 Using the notation from Example 3.5 and writing

̂Q = ̂Q1 ⊕ (5,8,11,8,9,11)
(1,1,1,3,4,4)

(

̂Q2 ⊕ (5)
(6)

̂Q3

)

,

we have a1 = 1 and b(1)
1 = 5, b(1)

2 = 8, b(1)
3 = 11, a2 = 3 and b(2)

1 = 8, and a3 = 4

and b(3)
1 = 9, b(3)

2 = 11. In Fig. 3, we show ̂Q andμ3 ̂Q. The label written on an arrow
α of ̂Q or μ3 ̂Q indicates its color with respect to Q1.

Our next result shows how the coloring functions { f k}0≤k≤d defined by an ice quiver
(R, F) of the form in (1) and a mutation sequence μ = μid ◦ · · · ◦ μi1 partition the

arrows connecting a mutable vertex x ∈ (Q1)0 and a vertex in {b( j)
i : i ∈ [r j ]}
 {a′

j }.

Lemma 3.9 Let (R, F) be a t-colored direct sum with a direct sum decomposition of
the formshown in (refQeqn)and letμbeamutation sequencewhere supp(μ) ⊂ (Q1)0.

For any k ∈ [0, d], we have that the coloring function f k is defined on each α ∈ A(k).
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Fig. 3 The quivers ̂Q and μ3 ̂Q with the coloring functions f 1 and f 2, respectively

Proof We proceed by induction on k. If k = 0, no mutations have been applied so the
desired result holds. Suppose the result holds for (R(k−1), F) and we will show that
the result also holds for (R(k), F). We can write (R(k), F) = (μy R(k−1), F) for some

y ∈ (Q1)0. Let α ∈ A(k) such that s(α) = x ∈ (Q1)0 and t (α) = z ∈ {b( j)
i : i ∈

[r j ]} 
 {a′
j } or vice versa. There are three cases to consider:

(a) x = y,
(b) x is connected to y and there is a 2-path x → y → z or x ← y ← z in

(R(k−1), F),
(c) x does not satisfy a) or b).

InCase a), we have that all arrows α ∈ A(k−1) connecting x and z are replaced by
αop ∈ A(k). By the definition of the coloring functions, these reversed arrows obtain
color f k(α) = f k−1(αop).
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InCase b), it follows by Lemma 3.6 that an arrow α ∈ A(k) resulting frommutation
of the middle of a 2-path has a well-defined color given by f k−1(α). Further, mutation
at y would reverse both arrows of such a 2-path; hence, vertex y is in the middle of a
2-path in A(k) if and only if it is in the middle of a 2-path in A(k − 1).

Finally, in Case c), the mutation at y does not affect the arrows α connecting x and
z, and therefore, the colors of such an arrow are inherited from its color as an arrow in
A(k − 1). Note that an arrow between x and y would connect vertices of (Q1)0 and
thus has no color. �


For the proofs in the remainder of this section, we denote the exchange matrix of
(R(k), F), as B(R(k),F) = (bk(x, y))x∈[N1+N2],y∈[2(N1+N2)]. Here bk(x, y) := #{(x α→
y) ∈ (R(k), F)1} − #{(y α→ x) ∈ (R(k), F)1}. (This differs from the notation of Sect.
2 to differentiate it from our notation for the set of vertices {b( j)

i : i ∈ [r j ]}.) Further-
more, we refine this enumeration according to color using the following terminology.

bk(x, y, �) := #{(x α→ y) ∈ (R(k), F)1 : αhas color �} − #{(y α→ x) ∈ (R(k), F)1 :
αhas color �}.

We proceed with the following two technical lemmas.

Lemma 3.10 Let (R, F) be a t-colored direct sum with a direct sum decomposi-
tion of the form shown in (1) and let μ be a mutation sequence of (R, F) where
supp(μ) ⊂ (Q1)0. For any k ∈ [0, d], � ∈ [t], and x ∈ (Q1)0, all of the arrows of
A(k) with color a� and incident to vertex x either all point toward vertex x or all point
away from vertex x. Moreover, they do so with the same multiplicity.

Proof We need to show that for any x ∈ (Q1)0, k ∈ [0, d], j ∈ [t], and
� ∈ {a1, . . . , at }we have that bk(x, b( j)

i , �) = bk(x, a′
j , �) for all i ∈ [r j ]. We proceed

by induction on k. If k = 0, no mutations have been applied so the desired results
hold. Suppose the result holds for (R(k−1), F) and we will show that the result also
holds for (R(k), F). We can write (R(k), F) = (μy R(k−1), F) for some y ∈ (Q1)0.

Let x ∈ (Q1)0 and z ∈ {b( j)
i : i ∈ [r j ]} 
 {a′

j } be given. There are three cases to
consider:

(a) x = y,
(b) x is connected to y and sgn(bk−1(x, y)) = sgn(bk−1(y, z)) 	= 0,
(c) x does not satisfy (a) or (b).

By Lemma 3.9, we know that bk(x, z) = ∑

�∈{ai :i∈[t]} bk(x, z, �) and bk−1(y, z) =
∑

�∈{ai :i∈[t]} bk−1(y, z, �). Thus, from the definition ofμy and the proof of Lemma3.9,
we have that

bk(x, z, �) =
⎧

⎨

⎩

−bk−1(x, z, �) : Case a)

bk−1(x, y)bk−1(y, z, �) + bk−1(x, z, �) : Case b)
bk−1(x, z, �) : Case c).
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By induction, each expression on the right-hand side of the equality is independent
of the choice of z ∈ {b( j)

i : i ∈ [r j ]} 
 {a′
j }. Thus, bk(x, z, �) is independent of the

choice of z ∈ {b( j)
i : i ∈ [r j ]} 
 {a′

j }. �

Lemma 3.11 Let (R, F) be a t-colored direct sumwith a direct sum decomposition of
the form shown in (1), letμ be amutation sequence of (R, F)where supp(μ) ⊂ (Q1)0,

and let k ∈ [0, d]. In any (R(k), F), the arrows incident to the frozen vertex a′
i (for all

i ∈ [t]) have color ai .
Proof Let a′

i ∈ {a′
1, . . . , a

′
t } be given. We proceed by induction on k. If k = 0, no

mutations have been applied so the desired result holds. Suppose the result holds
(R(k−1), F) and we will show that the result holds for (R(k), F). We can write
(R(k), F) = (μy R(k−1), F) for some y ∈ (Q1)0. As y 	= a′

i , there are only two
cases to consider:

(b) a′
i is connected to y and there is a 2-path a′

i → y → z or a′
i ← y ← z in

(R(k−1), F),
(c) a′

i does not satisfy b).

First, inCase b), if there is a 2-path a′
i → y → z in (R(k−1), F) (resp. a′

i ← y ← z
in (R(k−1), F)), then by induction the arrow (a′

i → y) ∈ (R(k−1), F)1 (resp. (a′
i ←

y) ∈ (R(k−1), F)1) has color ai . Thus, if there is a 2-path a′
i → y → z in (R(k−1), F)

(resp. a′
i ← y ← z in (R(k−1), F)), then there is an arrow a′

i → z ∈ (R(k), F)1 (resp.
a′
i ← z ∈ (R(k), F)1) of color ai .
In Case c), the mutation at y does not affect the arrows α connecting a′

i and any
vertex z ∈ (R(k), F)0. Therefore the color of such an arrow is inherited from its color
as an arrow in A(k − 1). By induction, such arrows have color ai . �


We now arrive at the main result of this section. It shows that if ̂Q is a t-colored
direct sum each of whose summands has a maximal green sequence, then one can
build a maximal green sequence for Q using the maximal green sequences for each
of its summands.

Theorem 3.12 Let Q = Q1 ⊕ (b(1)
1 ,...,b(1)

r1 ,...,b(t)
1 ,...,b(t)

rt )

(a1,...,a1,...,at ,...,at )
Q2 be a t-colored direct sum of

quivers. If μ
1

∈ green (Q1) and μ
2

∈ green (Q2), then μ
2
◦ μ

1
∈ green (Q).

Proof of Theorem 3.12 Let σi denote the permutation of the vertices of Qi induced
by μ

i
. Observe that under the identification in Definition 3.1, we let

̂Q = ̂Q1 ⊕ (b(1)
1 ,...,b(1)

r1 ,...,b(t)
1 ,...,b(t)

rt )

(a1,...,a1,...,at ,...,at )
̂Q2.

We also have that ̂Q1 ⊕ (b(1)
1 ,...,b(1)

r1 ,...,b(t)
1 ,...,b(t)

rt )

(a1,...,a1,...,at ,...,at )
̂Q2 is a t-colored direct sum of the form

shown in (1).
We first show that μ

1
̂Q is a s-colored direct sum (for some s). Let μ

1
= μid

◦ · · · ◦μi1 . Sinceμ
1

∈ green(Q1),we have thatμ1
̂Q1 =

̂

Q1σ1, and so for each frozen
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vertex a′
j with j ∈ [t], we obtain that x j := a j · σ1 ∈ (Q1)0 is the unique mutable

vertex of ̂Q that is connected to a′
j by an arrow. Furthermore, (x j

α← a′
j ) ∈ (μ

1
̂Q)1

is the unique arrow of μ
1
̂Q connecting these two vertices.

By Lemma 3.9, for any a′
j we have that b

d(x j , a′
j ) = ∑

�∈{ai : i∈[t]} bd(x j , a′
j , �).

Since

̂

Q1σ1 has no 2-cycles, sgn(bd(x j , a′
j , �)) ≤ 0 for any � ∈ {ai : i ∈ [t]}. By

Lemma 3.11, α j has color a j so bd(x j , a′
j ) = bd(x j , a′

j , a j ). By Lemma 3.10, given

any x j := a j · σ1 ∈ (Q1)0 we have that bd(x j , z) = bd(x j , z, a j ) = −1 for any z ∈

{b( j)
i : i ∈ [r j ]} 
 {a′

j }. Thus, we have that μ1
̂Q = ̂Q2 ⊕(x1,...,x1,...,xt ,...,xt )

(b(1)
1 ,...,b(1)

r1 ,...,b(t)
1 ,...,b(t)

rt )

̂

Q1σ1

is a s-colored direct sum where {b(1)
1 , . . . , b(1)

r1 , . . . , b(t)
1 , . . . , b(t)

rt } is a multiset on
(Q2)0\F2 (with s distinct elements) and {x1, . . . , x1, . . . , xt , . . . , xt } is a multiset on
(Q1)0\F1. Note that in this s-colored direct sum, the b( j)

i ’s are not necessarily given
in increasing order.

Next, we show that μ
2
(μ

1
(̂Q)) is a t-colored direct sum. Since μ

1
̂Q is a s-colored

direct sum and μ
2

= μ jd′ ◦ · · · ◦ μ j1 is a mutation sequence with supp(μ
2
) ⊂ (Q2)0,

one defines coloring functions {gk}0≤k≤d ′ on μ
1
̂Q with respect to Q2 in the sense of

Definition 3.7. Now an analogous argument to that of the previous two paragraphs
shows that

μ
2
(μ

1
(̂Q)) =

̂
Q1σ1 ⊕(y(1)

1 ,...,y(1)
r1 ,...,y(t)

1 ,...,y(t)
rt )

(x1,...,x1,...,xt ,...,xt )
̂

Q2σ2

where y(i)
j := b(i)

j · σ2 with i ∈ [t], j ∈ [ri ]. One now observes that

(μ
2
◦ μ

1
)(̂Q) =

̂

Q1σ1 ⊕(y(1)
1 ,...,y(1)

r1 ,...,y(t)
1 ,...,y(t)

rt )

(x1,...,x1,...,xt ,...,xt )

̂

Q2σ2 ∼=

̂

Q

and thus, all mutable vertices of (μ
2
◦ μ

1
)(̂Q) are red.

Finally, sinceμ
i
∈ green(Qi ) for i = 1, 2, each mutation of ̂Q alongμ

2
◦ μ

1
takes

place at a green vertex. Thus, μ
2
◦ μ

1
∈ green(Q). �


Remark 3.13 We believe that Theorem 3.12 holds for any quiver that can be realized
as the direct sum of two non-empty quivers, but we do not have a proof.

4 Quivers arising from triangulated surfaces

In this section, we show that Theorem 3.12 can be applied to quivers that arise from
triangulated surfaces. Our main result of this section is that quivers Q arising from
triangulated surfaces can be realized as t-colored direct sums (see Corollary 4.5).
Before presenting this result and its proof, we recall for the reader how a triangulated
surface defines a quiver. For more details on this construction, we refer the reader to
[11].
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Fig. 4 The quiver QT defined
by a triangulation T

Let S denote an oriented Riemann surface that may or may not have a boundary
and let M ⊂ S be a finite subset of S where we require that for each component B
of ∂S we have B ∩ M 	= ∅. We call the elements of M marked points, we call the
elements ofM\(M ∩ ∂S) punctures, and we call the pair (S,M) a marked surface.
We require that (S,M) is not one of the following degenerate marked surfaces: a
sphere with one, two, or three punctures; a disk with one, two, or three marked points
on the boundary; or a punctured disk with one marked point on the boundary.

Given a marked surface (S,M), we consider curves on S up to isotopy. We define
an arc on S to be a simple curve γ in S whose endpoints are marked points and
which is not isotopic to a boundary component of S. We say two arcs γ1 and γ2 on
S are compatible if they are isotopic relative to their endpoints to curves that are
non-intersecting except possibly at their endpoints. A triangulation of S is defined to
be a maximal collection of pairwise compatible arcs, denoted T. Each triangulation T
of S defines a quiver QT by associating vertices to arcs and arrows based on oriented
adjacencies (see Fig. 4).

One can also move between different triangulations of a given marked surface
(S,M). Define the flip of an arc γ ∈ T to be the unique arc γ ′ 	= γ that produces a
triangulation of (S,M) given byT′ = (T\{γ })
{γ ′} (see Fig. 5). If (S,M) is amarked
surface whereM contains punctures, there will be triangulations of S that contain self-
folded triangles (the region of S bounded by γ3 and γ4 in Fig. 6 is an example of
a self-folded triangle). We refer to the arc γ3 (resp. γ4) shown in the triangulation
in Fig. 6 as a loop (a radius). As the flip of a radius of a self-folded triangle is not
defined, Fomin, Shapiro, and Thurston introduced tagged arcs, a generalization of
arcs, in order to develop such a notion.

We will not review the details of tagged arcs in this paper, but we remark that any
triangulation can be regarded as a tagged triangulation of (S,M) (i.e., a maximal
collection of pairwise compatible tagged arcs). In Fig. 6, we show how one regards
a triangulation of (S,M) as a tagged triangulation of (S,M). We also note that any
tagged triangulation T of (S,M) gives rise to a quiver QT (see Example 8.1 for a
quiver defined by a tagged triangulation or see [11] for more examples and details).

We now review the notion of blocks, which was introduced in [11] and used to
classify quivers defined by a triangulation of some surface.

Definition 4.1 [11, Def. 13.1] A block is a directed graph isomorphic to one of the
graphs shown in Fig. 7. Depending on which graph it is, we call it a block of types I,
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Fig. 5 A flip connecting two triangulations of an annulus

Fig. 6 The map identifying a triangulation of a punctured disk as a tagged triangulation of a punctured
disk

Fig. 7 The Fomin-Shapiro-Thurston blocks

II, III, IV, or V. The vertices marked by unfilled circles in Fig. 7 are called outlets. A
directed graph � is called block decomposable if it can be obtained from a collection
of disjoint blocks by the following procedure. Take a partial matching of the combined
set of outlets, matching an outlet to itself or to another outlet from the same block is not
allowed. Identify (or glue) the vertices within each pair of the matching. We require
that the resulting graph �′ be connected. If �′ contains a pair of edges connecting the
same pair of vertices but going in opposite directions, then remove each such a pair
of edges. The result is a block-decomposable graph �.

As quivers are examples of directed graphs, one can ask whether there is a descrip-
tion of the class of block-decomposable quivers. The following theorem answers this
question completely.
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Theorem 4.2 [11, Thm. 13.3] Block-decomposable quivers are exactly those quivers
defined by a triangulation of some surface.

Remark 4.3 Let QT be a quiver defined by a triangulated surface with no frozen
vertices. In other words, we are assuming that every v ∈ (QT)0 is a mutable vertex.
Then

#{α ∈ (QT)1 : x
α−→ y for some y ∈ (QT)0} ≤ 2

#{α ∈ (QT)1 : y
α−→ x for some y ∈ (QT)0} ≤ 2.

We now consider the quivers that are defined by triangulations, but are not irre-
ducible. We show that any such quiver is a t-colored direct sum. The following lemma
is a crucial step in showing that a quiver defined by a triangulation that is not irreducible
will not have a double arrow connecting two summands of Q.

Lemma 4.4 Assume that Q is defined by a triangulated surface (with 1 connected

component) and that is a proper subquiver of Q. Then there exists a

path of length 2 from b to a.

Proof Since Q is defined by a triangulated surface, there exists a block decomposition
{R j } j∈[m] of Q by Theorem 4.2. By definition of the blocks, α1 and α2 come from
distinct blocks. Without loss of generality, α1 is an arrow of R1 and α2 is an arrow of
R2. Furthermore, in Ri with i = 1, 2 we must have that s(αi ) and t (αi ) are outlets.
Thus, Ri with i = 1, 2 is of types I, II, or IV, but by assumption R1 and R2 are not
both of type I. When we glue the R1 to R2 to using the identifications associated
with Q, a case-by-case analysis shows that there exists a path of length 2 from b to
a. Furthermore, the vertices corresponding to a and b are no longer outlets. Thus,
attaching the remaining R j ’s will not delete any arrows from this path.

Corollary 4.5 Let Q be a quiver defined by a triangulated surface (with 1 connected

component) that is not irreducible. If then Q is a t-colored direct

sum for some t ∈ N.

Proof Since we are assuming that Q is not irreducible, there exists subquivers Q1

and Q2 of Q such that we can write Q as the direct sum Q = Q1 ⊕ (b1,...,bk )
(a1,...,ak )

Q2
where {a1, . . . , ak} is a multiset on (Q1)0 and {b1, . . . , bk} is a multiset on (Q2)0. Let
ai ∈ {a1, . . . , ak} and b j ∈ {b1, . . . , bk} be given.We claim that #{α ∈ (Q)1 : ai

α−→
b j } ≤ 1. Suppose this were not the case, then Q would have a proper subquiver of the

form By Lemma 4.4, there must be a path of length 2 from b j to ai .

This contradicts the fact that all arrows between {a1, . . . , ak} and {b1, . . . , bk} point
toward the latter. Hence, Q is not only a direct sum but is a t-colored direct sum. �


5 Signed irreducible type A quivers

In this section, we focus our attention on type An quivers, which are defined to be
quivers R ∈ Mut(1 ← 2 ← · · · ← n) where n ≥ 1 is a positive integer. We begin
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by classifying irreducible type An quivers. After that, we explain how almost any
irreducible type An quiver carries the structure of a binary tree of 3-cycles. In Sect. 6,
we will show how regarding irreducible type An quivers as trees of 3-cycles allows us
to construct maximal green sequences for such quivers.

Our first step in classifying irreducible type An quivers is to present the following
theorem of Buan and Vatne, which classifies quivers in Mut(1 ← 2 ← · · · ← n)

where n ≥ 1 is a positive integer. We will say that a quiver is of type A if it is of type
An for some positive integer n ≥ 1.

Lemma 5.1 [6, Prop. 2.4] A quiver Q is of type A if and only if Q satisfies the
following:

(i) all non-trivial cycles in the underlying graph of Q are of length 3 and are oriented
in Q,

(ii) any vertex has at most four neighbors,
(iii) if a vertex has four neighbors, then two of its adjacent arrows belong to one

3-cycle, and the other two belong to another 3-cycle,
(iv) if a vertex has exactly three neighbors, then two of its adjacent arrows belong to

one 3-cycle, and the third arrow does not belong to any 3-cycle.

Corollary 5.2 Besides the quiver of type A1, the irreducible quivers of type A are
exactly those quivers Q obtained by gluing together a finite number of type II blocks
{Sα}α∈[n] in such a way that the cycles in the underlying graph of Q are in bijection
with the elements of {Sα}α∈[n]. Additionally, each Sα shares a vertex with at most three
other Sβ ’s. (We say that Sα is connected to Sβ in such a situation.)

Proof Assume that Q is a quiver obtained by gluing together a finite number of type
II blocks {Sα}α∈[n] in such a way that the cycles in the underlying graph of Q are in
bijection with the elements of {Sα}α∈[n]. Then, Q satisfies (i) in Lemma 5.1. By the
rules for gluing blocks together, each vertex i ∈ (Q)0 has either two or four neighbors
so (ii) and (iv) in Lemma 5.1 hold. It also follows from the gluing rules that if i has
four neighbors, then two of its adjacent arrows belong to one 3-cycle and the other
two belong to another 3-cycle so (iii) in Lemma 5.1 holds. Additionally, since each
arrow of Q is contained in an oriented 3-cycle, there is no way to partition the vertices
into two components so that the arrows connecting them coherently point from one to
the other. Thus, the quiver Q is irreducible.

Conversely, let Q be an irreducible type A quiver that is not the quiver of type
A1. We first show that any arrow of Q belongs to a (necessarily) oriented 3-cycle of
Q. Suppose (i

α−→ j) ∈ (Q)1 does not belong to an oriented 3-cycle of Q. Then,
there exist non-empty full subquivers Q1 and Q2 of Q such that Q = Q1 ⊕( j)

(i) Q2.

(By property i), there cannot be an (undirected) cycle of length larger than 3.) This
contradicts the fact that Q is irreducible.

Not only is it true that every arrow of Q belongs to an oriented 3-cycle of Q,
property i) also ensures that Q is obtained by identifying certain vertices of type II
blocks in a finite set of type II blocks {Sα}α∈[n]. Furthermore, property ii) in Lemma 5.1
implies that these identifications are such that all vertices have two or four neighbors.
By properties i) and iii), these identifications do not create any new cycles in the
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Fig. 8 Labeling arrows of an irreducible quiver of type A

underlying graph of Q. Thus, Q is obtained by gluing together a finite number of type
II blocks {Sα}α∈[n] in such a way that the cycles in the underlying graph of Q are in
bijection with the elements of {Sα}α∈[n].

Definition 5.3 Let Q be an irreducible type A quiver with at least one 3-cycle. Define
a leaf 3-cycle Sα in Q to be a 3-cycle in Q that is connected to at most one other
3-cycle in Q. We define a root 3-cycle to be a chosen leaf 3-cycle.

Lemma 5.4 Suppose Q is an irreducible typeA quiver with at least one 3-cycle. Then
Q has a leaf 3-cycle.

Proof If Q has exactly one 3-cycle R, then Q = R is a leaf 3-cycle. If Q is obtained
from the type II blocks {Si }i∈[n], consider the block Si1 . If Si1 is connected to only one
other 3-cycle, then Si1 is a leaf 3-cycle. If Si1 is connected to more than one 3-cycle,
let Si2 denote one of the 3-cycles to which Si1 is connected. If Si2 is only connected
to Si1 , then Si2 is a leaf 3-cycle. Otherwise, there exists a 3-cycle Si3 	= Si1 connected
to Si2 . By Lemma 5.1, there are no non-trivial cycles in the underlying graph of Q
besides those determined by the blocks {Si }i∈[n] so this process will end. Thus, Q has
a leaf 3-cycle.

Consider a pair (Q, S) where Q is an irreducible type A quiver with at least one
3-cycle and S denotes a root 3-cycle in Q.We now define a labeling of the arrows of Q,
an ordering of the 3-cycles, and a sign function on the set of 3-cycles of Q. Adding this
additional data to (Q, S) yields a binary tree structure on the set of 3-cycles {Sα}α∈[n].

We begin by letting S1 := S denote the chosen root 3-cycle, S2 denote the unique
3-cycle connected to S1, and z1 denote the vertex shared by S1 and S2. (In the event
that Q is a single 3-cycle, we choose z1 to be a vertex of S1 arbitrarily.) Next, we let
α1, β1 and γ1 denote the three arrows of S1 in cyclic order such that s(γ1) = z1 =
t (β1), s(β1) = t (α1), and s(α1) = t (γ1). We next label the arrows of S2 such that
s(α2) = z1 = t (γ2), t (α2) = s(β2), and t (β2) = s(γ2). See Fig. 8 for examples of
this labeling.

For i ≥ 2, we order the remaining 3-cycles by a depth-first ordering where we
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Fig. 9 A positive (resp.
negative) 3-cycle is shown on
the left (resp. right)

(1) inductively define Si+1 to be the 3-cycle attached to the vertex t (αi ),
(2) define αi+1 such that s(αi+1) = t (αi ) and then βi+1, γi+1 follow αi+1 in cyclic

order,
(3) if no 3-cycle is attached to t (αi ), define Si+1 to be the 3-cycle attached to t (βi )

and s(αi+1) = t (βi ) instead, and finally
(4) minimally backtrack and continue the depth-first ordering until all arrows and

3-cycles have been labeled.

Given a 3-cycle Si in the block decomposition of Q, define xi := s(αi ), yi := s(βi ),
and zi := s(γi ). The vertex z1 of S1 was already defined in the previous paragraph
and that definition of z1 clearly agrees with this one. We say that a 3-cycle Si is
positive (resp. negative) if s(αi ) = t (α j ) (resp. s(αi ) = t (β j )) for some j < i . We
define sgn(Si ) := + (resp. −) if Si is positive (resp. negative). By convention, we set
sgn(S1) = +.We define Ti := (Si , sgn(Si )) to be a 3-cycle in the block decomposition
of Q and its sign. We will refer to Ti where i ∈ [n] as a signed 3-cycle of Q. For
graphical convenience, we will consistently draw 3-cycles as shown in Fig. 9 with the
convention that sgn(Si ) = + (resp. −) in the former figure (resp. latter figure). We
refer to the data Q := (Q, S, {Ti }i∈[n]) as a signed irreducible type A quiver.

Remark 5.5 If Q is an irreducible type A quiver with more than one 3-cycle, then the
choice of a root 3-cycle completely determines the sign of each 3-cycle of Q. Thus,
Q = (Q, S, {Ti }i∈[n]) depends only on (Q, S), and thus, it makes sense to refer to the
signed irreducible type A quiver defined by (Q, S).

The next lemma follows immediately from Corollary 5.2 and from our definition
of the sign of a 3-cycle Si in Q.

Lemma 5.6 If Q is an irreducible type A quiver with at least one 3-cycle, S is a root
3-cycle of Q and Q = (Q, S, {Ti }i∈[n]) is a signed irreducible type A quiver defined
by (Q, S), thenQ is equivalent to a labeled binary tree with vertex set {Si }i∈[n] where
Si is connected to S j by an edge if and only if Si is connected to S j (i.e., Si and S j

share a vertex). Furthermore, a 3-cycle S j ∈ {Si }i∈[n] has a right child (resp. left
child) if and only if S j shares the vertex y j (resp. z j ) with another 3-cycle, .

For the remainder of this section, we assume that Q is a given irreducible type A

quiver and S a root 3-cycle of Q. We also assume Q is a signed irreducible type A

defined by the data (Q, S). For convenience, we will abuse notation and refer to the
vertices, arrows, 3-cycles, etc. of Q with the understanding that we are referring to
the vertices, arrows, 3-cycles, etc. of Q, respectively. Since we will often work with
̂Q, the framed quiver of Q, it will also be useful to define ̂Q to be framed quiver of Q
with the additional data of S, the root 3-cycle of Q, and the data of a sign associated
with each 3-cycle of Q. Now for convenience, we will abuse notation and refer to the
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Fig. 10 A signed irreducible type A23 uiver

mutable vertices, frozen vertices, arrows, and 3-cycles of ̂Qwith the understanding
that we are referring to the mutable vertices, frozen vertices, arrows, and 3-cycles of
̂Q, respectively. We will refer to ̂Q as a signed irreducible type A framed quiver.
Additionally, we define a full subquiver R of Q or ̂Q to be a full subquiver of Q or
̂Q, respectively, with the property that the sign of any 3-cycle C of R is the same as
the sign of C when regarded as a 3-cycle of Q or ̂Q.

Example 5.7 In Fig. 10, we show an example of a signed irreducible type A23 quiver,
which we denote by Q. The positive 3-cycles of Q are T1, T3, T4, T5, T7. For clarity,
we have labeled the arrows ofQ in Fig. 10, but we will often suppress these labels in
later examples. We also note that many of the vertices, e.g., z1, y2, y3, z3, could also
be labeled as x2, x3, x4, x11, respectively, but we suppress the vertex labels xi (which
are shorthand for s(αi )) except for x1.

It will be helpful to define an ordering on the vertices of ̂Q. We label the mutable
vertices of ̂Q according to the linear order

1 = s(α1) < t (α1) < t (β1) < t (α2) < t (β2) < · · · < t (αn) < t (βn) = N

and the frozen vertices of ̂Q according to the linear order

N + 1 = s(α1)
′ < t (α1)

′ < t (β1)
′ < t (α2)

′ < t (β2)
′ < · · · < t (αn)

′ < t (βn)
′ = 2N .

We call this the standard ordering of the vertices of ̂Q.

Example 5.8 Let ̂Q denote the signed irreducible type A23 framed quiver shown in
Fig. 11.We have labeled the vertices of ̂Q in Fig. 11 according to the standard ordering.
Note that we have suppressed the arrow labels in Fig. 11.

6 Associated mutation sequences

Throughout this section, we work with a given signed irreducible type A quiver Q
with respect to a fixed root 3-cycle S. Based on the data defining the signed irre-
ducible type A quiver Q, we construct a mutation sequence of Q that we will call
the associated mutation sequence ofQ. After that, we state our main theorem which
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Fig. 11 The framed quiver of a signed irreducible type A23 quiver with vertices labeled using the standard
ordering

says that the associatedmutation sequence ofQ is amaximal green sequence (see The-
orem 6.5). We then apply our main theorem to construct a maximal green sequence
for any type A quiver Q (see Corollary 6.8).

6.1 Definition of associated mutation sequences

Before defining the associated mutation sequence of Q, we need to develop some
terminology.

Definition 6.1 Let Tk be a signed 3-cycle of Q. Define the sequence of vertices
(x(0, k), x(1, k), . . . , x(d, k)) of Q by

x( j, k) :=
{

zk : if j = 0,
t (γm j ) : γm j is the unique arrow ofQ satisfying s(γm j ) = x( j − 1, k).

Note that such a sequence is necessarily finite, and we choose d to be maximal, or
equivalently so that sgn(Smd ) = +. When k is clear from context, we abbreviate
x(s, k) as x(s). It follows from the definition of x( j) that x( j) = xm j for any j ∈ [d]
and that x(d) = x1 or ymd−1. However, x(0) can be expressed as xs for some s ∈ [n]
only if deg(x(0)) = deg(zk) = 4. See Fig. 12. Note that if sgn(Sk) = +, then this
sequence of vertices is simply (x(0), x(1)).

Definition 6.2 For any vertex v of Q which can be expressed as v = yk , i.e., as a
point of some signed 3-cycle Tk ofQ, we define the transport of yk by the following
procedure. We will denote the image of the transport as tr(v). Consider the full sub-
quiver of Q on the vertices of the signed 3-cycles T1,T2,. . . ,Tk , which we denote by
Qk . Inside this subquiver,

(i) move from yk along βk to t (βk),
(ii) move from t (βk) along the sequence of arrows γm1, γm2 , . . . , γmd of maximal

length to t (γmd ) where the integers {mi }i∈[d] are those defined by the signed
3-cycle Tk (see Definition 6.1),
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Fig. 12 The sequence (x(0), x(1), . . . , x(d)) defined by Tk where sgn(Sk ) = −. The transport of yk is
also illustrated for quivers where there is no sequence of the form in (2) of Definition 6.2

(iii) if possible, move from t (γmd ) to tr(yk) := t (βks ) along the sequence of arrows
of the form shown in (2) each of which belongs to a signed 3-cycle Ti for some
i < k, under the assumption that the subsequences A1 and A2 are of maximal
length, and A2 must be non-empty. If no such sequence exists of this form, we
instead define tr(yk) := t (γmd ).

αk1 , βk1 , αk2 , βk2 , . . . , αk�−1 , βk�−1

A1

, αk�
, αk�+1 , βk�+1 , αk�+2 , βk�+2 , . . . , αks , βks

A2

(2)

See Figs. 12, 13, and 14.

We now use the above notation to define the associated mutation sequence ofQ.

Definition 6.3 LetQ = (Q, S, {Ti }i∈[n]) be a signed irreducible typeA quiver. Define
μ
0

:= μx1 . For each k ∈ [n], we define a sequence of mutations, denoted μ
k
, as

follows. Note that when we write ∅ below, we mean the empty mutation sequence.
We define

μ
k

:= μ
A

◦ μ
B

◦ μ
C

◦ μ
D
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Fig. 13 The sequence of arrows one follows to compute the transport of yk . Note that in this case, the
sequence A1 is non-empty

Fig. 14 The sequence of arrows one follows to compute the transport of yk . Note that in this case, the
sequence A1 is empty

where μ
A
, μ

B
, μ

C
, and μ

D
are mutation sequences defined in the following way

μ
D

:= μyk
μ
C

:= μx(d−1) ◦ · · · ◦ μx(1) ◦ μx(0)

μ
B

:=
{

μtr(x(d)) : if x(d) 	= x1
∅ : if x(d) = x1

μ
A

:= μtr(yk ). 123
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Fig. 15 The signed irreducible type A31 quiver described in Example 6.4

Fig. 16 The associated mutation of the signed irreducible type A31 quiver in Fig. 15

Note that x(d) = x1 or ymd−1 so the transport tr(x(d)) in μ
B
is well defined. Now

define the associated mutation sequence of Q to be μ := μ
n

◦ · · · ◦ μ
1
◦ μ

0
. We

will denote the associated mutation sequence of Q by μ or by μQ if it is not clear
from context which signed irreducible type A quiver defines μ. At times, it will be
useful to write μ

k
= μ

A(k)
◦ μ

B(k)
◦ μ

C(k)
◦ μ

D(k)
.

Example 6.4 LetQ denote the signed irreducible typeA31 quiver appearing in Fig. 15.
In the table in Fig. 16, we describe μ

i
for each 0 ≤ i ≤ 15. Thus, the associated

mutation sequence defined by Q is μ
15

◦ μ
14

◦ · · · ◦ μ
1
◦ μ

0
.

We now arrive at the main result of this paper.

Theorem 6.5 If Q = (Q, S, {Ti }i∈[n]) is a signed irreducible type A quiver with
associated mutation sequence μ, then we have μ ∈ green (Q).

We present the proof Theorem 6.5 in the next section, as the argument requires
some additional tools.
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Fig. 17 The irreducible quiver
Q in Remark 6.6

Fig. 18 The two signed irreducible type A quivers that can be obtained from Q

Remark 6.6 For a given irreducible type A quiver with at least one 3-cycle, the length
of μ can vary depending on the choice of leaf 3-cycle. Let Q denote the irreducible
type A7 quiver shown in Fig. 17. By choosing the 3-cycle 1,2,3 (resp. 5,6,7) to be the
root 3-cycle, one obtains the signed irreducible type A quiverQ1 (resp.Q2) shown in
Fig. 18. Then the associated mutations of Q1 and Q2 are

μQ1 = μ1 ◦ μ3 ◦ μ5 ◦ μ7 ◦ μ6 ◦ μ1 ◦ μ3 ◦ μ5 ◦ μ4 ◦ μ1 ◦ μ3 ◦ μ2 ◦ μ1

μQ2 = μ3 ◦ μ6 ◦ μ2 ◦ μ1 ◦ μ6 ◦ μ5 ◦ μ4 ◦ μ3 ◦ μ6 ◦ μ5 ◦ μ7 ◦ μ6.

Furthermore, the maximal green sequence produced by Theorem 6.5, i.e., the associ-
ated mutation sequence of a each signed irreducible type A quiver associated with Q,
is not necessarily a minimal length maximal green sequence. For example, it is easy
to check that ν = μ3 ◦ μ1 ◦ μ4 ◦ μ3 ◦ μ7 ◦ μ6 ◦ μ2 ◦ μ5 ◦ μ1 ◦ μ4 ◦ μ7 is amaximal
green sequence of Q, which is of length less than that of μQ1 or μQ2 .

Remark 6.7 While we were revising this paper, Cormier, Dillery, Resh, Serhiyenko,
and Whelan [9] found a construction of minimal length maximal green sequences for
type A quivers. Therein, they construct a maximal green sequence for any irreducible
typeA quiver Q with at least one 3-cycle bymutating first at all leaf 3-cycles of Q, then
mutating at the 3-cycles connected to the leaf 3-cycles of Q, continuing this process,
and then mutating a subsequence of the vertices in reverse. This contrasts with the
maximal green sequences we construct in this paper, which involve some extraneous
steps but whose process can be defined locally and inductively, akin to writing down
the reduced word for a permutation using bubble sort.

We conclude this section by using Theorem 6.5 to show that any type A quiver has
at least one maximal green sequence.

Corollary 6.8 Let Q ∈ Mut(1 → 2 → · · · → n). Then Q has a maximal green
sequence.
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Fig. 19 The local configuration around yk and zk just before μk is applied

Proof By Corollary 4.5, Q can be expressed as a direct sum of irreducible type A

quivers {Q1, Q2, . . . , Qk}. In other words,

Q = Q1 ⊕ (b(1,1),b(2,1),...,b(d1,1))

(a(1,1),a (2,1),...,a(d1,1))
Q′

2 where Q′
j

= Q j ⊕ (b(1, j),b(2, j),...,b(d j , j))

(a(1, j),a (2, j),...,a(d j , j))
Q′

j+1 for 2 ≤ j ≤ k − 1, and Q′
k = Qk .

If Qi is of typeA1 and ai denotes the unique vertex of Qi , thenμ(i) := μai is amax-
imal green sequence of Qi . If Qi is not of type A1, then we form a signed irreducible
typeA quiver,Q(i), associatedwith Qi by picking a leaf 3-cycle. Now byTheorem 6.5,
the associated mutation sequence of Q(i), denoted μ(i), is a maximal green sequence

of Qi . By applying Proposition 3.12 iteratively, we obtainμ = μ(k) ◦ · · · ◦ μ(2) ◦ μ(1)

is a maximal green sequence of ̂Q.

7 Proof of theorem 6.5

In this section, we work with a fixed signed irreducible type A quiver Q =
(Q, S, {Ti }i∈[n]) with N vertices. We write μ = μ

n
◦ · · · ◦ μ

1
◦ μ

0
for the associated

mutation sequence of Q.

Definition 7.1 For eachμ
i
appearing inμ, we define a permutation τi ∈ S(Q)0

∼= SN

where S(Q)0 denotes the symmetric group on the vertices of Q. In the special case
where i = 0, we define τ0 to be the identity permutation. Then for i ∈ [n] where
μ
i
= μid ◦ · · · ◦ μi1 , we define τi := (i2, . . . , id) in cycle notation (i.e., i j · τi = i j+1

for j ∈ [d − 1] and id · τi = i2). Note that i1 = yi . We also define

σi := τi · · · τ1τ0
= τi · · · τ1

where the last equality holds since τ0 is the identity permutation. We say that σn is the
associated permutation corresponding to Q.
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Fig. 20 The local configuration in the special case when x(d) = x1 since tr(x1) is not defined

Theorem6.5will imply that the associated permutationσn is exactly the permutation
induced by μ (see the last paragraph of Sect. 2).

Let Tk and Tt where k ≤ t be signed 3-cycles ofQ. LetQk,t denote the full subquiver
ofQ on the vertices of T1, . . . , Tk and the vertices of Tm1 , . . . , Tmd where the integers
m1, . . . ,md ∈ [n] are those defined by Tt as in Definition 6.1. For example,Qk,k is the
full subquiver of Q on the vertices of the signed 3-cycles T1, . . . , Tk . By convention,
we also defineQ0,0 to be the full subquiver ofQ consisting of only the vertex x1. Now
define tr|k,t to be the restriction of the transport to Qk,t .

Lemma 7.2 For each k ∈ [n], there is an ice quiver Rk that is a full subquiver of
μ
k−1

◦ · · · ◦ μ
1
◦ μ

0
(̂Q) of the form shown in Fig. 19 (resp. Fig. 20) where the vertices

zk = x(0), x(1), . . . , x(d−1), tr(x(d)), and tr(yk) (resp. zk = x(0), x(1), . . . , x(d−
1), and tr(yk)) are those appearing in the mutation sequence μ

A(k)
◦ μ

B(k)
◦ μ

C(k)
and the integers m1,m2, . . . ,md are those defined by Tk in Definition 6.1. Recall that
we only mutate at tr(x(d)) if x(d) 	= x1. Furthermore, the ice quiver Rk has the
following properties:

• Rk includes every frozen vertex that is connected to a mutable vertex appearing
in Fig. 19 (resp. Fig. 20) by at least one arrow in μ

k−1
◦ · · · ◦ μ

1
◦ μ

0
(̂Q) where

x̃(1) := z′md−1, ˜tr(x(d)) := x ′
m2

,˜tr(yk) := x ′
m1

and x̃(s) := x ′
md−s+2

for4 s ∈
[2, d − 1] (resp. ˜tr(yk) := x ′

m1
and x̃(s) := x ′

md−s+1
for5 s ∈ [1, d − 1]),

• vertices ym, y′
m, zm, and z′m appear in Rk if and only if deg(yk) = 4 in Q,

• vertices y�, y′
�, z�, and z′� appear in Rk if and only if deg(zk) = 4 in Q,

• vertices yt and y′
t appear in Rk if and only if there exists a signed 3-cycle Tt inQ

with k < t such that tr|k,t (yt ) = zk and such that in μ
k−1

◦ · · · ◦ μ
1
◦ μ

0
(̂Q), the

vertex xt has been mutated exactly once6, and

4 If d = 1, then˜tr(x(d)) = x ′
m1

= xk .
5 If d = 1, then˜tr(x(d)) = x ′

m1
= xk . Furthermore, d = 1, in this case, if and only if k = 1.

6 Note that this can only happen if there exists j < k such that z j = xt and x(d, k) = y j as in Definition
6.1.
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Fig. 21 The quiver μk (Rk ) before rearrangement

Fig. 22 The quiver μk (Rk ) rearranged to look more like Rk+1

• in Fig. 19 (resp. Fig. 20) C1,k := xmd−1 ·σ−1
k−1, C̃1,k := x ′

md−1,Cs,k := ym j ·σ−1
k−1,

and C̃s,k := y′
m j

for s ∈ [2, d] and j = d − s + 2 (resp. Cs,k := ym j · σ−1
k−1 and

C̃s,k := y′
m j

for s ∈ [1, d − 1] and j = d − s + 2).

Additionally, for each k ∈ [n] we have μ
k
◦ · · · ◦ μ

1
◦ μ

0
(Q̂k,k) =

̂

Qk,k · σk .

We will prove Lemma 7.2 in the case where the vertex tr(x(d)) appears in the
mutation sequence μ

k
(i.e., when x(d) 	= x1). Under this assumption, the following

lemma will allow us to prove Lemma 7.2 inductively. The proof of Lemma 7.2 when
tr(x(d)) does not appear in μ

k
is very similar so we omit it.

Lemma 7.3 Let k ∈ [n] be given and let Rk be the ice quiver described in Lemma 7.2.
(See Fig. 19.) Then

• μ
k
(Rk) has the form shown in Fig. 21 and Fig. 22 (here, the vertices ym, y′

m,

zm, z′m, y�, y′
�, z�, z

′
�, yt , and y′

t appear in μ
k
(Rk) if and only if they appear in

Rk),
• μ

k
(Rk) is a full subquiver of μk

◦ · · · ◦ μ
1
◦ μ

0
(̂Q),

• as one mutates Rk along μ
k
, one does so only at green vertices,

• μ
k
(Rk) includes every frozen vertex that is connected to a mutable vertex appear-

ing in Fig. 22 by at least one arrow in μ
k
◦ · · · ◦ μ

1
◦ μ

0
(̂Q),
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• the full subquiver of μ
k−1

◦ · · · ◦ μ
1
◦ μ

0
(̂Q) on the vertices (̂Q)0\(Rk)0 is

unchanged by the mutation sequence μ
k
.

• the vertices z� and zm (rather than zk) are the only mutable vertices in μ
k
(Rk)

that are incident to multiple frozen vertices.

Additionally, for each k ∈ [n], the full subquiver ofμ
k
◦ · · · ◦ μ

1
◦ μ

0
(̂Q) restricted

to the green mutable vertices outside of (Rk)0, as well as the incident frozen vertices,
equals the original framed quiver ̂Q restricted to those vertices.

Proof of Theorem 6.5 By the third assertion in Lemma 7.3, the associated muta-
tion sequence μ = μ

n
◦ · · · μ

1
◦ μ

0
of Q is a green mutation sequence of Q. By

Lemma 7.2,

μ
n

◦ · · · ◦ μ
1
◦ μ

0
(̂Q) = μ

n
◦ · · · ◦ μ

1
◦ μ

0
(̂Qn,n) =

̂

Qn,n · σn =

̂

Q · σn

and so every mutable vertex of μ
n

◦ · · · ◦ μ
1
◦ μ

0
(̂Q) is red. Thus, μ = μ

n◦ · · · μ
1
◦ μ

0
∈ green(Q). �


Remark 7.4 It follows from Lemma 5.1 that as one mutates Rk along μ
k

= μir

◦ · · · ◦ μi1 , we have that i j in μi j−1 ◦ · · · ◦ μi1(Rk) is incident to at most four other
mutable vertices.

Proof of Lemma 7.3 The first assertion follows inductively by mutating the vertices
of Rk in the specified order μ

k
= μtr(yk ) ◦ μtr(x(d)) ◦ μx(d−1) ◦ μx(d−2) ◦ · · · μx(1)

◦ μx(0) ◦ μyk , reading right to left. In particular, as this mutation sequence is applied
to Rk , Remark 7.4 shows that the mutable vertices incident to y� are located further
and further to the right in Figure 19 until we see that they are tr(yk) and zm at the
end of the sequence. In fact, we observe after mutating Rk at yk that zk is the unique
green vertex of Rk (with the exception of the vertices y�, z�, yt , ym , and zm , if they
appear in Rk). As we continue to mutate μyk (Rk) along the remaining mutations in
μ
k
, the unique green vertex is x(s) for some s ∈ [0, d − 1] or as tr(x(d)) or tr(yk) (as

before, with the exception of the vertices y�, z�, yt , ym , and zm). Iteratively mutating
at this unique green vertex exactly corresponds to performing the mutation sequence
μ

A(k)
◦ μ

B(k)
◦ μ

C(k)
on μ

D(k)
(Rk).

The second assertion, μ
k
(Rk) is a full subquiver of μ

k
◦ · · · ◦ μ

1
◦ μ

0
(̂Q), follows

since the vertices of Q at which one mutates when applying μ
k
are all vertices of Rk .

One can see that the third assertion follows from the above observation that a unique
vertex becomes green as we iteratively mutate. The fourth assertion holds for μ

k
(Rk)

since it holds for Rk . The fifth assertion follows since the vertices in the support of μ
k

are all disconnected from the vertices in (μ
k−1

◦ · · · ◦ μ
1
◦ μ

0
(̂Q))0\(Rk)0. Further,

the sixth assertion is demonstrated inductively as we mutate x(s) for s ∈ [0, d − 1].
Lastly, by restricting to the green mutable vertices outside of (Rk)0 and the incident
frozen vertices, it is clear that the mutation sequence μ

k
leaves this full subquiver

unaffected. �
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Fig. 23 The subquiver R = R1
of μ0(

̂Q)

Proof of Lemma 7.2 Weprove the lemma by induction. For k = 1, observe thatμ
0
(̂Q)

has the full subquiver R shown in Fig. 23 where we assume that n > 1. We show that
R has all of the properties that R1 must satisfy. Note that tr(y1) = x1 and for k = 1 one
has that x(1) = xm1 = x1. Since deg(y1) = 2, no vertices ym, y′

m, zm, and z′m appear
in R, as desired. Since only vertex x1 has been mutated to obtain μ

0
(̂Q), no arrows

between vertices of a signed 3-cycle Tt with 1 < t and vertices of signed 3-cycle Ti
with i ≤ 1 have been created. Furthermore, there is no signed 3-cycle Tt of Q with
1 < t where tr|1,t (yt ) = z1. Note that in this degenerate case, tr(y1) = x(1) and so no
Ci,1’s or C̃i,1’s appear in R1, and x̃(1) = ˜tr(y1) = x ′

1. Thus, the quiver R satisfies all

of the properties that R1 must satisfy. Further, in this special case Q̂0,0 contains only
the vertex x1 and x ′

1 and σ0 is the identity permutation. Thus, μ
0
Q̂0,0 indeed equals

̂

Q0,0 · σ0.
Now assume that k > 1 and that μ

k−1
◦ · · · ◦ μ

1
◦ μ

0
(̂Q) has a full subquiver Rk

with the properties in the statement of the lemma. To show thatμ
k
◦ · · · ◦ μ

1
◦ μ

0
(̂Q)

has the desired full subquiver Rk+1, we consider four cases:

(i) deg(yk) = 2 and deg(zk) = 4,
(ii) deg(yk) = 4 and deg(zk) = 2,
(iii) deg(yk) = 4 and deg(zk) = 4, and
(iv) deg(yk) = 2 and deg(zk) = 2.

Suppose that we are in Case i). By the properties of the ice quiver Rk , this means
that vertices ym, y′

m, zm, and z′m do not appear in Rk . This also implies that � = k+1.
Now Lemma 7.3 implies thatμ

k
(Rk) has the form shown in Fig. 24 where the vertices

yt and y′
t appearμk

(Rk) if and only if they appear in Rk . Note that the quiver in Fig. 24
is the same as the quiver in Fig. 22 with the notation updated accordingly. In particular,
the integersm(k+1)

1 ,m(k+1)
2 , . . . ,m(k+1)

d+1 ∈ [n] and the vertices x(1, k+1), . . . , x(d+
1, k + 1) ∈ (Q)0 are those defined by Tk+1 following Definition 6.1. Since the signed
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Fig. 24 The quiver μk (Rk ) obtained by mutating Rk in Case (i)

3-cycles Tk and Tk+1 share the vertex zk (i.e., zk = xk+1), we have that

m(k+1)
1 = k + 1, m(k+1)

2 = m1, . . . , m(k+1)
j = m j−1, . . . , m(k+1)

d+1 = md (3)

and

x(1, k + 1) = zk, x(2, k + 1) = x(1), . . . , x(s, k + 1)

= x(s − 1), . . . , x(d + 1, k + 1) = x(d).

This implies that tr(x(d + 1, k + 1)) = tr(x(d, k)) and tr(yk+1) = tr(yk). Now we
also obtain that

x̃(1, k + 1) = z′
m(k+1)
d+1 −1

= z′md−1 = x̃(1, k) and x̃(s, k + 1)

= x ′
m(k+1)
d+1−s+2

= x ′
m(k+1)

j

= x ′
m j−1

= x̃(s, k)

for s ∈ [2, d] where j = (d + 1) − s + 2 and that

˜tr(x(d + 1, k + 1)) = x ′
m(k+1)
2

= x ′
m1

= ˜tr(yk) and˜tr(yk+1) = x ′
m(k+1)
1

= x ′
k+1 = z′k

where the last equality follows from the fact that Tk and Tk+1 share the vertex zk . Thus,
we have labeled the vertices of μ

k
(Rk) accordingly in Fig. 24. Furthermore, that the

signed 3-cycles Tk and Tk+1 share the vertex zk implies that zk+1 = tr|k+1,t (yt ) if and
only if zk = tr|k,t (yt ).

Next, observe that for any s ∈ [d] we have Cs,k · τ−1
k = Cs,k since we do not

mutate Cs,k when applying μ
k
. Additionally, x

m(k+1)
d+1 −1

= xmd−1 and y
m(k+1)

j+1
= ym j

(for j = (d + 1) − s + 2 where s ∈ [2, d]) follows from (3). Comparing with
the fifth bullet point of Lemma 7.2, we obtain Cs,k = Cs,k · τ−1

k = Cs,k+1 and

C̃s,k = C̃s,k · τ−1
k = C̃s,k+1 for any s ∈ [d].

Now let Cd+1,k+1 = yk and ˜Cd+1,k+1 = y′
k . Note that yk · σ−1

k−1 = yk since yk has

not been mutated in μ
k−1

◦ · · · ◦ μ
0
(̂Q). Furthermore, yk · σ−1

k−1τ
−1
k = yk · τ−1

k = yk

by the definition of τk so Cd+1,k+1 = yk · σ−1
k , as desired.
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Fig. 25 The quiver obtained by mutating Rk in Case ii)

We now construct an ice quiver R that is the full subquiver ofμ
k
◦ · · · ◦ μ

1
◦ μ

0
(̂Q)

on the vertices of μ
k
(Rk), as well as the vertices xr , yr , zr and corresponding frozen

vertices x ′
r , y

′
r , z

′
r of any signed 3-cycles Tr of Q where k < r and zk+1 or yk+1 is a

vertex if Tr . Comparing this construction of R to the quiver Rk+1 appearing in Fig. 19,
we verify that R indeed equals Rk+1 and satisfies the five properties listed as bullet
points in Lemma 7.2.

Next, suppose that we are in Case ii). In this situation, we have that m = k + 1
and the vertices y�, y′

�, z�, and z′� do not belong to Rk . Now Lemma 7.3 implies that
μ
k
(Rk) has the form shown in Fig. 25. We let Tp (resp. Tq ) be the signed 3-cycle

not equal to Tk+1 that contains zk+1 (resp. yk+1), if they exist. Define R to be the ice
quiver that is a full subquiver of μ

k
◦ · · · ◦ μ

1
◦ μ

0
(̂Q) on the vertices

yk+1, y
′
k+1, zk+1, z

′
k+1, tr(yk), z

′
k, yk, y

′
k, tr(x(d)), x ′

k, yp, y
′
p, z p, z

′
p, yq , y

′
q , zq , z

′
q

where we include yp and y′
p (resp. z p, z′p, yq , y′

q , zq , and z′q ) in R if and only if

yp and y′
p (resp. zq , z′q , yq , y′

q , zq , and z′q ) appear in μ
k
(Rk), i.e., depending on if

deg(yk+1) = 4 and if deg(zk+1) = 4. See Fig. 26.
Just as above, we claim that the ice quiver R equals Rk+1 and satifies the five bullet

points in the statement of Lemma 7.2. It is easy to see that R is a full subquiver of
μ
k
◦ · · · ◦ μ

1
◦ μ

0
(̂Q) that includes every frozen vertex that is connected to a mutable

vertex appearing inFig. 26 by at least one arrow inμ
k
◦ · · · ◦ μ

1
◦ μ

0
(̂Q). In particular,

μ
k
(Rk) has this property and no vertices of Tp or Tq and neither yk+1 nor zk+1

have been mutated in μ
k
◦ · · · ◦ μ

1
◦ μ

0
(̂Q). Furthermore, defining m(k+1)

1 ∈ [n],
x(0, k+1), and x(1, k+1) ∈ (̂Q)0 just as we did in Case i), following Definition 6.1,
and using the fact that sgn(Tk+1) = +, we have m(k+1)

1 = k + 1, x(0, k + 1) = zk+1,
and x(1, k + 1) = xk+1. Hence, we obtain that
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Fig. 26 The quiver R = Rk+1 that we obtain in Case (ii)

tr(x(1, k + 1)) = tr(xk+1) = tr(yk) and z′
m(k+1)
1 −1

= z′k,

as desired. Additionally, the fact that sgn(Tk+1) = + also implies that

tr(yk+1) = xk+1 = ykandx
′
m(k+1)
1

= x ′
k = y′

k,

as desired. These calculations are reflected in the quiver R shown in Fig. 26, thus
verifying the first three bullet points of Lemma 7.2.

Furthermore, since deg(zk) = 2, there is no signed 3-cycle Tt with k + 1 < t such
that tr|k+1,t (yt ) = zk+1 in μ

k
◦ · · · ◦ μ

1
◦ μ

0
(̂Q) vertex xt has been mutated exactly

once. The fourth bullet point follows. Now observe that˜tr(yk) = x ′
m1

= x ′
k . Since we

have applied a maximal green sequence toQk and since tr(x(d, k)) is only connected
to the frozen vertex x ′

k , Proposition 2.10 of [5] implies that tr(x(d, k)) = xk ·σ−1
k . We

thus have the fifth bullet point.
Case iii) is similar to Case ii), but with some key differences. In this situation, we

again have that m = k + 1, but this time both y� and z� are relevant. Now Lemma 7.3
implies that μ

k
(Rk) has the form shown in Fig. 27. We let Tp (resp. Tq ) be the signed

3-cycles incident to zk+1 (resp. yk+1) if they exist. Define R to be the ice quiver that
is a full subquiver of μ

k
◦ · · · ◦ μ

1
◦ μ

0
(̂Q) on the vertices

yk+1, y
′
k+1, zk+1, z

′
k+1, tr(yk), z

′
k, yk, y

′
k, tr(x(d)), x ′

k, y�, y
′
�,

yp, y
′
p, z p, z

′
p, yq , y

′
q , zq , z

′
q

where we include yp and y′
p (resp. z p, z′p, yq , y′

q , zq , and z′q ) in R if and only if

yp and y′
p (resp. zq , z′q , yq , y′

q , zq , and z′q ) appear in μ
k
(Rk), i.e., depending on if

deg(yk+1) = 4 and if deg(zk+1) = 4. See Fig. 28.
We claim that the ice quiver R has the properties in the statement of Lemma 7.2.

It is easy to see that R is a full subquiver of μ
k
◦ · · · ◦ μ

1
◦ μ

0
(̂Q). That R includes
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Fig. 27 The quiver obtained by mutating Rk in Case (iii)

Fig. 28 The quiver R = Rk+1 that we obtain in Case (iii)

every frozen vertex that is connected to a mutable vertex appearing in Fig. 28 by at
least one arrow in μ

k
◦ · · · ◦ μ

1
◦ μ

0
(̂Q) follows from the fact that μ

k
(Rk) has this

property and from the fact that no vertices of Tp or Tq and neither yk+1 nor zk+1 have
been mutated in μ

k
◦ · · · ◦ μ

1
◦ μ

0
(̂Q). Now observe that ˜tr(yk) = x ′

m1
= x ′

k . As in

Case ii), Proposition 2.10 of [5] implies that tr(x(d, k)) = xk · σ−1
k .

Let m(k+1)
1 ∈ [n] be the integer from the definition of μ

k+1
, and let x(0, k +

1), x(1, k + 1) ∈ (Q)0 be the vertices from the definition of μ
k+1

. As in Case ii), we

are using the fact that sgn(Tk+1) = +. Now notice that m(k+1)
1 = m(k+1)

d = k + 1,
x(0, k + 1) = zk+1, and x(1, k + 1) = xk+1. We now obtain that

tr(x(d, k + 1)) = tr(xk+1) = tr(yk),

as desired. The fact that sgn(Tk+1) = + implies that

tr(yk+1) = xk+1 = yk .
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Fig. 29 A full subquiver of Q showing one possible configuration of the signed 3-cycles Tk , Tk+1, and
T�, as described in the proof of Lemma 7.2 at the end of Case (iii)

Since deg(zk+1) = 4, the vertices y� and y′
� both appear in R. Now it is clear

that deg(zk+1) = 4 if and only if tr|k+1,�(y�) = zk+1 and the signed 3-cycle T� has
the property that vertex x� has been mutated exactly once in μ

k
◦ · · · ◦ μ

1
◦ μ

0
(̂Q).

Hence, we see that the vertex y� is positioned in R exactly where yt is positioned in
Rk+1, see Fig. 19. These calculations are reflected in the quiver R shown in Fig. 28,
and we see that this quiver has the properties that the desired quiver Rk+1 should have.
The proof of the five bullet points of Lemma 7.2 in Case iii) concludes in the same
way as the proof for Case ii).

In addition, we illustrate how in Case iii), for each c ∈ [n] satisfying k < c ≤ �

there is an ice quiver Rc,� that is isomorphic to R� and that appears as a full subquiver
ofμ

c−1
◦ · · · ◦ μ

1
◦ μ

0
(̂Q). Furthermore, we show that R�,� = R�. This analysis will

be used in the argument for Case iv), which is given below.
As we are in Case iii), we know that both vertices yk and zk are of degree 4

and the signed 3-cycles Tk , Tk+1, and T� appear in a full subquiver of Q of the
form shown in Fig. 29 or 30. It follows that y� and z�, which are incident to zk
in μ

k−1
◦ · · · ◦ μ

1
◦ μ

0
(̂Q), will not be mutated until after applying the mutation

sequences μ
k
, μ

k+1
, . . . , μ

r
where k ≤ r < � (see Fig. 31). To be precise, the

quiver in Fig. 31 is a full subquiver of μ
k−1

◦ · · · ◦ μ
1
◦ μ

0
(̂Q), which we define as

follows. Letting k < r < � be the integer such that zr = tr(y�) and e such that
x(e, r) = xk+1 = yk , this full subquiver includes the vertices of Rk−1 as well as the
mutable vertices of the signed 3-cycles T

m(r)
e

= Tk+1, Tm(r)
e−1

, . . . , T
m(r)
2

, T
m(r)
1

= Tr ,

as in Definition 6.1, and their corresponding frozen vertices.
We now mutate the quiver shown in Fig. 31 along μ

k
. By Lemma 7.3, this does

not affect the full subquiver of μ
k−1

◦ · · · ◦ μ
1
◦ μ

0
(̂Q) on the vertices (̂Q)0\(Rk)0.
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Fig. 30 A full subquiver of Q showing the other possible configuration of the signed 3-cycles Tk , Tk+1,
and T�, as described in the proof of Lemma 7.2 at the end of Case (iii)

Fig. 31 The full subquiver of μk−1 ◦ · · · ◦ μ1 ◦ μ0(
̂Q) on the vertices and frozen vertices shown here
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Fig. 32 The full subquiver of μk ◦ · · · ◦ μ1 ◦ μ0(
̂Q) on the vertices and frozen vertices shown here

Thus, we conclude thatμ
k
◦ · · · ◦ μ

1
◦ μ

0
(̂Q) has the quiver shown in Fig. 32 as a full

subquiver. We observe that the permutation σ−1
k−1 has the vertices yk and zk as fixed

points. However, τ−1
k maps zk �→ tr(yk) and fixes yk . These equalities are illustrated

in Fig. 32.
Next, we relabel the vertices of the quiver in Fig. 32 to obtain the quiver shown

in Fig. 33. In particular, since sgn(T�) = − with x� = zk , note that zk = x(1, �),
x(s, k) = x(s + 1, �), and tr(yk) = tr|k,�(y�). Define Rk+1,� to be the full subquiver
of μ

k
◦ · · · ◦ μ

1
◦ μ

0
(̂Q) on the red vertices appearing in Fig. 33, the neighbors of y�

and z�, as well as the frozen vertices to which these all are connected. One observes
that Rk+1,� and R� are isomorphic as ice quivers. Furthermore, we will see that Rk+1,�
has the same vertices as R� with the exceptions of yk and tr|k,�(y�).

For k < c ≤ �, we define Rc,� analogously as the full subquiver of
μ
c−1

◦ · · · ◦ μ
1
◦ μ

0
(̂Q) on the set of vertices (Rk+1,�)0 ·τ−1

k+1τ
−1
k+2 · · · τ−1

c−1. With this

definition, we observe that Rc+1,� is identical to Rc,� except possibly at two vertices.
In particular, for k < c ≤ �, if Tc does not appear in Fig. 29 (resp. Fig. 30), then the
mutation sequenceμ

c
does not involve any vertices that appear in Rc,�. Consequently,

after mutation by μ
c
, we obtain Rc+1,� = Rc,�

On the other hand, when Tc, for k < c ≤ �, i.e., c = m(r)
s for some s, does appear in

Fig. 29 (resp. Fig. 30), then the mutation sequence μ
c
, as indicated by bold arrows in

Figs. 33, 34 involves vertices yk · σ−1
c−1 and zk · σ−1

c−1. In this case, Rc+1,� ∼= Rc,� with
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Fig. 33 The quiver that appears in Fig. 32 with its vertex labels updated so that the part of Rk+1,� that
appears here looks like the corresponding part of the quiver R�

the relabeling yk ·σ−1
c−1 �→ yk ·σ−1

c and zk ·σ−1
c−1 �→ zk ·σ−1

c since each application of
μ
c
permutes these two vertices by τ−1

c . This isomorphism of full subquivers follows
from Lemma 7.3.

We obtain the identity zk ·σ−1
c = tr|

m(r)
s ,�

(y�) form
(r)
s ≤ c < m(r)

s−1 when s ∈ [2, e]
or r = m(r)

1 ≤ c < � when s = 1, which is implicit in Fig. 34, by Lemma 7.5. We
leave this argument until after completing the proof of Lemma 7.2 (see below).We also
observe, by the specialization c = �−1, that yk ·σ−1

�−1 = Cd+1,� and zk ·σ−1
�−1 = tr(y�).

Consequently, we eventually arrive at the configuration in Fig. 35 with configurations
of the form as in Fig. 34 as intermediate steps. In summary,we conclude that R�,� = R�

as desired.
Next, suppose we are in Case (iv). Since deg(zk) = 2, this case is similar to Case

(i). However, here we have deg(yk) = 2 as well, and so the quiver μ
k
(Rk) looks

like Fig. 22, but without y�, y′
�, z�, z

′
�, ym, y′

m, zm, nor z′m . The green vertex yt and
y′
t may or may not appear in the quiver μ

k
(Rk). In the latter case, k = n and we

have applied the entire mutation sequence μ to ̂Q. In the former case, we see that
t = k + 1, and Tt can be realized as a signed 3-cycle T� appearing in one of Fig. 29 or
30. Now by the argument at the end of Case iii), Rt,t = Rt is indeed a full subquiver

123



J Algebr Comb (2017) 45:553–599 591

Fig. 34 The effect of applying μc ◦ · · · ◦ μk+1 to μk ◦ · · · ◦ μ1 ◦ μ0(
̂Q) where m(r)

s+1 ≤ c < m(r)
s . If

c = m(r)
s − 1, the mutation sequence μ

m(r)
s

is indicated by the bold arrows. Note that, as in the statement

of Lemma 7.5, we have that tr|
m(r)
s+1,�

(y�) = zk · σ−1
c

of Fig. 35 with the desired properties. The five bullet points of Lemma 7.2 follow
immediately.

Lastly, for all four cases, we wish to describe the quiver obtained by μ
k

◦ · · · ◦
μ
1

◦ μ
0
(Q̂k,k). To this end, we decompose the vertices of Q̂k,k into two sets: (1)

(Q̂k,k)0 \ (Rk)0 and (2) (Rk)0 ∩ (Q̂k,k)0. By induction, we have

μ
k−1

◦ · · · ◦ μ
1
◦ μ

0
( ̂Qk−1,k−1) =

̂

Qk−1,k−1 · σk−1
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Fig. 35 The effect of applying μ
�−1 ◦ · · · ◦ μk+1 to μk ◦ · · · ◦ μ1 ◦ μ0(

̂Q) where Cd+1,� = yk · σ−1
�−1

and C̃d+1,� = y′
k , as desired. The mutation sequence μ

�
is indicated by the bold arrows

andweobserve that (Q̂k,k)0\(Rk)0 ⊂ ( ̂Qk−1,k−1)0. The fifth bullet point of Lemma

7.3 implies that the quiver μ
k−1

◦ · · · ◦ μ
1
◦ μ

0

(

Q̂k,k |(Q̂k,k)0\(Rk )0

)

7 is unchanged by

the mutation sequence μ
k
, and the permutation τk fixes all vertices in (Q̂k,k)0 \ (Rk)0.

It follows that

μ
k
◦ · · · ◦ μ

1
◦ μ

0

(

Q̂k,k |(Q̂k,k )0\(Rk )0

)

=
⎛

⎝

̂

Qk,k |(Q̂k,k )0\(Rk )0

⎞

⎠ · σk .

7 We define Q̂k,k |(Q̂k,k )0\(Rk )0 (resp.

̂

Qk,k |(Q̂k,k )0\(Rk )0 ) to be the ice quiver that is a full subquiver of

Q̂k,k (resp.

̂

Qk,k ) on the vertices of (Q̂k,k )0 \ (Rk )0.
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Additionally, the first bullet point of Lemma 7.3 indicates how the vertices of the
second set, i.e., (Rk)0 ∩ (Q̂k,k)0, are affected by μ

k
. Comparing Figs, 19, 21, we see

that the vertices of Rk have been permuted cyclically exactly as described by τk . We
conclude that

μ
k
◦ · · · ◦ μ

1
◦ μ

0
(Q̂k,k) =

̂

Qk,k · τkσk−1 =

̂

Qk,k · σk

which completes the proof of Lemma 7.2. �

Lemma 7.5 Using the notation from the proof of Lemma 7.2, for any s ∈ [2, e] and
any c ∈ [n] satisfying m(r)

s ≤ c < m(r)
s−1, one has zk ·σ−1

c = tr|
m(r)
s ,�

(y�) (see Fig. 34).

Additionally, for any c ∈ [n] satisfying r = m(r)
1 ≤ c < � we have zk · σ−1

c = tr(y�).

Proof For c = k + 1, we have

zk · σ−1
k+1 = zk · σ−1

k τ−1
k+1

= tr(yk) · τ−1
k+1 (see Fig. 32)

= tr(x(1, k + 1)) · τ−1
k+1 (using that sgn(Tk+1) = +)

= x(0, k + 1) (by the definition ofτk+1)

= zk (by Definition 6.1)
= tr|k+1,�(y�), (by Definition 6.2)

as desired. Now suppose that zk · σ−1
c = tr|

m(r)
s ,�

(y�) where s ∈ [e] and m(r)
s ≤ c <

m(r)
s−1. Then for c ∈ [n] satisfying m(r)

s−1 ≤ c < m(r)
s−2, we have

zk · σ−1
c = zk · σ−1

m(r)
s−1−1

τ−1
m(r)
s−1

· · · τ−1
c

= tr|
m(r)
s ,�

(y�) · τ−1
m(r)
s−1

· · · τ−1
c (by induction)

= x(1,m(r)
s−1) · τ−1

m(r)
s−1

τ−1
m(r)
s−1+1

· · · τ−1
c (note that x(1,m(r)

s−1) = x(s − 1, r))

= x(0,m(r)
s−1) · τ−1

m(r)
s−1+1

· · · τ−1
c (note that x(0,m(r)

s−1) = x(s − 2, r))

= tr|
m(r)
s−1,�

(y�) · τ−1
m(r)
s−1+1

· · · τ−1
c (note that x(0,m(r)

s−1) = tr|
m(r)
s−1,�

(y�))

= tr|
m(r)
s−1,�

(y�),

as desired. We remark that the last equality in the previous computation fol-
lows from observing that tr|

m(r)
s−1,�

(y�) is not mutated in any of the mutation

sequences μ
m(r)
s−1+1

, . . . , μ
c
, and thus, it is unaffected by any of the permutations

τ−1
m(r)
s−1+1

, . . . , τ−1
c . By induction, this completes the proof. �
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Fig. 36 The marked surface (S,M) from Example 8.1 and the triangulation of this surface defining QT in
Example 8.1

8 Additional questions and remarks

In this section, we give an example to show how our results provide explicit maximal
green sequences for quivers that are not of type A. We also discuss ideas we have for
further research.

8.1 Maximal green sequences for Quivers arising from surface triangulations

The following example shows how our formulas for maximal green sequences for
type A quivers can be used to give explicit formulas for maximal green sequences for
quivers arising from other types of triangulated surfaces.

Example 8.1 Consider the marked surface (S,M) with the triangulation given as T
shown in Fig. 36 on the left. The surface S is a once-punctured pair of pants with
triangulation

T = T1 
 T2 
 {η, ε, ζ }

where α1, α2, α3 ∈ T1 and β1, β2, β3, ν ∈ T2. We assume that the boundary arcs bi
with i ∈ [5] contain no marked points except for those shown in Fig. 36. The other
boundary arcs may contain any number of marked points. As in Sect. 4, let QT be
the quiver determined by T and let vδ ∈ (Q)0 denote the vertex corresponding to arc
δ ∈ T.

We can think of the marked surface (S1,M1) determined by c1, β1, b1, c2, β2, b2,
β3, b3 as an m1-gon where m1 = #M1 and we can think of T1 as a triangula-
tion of S1. Similarly, we can think of the marked surface (S2,M2) determined by
α1, c3, η, b5, c6, α3, c5, b2, α2, c4, b1 as an m2-gon where m2 = #M2 and we can
think of T2 as a triangulation of S2. Thus, the quiver QTi , determined by Ti , is a type
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Fig. 37 Two of the direct summands of the quiver QT from Example 8.1

A quiver for i = 1, 2. Furthermore, we have

QT = QT1 ⊕ (vβ1 ,vβ2 ,vβ3 )

(vα1 ,vα2 ,vα3 ) QT2 ⊕ (vη)

(vν) R

where

By Corollary 6.8, QT1 and QT2 each have a maximal green sequence μQTi for
i = 1, 2. Since R is acyclic, we can define μR to be any mutation sequence of ̂R

where each mutation occurs at a source (for instance, put μR = μvε ◦ μvζ ◦ μvη ).
Then μR is clearly a maximal green sequence of R. Now Theorem 3.12 implies that

μR ◦ μQT2 ◦ μQT1 is a maximal green sequence of QT.
Suppose that T1 and T2 are given by the triangulations shown in Fig. 36 on the

right. Then we have that QT1 and QT2 are the quivers shown in Fig. 37 where we
think of the irreducible parts of QT1 and QT2 as signed irreducible type A quivers
with respect to the root 3-cycles S(1)

1 and S(2)
1 , respectively. In this situation, QT1 and

QT2 have the maximal green sequences

μQT1 = μw1 ◦ μw2 ◦ μvα1
◦ μ(1)

3
◦ μ(1)

2
◦ μ(1)

1
◦ μ(1)

0

μQT2 = μw4 ◦ μw3 ◦ μ(2)
5

◦ μ(2)
4

◦ μ(2)
3

◦ μ(2)
2

◦ μ(2)
1

◦ μ(2)
0
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respectively, where

μ(1)
0

= μ
x (1)
1

μ(1)
1

= μ
x (1)
1

◦ μ
z(1)1

◦ μ
y(1)
1

μ(1)
2

= μ
x (1)
1

◦ μ
z(1)1

◦ μ
z(1)2

◦ μ
y(1)
2

μ(1)
3

= μ
y(1)
2

◦ μ
x (1)
1

◦ μ
z(1)3

◦ μ
y(1)
3

μ(2)
0

= μ
x (2)
1

μ(2)
1

= μ
x (2)
1

◦ μ
z(2)1

◦ μ
y(2)
1

μ(2)
2

= μ
x (2)
1

◦ μ
z(2)1

◦ μ
z(2)2

◦ μ
y(2)
2

μ(2)
3

= μ
y(2)
2

◦ μ
x (2)
1

◦ μ
z(2)3

◦ μ
y(2)
3

μ(2)
4

= μ
y(2)
3

◦ μ
y(2)
2

◦ μ
z(2)4

◦ μ
y(2)
4

μ
(2)
5 = μ

z(2)4
◦ μ

x (2)
1

◦ μ
z(2)3

◦ μ
z(2)5

◦ μ
y(2)
5

.

and μR ◦ μQT2 ◦ μQT1 is a maximal green sequence of QT. In general, if we have a
quiver QT that can be realized as a direct sum of type A quivers and acyclic quivers,
we can write an explicit formula for a maximal green sequence of QT.

Problem 8.2 Find explicit formulas for maximal green sequences for quivers arising
from triangulations of surfaces.

Using Corollary 4.5, we can reduce Problem 8.2 to the problem of finding explicit
formulas for maximal green sequences of irreducible quivers that arise from a triangu-
lated surface. In [1], the authors sketch an argument showing the existence of maximal
green sequences for quivers arising from triangulated surfaces. However, we would
like to prove the existence of maximal green sequences by giving explicit formulas
for maximal green sequences of such quivers.

Some progress has already been made in answering Problem 8.2. In [17], Ladkani
shows that quivers arising from triangulations of once-punctured closed surfaces of
genus g ≥ 1 have nomaximal green sequences. In [7,8], explicit formulas formaximal
green sequences are given for specific triangulations of closed genus g ≥ 1 surfaces.
In [9], a formula is given for the minimal length maximal green sequences of quivers
defined by polygon triangulations. It would be interesting to understand, in general,
what are the possible lengths that can be achieved by maximal green sequences of a
given quiver.

8.2 Trees of cycles

Our study of signed irreducible type A quivers was made possible by the fact that
such quivers are equivalent to labeled binary trees of 3-cycles (see Lemma 5.6). It
is therefore reasonable to ask whether one can find explicit formulas for maximal
green sequences of quivers that are trees of cycles where each cycle has length at least
k ≥ 3. In our construction, we define a total ordering and a sign function on the set of
3-cycles of an irreducible typeA quiver (with at least one 3-cycle), and these data were
important in discovering and describing the associated mutation sequence. One could
use a similar technique to construct an analog of the associated mutation sequence for
quivers that are trees of oriented cycles.

Problem 8.3 Find a construction of maximal green sequences for quivers that are
trees of oriented cycles.
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8.3 Enumeration of maximal green sequences

In the process of revising this paper, the problems posed in this section have been
solved. For posterity, we keep this section as it appeared in the originalarXiv version.
A solution to Problem 8.4 appears as [12, Corollary 6.10]. A solution to Problem 8.5
appears in [9].

For a given signed irreducible typeA quiverQwith root 3-cycle T and with at least
two 3-cycles, our construction produces a maximal green sequence μ = μ(T ) of Q
for each leaf 3-cycle in Q. It would be interesting to see how many maximal green
sequences of Q can be obtained from the maximal green sequences μ as the choice
of the root 3-cycle T varies.

Problem 8.4 Determine what maximal green sequences of Q can be obtained via
commutation relations and pentagon identity relations applied to the maximal green
sequences in {μ(T ) : T is a leaf 3-cycle}.

Additionally, in [5] there are several tables giving the number of maximal green
sequences of certain small rank quivers by length. These computations may be useful
for making progress on the problem of enumerating maximal green sequences of
quivers.

As discussed in Remark 6.6, the associated mutation sequences constructed here
are not necessarily the shortest possible maximal green sequences. This motivates the
following problem.

Problem 8.5 Provide a construction of the maximal green sequences of minimal
length, possibly by showing how to apply pentagon identity relations to the associated
mutation sequences.

8.4 Further study of maximal green sequences

Note that maximal green sequences of a quiver Q can be thought of as maximal chains
(from the unique source to the unique sink) in the oriented exchange graph [5, Section.
2]. In the case that Q is of typeA, the exchange graph is an orientation of the 1-skeleton
of the associahedron. The oriented exchange graph is especially nice in the case when
Q is a Dynkin quiver (i.e., an acyclic orientation of a Dynkin diagram of types A, D,
orE). For example, it is the Hasse graph of the Tamari lattice in the case Q is linear and
equioriented and it is the Hasse graph of a Cambrian lattice (in the sense of Reading
[20]) as is noted in [15, Section. 3]. In particular, this means that we consider the finite
Coxeter group G whose Dynkin diagram is the unoriented version of Q and a choice
of Coxeter element c compatible with the orientation of Q, and then, maximal green
sequences are in bijection with maximal chains in the Cambrian lattice, a quotient of
the weak Bruhat order on G. Note that this bijection is studied further in [19] where
each c-sortable word is shown to correspond to a green sequence.

To indicate the difficulty of describing the set of maximal green sequences once we
consider quivers with cycles, we focus on the A3 case here. In the case where Q is a 3-
cycle (with 1 → 2, 2 → 3, 3 → 1), there is not a corresponding Cambrian congruence
that one can apply to the weak Bruhat order on the symmetric group G = S4 to
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obtain the desired Hasse diagram. In particular, the corresponding Cambrian lattice is
constructed from the geometry of the affine Ã2 root system instead of from a finite
Coxeter group. Intersecting this coarsening of the Coxeter Lattice with the Tits Cone
yields 11 regions rather than the 14 we obtain in the acyclic case [21].

Nonetheless, we can still computemaximal green sequences in this case and see that
they are indeed the set of oriented paths through a certain orientation of the 1-skeleton
of the associahedron. There are six possible maximal green sequences of length 4:
μ1◦μ3◦μ2◦μ1,μ2◦μ1◦μ3◦μ2,μ3◦μ2◦μ1◦μ3, μ3◦μ1◦μ2◦μ1, μ1◦μ2◦μ3◦μ2, and
μ3 ◦ μ2 ◦ μ1 ◦ μ3. We can find three more maximal green sequences of length 5:
μ2 ◦ μ3 ◦ μ2 ◦ μ1 ◦ μ2, μ3 ◦ μ1 ◦ μ3 ◦ μ2 ◦ μ3, and μ1 ◦ μ2 ◦ μ1 ◦ μ3 ◦ μ1. As in
Figure 22 of [5], there are no other maximal green sequences of this quiver. To obtain
these sequences of length 5, we select any of the first three maximal green sequences
of length 4. We then apply the relation μi+1 ◦ μi ∼ μi+1 ◦ μi ◦ μi+1 (where the
arithmetic is carried out mod 3) and apply the vertex permutation (i, i + 1) to the
vertices at which one mutates later in the sequence.

In an attempt to understand this example in terms of the Coxeter group of type A3,
i.e., S4, we consider the presentation described in [4] for quivers with cycles. In this
case, if we let s1 = (14), s2 = (24), s3 = (34), we obtain

S4 =
〈

s1, s2, s3 : s21 = s22 = s23 = (s1s2)
3 = (s2s3)

3 = (s3s1)
3 = (s1s2s3s2)

2 = 1
〉

.

Unlike the acyclic A3 case where the permutation in S4 corresponding to the longest
word, i.e., 4321, is the only element of S4 whose length as a reduced expression, e.g.,
s1s2s3s1s2s3, is of length 6, in the Barot–Marsh presentation, the permutations 4321,
3412, 2143, 1342, and 1432 all have reduced expressions of maximal length, namely
4.

Further, if we visualize the order complex of S4 under this presentation, we obtain
a torus (see Example 3.1 of [3]) rather than a simply connected surface like the acyclic
case and there are no permutationswith reduced expression of length 5; hence, reduced
expressions in this presentation cannot correspond to maximal green sequences. We
thank Vic Reiner for bringing his paper with Eric Babson to our attention. Hence,
understanding the full collection of maximal green sequences for other quivers with
cycles, even those of type A, appears to require more than an understanding of the
associated Coxeter groups.

Since our original preprint, in recent work [12] (resp. [13]) of the first author
and Thomas McConville, an analog of the weak order on Sn , known as the lattice
of biclosed subcatgories (resp. biclosed sets of segments) is constructed. In [12]
and [13], it is shown that the oriented exchange graph of quivers of type A can be
obtained as a lattice quotient of these. This lattice congruence generalizes the Cam-
brian congruence in type A. Additionally, the results in [12,13] do require techniques
from representation theory of finite dimensional algebras, which further suggests that
understanding the full collection of maximal green sequences for quivers with cycles
may require more than elementary techniques.
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