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Abstract We construct and describe the basic properties of a family of semifields in
characteristic 2. The construction relies on the properties of projective polynomials
over finite fields. We start by associating non-associative products to each such poly-
nomial. The resulting presemifields form the degenerate case of our family. They are
isotopic to the Knuth semifields which are quadratic over left and right nuclei. The
non-degenerate members of our family display a very different behavior. Their left
and right nuclei agree with the center, the middle nucleus is quadratic over the center.
None of those semifields is isotopic or Knuth equivalent to a commutative semifield.
As a by-product we obtain the complete taxonomy of the characteristic 2 semifields
which are quadratic over the middle nucleus, bi-quadratic over the left and right nuclei
and not isotopic to twisted fields. This includes determining when two such semifields
are isotopic and the order of the autotopism group.
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1 Introduction

A finite presemifield of order q = pr (p a prime) is an algebra (F,+, ∗) of order q
which satisfies the axioms of the field of order q with the possible exception of the
associativity of multiplication and the existence of an identity element of multiplica-
tion. A presemifield is a semifield if in addition an identity element of multiplication
exists. The addition in a presemifield may be identified with the addition in the field
of the same order. A presemifield is commutative if its multiplication is commuta-
tive. A geometric motivation to study (pre)semifields comes from the fact that there
is a bijection between presemifields and projective planes of the same order which
are translation planes and also duals of translation planes. Presemifields (F,+, ∗)

and (F,+, ◦) of order q = pr are defined to be isotopic if there exist elements
α1, α2, β ∈ GL(r, p) such that β(α1(x) ∗ α2(y)) = x ◦ y always holds. This
equivalence relation is motivated by the geometric link as well. In fact, two pre-
semifields are isotopic if and only if they determine isomorphic projective planes (see
Albert [1]).

General constructions of semifields which give families of examples that exist in
arbitrary characteristic and in each characteristic p for an infinity of dimensions r are
hard to come by. A classical example are the Albert twisted fields [2].

Recently, a new family of presemifields in odd characteristic p has been defined in
[4] by using the theory of projective polynomials and Albert twisted fields as ingredi-
ents. This is a large family, since it contains the Budaghyan–Helleseth family of odd
characteristic commutative semifields (see [7]) and an infinity of semifields which are
not isotopic to commutative semifields. Examples of the new family exist for each
order q = pr where p is a prime and r = 2m is even.

The aim of the present paper is to construct and investigate an analogue of such
a family in characteristic 2. A first step in this direction was taken in [5]. Our
approach is based on the projection method, as described in [4]. Basic ingredients
for our construction are projective polynomials. We use the theory of projective
polynomials over finite fields as given in Bluher [6]. The definition of the character-
istic 2 family B(2,m, s, l, t) is in Sect. 1.2. The underlying projective polynomial is
ps,t (X) = p1X2s+1 + p2X2s + p3X + p4 ∈ F2m [X ] in Definition 1.

In fact, the theory of presemifields sheds some more light on the theory of pro-
jective polynomials. This is seen in Sect. 2 where we associate a multiplication ∗
on F22m to each such projective polynomial ps,t (X) ∈ F2m [X ] (see Definition 3) in
such a way that ps,t (X) has no zeroes in F2m if and only if the algebra (F,+, ∗)

is a presemifield (Theorem 2). The resulting presemifields form the degenerate case
l = 0 of our characteristic 2 family. We use this link to define the generic family
B(2,m, s, l, t) where 0 �= l ∈ F2m in Sect. 1.2 and to study its properties later on.
In particular we prove that none of the presemifields B(2,m, s, l, t) is isotopic to a
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commutative semifield (Sect. 9). This contrasts with the odd characteristic case where
the Budaghyan–Helleseth family of commutative semifields is contained in our family
and it remains an open problem if our family contains commutative examples which do
not belong to the Budaghyan–Helleseth family. A similar feature concerns the nuclei.
Here x ∈ F belongs to the left nucleus of a semifield (F,+, ∗) if the associativity
equation x ∗ (y ∗ z) = (x ∗ y)∗ z holds for all y, z. Analogous statements characterize
themiddle nucleus and the right nucleus. Isotopic semifields have isomorphic nuclei.
The nuclei correspond to certain important subgroups of the collineation group of the
corresponding projective plane. We determine the nuclei of the semifields isotopic
to B(2,m, s, l, t) in Sect. 10. Again this is a more complete result than in the odd
characteristic case where the determination of the middle nucleus remains an open
problem. As a by-product of our results in a parametric special case we obtain a com-
plete characterization of the semifields in characteristic 2 which are quadratic over
one of the nuclei, quartic over the center and are not isotopic to generalized twisted
fields.

The smallest order in which examples of our generic family exist is 256. The
corresponding presemifields B(2, 4, 2, l, t) where 0 �= l ∈ L = F16, l5 �= 1 and
t = [p1, p2, p3, p4] ∈ L4 is legitimate in the sense of Definition 1 come in three
isotopy classes, eachwith autotopismgroupof order 450 (seeSect. 8). They correspond
to three isomorphism classes of projective semifield planes of order 28 each of which
has 450 × 224 collineations.

In Sect. 1.1 we introduce compact notation. The definition of our family is in
Sect. 1.2. We close this introduction with a detailed description of the results of this
paper in Sect. 1.3.

1.1 A standard situation in characteristic 2

All our semifields have even dimension r = 2m. Let F = GF(22m) ⊃ L = GF(2m)

and T, N : F −→ L the norm and trace functions. Let μ ∈ L be of absolute trace
= 1 and z ∈ F such that z2 + z = μ. Then z /∈ L and we use 1, z as a basis of F |L .

In particular we write x = a + bz = (a, b) where a, b ∈ L and refer to a, b as the
real and imaginary part Re(x) and Im(x), respectively.

Let 0 ≤ s < 2m and x 	→ xσ be the corresponding field automorphism, where
σ = 2s, let K1 = F2gcd(m,s) be the fixedfield ofσ in L .Then z4 = z2+μ2 = z+μ2+μ.

Continuing like that we obtain the following:

Lemma 1 Let μs = ∑s−1
i=0 μ2i . Then zσ = z + μs and xσ = (aσ + μsbσ , bσ ).

In particular μ0 = 0, μ1 = μ,μ2 = μ + μ2 and μm = trL|F2(μ) = 1 (because of
the transitivity of the trace), and z = z2

m = z + 1. Further μs+m = μs + 1. We have
x = (a + b, b), T (x) = Im(x) = b, and

(a, b)(c, d) = (ac + μbd, ad + bc + bd).

In particular 1/z = (1/μ, 1/μ) and 1/(a, b) = (1/D)(a + b, b), where D =
a2 + ab + μb2. The conjugates of x are
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x2 = (a2 + μb2, b2), x4 = (a4 + (μ2 + μ)b4, b4), . . . , xσ

= (aσ + (μ2s−1 + · · · + μ)bσ , bσ ).

1.2 A family of semifields

Definition 1 Let m, s, σ as in Sect. 1.1. The quadruple t = [p1, p2, p3, p4] ∈ L4 is
legitimate if the polynomial ps,t (X) = p1Xσ+1 + p2Xσ + p3X + p4 has no roots in
L . Let � = �(m, s) be the set of legitimate quadruples. Let further l ∈ L such that
either l = 0 or l ∈ L∗ \ (L∗)σ−1 where L∗ = L \ {0}. Consider the multiplication

x ◦ y = (
p1ac

σ + lp1a
σ c + p2bc

σ + lp2a
σd + p3ad

σ + lp3b
σ c

+ p4bd
σ + lp4b

σd, ad + bc
)

(1)

where x, y ∈ F. We will see in Theorem 3 that it defines a presemifield. This pre-
semifield will be denoted B(2,m, s, l, t).

In order to obtain an expression of x ◦ y using constants from the larger field F we
use the following terminology:

Definition 2 Let C1 = (v1, h1),C2 = (v2, h2) ∈ F. The quadruple t = t (C1,C2) =
[p1, p2, p3, p4] ∈ L4 corresponding to the pair (C1,C2) ∈ F2 is defined by

p1 = h1 + h2, p2 = v1 + v2 + h1 + h2, p3 = v1 + v2 + μsh1 + (μs + 1)h2,

p4 = μsv1 + (μs + 1)v2 + (μs + μ)h1 + (μs + μ + 1)h2.

Proposition 1 Let t = t (C1,C2) = [p1, p2, p3, p4]. Then

x ◦ y = T
((
C1y

σ + C2y
σ
)
x
) + lT

((
C2y + C1y

)
xσ

) + T (x y)z. (2)

Proof This is a direct calculation, using xyσ = (a, b)(cσ + μsdσ , dσ ) = (acσ +
μsadσ + μbdσ , adσ + bcσ + (μs + 1)bdσ ), x yσ = (a, b)(cσ + (μs + 1)dσ , dσ ) =
(acσ + (μs + 1)adσ + μbdσ , adσ + bcσ + μsbdσ ) and analogous expressions. 
�

1.3 The structure of the paper

In the remainder of the paper we study the presemifields B(2,m, s, l, t) and the semi-
fields isotopic to them. The proof that the B(2,m, s, l, t) are indeed presemifields is
in Sect. 3. The multiplication x ◦ y in B(2,m, s, l, t) is given in (1) (on the level of the
field L), as well as in Proposition 1 in terms of the larger field F. If the automorphism
associated to σ is the identity on L (cases s = 0, s = m), it follows from the general
form of x ◦ y that L is in the center of a semifield isotopic to B(2,m, s, l, t) (see [4],
Proposition 3). This implies that we are in the field case. It may therefore be assumed
that s �= 0, s �= m. Isotopies are studied in Sect. 4. In Sect. 5 we use this to define
a group, direct product of a cyclic group and a group GL(2, L), which permutes our
presemifields (for given m, s, l).
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Observe that the condition on l ∈ L is independent of the conditions on the quadru-
ple t. The special case l = 0 is degenerate but interesting as the corresponding
semifields are those which are quadratic over left and right nuclei (Knuth [12], see
Sect. 6). In the remainder of the paper we exclude the degenerate case l = 0 from
the discussion. Cases m/ gcd(m, s) even and m/ gcd(m, s) odd behave rather differ-
ently. It is shown in Sect. 7 that in the former case the multiplication simplifies. We
study the case s = m/2 in Sect. 8. The semifields which are quadratic over one of the
nuclei and quartic over the center have been classified in Cardinali et al. [8]. Using
this we show that up to equivalence in the Knuth cube (see [12]) our semifields in
case s = m/2 are precisely those characteristic 2 semifields which have this property
and are not isotopic to generalized twisted fields [2] or to Hughes–Kleinfeld semi-
fields [11]. We also obtain a complete taxonomy of those characteristic 2 semifields
in Sect. 8. We determine when two of them are isotopic and we determine the auto-
topism groups (Theorem 6). In Sect. 9 it is shown that B(2,m, s, l, t), s �= 0, s �= m
is never isotopic to a commutative semifield. The nuclei of the semifields isotopic to
B(2,m, s, l, t), l �= 0 are studied in Sect. 10: the left and right nuclei agree with the
center of order 2gcd(m,s), whereas the middle nucleus is a quadratic extension of the
center.

We start in Sect. 2 by associating non-associative products to projective polynomi-
als. This is done here in characteristic 2 but it works over any positive characteristic.
This leads to case l = 0 of Definition 1 and to Knuth semifields.

2 The associated product

Definition 3 Let C1 = (v1, h1),C2 = (v2, h2) ∈ F, t = t (C1,C2) =
[p1, p2, p3, p4],

PC1,C2,s(X) = C2X
σ+1 + C1X

σ + C1X + C2 ∈ F[X ] (3)

and
x ∗ y = T ((C1y

σ + C2y
σ )x) + T (xy)z (where x, y ∈ F), (4)

x, y ∈ F , be the multiplication associated to the projective polynomial PC1,C2,s(X).

Consider also the isotope

x ◦ y = x ∗ y = T ((C1y
σ + C2y

σ )x) + T (x y)z (5)

Comparison with (2) shows that x ◦ y in Definition 3 is precisely the multiplication
in B(2,m, s, 0, t).

Lemma 2 With notation as in Definition 3 we have

v1 = (μs + μ)p1 + μs p2 + p3 + p4, h1 = μs p1 + p2 + p3,

v2 = (μs + μ + 1)p1 + (μs + 1)p2 + p3 + p4, h2 = (μs + 1)p1 + p2 + p3.

Theorem 1 The following are equivalent:
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• (F, ∗) is a presemifield.
• T (C1xxσ + C2xσ+1) �= 0 for all 0 �= x ∈ F.

• PC1,C2,s(X) has no root of norm 1.

Proof Assume x ∗ y = 0 for xy �= 0. The imaginary part of (4) shows T (xy) = 0,
equivalently y = ex for some e ∈ L . The real part shows T (C1xxσ + C2xσ+1) = 0.
Write this out, divide by xσ+1. This gives

C1

( x

x

)σ + C2 + C1

( x

x

)
+ C2

( x

x

)σ+1 = 0,

that is θ = x
x is a root of PC1,C2,s(X) having norm 1. On the other hand, if θ is a root

of PC1,C2,s(X) of norm 1, let x ∈ F be such that xq−1 = 1/θ and y = ex for some
e ∈ L∗. Therefore x ∗ y = 0 and xy �= 0. 
�
Corollary 1 If the conditions of the previous theorem are satisfied, then p1 �= 0.

Proof Case X = 1 shows T (C1) + T (C2) = h1 + h2 = p1 �= 0. 
�
Theorem 2 The statements in Theorem 1 are also equivalent to ps,t (X) (see Defini-
tion 1) having no root in L .

Proof Assume x ◦ y = x ∗ y = 0, xy �= 0. Use the special case l = 0 of (1). If d = 0
the imaginary part shows b = 0, ac �= 0. Then p1 = 0, contradiction. Let d �= 0. By
homogeneity it can be assumed d = 1 and therefore a = bc. Divide by b. 
�
Lemma 3 If the conditions of Theorem 1 are satisfied, then N (C1) �= N (C2).

Proof Assume N (C1) = N (C2), equivalently C1 = z0C2 �= 0 for N (z0) = 1. Let z
be defined by zσ = z0. Then PC1,C2,s(z) = 0. 
�
Definition 4 Given m, s we call a pair (C1,C2) ∈ F2 legitimate if the conditions of
Theorem 1 are satisfied.

Observe that (C1,C2) is legitimate if and only if t (C1,C2) is legitimate, see Defi-
nition 1. We will see in Proposition 7 that the semifields isotopic to the presemifields
in Theorem 1 are precisely those which are quadratic over right and left nuclei.

3 The presemifield property

We consider the multiplication x ◦ y in B(2,m, s, l, t), see (1) or (2). Let x ∗ y = x ◦ y.
Clearly

x ∗ y = T ((C1y
σ + C2y

σ )x) + lT ((C1y + C2y)x
σ ) + T (xy)z. (6)

Theorem 3 B(2,m, s, l, t) in Definition 1 is indeed a presemifield (of order 22m).
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Proof For l = 0 this is Theorem 1. Let l �= 0, assume x ∗ y = 0, xy �= 0. The
imaginary part shows y = ex for e ∈ L . The real part factorizes: (eσ + le)T (C1xxσ +
C2xσ+1) = 0. The first factor is nonzero by the condition on l, the non-vanishing of
the trace term is the second condition of Theorem 1. 
�

Observe that the condition on l in Definition 1 can be met for l �= 0 only if
gcd(m, s) �= 1. In particular m has to be a composite number. The smallest choice is
therefore m = 4 and the resulting semifields have order 28.

Corollary 2 B(2,m, s, l, t) where l �= 0, s /∈ {0,m} is not isotopic to a field.
Proof The restriction to L is x ∗ y = (h1 + h2)(xyσ + lxσ y). When l �= 0 and σ

is not the identity on L , then this is isotopic to a twisted field. In fact, a twisted field
(L , •) is defined by x • y = xyσ + lxσ y. 
�

4 Isotopies

In this section we study isotopies among the presemifields B(2,m, s, l, t). The oppo-
site of a presemifield (F, ∗) is defined by x ◦ y = y ∗ x . The proof of the following
assertion is straightforward.

Proposition 2 The opposite of B(2,m, s, l, t (C1,C2)), l �= 0 is isotopic to
B(2,m, s, 1/ l, t (C1,C2)). Here t (C1,C2) = [p1, p2 + p1, p3 + p1, p4 + p1 + p2 +
p3].
Proposition 3 • B(2,m, s, l, t), l �= 0 is isotopic to B(2,m, s, λσ−1l, t) for arbi-

trary λ ∈ L∗;
• B(2,m, s, l, t) is isotopic to B(2,m, s, l, λt) for arbitrary λ ∈ L∗ (scalar
isotopy);

• B(2,m, s, l, [p1, p2, p3, p4]) is isotopic to B(2,m, s, l2, [p21, p22, p23, p24]) (Galois
isotopy);

• B(2,m, s, l, [p1, p2, p3, p4]) is isotopic to
B(2,m, s, l, [kσ+1

1 p1, kσ
1 k2 p2, k1k

σ
2 p3, k

σ+1
2 p4]) for arbitrary k1, k2 ∈ L∗ (diag-

onal isotopy).

Proof For the first statement use the substitution x 	→ λx, y 	→ y. Scalar isotopy is
obvious. As for Galois isotopy, apply the inverse of the Frobenius map to a, b, c, d,

and then apply the Frobenius map to the real and to the imaginary part. Diagonal
isotopy follows from the substitution a 	→ k1a, b 	→ k2b, c 	→ k1c, d 	→ k2d. 
�

Diagonal isotopy is a special case of linear isotopy, as follows.

Proposition 4 (Linear isotopy) B(2,m, s, l, [p1, p2, p3, p4]) is isotopic to
B(2,m, s, l, [p′

1, p
′
2, p

′
3, p

′
4]) where

p′
1 = ασ+1 p1 + ασ γ p2 + αγ σ p3 + γ σ+1 p4

p′
2 = ασ βp1 + ασ δp2 + βγ σ p3 + γ σ δp4
p′
3 = αβσ p1 + βσ γ p2 + αδσ p3 + γ δσ p4

p′
4 = βσ+1 p1 + βσ δp2 + βδσ p3 + δσ+1 p4
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and α, β, γ, δ ∈ L such that αδ �= βγ.

Proof This corresponds to the substitutions a′ = αa + βb, b′ = γ a + δb, c′ =
αc + βd, d ′ = γ c + δd, where M =

(
α β

γ δ

)

∈ GL(2, L). 
�

Corollary 3 B(2,m, s, l, [p1, p2, p3, p4]) is isotopic to B(2,m, s, l, [1, 0, u, v]) for
suitable v, where u ∈ {0, 1}.
Proof As p1 �= 0 it follows from scalar isotopy that we may assume p1 = 1. Linear
isotopy with α = 1, γ = 0, β = p2δ leads to a quadruple [1, 0, ∗]. Assume this
quadruple has p3 �= 0. Application of linear isotopy to this quadruple with α =
1, β = γ = 0 yields the claim. 
�

The following special case of linear isotopy is interesting in its own right.

Theorem 4 B(2,m, s, l, t (C1,C2)) is isotopic to B(2,m, s, l, t (αασC1, α
σ+1C2))

for all 0 �= α ∈ F.

Proof Use Eq. (2) and the substitutions x 	→ αx, y 	→ αy for an arbitrary nonzero
α ∈ F. 
�
Proposition 5 B(2,m, s, l, t (C1,C2)) is isotopic to B(2,m, s + m, l, t (C2,C1)).

Proof This follows from basic properties of the trace. 
�
Note that by Proposition 5wemay assume s ≤ m.The following proposition shows

that we may in fact assume s ≤ m/2.

Proposition 6 Let s < m, σ=2s, τ=2m−s . Then B(2,m, s, l, [p1, p2, p3, p4]), l �=
0 is isotopic to B(2,m,m − s, 1/ l, [p1, p3, p2, p4]).
Proof Apply τ to a, b, c, d, then divide the real part by l, apply σ to the imaginary
part. 
�

5 The restricted isotopy group

Definition 5 Givenm and s, the restricted isotopy group is the direct product G1 =
GL(2, L) × L∗ where GL(2, L) and L∗ act on the legitimate pairs (C1,C2) and
on the legitimate quadruples [p1, p2, p3, p4] by linear isotopy and scalar isotopy,
respectively.

Observe that |G1| = (q − 1)(q2 − 1)(q2 − q), where q = 2m .

Lemma 4 Let � = �(m, s) be the set of legitimate quadruples, see Definition 4.

Then |�| = (q+1)q(q−1)22d

2(2d+1)
. Here d = gcd(m, s).
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Proof Use a formula from Bluher theory [6]: let N0 be the number of elements b ∈ L
such that Xσ+1 + bX + b has no zeroes in L . Then N0 = 2d−1(2m + 1)/(2d + 1)
provided m/d is odd, and N0 = 2d−1(2m − 1)/(2d + 1) if m/d is even.
Let also g = gcd(2m − 1, 2s + 1) and observe that g = 1 if m/d odd, whereas
g = 2d + 1 if m/d is even. Elementary counting shows

|�| = (q − 1){q(q − 1 − (q − 1)/g) + q(q − 1)N0} = q(q − 1)2(1 − 1/g + N0).

In both cases the same formula results. 
�
We will use the action of G1 on the set � of legitimate quadruples and the fact that

for each l where either l = 0 or l �= 0, l /∈ (L∗)σ−1 legitimate quadruples in the same
orbit under G1 yield isotopic presemifields B(2,m, s, l, t).

6 The degenerate case l = 0 : Knuth semifields

Proposition 7 The semifields isotopic to B(2,m, s, 0, t) where s /∈ {0,m} are pre-
cisely those which are quadratic over the left and the right nuclei (in characteristic
2).

Proof The condition on s says that K1 ( the fixed field of the automorphism associated
to σ in L) is properly contained in L . It can be assumed that p1 = 1, p2 = 0, p3 ∈
{0, 1}. Start from (1) for l = 0, and apply the substitution b 	→ b1/σ , c 	→ c1/σ , d 	→
d1/σ ; then take the σ−th power of the imaginary part. This leads to (a, b) ∗ (c, d) =
(ac + p4b1/σd, aσd + bc) when p3 = 0, and to (a, b) ∗ (c, d) = (ac + ad +
p4b1/σd, aσ d + bc) in case p3 = 1. When p3 = 0 this is the standard form given
in Knuth [12], Section 7.4, type IV, case g = 0. In case p3 = 1 apply the additional
substitution c 	→ c + d to obtain the standard form in [12], Section 7.4, type IV, case
g = 1. 
�

In the sequel we will always assume l �= 0. We saw in Corollary 2 that the corre-
sponding semifields are not fields.

7 Case m/ gcd(m, s) even: the C-family

We refer to the semifields isotopic to the B(2,m, s, l, [1, 0, 0, p4]), l �= 0 as the C-
family of semifields. Let g = gcd(q − 1, σ + 1) denote the number of cosets of
(L∗)σ+1 in L∗.

Lemma 5 If m/ gcd(m, s) is odd, then there is no legitimate quadruple [1, 0, 0, u]. If
m/ gcd(m, s) is even, then there are q − 1− (q − 1)/(2d + 1) = 2d(q − 1)/(2d + 1)
legitimate quadruples [1, 0, 0, u] where d = gcd(m, s).

Proof The quadruple [1, 0, 0, u] is legitimate if u /∈ (L∗)σ+1. If m/d is odd, then
g = 1 and [1, 0, 0, u] is never legitimate. If m/d is even, then g = 2d + 1. 
�
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Lemma 6 Let m/ gcd(m, s) be even. Then [1, 0, 0, u1] and [1, 0, 0, u2] are in the
same orbit under G1 if and only if either u2 ∈ u1(L∗)σ+1 or u2 ∈ (1/u1)(L∗)σ+1.

The stabilizer of [1, 0, 0, u] under G1 has order (q − 1)(2d + 1).

Proof We have g = 2d + 1 and K1 = F2d ⊆ (L∗)σ+1. Let the matrix M map
[1 : 0 : 0 : u1] 	→ [1 : 0 : 0 : u2]. We have three conditions:

ασ β = u1γ
σ δ, αβσ = u1γ δσ , βσ+1 + u1δ

σ+1 = u2(α
σ+1 + u1γ

σ+1).

We have β = 0 if and only if γ = 0 which leads to u2 and u1 in the same coset. Also
α = 0 iff δ = 0 and this leads to u2 in the same coset as 1/u1. Assume all entries of
M are nonzero. By homogeneity it can be assumed that α = 1. The first two equations
show β = u1γ σ δ, βσ = u1γ δσ . Comparison shows c = u1γ σ+1 ∈ K1. This yields
the contradiction u1 ∈ (L∗)σ+1. 
�
Theorem 5 Given m, s and l �= 0 such that m/ gcd(m, s) is even, all members of
B(2,m, s, l, t) belong to the C-family. There are 2d−1 orbits under G1, where d =
gcd(m, s).

Proof We know from Lemma 6 that there are precisely 2d−1 orbits under G1 which
belong to the C-family. The stabilizer always has order (q − 1)(2d + 1), so each orbit
has length (q2 − 1)(q2 − q)/(2d + 1). As there are 2d−1 such orbits this exhausts all
of �. 
�

8 The special case s = m/2

Case s = m/2 is equivalent with σ �= 1 but σ 2 = 1 on L . These are the presemifields
B(2, 2s, s, l, t), l �= 0. We have m = 2s, hence d = s and m/d = 2. In particular
it follows from Theorem 5 that we can assume up to isotopy p1 = 1, p2 = p3 =
0, p4 /∈ K = F2s .

For the remainder of this section we will use the following notation:

q = 2s, K = Fq ⊂ L = Fq2 ⊂ F = Fq4 .

Let τ : L −→ K be the trace function. We keep the notation used in Introduction with
respect to a basis 1, z of F | L .

Definition 6 Let w ∈ L \ K such that trK |F2(1/τ(w)) = 0. Define a multiplication
on F by

(a, b) � (c, d) = (ac + bdq + wbqd, aqd + bc).

Let Bq(w) = (F, �).

The condition on w in this definition can be expressed in an equivalent form.

Lemma 7 Let a ∈ K ∗. Then a can be written in the form a = l +1/ l for some l ∈ K
if and only if trK |F2(1/a) = 0.
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Proof If a can be written in the required form, then 1/a = l/(1+ l2) = (u+1)/u2 =
1/u+1/u2 where u = l +1. This shows trK |F2(1/a) = 0. The same argument works
also in the opposite direction. 
�
Proposition 8 Bq(w) in Definition 6 is a semifield of order q4. It has middle nucleus
L , left and right nuclei K and is not isotopic to a commutative semifield.

Proof Clearly 1 = (1, 0) is the unit of multiplication. The imaginary part vanishes
if and only if both c = eaq and d = eb hold for some e ∈ L . The real part is then
e(aq+1 + (eq−1 + w)bq+1)) = 0, with e �= 0. Let t = eq−1 �= 0 and observe that
tq = 1/t. If a = 0, then w = t. If a �= 0, then divide by eaq+1. In both cases
t + w ∈ K . It follows τ(w) = t + 1/t. Let a = τ(w). By our assumptions and
Lemma 7, we have trK |F2(1/a) = 0; equivalently τ(w) = l+1/ l for some l ∈ K .As
t + 1/t = l + 1/ l, we have t ∈ K and therefore t = 1. This leads to the contradiction
w ∈ K . The nuclei are determined by a direct calculation. Another direct calculation
using the Ganley criterion [9] shows non-commutativity. 
�

Consider now the presemifields B(2, 2s, s, l, [1, 0, 0, p4]), l �= 0. By isotopy it
may be assumed l ∈ K , l �= 1.

Proposition 9 B(2, 2s, s, l, [1, 0, 0, p4]), with l ∈ K ∗, is isotopic to Bq(w), where
w = (l2 p4 + pq4 )/(lτ(p4)).

Proof We have

x ◦ y = (
acq + laqc + p4bd

q + lp4b
qd, ad + bc

)
.

Substitute a 	→ aq , then apply u 	→ 1
l2+1

(lu + uq) to the real part. This yields the

product (ac + lτ(p4)
l2+1

bdq + pq4+l2 p4
l2+1

bqd, aqd + bc). Finally, apply the substitutions

b 	→ λb, d 	→ λd, with λ ∈ L such that λq+1 = l2+1
lτ(p4)

. Observe that w does indeed

satisfy the condition of Definition 6. In fact, τ(w) = (l2 + 1)/ l, hence 1/τ(w) =
l/(l2 + 1) = 1/u + 1/u2, with u = l + 1; then 1/τ(w) has absolute trace 0. 
�
Corollary 4 The semifields B(2, 2s, s, l, t) coincide with the Bq(w), up to isotopy.

Proof We saw that p1 = 1, p2 = p3 = 0 can be assumed. Also, themapping p4 	→ w

is given by w = pq4+l2 p4
lτ(p4)

. Let now w be given. As trL|F2(1/τ(w)) = 0, we can write
τ(w) = l + 1/ l for some l ∈ L . Let p4 = w + 1/ l. This describes the inverse of the
mapping above. 
�

In the sequel we give a complete census of those semifields.

Theorem 6 Bq(w) is isotopic to Bq(v) if and only if v = φ(w) for some field auto-
morphism φ of L = Fq2 . The order of the autotopism group of Bq(w) is 2ι(q2 − 1)2

where ι is the order of the stabilizer of w in the Galois group of L over F2.

In the remainder of this section we prove Theorem 6. One direction is obvious:
Bq(w) is isotopic to Bq(φ(w)) for each field automorphism φ of L .

123



466 J Algebr Comb (2017) 45:455–473

Lemma 8 Let x ∗ y denote the product in Bq(w). The triple (α1, α2, β) defines an
isotopic semifield with middle nucleus L , left and right nuclei K and satisfying (a, 0)◦
(c, 0) = (ac, 0), (0, b) ◦ (c, 0) = (0, bc), (a, 0) ◦ (0, d) = (0, aqd) if and only if for
some field automorphism φ of L the following hold:

α1(a, 0) = A ∗ φ(a) = φ(a)A, α2(c, 0) = φ(c) ∗ B = (
φ(c)B1, φ(c)q B2

)
.

α1(0, c) = C ∗ φ(c)= (φ(c)C1, φ(c)C2) , α2(0, d)=φ(dq)∗D= (
φ(dq)D1, φ(d)D2

)

where A = (A1, A2), . . . , D = (D1, D2) are nonzero constants and the following
compatibility conditions are satisfied:

Aq
1D2 = B1C2, A2D1 = B2C

q
1 , (7)

wAq
2D2 = B1C1 + Bq

2C2, wB2C
q
2 = A1D1 + A2D

q
2 . (8)

Proof Let x ◦ y = β(α1(x) ∗ α2(y)) and α1(1, 0) = A, α2(1, 0) = B, α1(0, 1) =
C, α2(0, 1) = D. Then x ◦ y defines a semifield if β−1(x) = A ∗ α2(x) = α1(x) ∗ B
always holds. We refer to this as the compatibility condition. It is easy to check that
the middle nucleus M of a semifield (F, ∗) and the middle nucleus M ′ of a semifield
(F, ◦) where x ◦ y = β(α1(x) ∗ α2(y)) are related by M ′ = β(A ∗ M ∗ B) where
A = α1(1), B = α2(1). In our case this says β(A ∗ L ∗ B) = L , equivalently
α1(a, 0) = A ∗ φ(a) = φ(a)A, α2(c, 0) = φ(c) ∗ B = (φ(c)B1, φ(c)q B2). Here
φ : L −→ L and φ(1) = 1. Compatibility is already satisfied.

Condition (ac, 0) = β(α1(a, 0) ∗ α2(c, 0)) yields φ(ac) = φ(a)φ(c); in other
words, φ is a field automorphism of L .

Equality (0, bc) = β(α1(0, b)∗α2(c, 0))yieldsα1(0, bc) = φ(c)α1(0, b).Thecase
b = 1 implies α1(0, c) = C ∗ φ(c) = (φ(c)C1, φ(c)C2). Analogously (0, aqd) =
β(α1(a, 0) ∗ α2(0, d)) yields α2(0, aqd) = (φ(a), 0) ∗ α2(0, b). The case d = 1
implies α2(0, d) = φ(dq) ∗ D = (φ(dq)D1, φ(d)D2). The compatibility equation is

(A1, A2) ∗ (φ(bq)D1, φ(b)D2) = (φ(b)C1, φ(b)C2) ∗ (B1, B2)

for all b ∈ L . The imaginary part yields Eq. (7), the real part is

φ(bq)A1D1 + g(A2, φ(b)D2) = φ(b)B1C1 + g(φ(b)C2, B2),

which, by comparing coefficients of φ(b) and φ(bq), yields (8). 
�

Proposition 10 Let x ∗ y denote the product in Bq(w). The triple (α1, α2, β) defines
an isotopy from Bq(w) to Bq(v) if and only if the conditions of Lemma 8 are satisfied,
as well as

φ(v)A1B
q
2 = (A2B1)

q + (C2D1)
q , φ(v)A2B1 = Aq

1B2 + Cq
1 D2 (9)
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and

φ(vq)wAq
2B2 = A1B1 + A2B

q
2 + C1D1 + C2D

q
2 , φ(v)

(
A1B1 + A2B

q
2

)

= w
(
Aq
2B2 + Cq

2 D2
)
. (10)

Proof The condition is

(0, b) ◦ (0, d) = (bdq + vbqd, 0),

where v /∈ K . Equivalently, for r = bdq + vbqd,

(φ(b)C1, φ(b)C2) ∗ (φ(dq)D1, φ(d)D2) = α1(r, 0) ∗ (B1, B2)

= (φ(r)A1, φ(r)A2) ∗ (B1, B2).

The imaginary part is

φ(bqd)Cq
1 D2 + φ(bdq)C2D1 = φ(rq)Aq

1B2 + φ(r)A2B1.

Comparing coefficients this becomes (9). In the same manner the real part yields (10).

�

Proposition 11 If (α1, α2, β) defines an isotopy from Bq(w) to Bq(v) where w, v ∈
L \ K then at least one of the coefficients A1, . . . , D2 must vanish. Bq(w) is isotopic
to Bq(v) if and only if v = φ(w) for some field automorphism φ of L = Fq2 .

Proof Note that 1/τ(w) ∈ K has absolute trace 0; equivalently, w + wq = l + 1/ l
for some l ∈ K , and {l, 1/ l} is uniquely determined by τ(w). As a consequence
wq+1 �= 1 as otherwise we would have w ∈ {l, 1/ l} ⊂ K . Assume at first all our
parameters A1, . . . , D2 are nonzero. By (7), both D1 and D2 can be eliminated as

D1 = B2C
q
1 /A2, D2 = B1C2/A

q
1 .

Using this in (8) we obtain (A1/A2)(C1/C2)
q = w + A2B

q
1

A1B2
= wq + A1B2

A2B
q
1
. As

w + wq = l + 1/ l it follows A1B2
A2B

q
1

∈ {l, 1/ l}, hence B2 = l(A2/A1)B
q
1 where

l ∈ K is one of the two values satisfying l + 1/ l = τ(w). This implies (C1/C2)
q =

(A2/A1)(l + wq), equivalently C1 = (l + w)(A2/A1)
qC2.

Use this in Eq. (9). The first one simplifies to

φ(v) = (A1B1)
q−1/ l + (l + w)(C2/A1)

q+1,

whereas the second becomes

φ(v) = l(A1B1)
q−1 + (l + wq)(C2/A1)

q+1.
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This shows 0 = (l + 1/ l)((A1B1)
q−1 + (C2/A1)

q+1) which implies (A1B1)
q−1 =

(C2/A1)
q+1 = 1 and φ(v) = wq . The last equation of (10) simplifies to

(A2/A1)
q+1 = 1/ l, whereas the first yields w2 = l(C1/A1)

q+1 + 1. This gives
w ∈ K , which is a contradiction.

Next we consider the case C2 = 0. Then A1D2 = 0. Assume A1 = 0. Then
B1 = 0 = D2. It follows that if C2 = 0 then D2 = 0. It also follows A1 = B1 = 0.
Only A2, B2,C1, D1 are in play and they satisfy A2D1 = B2C

q
1 . Only Eq. (10) need

to be considered. They read as

wAq
2B2 + φ(v)A2B

q
2 = 0, Aq

2B2 + φ(v)wq A2B
q
2 = (C1D1)

q .

Solving both for φ(v) and substituting D1 yields the compatibility equation A2q
2 (1 +

wq+1) = Cq+1
1 Bq−1

2 ; equivalently Bq−1
2 = Aq−1

2 and (C1/A2)
q+1 = 1+ wq+1. The

resulting value is φ(v) = w, so v is obtained by applying Galois isotopy to w. We
count ι(q2 − 1)2 autotopisms (case v = w) in this case, where ι is the order of the
stabilizer of w in the Galois group of L : in fact, we have ι choices for φ, for arbitrary
A2, then q + 1 choices for C1 and q − 1 choices for B2.

Condition D2 = 0 implies C2 = 0, so it can be assumed that C2D2 �= 0. We have
A2 = 0 if and only if B2 = 0, and this impliesC1 = D1 = 0.Consider this case when
A1, B1,C2, D2 are the nonzero parameters. We have D2 = B1C2/A

q
1 . Aside of that

only the last two equations need to be satisfied. The penultimate equation is A1B1 =
C2D

q
2 . This yields A2q

1 Bq−1
1 = Cq+1

2 ; equivalently (A1B1)
q−1 = (C2/A1)

q+1. This
implies A1B1 ∈ K and C2/A1 in the non-split torus. The last equation is φ(v) =
w(C2/A1)

q+1 = w. In case v = w we obtain the same number of autotopisms as
above.

We can assume now that A2B2C2D2 �= 0. Assume A1B1 = 0. Then A1 = B1 = 0
and also C1 = D1 = 0. Choose C2 = wAq

2D2/B
q
2 . Then the first equation in

(8) is satisfied. The second is satisfied if and only if wq+1 = 1, a contradiction.
Assume C1D1 = 0 whereas all remaining constants are nonzero. Then we obtain
φ(v) = w(A2/B2)

q−1 and φ(v) = (1/wq)(A2/B2)
q−1. This yields wq = 1/w,

which is again a contradiction. 
�
This completes the proof of Theorem 6.
As mentioned earlier, the smallest order of interest is 256. We see that there are

precisely 3 isotopy types of semifields B4(w) where the w′s are chosen as represen-
tatives of the orbits of the Galois group of F16|F2 on elements w ∈ F16 \ F4. Each of
those semifields has 450 autotopisms.

Comparison

In this subsection we are going to see that the semifields Bq(w) are Knuth equiv-
alent to the semifields of order q4 in characteristic 2 which are quadratic over their
middle nucleus, quartic over their center and not generalized twisted fields or Hughes–
Kleinfeld semifields. In fact, it has been shown in [8] that the semifields of order q4

in characteristic 2 which are quadratic over the left nucleus, quartic over the center
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and neither generalized twisted fields nor Hughes–Kleinfeld semifields are precisely
those which can be described up to isotopy by a product

x ∗ y = (ac + ubd + wbdq , ad + bcq), (11)

where u, w ∈ L∗ satisfy a certain polynomial condition. We are going to see that this
semifield is Knuth equivalent to a semifield Bq(v).Observe at first that the substitution
b 	→ λb, d 	→ λd shows that we can assume u = 1. We start from Eq. (11) with
u = 1. The opposite is obtained by x ↔ y. This is the multiplication

(ac + bd + wbqd, aqd + bc).

Next we apply the transpose operation (see [12]). In order to do this represent the
symplectic form on F2 = L4 by

〈(u1, u2, u3, u4), (v1, v2, v3, v4)〉 = tr(u1v3 + u2v4 − u3v1 − u4v2),

where tr : L −→ Fp is the absolute trace on L . The spread space corresponding
to the pair (c, d) is Vc,d = {(a, b, ac + bd + wbqd, aqd + bc) | a, b ∈ L}. When
is (u, v,U, V ) in the dual of Vc,d with respect to the symplectic form? Using basic
properties of the trace shows that this is equivalent to U = uc + (vd)q , V = ud +
wquqdq + vc. Choosing u = a, v = b this yields the multiplication in the transpose
in the form

(ac + (bd)q , ad + wq(ad)q + bc). (12)

We claim that this is isotopic to Bq(w). Let f (x) = x + wq xq . Then f −1(x) =
κ f (x) where κ = 1/(1+ wq+1) ∈ K . Start from Eq. (12), let the new imaginary part
be the old real part and let the new real part be the image of the old imaginary part
under f −1. This yields the product (ad + κ(bc + wq(bc)q), ac + (bd)q). Apply the
substitution c 	→ dq , d 	→ c followed by applying x 	→ xq to the imaginary part. This
yields the product (ac + κ(bdq + wqbqd), aqd + bc). Clearly we can choose κ = 1
and obtain the multiplication in Bq(w

q) which as we know is isotopic to Bq(w).

Observe that in this section we obtained a complete taxonomy of the semifields of
order q4 in characteristic 2 which are quadratic over the middle nucleus and quartic
over left and right nuclei.

9 Non-commutativity

We use a generalization of the Ganley criterion, Corollary 2 of [4]. It says that (F, ◦)

is isotopic to a commutative semifield if and only if there is some v ∈ F∗ such that
α(v ◦ x)◦ y is invariant under the substitution x ↔ y for all x, y. Here α(x) is defined
by α(x) ◦ 1 = x for all x . Let v = (v1, v2).

Theorem 7 B(2,m, s, l, t) for s > 0 is not isotopic to a commutative semifield.
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Proof We may assume l �= 0. Let at first m/ gcd(m, s) be even. It can be assumed
that σ 2 is not the identity on L . We have Im(α(v ◦ x)) = Im(v ◦ x) = v1b + v2a.

Considering the imaginary part of the equation we obtain

Re(α(v ◦ x))d + (v1b + v2a)c = Re(α(v ◦ y))b + (v1d + v2c)a.

This shows Re(α(v◦ y)) = v3c+v4d for some v3, v4 ∈ L and v3 = v1.Now compare
the real parts. They yield eight equations. Four of them simply say v3 = v1 = 0.Twoof
the remaining four equations are redundant. The remaining conditions are v4 = lp4vσ

2
(the coefficient of bcσ ) and p4v2 = lvσ

4 (the coefficient of adσ ). If v4 = 0, then

v2 = 0, which is a contradiction. Assume v4 �= 0. Then vσ 2−1
4 lσ+1 = vσ−1

4 . This
implies lσ+1 ∈ (L∗)σ−1, which implies l2 ∈ (L∗)σ−1 and finally the contradiction
l ∈ (L∗)σ−1

Let now m/ gcd(m, s) be odd. We may assume p1 = p3 = 1, p2 = 0. The same
procedure as above shows α(v ◦ x) = (v1a + v4b, v1b + v2a). Comparison of the
real parts yields eight equations as before. Five of those are redundant. The remaining
ones are the following: the coefficient of acσ yields v1 = lvσ

1 + lvσ
2 , bcσ yields

v4 = lp4vσ
2 and bσ c yields lvσ

4 + lvσ
1 = v1 + p4v2. Use the second equation to

eliminate v4, and then consider w = v1 + lvσ
1 instead of v1. The remaining equations

are w = lvσ
2 = lvσ

4 + p4v2, v4 = lp4vσ
2 . After division by the leading term this

yields Xσ 2 + BXσ + CX = 0, where B = 1/(lp4)σ ,C = 1/(lσ+1 pσ−1
4 ). If our

presemifield is isotopic to a commutative semifield, then this equation has a nonzero
root x ∈ L . Let y = xσ−1. Then yσ+1 + By +C = 0. A standard substitution shows
that this is equivalent to yσ+1 + b(y + 1) = 0, where b = Bσ+1/Cσ = 1/p2σ4 . On
the other hand the condition from Definition 1 says that Xσ+1 + X + p4 has no root
in L . This is equivalent to Xσ+1 + (1/p4)(X + 1) having no root, which contradicts
the condition that we just obtained. 
�

10 The nuclei

Theorem 8 Let 0 < s < m, l �= 0. Then K1 is the center, the right and the left nuclei
of the semifield associated to B(2,m, s, l, t), l �= 0.

Proof Weknow that K1 is in the center. Then it will be enough to prove that the left and
right nuclei have at most 2gcd(m,s) elements. It can be assumed that s ≤ m/2. The case
s = m/2 has been handled in Sect. 8, so we may actually assume 0 < s < m/2. By
Proposition 2 it is enough to consider the right nucleus.Weworkwith themultiplication
x ∗ y = x ◦ y of Eq. (6) which we write in polynomial form as x ∗ y = ∑

k∈E ck(y)x2
k

where E = {0,m, s,m + s} and

c0(y) = C1y
σ + C2y

σ + yz,

cm(y) = C2y
σ + C1y

σ + yz

cs(y) = l(C1y + C2y), cm+s(y) = cs(y).

In particular y is recovered from y = c0(y) + cm(y).
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The right nucleus is in bijection with the invertible linear mappings V (x) =
∑2m−1

i=0 ai x2
i
, where ai ∈ F such that for each y ∈ F there exists u = u(y) ∈ F

satisfying V (x ∗ y) = x ∗ u (see [4], Theorem 3). In coordinates this means

2m−1∑

i=0

ai

(
∑

k∈E
ck(y)x

2k
)2i

=
∑

k∈E
ck(u)x2

k
(13)

Let j /∈ E . The coefficient of x2
j
in (13) shows

a j c0(y)
2 j + a j+mcm(y)

2 j + (a j−s + a j−s+m)cs(y)
2 j−s = 0. (14)

This is a polynomial equation in y.The coefficient in y2
s+ j

shows (a j+a j+m)C2 j

1 =
0.The coefficient of y2

s+m+ j
shows (a j +a j+m)C2 j

2 = 0.AsC1,C2 do not both vanish
it follows a j+m = a j . Use this and c0(y) + cm(y) = y in (14):

a j y
2 j + (a j−s + a j−s+m)cs(y)

2 j−s = 0.

This shows a j = a j+m = a j−s + a j−s+m = 0. In particular a j �= 0 only if j ∈ E .

We have as + as+m = 0, hence V (x) = a0x + amx + as(xσ + xσ ). Comparing
coefficients of xσ and xσ in (13) shows a0 + am ∈ L , as ∈ L . It follows u =
c0(u) + cm(u) = λy, where λ = a0 + am ∈ L . It follows as = 0. The formula
for cs(u) shows that am, a0 ∈ L . The formula for c0(u) shows λ = λσ and finally
am = 0, a0 ∈ L . 
�
Theorem 9 The middle nucleus of the semifield associated to B(2,m, s, l, t), s >

0, l �= 0 is a quadratic extension of the center.

Proof Let at first m/ gcd(m, s) be even. We know that we can assume p1 = 1, p2 =
p3 = 0 in this case and have x ◦ y = (acσ + laσ c + p4bdσ + lp4bσd, ad + bc).
It can be assumed that σ 2 is not the identity on L , the case s = m/2 hav-
ing been handled in Sect. 8. The condition to determine the middle nucleus is
V (x) ◦ y = x ◦ z where z = z(y) (see [4], Theorem 2). An obvious polyno-
mial argument shows that V (x) has the form V (a, b) = (Aa + Bb,Ca + Db),
and z = (Ec + Fd,Gc + Hd). Comparison of the imaginary parts shows E =
D, F = B,G = C, H = A, hence z = (Dc + Bd,Cc + Ad). Compare the real
parts. The coefficients of acσ , bcσ , aσ c, bσ c, adσ , bdσ , aσd, bσ d yield eight equa-
tions for the unknowns A, B,C, D ∈ L .The latter four are redundant, the first four are
A = Dσ , B = p4Cσ , Aσ = D, Bσ = p4C. Assume B �= 0. Then Bσ 2−1 = pσ−1

4 ,

hence p4/Bσ+1 ∈ K1. This shows that p4 ∈ (L∗)σ+1, contradicting the existence
condition of p4. It follows B = C = 0 and A ∈ K2, the fixed field of σ 2, D = Aσ .

The solutions are V (a, b) = (Aa, Aσb), where A ∈ K2.

Let nowm/ gcd(m, s) be odd. It can be assumed that p1 = 1, p2 = 0, p3 = 1.Our
presemifield product is x◦y = (acσ +laσ c+adσ +lbσ c+ p4bdσ +lp4bσd, ad+bc).
As before we have V (a, b) = (Aa + Bb,Ca + Db), z = (Dc + Bd,Cc + Ad) and
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the condition is V (x) ◦ y = x ◦ z. Compare the real parts. As before eight equations
arise, the latter half of which are redundant. The other four are

A = Dσ + Cσ , B = p4C
σ , Aσ + Cσ = D, Bσ + Dσ = D + p4C.

Use the first two to eliminate A, B. This shows that the middle nucleus is in bijection
with the space of (C, D) ∈ L2 satisfying

Cσ + Cσ 2 = D + Dσ 2
, p4C + pσ

4 C
σ 2 = D + Dσ . (15)

Combining those two equations yields Cσ + Cσ 2 + (p4C)σ + pσ 2

4 Cσ 3 = p4C +
pσ
4 C

σ 2; equivalently f (C) = pσ
4 C

σ 2 + Cσ + p4C = λ ∈ K1. Assume that f (X) is
not invertible. The substitution X 	→ X/p4 shows that Xσ+1+X+ p24 has a root in L .

This contradicts the existence condition for p4. Let now λ ∈ K1 be given and C ∈ L
the unique element such that f (C) = λ. The sum of Eq. (15) is λ+Cσ 2 = Dσ +Dσ 2;
equivalently, D + Dσ = λ + Cσ . In order to obtain solutions (C, D) it must be the
case that Tr(λ + Cσ ) = 0 where Tr is the trace : L −→ K1. As Tr(λ) = λ we
must show Tr(C) = λ. Clearly we are done when this has been proved. We apply the
method used in [10]. In fact,

Tr(C)2 = Tr(Cσ+σ ) = Tr(Cσ (pσ
4 C

σ 2 + p4C + λ)) = Tr(λCσ ) = λTr(C).

This shows Tr(C) ∈ {0, λ}. Assume Tr(C) = 0. Then C = u + uσ for some u ∈ L .

It follows λ = f (C) = f (u) + f (uσ ). Applying this twice shows f (uσ 2
) = f (u).

As σ has odd order 2n + 1 this yields f (uσ 2k
) = f (u) and finally the contradiction

f (u) = f (uσ 2k+1
) = f (u) + λ. 
�

11 Conclusion

We start from a relation between projective polynomials over finite fields and Knuth
semifieldswhichwe use for the construction of a new family of semifields in character-
istic 2. Those semifields are never isotopic to commutative semifields. We determine
their nuclei. A parametric special case are the characteristic 2 semifields of order q4

with middle nucleus of order q2 and center of order q which are different from the
twisted fields and from the Hughes–Kleinfeld semifields. In this case we obtain a
complete taxonomy. This includes the determination of the group of autotopisms.
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