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Abstract The tensor square conjecture states that for n ≥ 10, there is an irreducible
representation V of the symmetric group Sn such that V ⊗ V contains every irre-
ducible representation of Sn . Our main result is that for large enough n, there exists
an irreducible representation V such that V⊗4 contains every irreducible representa-
tion. We also show that tensor squares of certain irreducible representations contain
(1 − o(1))-fraction of irreducible representations with respect to two natural proba-
bility distributions. Our main tool is the semigroup property, which allows us to break
partitions down into smaller ones.

Keywords Symmetric group · Kronecker coefficient · Saxl conjecture · Semigroup
property · Continuous young diagram

1 Introduction and main results

Much of the representation theory of the symmetric group Sn is well understood. Its
irreducible representations have known explicit descriptions. One poorly understood
facet, however, is the decomposition of tensor products of its representations into
irreducibles. This paper focuses on a conjecture related to these decompositions, which
was introduced in [12].
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Conjecture 1.1 (Tensor square conjecture) For every n except 2, 4, 9, there exists an
irreducible representation V of the symmetric group Sn such that the tensor square
V ⊗ V contains every irreducible representation of Sn as a summand with positive
multiplicity.

We first remark that for any faithful representation V of a finite group G, i.e. a
representation such that each g ∈ G acts differently on V , there is some n such that
the tensor power V⊗n contains every irreducible representation of G ([9] Ex. 2.37).
In the case of G = Sn , the standard representation of Sn contains a faithful and
irreducible representation V of dimension n − 1, so a sufficiently large tensor power
V⊗k contains every irreducible representation. However, the tensor square conjecture
is a much stronger statement than this because it requires such a small exponent.

As is well known (e.g. [9]), there is an explicit correspondence between the set
of irreducible representations of Sn over C and the set Pn of partitions λ of n, i.e.
sequences λ = (λ1, λ2, . . .) of non-negative integers with λ1 ≥ λ2 ≥ · · · and∑

i≥1 λi = n. By associating λ to the Young diagram with λi boxes in row i , we
may equivalently correspond each irreducible representation of Sn with a Young dia-
gram with n boxes. This correspondence allows the use of combinatorial tools in
analysing many aspects of the representation theory of Sn . Because these notions are
equivalent for our purposes, we will freely denote by (e.g.) λ both the partition or
Young diagram corresponding to λ and the associated irreducible representation of
Sn .

In view of this correspondence, we may express the tensor square conjecture in
terms of partitions.

Conjecture 1.1 (Tensor square conjecture) For every n except 2, 4, 9, there exists a
partition λ � n such that the tensor square λ⊗λ contains every irreducible represen-
tation of Sn as a summand with positive multiplicity.

This conjecture can also be restated in terms of positivity of Kronecker coefficients
gν
λμ, the multiplicities of ν in the tensor product λ ⊗ μ: it asserts the existence of λ

such that gν
λλ > 0 for all ν. Unlike many other coefficients arising in the representation

theory of Sn , the Kronecker coefficients lack a known combinatorial interpretation.
Indeed, finding one has been said to be “one of the last major open problems in the
ordinary representation theory of the symmetric group” [13]. The computation of
Kronecker coefficients has been shown to be computationally hard [5].

In [12], Pak et al. studied the tensor square conjecture and suggested two families
of partitions which might satisfy the conjecture, the staircase, and caret partitions.
The conjecture that the staircase partition suffices is also known as the Saxl conjecture
(see [10,12]).

Definition 1 For m ≥ 1, the staircase partition ρm � (m+1
2

)
is

ρm = (m,m − 1, . . . , 1).

Definition 2 For m ≥ 1, the caret partition γm � 3m2 is

γm = (3m − 1, 3m − 3, 3m − 5, . . . ,m + 3,m + 1,m,
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m − 1,m − 1,m − 2,m − 2, . . . , 1, 1).

Conjecture 1.2 (Saxl conjecture) For n = (m+1
2

)
, all partitions of n are contained in

ρ⊗2
m .

Conjecture 1.3 For n = 3m2, all partitions of n are contained in γ⊗2
m .

Previous work made progress towards the tensor square conjecture and towards
the Saxl conjecture in particular. Pak, Panova, and Vallejo used a lemma on nonzero
character values to show that the tensor square of the staircase contains all hooks,
partitions with two rows, and some partitions with three rows or with two rows plus an
extra column [12]. Similar results were shown for the tensor square of the caret shape.
They also showed that the staircase partition ρk contains at least 3�k/2�−1 distinct
partitions in its tensor square. This is noteworthy since the total number of partitions
of n = k(k+1)

2 is also roughly on the order of eck for some c.
Ikenmeyer [10] further generalized some of this progress by showing a result based

on comparability of partitions to the staircase in dominance order. This result, which
we will use heavily in our work, will be described in greater detail in Sect. 2.2.

Although preliminary evidence suggests that there could in fact be many shapes λ

that satisfy the tensor square conjecture for each n, several simple criteria are known.
For example, λ⊗2 contains the alternating representation 1n if and only if λ is identical
to its conjugate λ′ [12], which means that only symmetric λ can satisfy the full tensor
square conjecture.

We obtain several results towards the tensor square conjecture. The primary result
is the following.

Theorem 1.4 For sufficiently large n, there exists λ � n such that λ⊗4 contains all
partitions of n.

The partitions λ we use are staircases ρm when n is a triangular number and slight
adjustments of them when n is not.

We prove Theorem1.4 by combining two results that are of independent interest: we
define a simple metric on the set of partitions of n and show that the set of partitions
appearing in λ⊗2 is dense in an appropriate sense. We also show that all partitions
close to the trivial representation are contained in λ⊗2. Together, these results almost
immediately imply that λ⊗4 contains all partitions of n (when n is sufficiently large).

In addition, we prove some probabilistic results towards the Saxl conjecture.

Theorem 1.5 Let m ≥ 0. Then, ρ⊗2
m contains almost all partitions of

(m+1
2

)
in the

uniform measure, in which all distinct partitions are given the same probability.

Theorem 1.6 Let m ≥ 0. Then, ρ⊗2
m contains almost all partitions of

(m+1
2

)
with

respect to the Plancherel measure.

Remark We use the phrases “almost all” and “with high probability” throughout this
paper to mean that a sequence of probabilities tends to 1 as the parameter n orm tends
to infinity. For example, Theorem 1.5 states that the probability p(m) that a uniformly
random partition λ � (m

2

)
is contained in ρ⊗2

m converges to 1 as m grows large. In
particular, this language implies nothing about the rate of convergence.

The Plancherel measure will be discussed in Sect. 3.1.
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Fig. 1 English coordinates

Fig. 2 French coordinates

Fig. 3 Russian coordinates

2 Basic tools

2.1 Partitions and representations

Recall that irreducible representations of the symmetric group Sn correspond to Young
diagrams, or equivalently to partitions λ � n of n. We will use Young diagrams and
partitions interchangeably, and we denote by Pn the set of partitions of n. We will use
multiple orientations on Young diagrams: as is conventional, we call the coordinates
depicted below at left English, those in the middle French, and those at right Russian.
We use 1n to denote the trivial representation, 1n the alternating representation, and
λ′ the conjugate of λ (Figs. 1, 2, 3).

Lemma 2.1 [9, Section 4.1] Let λ � n. Then λ′ = λ ⊗ 1n.

For simplicity, we define an indicator function for constituency.

Definition 3 Let c(λ, μ, ν) be the statement that gν
λ,μ > 0.

We first establish some well-known, basic properties of c(λ, μ, ν).

Lemma 2.2 The function c is symmetric in its three arguments.

Proof Let χV : Sn → C denote the character function for a representation V . We
have

gν
λ,μ = 〈χλχμ, χν〉 = 〈χλ, χμχν〉 = gλ

μ,ν,
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and similarly for other permutations. Here, we use the facts that all representations of
Sn have real characters and that χV⊗W = χVχW . �
Lemma 2.3 If c(λ, μ, ν) then c(λ′, μ′, ν).

Proof By Lemma 2.1, we have λ′⊗μ′ = (λ⊗1n)⊗(μ⊗1n) = (λ⊗μ)⊗(1n⊗1n) =
λ ⊗ μ, so the result follows by the definition of the Kronecker coefficient. �

There is one more special representation that we will use repeatedly.

Definition 4 The standard representation of Sn is τn = IndSnSn−1
(1). Equivalently, τn

is the n-dimensional representation in which Sn acts by permuting n basis vectors
v1 . . . vn in the usual way.

It is well known that τn is the sum of the irreducible representations corresponding
to the partitions (n), (n − 1, 1); the trivial component comes from the vector (v1 +
· · ·+vn), which all elements of Sn fix. It is easy to see from the above description that
the remaining part corresponding to (n − 1, 1) is a faithful representation, as claimed
above.

It is known that for an irreducible representation λ, the tensor product τn ⊗ λ is
the formal sum (with multiplicity) of all partitions which can be formed by moving
a single square in the Young diagram for λ (including λ itself). (Pieri’s Rule, [9] Ex.
4.44). This fact will be used extensively later in the paper.

Finally, we recall the definition of the Durfee square.

Definition 5 The Durfee length d(λ) of a partition λ is the largest integer r with
λr ≥ r .

Definition 6 The Durfee square of a partition λ is the square of side length d(λ) with
the principal diagonal as its diagonal (beginning in the upper left corner in English
coordinates), considered as a subset of λ in the plane.

2.2 The semigroup property and dominance ordering

We extensively use the semigroup property, which was proved in [6]. To state this,
we first define the horizontal sum of partitions, in which we add row lengths, or
equivalently take the disjoint union of the multisets of column lengths.

Definition 7 The horizontal sum λ +H λ2 of partions λ = (λ1, λ2, . . .) � n1 and
μ = (μ1, μ2 . . .) � n2 is the partition (λ1 + μ1, λ2 + μ2, . . .) � (n1 + n2).

We also define horizontal scalar multiplication by positive integers on partitions,
simply by repeated addition.

Definition 8 For k ≥ 0, define the horizontal scalar multiple kH λ by kH λ = λ +H

λ +H · · · +H λ, where we add k copies of λ.

We also define vertical addition and scalar multiplication analogously, by adding
column lengths instead.
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Definition 9 We define the vertical sum λ1 +V λ2 of λ1, λ2 to be (λ′1 +H λ′2)′

Definition 10 Define the vertical scalar multiple kV λ by kV λ = λ+V λ+V · · · λwhere
we add k copies of λ.

We now state the semigroup property.

Theorem 2.4 (Semigroup property, [6, Theorem 3.1]) If c(λ1, λ2, λ3) and c(μ1, μ2,

μ3), then c(λ1 +H μ1, λ2 +H μ2, λ3 +H μ3).

We can use induction on Theorem 2.4 to extend the semigroup property to arbitrary
numbers of partitions. However, we will not need this for the bulk of our paper, so we
refer the reader to Appendix 10.2.

We now give a modified version of 2.4 using vertical sums.

Corollary 2.5 If c(λ1, λ2, λ3) and c(μ1, μ2, μ3), then c(λ1+V μ1, λ2+V μ2, λ3+H

μ3).

Proof By Lemma 2.3, we have c(λ′1, λ′2, λ3) and c(μ′
1, μ

′
2, μ3). Then, the semigroup

property yields c(λ′1+H μ′
1, λ

′
2+H μ′

2, λ3+H μ3). Applying Lemma 2.3 again yields
the result. �

In other words, in using the semigroup property, we are allowed to use an even
number of vertical additions in each step. It is not true that vertically adding all 3
partitions preserves constituency. For example, we have c((1), (1), (1)) for the trivial
representations of S1, but vertically adding this to itself gives that the alternating
representation of S2 is contained in its own tensor square. This tensor square is just the
trivial representation which, of course, does not contain the alternating representation.

We will also extensively use the following result from [10]. First, we recall the
notion of dominance ordering, which gives a partial ordering on partitions of n.

Definition 11 Let λ,μ � n. We say that λ dominates μ (or λ � μ) if for all k ≥ 1,∑k
i=1 λi ≥ ∑k

i=1 μi .

Theorem 2.6 [10, Theorem 2.1] Let m ≥ 1. Then, ρm ⊗ ρm contains all partitions λ

which are dominance comparable to ρm.

Remark We have also generalized Theorem 2.6 to arbitrary partitions with distinct
row lengths (see Theorem 9.1), which seems potentially useful for extending the
applicability of the semigroup property.

The main method used throughout the paper will be to try to express triples
(ρk, ρk, λ) as sums of smaller triples, each of which satisfies constituency because of
Theorem 2.6, and then conclude c(ρk, ρk, λ) via the semigroup property. This method
is powerful because small staircases can be added together to form larger staircases.
This will be explained throughout the following sections, which contain overviews of
the proofs of our main results.
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3 Overview of the probabilistic approach

3.1 Partition measures

In this section, we address a probabilistic weakening of the tensor square conjecture:

Question For large m, what is the probability that a random partition of
(m+1

2

)
is a

constituent in the tensor square ρ⊗2
m ?

To answer this question, we must first put a probability distribution on the set Pn
of partitions of n. The most obvious choice is the uniform distribution.

Definition 12 The uniform measure Un assigns probability 1
|Pn | to each distinct par-

tition of n.

There is another natural family of probability distributions on Pn we investigate,
which is rooted in representation theory.

Definition 13 The Plancherel measure Mn assigns to each λ � n probability dim(λ)2

n! .
Here, dim(λ) is the dimension of λ as a representation of Sn .

The value dim(λ) has the following famous combinatorial interpretation: it is the
number of standardYoung tableauof shapeλ, i.e. bijective assignments of (1, 2, . . . , n)

to the boxes of λ such that the numbers increase along each row and column [14].

3.2 Limit shapes of partition measures

The uniform and Plancherel measures Un and Mn give rise to different smooth limit
shapes for large n; in each case, we may speak of the “typical shape” of a large random
partition. Given a Young diagram λ of size n, we may shrink it by a linear scale factor

of
√
2√
n
so that it has area 2, and rotate it into Russian (diagonal) coordinates. This

results in the graph of a function fλ, and by defining fλ(x) = |x | past the boundary of
the Young diagram, we get a function defined on the whole real line which satisfies

fλ(x) ≥ |x |, (1)

and
∫ ∞

−∞
( fλ(x) − |x |)dx = 2, (2)

and

| fλ(x) − fλ(y)| ≤ |x − y|. (3)

Definition 14 The set CY of continuous Young diagrams is the set of functions
R → R satisfying (1), (2), and (3).
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We also define a familySY of continuous Young diagrams in French coordinates,
this time with area 1. Given f1, f2 ∈ CY , we change them into F1, F2 in French
coordinates by simply rotating and then reflecting, and also dilating by a linear scale
factor of 1√

2
. Taking the càdlàg version,we obtain a non-increasing function (0,∞) →

[0,∞).

Definition 15 Let SY be the set of functions (0,∞) → [0,∞) which are non-
increasing, càdlàg, and have total integral 1.

Definition 16 For f1 ∈ CY , the straightening F1 = S( f1) ∈ SY is the right-
continuous function R+ → R

+ given by rotation to English coordinates of the graph
of f1 followed by reflection over the x-axis, and then dilation by a factor of 1√

2
.

Definition 17 For λ � n, define Fλ = S( fλ).

On CY , we will use the supremum norm d( f, g) = || f − g||∞. We define the
metric onSY to agree with d under the canonical bijection S. This makes d onSY
simply twice the Lévy metric [3].

Using the canonical map Pn → CY given by λ �→ fλ, we may pushforward the
measures Mn,Un to finitely supported measures on CY . This allows us to state the
limit shape results precisely.

Theorem 3.1 [16] The pushforwards of the measures Mn converge in probability to
the delta measure on the function

fM (x) =
{( 2

π

) (
x arcsin

( x
2

) +√
4− x2

)
: x ≤ 2,

|x | : |x | ≥ 2.

Theorem 3.2 [15] The pushforwards of the measures Un converge in probability to
the delta measure on the function

fU (x) = 1

b
log(e−xb + exb)

where b = π

2
√
6
.

So under both uniform and Plancherel measure, for large n, almost all Young
diagrams look like a smooth limiting curve if we zoom out to a constant-size scale.
The limit shapes for the Plancherel and uniform measures are, respectively, shown
below (Figs. 4, 5).

The limit shape of Un may be more elegantly described in French coordinates,

where it is the graph of e
− πx√

6 + e
− πy√

6 = 1.
We will extend the definitions of length and height of Young diagrams to the con-

tinuous Young diagrams. For ordinary Young diagrams λ � n, we have that the length
of λ is λ1 = √

n sup({x | fλ(x) = −x}) and the height is λ′1 =
√
n inf({x | fλ(x) = x}),

given by the lowest spots on the rotated axes that the functions meet. Defining the nor-

malized length and height by 	(λ) := λ1√
n
, h(λ) := λ′1√

n
, we may extend the rescaled

length and height to CY and hence also toSY :
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Fig. 4 Plancherel limit shape

Fig. 5 Uniform limit shape

Definition 18 For f ∈ CY , define its (possibly infinite) length and height as

	( f ) = − inf({x | f (x) = −x}),
h( f ) = sup({x | f (x) = x}).

Definition 19 For F ∈ SY , let 	(F) = inf({x |F(x) = 0}).
Definition 20 For F ∈ SY , let h(F) = limt→0+ F(t).

Note that these definitions respect the bijection S because of the area difference
between the types of continuous Young diagrams.

We define C f to be the region between f ∈ CY and the graph of y = |x |, and SF
the corresponding notion for F ∈ SY .

Definition 21 For f ∈ CY , let C f = {(x, y)| f (x) ≥ y ≥ |x |}.
Definition 22 For F ∈ SY , let SF = {(x, y) ∈ (R+)2|y ≤ F(x)}.

We now extend the dominance ordering to continuous Young diagrams.

Definition 23 For F ∈ SY , define HF (t) = ∫ t
0 F(x)dx .

Definition 24 For F1, F2 ∈ SY , we say that F1 � F2 if they satisfy

HF1(t) ≤ HF2(t)

for all t .

Definition 25 For f1, f2 ∈ CY , we say that f1 � f2 if S( f1) � S( f2).
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It is clear that these dominance orders are extensions of the ordinary dominance
order. That is, if λ,μ � n then λ � μ if and only if fλ � fμ.

We also define ρ∞.

Definition 26 Let ρ∞ be the continuous Young diagram which is an isosceles right
triangle, so

lim
k→∞ ρk = ρ∞.

We now establish a few simple lemmas on the geometry of continuous Young
diagrams.

Definition 27 For A a subset of R2, let Aε = {x ∈ R
2|d(x, A) ≤ ε} and Aε =

((AC )ε)C , where AC is the complement of A.

Definition 28 For A ⊆ R
2, we denote bym(A) the Lebesguemeasure of A (assuming

it exists).

Lemma 3.3 The functions 	, h : CY → R are lower semi-continuous with respect
to the norm d.

Proof We show the result for h, the other case being exactly the same. Suppose
h( f ) > A. We show that for g sufficiently close to f , we have h(g) > A. Indeed, for
some x > A, we have f (x)− |x | = c > 0. For | f − g| < c, we have g(x)− |x | > 0,
implying h(g) > A as desired. �
Lemma 3.4 For fixed F ∈ SF , if SF is a bounded subset of the plane then we have

(

lim
ε→0+

m((SF )ε)

)

=
(

lim
ε→0+

m((SF )ε)

)

= m(SF ) = 1.

Proof It is clear that we have m(SF ) = 1. We proceed with the remaining claims.

We note that the closure SF and the interior
◦
SF have equal measure. Indeed,

SF − (
◦
SF ) consists of a countable number of vertical lines (corresponding to the

discontinuities of F) and the graph of F , each of which has measure 0 by Fubini’s
theorem. Now, as ε approaches 0, the sets (SF )ε intersect to SF . Since SF is bounded,
these sets converge in measure to SF by the dominated convergence theorem. Sim-

ilarly, as ε approaches 0, the sets (SF )ε converge in measure to
◦
SF . Since we have

m(SF ) = m(SF ) = m(
◦
SF ), the lemma follows. �

Lemma 3.5 Given f1, f2 ∈ CY , assume that f1(x) = f2(x) > |x | has at most 1
solution in x and that 	( f1) > 	( f2), h( f1) < h( f2). Then, f1(x) = f2(x) > |x | has
a unique solution and f1 � f2. Moreover, there exists ε > 0 such that the following
holds: for all continuous Young diagrams g1, g2 with ||gi − fi ||∞ ≤ ε for i ∈ {1, 2}
and also |	( f2) − 	(g2)| ≤ ε and |h( f1) − h(g1)| ≤ ε, we have g1 � g2.
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Proof of Lemma 3.5 The following pictures will probably be helpful aids for under-
standing the proof. They correspond to Russian and French coordinates, respectively,
with the blue curve as f1 and F1 = S( f1) and the green line as f2 and F2 = S( f2).

First, we establish that

f1(x) = f2(x) > |x |

has a solution. This is simple: we have f1(−	( f2)) > f2(−	( f2)) = 	( f2) and
f2(h( f1)) > f1(h( f1)) = h( f1)), so we may apply the intermediate value theorem
to find a real number c ∈ (−	( f2), h( f1)) for which f1(c) = f2(c). By the Lipschitz
condition on CY , c clearly satisfies f1(c) = f2(c) > |c|.

Consider the continuous function f3(x) = f1(x)− f2(x).We have that the equation

f1(x) = f2(x) > |x |

has a unique solution c, and also that {x | f1(x) = f2(x) = |x |} = (−∞,−	( f1)) ∪
(h( f2),∞). Therefore, f −1

3 (0) = (−∞,−	( f1))∪ {c} ∪ (h( f2),∞). We have again
that f1(−	( f2)) > f2(−	( f2)) = 	( f2) and f2(h( f1)) ≥ f1(h( f1)) = h( f1), which
yield f3(−	( f2)) ≥ 0 and f3(h( f1)) ≤ 0. By continuity, we therefore see that f3(x) >

0 for x ∈ (−	( f1), c) and f3(x) < 0 for x ∈ (c, h( f2)).
Let us straighten this picture into French coordinates, with F1 = S( f1), F2 = S( f2)

and (c, f1(c))becoming (k, F1(k)). Then, our last deduction translates into the fact that
F2− F1 is positive on (0, k), 0 at k, negative on [k, 	( f1)) and 0 on [	( f1),∞). Since
both functions have integral 1, it is clear to see that the function I (t) = HF2(t)−HF1(t)
is 0 at 0, positive on (0, 	( f1)) and 0 on [	( f1),∞). Therefore, f1 � f2.

We now establish g1 � g2 for gi satisfying the conditions in the lemma statement
for small ε. Define G1,G2 ∈ SY as S(g1), S(g2), and J (t) = HG2(t)−HG1(t). We
show J (t) ≥ 0 for all t , when ε is small enough. First, the condition |	( f2)−	(g2)| ≤ ε

combinedwith 3.3 guarantees that J (t) is positive near 	( f1), because for small enough
ε, we have 	(G1) > 	(G2). Similarly, the condition |h( f1) − h(g1)| ≤ ε combined
with 3.3 ensures that the initial “columns” of G2 are larger than that those of G1, i.e.
that G2(x) − G1(x) > 0 for x small. So for ε small, J (t) is positive near 0.

Now, we need only show that J (t) ≥ 0 for t ∈ [α, 	( f1) − α] for some α > 0.
Note that because I (t) > 0 on [α, 	( f1)−α], by compactness there exists δ > 0 with
I (t) > δ for t ∈ [α, 	(F1) − α].

Now, we claim that (SF2)ε
√
2 ⊆ SG2 . Indeed, if (x, y) ∈ (SF2)ε

√
2, then

(x + ε, y + ε) ∈ SF2 ⇐⇒ y + ε ≤ F2(x + ε) �⇒ y ≤ G2(x),

as desired. Therefore, by Lemma 3.4, picking ε small forces SF2 , SG2 to be arbitrarily
close in measure. We have

|J (t) − I (t)| ≤ m((SF2ΔSG2) ∩ ([0, t] × R)) ≤ m(SF2 ∩ SG2),
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Fig. 6 Continuous young
diagrams in English coordinates

Fig. 7 Continuous young
diagrams in Russian coordinates

so by picking ε small we force |J (t) − I (t)| to be uniformly small. Since I (t) is
bounded away from 0 on the interval [α, 	(F1)− α], for small ε we have J (t) > 0 on
that interval. This shows we can force J (t) > 0 for all t ∈ R, concluding the proof.�

Lemma 3.6 For F ∈ SY , let HF (t) = ∫ t
0 F(t)dt . For every ε > 0, there exists δ

such that the following holds: if G ∈ SY satisfies d(F,G) ≤ δ then |HF −HG |∞ ≤
ε.

Proof of Lemma 3.6 Fix ε as in the statement. By exhaustion take a, b such that
∫ b
a F(t)dt ≥ 1− ε

4 . Now pick δ such that if d(F,G) ≤ δ then |F(x)−G(x)| ≤ ε
4(b−a)

for x ∈ [a, b]. Then ∫ b
a G(t)dt ≥ 1 − ε

2 and so
∫ a
0 G(t)dt ≤ ε

2 ,
∫ ∞
b G(t)dt ≤ ε

2
because

∫ ∞
0 G(t)dt = 1. Therefore, for x /∈ [a, b] the desired |HF (x)− HG(x)| ≤ ε

holds. For x ∈ [a, b] we have |HF (x) − HG(x)| ≤ |HF (a) − HG(a)| + | ∫ x
a F(x) −

G(x)| ≤ ε
2 + ε

2 = ε. �

3.3 Overview of proofs for probabilistic results

For bothUn and Mn , we know now the overall shape of a generic partition λ � n. Our
strategy is the following: we will decompose these partitions into pieces, handle each
piece using Theorem 2.6 on dominance, and combine these pieces using the semigroup
property. We will need a way to combine smaller staircases into larger ones. For this
section, we will use the following identities (Figs. 6, 7).
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Fig. 8 Decomposition of ρ4

Fig. 9 Deomposition of ρ5

Proposition 3.7 We have the identities

(ρk +H ρk−1) +V (ρk +H ρk) = ρ2k, (ρk+1 +H ρk) +V (ρk +H ρk) = ρ2k+1.

Visual depictions for both cases when k = 2 are below (Figs. 8, 9).
This means that we can break a large staircase of size n into four staircases of size

roughly n
4 . Supposing for convenience that m = 2k is even, by the above proposition,

to show c(ρm, ρm, λ) for some λ, it suffices to write λ as

λ = λ1 +H λ2 +H λ3 +H λ4

where c(ρk−1, ρk−1, λ1) and c(ρk, ρk, λi ) for i ∈ {2, 3, 4}. For in such a case, the
semigroup property gives

c(ρk−1 +H ρk, ρk−1 +H ρk, λ1 +H λ2), c(ρk +H ρk, ρk +H ρk, λ3 +H λ4)

�⇒ c((ρk−1 +H ρk) +V (ρk +H ρk), (ρk−1 +H ρk) +V (ρk +H ρk), (λ1 +H λ2)

+H (λ3 +H λ4))

�⇒ c(ρ2k, ρ2k, λ).

Perhaps surprisingly, this method suffices to show constituency in ρ⊗2
m for almost

all partitions in both the uniform and Plancherel cases. In each case, we can break
the limit shape into four pieces of approximately equal area. For the uniform shape,
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we use vertical cuts as depicted at right. For the Plancherel limit shape, we evenly
distribute the columns among the four smaller pieces, so that each smaller piece has
approximately the same shape.

In each case, the dominance comparability of the smaller pieces with a staircase
partition follows by geometric reasoning on the limit shapes. What is a bit more subtle
is ensuring that these decompositions can be done precisely: to apply the semigroup
property, each of our four pieces must have size exactly equal to that of a certain
staircase partition. For this point, our strategy is to divide almost all of the large
partition into our four pieces but reserve some very short columns for the end of
the process. We distribute these short columns to the pieces such that each piece has
exactly the correct size, without affecting their overall shapes significantly. To justify
all of these details requires a bit of care, and we do this in the following section.

4 Proofs of probabilistic results

4.1 The uniform case

Theorem 1.5 Let m ≥ 0. Then, ρ⊗2
m contains almost all partitions of

(m+1
2

)
in the

uniform measure, in which all distinct partitions are given the same probability.

Proof Our plan is to use the semigroup property to add together smaller cases that can
be proven by dominance ordering.

WeuseProposition 5.4 in the k = 2 case, to give the following: supposewehave par-
titions λ1, λ2, λ3, λ4 which are dominance comparable to ρ�m+1

2 �, ρ�m2 �, ρ�m2 �, ρ�m−1
2 �,

respectively. Repeated application of the semigroup property yields

c
(
ρ�m+1

2 � +H ρ�m2 �, ρ�m+1
2 � +H ρ�m2 �, λ1 +H λ2

)
,

c
(
ρ�m2 � +H ρ�m−1

2 �, ρ�m2 � +H ρ�m−1
2 �, λ3 +H λ4

)

and hence c(ρm, ρm, λ1 +H λ2 +H λ3 +H λ4).
It now suffices to take a Un-typical partition λ and show that it can be written as

λ = λ1 +H λ2 +H λ3 +H λ4,

where λ1, λ2, λ3, λ4 are dominance comparable to the correspondingly sized stair-
cases.

Wewill do so by partitioning the columns into four sets corresponding to λ1, . . . , λ4
such that each is dominance comparable to ρ�m+1

2 � or ρ�m−1
2 �. We give an algorithm

that works for almost all partitions. On a macroscopic scale, we essentially will split
the limit shape into 4 pieces of equal area by cutting it up vertically, as depicted below.
We will then use some columns of length 1 to ensure that each λi has exactly the
correct total size, without interfering significantly with their overall shapes. We will
denote by μ1, . . . , μ4 the 4 straightened continuous Young diagrams formed from the
limit shape in this way. A figure below depicts the decomposition (Figs. 10).
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Fig. 10 Decomposition of the uniform limit shape by column size

Here, the purple diagonal line represents the rescaled staircase partition ρ�m2 �,
shifted right so that its corner is at the bottom of the green line (the line separat-
ing μ2 from μ3). We now briefly explain why the hypotheses of Lemma 3.5 hold for
each piece against a 1

4 -area ρ∞. The exact equation for the curve of the limit shape
boundary is

e
− π√

6
x + e

− π√
6
y = 1.

A convexity argument shows that on this curve, x + y is minimized at x = y =√
6

π
log 2. Therefore, to ensure that the purple line does not intersect the curve, we need

to verify that the x-coordinate for the green line is less than ( 2
√
6

π
log 2)− 1√

2
≈ 0.37.

Indeed, the green x-coordinate can easily be checked to be approximately 0.33, which
is smaller as desired. Therefore, the boundaries of ρ∞ and μ3 intersect only once,
including at the endpoints, so Lemma 3.5 ensures dominance comparability. It is clear
that dominance of μ3 implies the same for μ2, μ1. For μ4, it is easy to check that the
red line meets the blue boundary curve at approximately (0.78, 0.36). Because this
height is less than 1√

2
≈ 0.71, ρ∞ has larger height than μ4. So it remains to check

that the boundary curves of μ4, ρ∞ intersect only at most 1 time. This is true because
the boundary of μ4 consists only of points (x, y) with x > y, and it is easily seen that
the derivative of the boundary curve lies in the interval (−1, 0) on this region, so it
cannot intersect a line of slope -1 twice.

We will now decompose λ by greedily partitioning the columns into four sets
corresponding to λ1, . . . , λ4 as follows. We fix some small ε > 0 to be chosen later
and freely take n to be large. Order the column lengths λt1 ≥ λt2 ≥ · · · , and let n1 be
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the largest integer such that
∑n1

i=1 λti ≤
(k+1

2

)
, and assign to λ1 the columns λt1 . . . λtn1 .

By Lemma 3.6, the rescaled position of column n1 is, with high probability, very close
to the first vertical line in the diagram. Because it is also true w.h.p. that λ is close to
the limit shape in the metric on SY , it is true w.h.p that no 2 subsequent adjacent
columns λtm, λtm+1 (m > n1) differ by more than ε

√
n. This is simply because to the

right of the orange line, the limit shape graph is uniformly continuous.
Therefore, w.h.p. wemay add one more column λtm to λ1 so that 0 ≤ (k+1

2

)−|λ1| ≤
ε
√
n, just by taking the largest column sizeλtm preserving the property 0 ≤ (k+1

2

)−|λ1|.
We similarly formλ2, λ3 by greedily adding columns, and then (if necessary) adding

one more column to give total size in the interval [(k+1
2

) − iε
√
n,

(k+1
2

)]. (We have a
factor of i ∈ {2, 3} because the fact that we used out-of-place columns for previous
λ j could increase the gap size between available columns for subsequent λi .) We then
greedily fill λ4 with the remaining columns which are not of size 1. Note that n2 and n3
correspond almost exactly to the vertical boundaries betweenμi , again by Lemma 3.6.

We now use the pieces of size 1 to smooth the exact sizes of λi . This is possible
because of the following proposition. �
Proposition 4.1 [7, Theorem 2.1] Let X1(λ) be the number of columns of size 1
contained in a partition λ. For each v ≥ 0, if λ is a uniformly random partition of n,

lim
n→∞ P

(
π√
6n

X1 ≤ v

)

= 1− e−v.

Because of this proposition, by picking ε small, we have w.h.p. at least 6ε
√
n

columns of size 1, enough to distribute to λ1, λ2, λ3 in order to give them the correct
sizes.We checked earlier that the condition for Lemma 3.5was satisfied for eachμi , so
by also picking ε small enough so as to use Lemma 3.5, we also have that dominance
is preserved when we do this, so λ1, λ2, λ3 are taken care of.

We now just add all remaining parts of size 1 to λ4. Each other λi is the correct total
size, so having used all the columns of λ, we see that λ4 is also the correct size. Because
μ4 dominates the infinite staircase ρ∞, by Lemma 3.5 again, with ε sufficiently small
the dominance will be preserved. (Note that because λ4 dominates the corresponding
staircase instead of being dominated as was the case for the other λi , we do not need
to worry about adding too many singleton columns to λ4.) �

4.2 The Plancherel case

Theorem 1.6 Let m ≥ 1. Then, ρ⊗2
m contains almost all partitions of

(m+1
2

)
with

respect to the Plancherel measure.

Proof of Theorem 1.6 For this proof, we assume the following technical result, which
will be proven in a later section. �
Definition 29 Let β be a positive real number. A partition λ of n is called β-sum
flexible if it satisfies the following property: when its column lengths are sorted in
increasing order a1 ≤ . . . am , we have a1 = 1, and for all 1 ≤ k ≤ m we have

ak ≤
⌈
β

∑k
j=1 a j

⌉
.
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Theorem 4.2 For any β > 0, let P(n, β) denote the probability that a (Plancherel)
random partition of n is β-sum flexible. Then, we have

lim
n→∞ P(n, β) = 1

for all β.

To show Theorem 1.6, we use the same summation identities for staircase partitions
as above. Again, for simplicity, we discuss only the n = 2k case, the other case being
nearly identical.

Similarly to the uniform case, we will take a Mn-typical partition λ and write it as

λ = λ1 +H λ2 +H λ3 +H λ4,

where λ1, λ2, λ3 are dominance comparable to ρk and λ4 is comparable to ρk−1.
Unlike in the above, we can make each piece roughly the same shape. We will do so
by grouping most of the column lengths λ′1 ≥ λ′2 ≥ · · · into sets of four consecutive
sizes, and dividing them cyclically among λi . We will use Theorem 4.2 to distribute
the smallest columns, in such a way that |λ1| = λ2| = |λ3| =

(k+1
2

)
and |λ4| =

(k
2

)
.

Similarly to the uniformcase, defineμ to be the Plancherel limit shape, but transformed
by the linear map (x, y) → ( x2 , 2y).

We first argue that μ, ρ∞ satisfy the hypotheses of Lemma 3.5. We have 	(ρ∞) =
h(ρ∞) = 1, 	(μ) = 1√

2
, h(μ) = 2

√
2, so it remains to check that their boundaries

intersect only once off of the axes. In Russian coordinates, extend the boundary of
μ along the axes to a convex function f defined on all of R by setting f (x) = |x |
outside the boundary curve ofμ. Since f is convex, it can onlymeet any line twice. The
boundary of ρ∞ is a line, and one intersection point is (1, 1). Therefore, the boundaries
of μ, ρ∞ intersect at most once, so they do meet the conditions of Lemma 3.5.

Fix a miniscule ε > 0. We order the column lengths λt1 ≥ λt2 ≥ · · · . Take all
columns with size at least εn1/2 and add column λti to partition k if i and k are
congruent modulo 4. Because each partition’s total size corresponds essentially to a
Riemann integral of the limit shape, each partition now has size n( 14 − δ + o(1)),
where δ is the area of the limit shape covered by columns which are size less than ε

after rescaling [1]. This means that each partial partition is smaller than the size of the
corresponding λi , which all have size n( 14 −o(1)). By Theorem 4.2, we may distribute
the remaining columns to give each partition the correct overall size. We claim that
these remaining small parts occupy an infinitesimal area in the rescaled diagram: they
fit into a square of arbitrary small side length, for ε sufficiently small. To verify this,
we need that the longest row of λ is of size (2+o(1))

√
n with high probability, i.e. the

same length as predicted by the length of the limit shape. This is indeed true, see [1].
This implies that the resulting shapes are very close to μ in the metric on SY ,

meaning that, assuming we picked a sufficiently small ε value originally, we may
apply Lemma 3.5 to conclude that we have dominance.

In summary, we have decomposed a generic large partition as a horizontal sum of
4 almost equally shaped partitions, each comparable to their size of staircase via the

123



50 J Algebr Comb (2017) 45:33–80

dominance ordering. Hence, this generic large partition is a constituent of ρ⊗2
m , by the

semigroup property, and so we have established Theorem 1.6. �

5 Overview of the deterministic approach

In this section, we consider a different weakening of the tensor square conjecture:

Question What is the smallest integer f (m) such that ρ⊗ f (m)
m contains every partition

of n = m(m+1)
2 ?

The conjecture is that f (m) = 2; we seek here to find any good upper bound
on f (m). It may seem natural to attempt to use the semigroup property directly for
this question; we can in fact define higher-length Kronecker coefficients via con-
stituency in longer tensor products, and the semigroup property still holds for these
longer sequences in the same way (see Appendix 10.2). However, we take a different
approach, by instead allowing for additional factors of the standard representation τn ,
and then replacing these factors with factors of ρm to answer the above question.

5.1 Blockwise distances

The square-moving interpretation of tensoring a representation with τn motivates the
following definition:

Definition 30 The blockwise distanceΔ(λ,μ) between two partitions λ,μ of n is the
smallest number of single blocks that need to be moved to form λ from μ.

Equivalently, the blockwise distance is the smallest Δ such that λ ⊗ τ⊗Δ
n contains

μ. To motivate our approach in this section, consider the graph of Young diagrams
of size n in which λ and μ are adjacent if and only if they differ by the movement
of exactly 1 block. Then, λ ⊗ τn is the formal sum of λ (possibly many times) and
all of its neighbours (once each). If we are only concerned (as we are) with which
representations appear at all, we see that tensoring with τn corresponds simply to
“spreading out” along this graph. This leads us to another weakening of the tensor
square conjecture:

Definition 31 Define H(m) to be theminimumnon-negative integer 	 such thatρ⊗2
m ⊗

τ⊗	
n contains all partitions of n as constituents, where n = m(m+1)

2 .

Question How quickly does H(m) grow with m?

If H(m) is small, then partitions contained inρ⊗2
m are “dense” in the graph described

above. In this section,wefind an upper bound for the number of standard representation
factors required and then translate this into a bound f (m). We also define a slightly
more general distance which allows differently sized partitions to be compared.

Definition 32 The generalized blockwise distance Δ(λ,μ) between two partitions
λ � n1, μ � n2 is the smallest number of single blocks that need to be added,
removed, and/or moved to form λ from μ.
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Remark When λ,μ are partitions of the same n, the generalized distance Δ(λ,μ) is
the same as the regular blockwise distance.

First, we verify that horizontally adding partitions interact simply with blockwise
distances.

Proposition 5.1 Ifλ1, μ1, λ2, μ2 are integer partitions, thenΔ(λ1, λ2)+Δ(μ1, μ2) ≥
Δ(λ1 +H μ1, λ2 +H μ2).

Proof Consider a sequence of d1 operations on the columns of λ1 that can be done
to result in λ2, and consider the analogous sequence for transforming μ1 to μ2. Since
horizontal addition simply combines the multisets of column sizes, it suffices to show
that the same two sequences of moves can be performed separately on the sets of
columns of λ1 +H μ1 corresponding to λ1 and μ1, respectively, to achieve the same
transformation as before for each of the two parts.

This follows because the basic operations, when performed on the columns of
λ1 +H μ1 corresponding to λ1, do not affect those corresponding to μ1, and vice
versa; when the relative sizes of two columns would change, we can simply reorder
the columns without affecting the result. �

Note that Δ(λ,μ) ≤ n − 1 for all λ,μ � n. As a demonstration of what using
standard representations can give us, we give the following pair of weak but instructive
results:

Proposition 5.2 Let n = m(m+1)
2 . If λ � n is such that λ is contained in τ⊗m

n , then λ

is contained in ρ⊗2
m .

Proof The irreducible components of τ⊗m
n are precisely those that correspond to parti-

tions λ of n whose blockwise distance from 1n is at mostm. If this blockwise distance
is at most m − 1, then λ, minus its top row, is contained within ρm−1, and so λ is
comparable to ρm in dominance order. Thus, we get c(ρm, ρm, λ).

If the distance is m, the only way for λ not to be comparable to ρm is if λ =
(n−m, 1, 1, . . . , 1). But in this case, we have c(ρm, ρm, λ) anyway by the semigroup
property, because λ is a hook [10]. �

Proposition 5.3 Let n = m(m+1)
2 . All λ � n are contained in ρ

⊗2�m+1
2 �

m .

Proof All λ � n are contained in τ⊗n−1
n and thus in τ

⊗m�m+1
2 �

n . So for each λ, there
exist irreducible representationsμ1, . . . , μ�m+1

2 �, each contained in τ⊗m
n , whose tensor

product contains λ. Thus, λ is in the tensor product of �m+1
2 � irreducible representa-

tions each contained in ρ⊗2
m , and thus, λ is contained in ρ

⊗2�m+1
2 �

m �

Remark This already shows that f (n) = O(
√
n). As we will soon see, we can do

much better.
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5.2 Staircase sum identities

As seen previously, staircases can be added to form larger staircases. Themost straight-
forwardway follows and is a generalization of the identities used in the previous section
(which we recover when k = 2).We use the symbolsΣH ,ΣV for iterated applications
of +H ,+V .

Proposition 5.4 For any n, k, we have:

ρn =
k−1∑

V
j=0

(
k−1∑

H
i=0

(

ρ⌊
n+i− j

k

⌋

))

.

Proof Recall Hermite’s identity, which states that for any x ∈ R, we have

k−1∑

i=0

⌊

x + i

k

⌋

= �kx�.

Thus, the j th term in the vertical sum is a partition whose largest row has size

k−1∑

i=0

⌊
n + i − j

k

⌋

= n − j.

Since the k summands are all staircases with length differing by at most one, the
other rows in the sum have size n − j − k, n − j − 2k, . . .. Thus, the vertical sum
creates a partition with row sizes n, n − 1, . . . , 1, which is what we want. �

For example, for k = 2, we recover the identities we used in the previous section:

(ρk +H ρk−1) +V (ρk +H ρk) = ρ2k,

(ρk+1 +H ρk) +V (ρk +H ρk) = ρ2k+1.

As was visually demonstrated before, these identities may be understood as begin-
ning with a square grid of staircases ρ� n+i− j

k � and horizontally adding the rows, and

then vertically adding the resulting sums. Of course, we could also first add vertically
by column, and then horizontally by row.

This square grid of staircase partitions can also be added in an entirely different
order to produce the same result. Instead of adding all the staircases in each row
together, we can first add an i-by-i square and then add a length-i column and a
length i + 1 row to get an (i + 1)-by-(i + 1) square. However, some slightly messy
rearrangement of the pieces is needed, and the following proposition is the result.

Proposition 5.5 For any n, k, we have:
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Fig. 11 Layer decomposition

1.

(
ρn +H ((k − 1)V ρ� n

k−1 �)
)
+V

⎛

⎝
k−1∑

V
i=0

⎛

⎝ρ⌊
n+� n

k−1 �−k+1+i

k

⌋

⎞

⎠

⎞

⎠ = ρn+� n
k−1 �,

2.

(
ρn +H

(
(k − 1)V ρ� n

k−1 �
))

+V

⎛

⎝
k−1∑

V
i=0

⎛

⎝ρ⌊
n+� n

k−1 �+1+i

k

⌋

⎞

⎠

⎞

⎠ = ρn+� n
k−1 �+1.

The proof of this proposition will be given in Sect. 6.1.
Below is a visual illustration of case 1 with k = 4, n = 7, where the pieces combine

to make a ρ9 (Fig. 11).
Using the above, we can construct a decomposition of any large staircase into a

staircase of about ( ik )
2 times its area and k2 − i2 staircases of about 1

k2
times its area.

This may be done by repeatedly applying Theorem 5.5.

5.3 Overview of Proof of Theorem 1.4

Here is our main result, stated again.
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Theorem 1.4 For sufficiently large n, there exists λ � n such that λ⊗4 contains all
partitions of n.

For this overview, we will focus on the case of a triangular number n = m(m+1)
2 ,

using for λ the staircase ρm . The general case will augment most steps simply by
adding the appropriate number of extra blocks in the form of a trivial representation.
The detailed proof can be found in Sect. 6.

The primary ingredient is the following theorem.

Theorem 5.6 For all m, ρ⊗2
m ⊗ τ⊗O(m) contains all partitions of n = (m+1

2

)
.

Equivalently, we will show that every partition is in ρ⊗2
m ⊗ τ⊗�c√n� for an absolute

constant c.
Wedefined earlier H(m) to be theminimumnumber of tensor factors of τn needed so

that ρ⊗2
m ⊗τ

⊗H(m)
n contains every partition, so Theorem 5.6 states that H(m) = O(m).

For convenience, we define a maximal function for the function H .

Definition 33 For m ≥ 0, let M(m) = max{H(1), H(2), . . . , H(m)}.
It is clear that M(m) = O(m) ⇐⇒ H(m) = O(m), and so we will show the

former.

Proof Outline for Theorem 5.6 We use Proposition 5.5 to decompose ρm as

ρm = (ρx +H (3V ρy)) +V

(
3∑

V
i=0

ρzi

)

,

where up to O(1) error, we have x ≈ 3m
4 , y ≈ zi ≈ m

4 .
Suppose that we have eight partitions λ0 . . . λ7 each contained in the tensor square

of one of the above staircases. Then, repeatedly combining the partitions and using
the semigroup property gives us

c

(

ρm, ρm,

7∑

H
i=0

(λi )

)

.

So, we only need to show how to decompose an arbitrary partitionμ as a horizontal
sum of many smaller partitions comparable to staircases, using standard representa-
tions to move a few blocks around as necessary. We will plan for all but two of these
smaller partitions to be dominance comparable to the staircase. These will then be the
only two smaller partitions that need additional tweaking with standard representa-
tions.

The idea is the following: we cut off a large chunk A of μ, of about 7
16 its size. The

remainder λ0 (consisting of the larger end of the columns) is modified recursively to be
contained in the tensor square of the staircase of size about 9

16n; A itself is broken into
7 pieces which can be modified to be suitable λi . This breaking is done contiguously,
so that columns in a piece are either all at least as tall or all at least as short as columns
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in a given other piece. If all columns in one of these pieces are either very tall or
very short, we can conclude dominance comparability with the staircase. By further
breaking down the smaller pieces, we can ensure using this criterion that most of
the small parts in our decomposition are dominance comparable to the corresponding
staircases. The subadditivity of blockwise distance allows us to derive a recursion for
M(m) from this decomposition, and we do not have recursive terms corresponding to
most of these smaller pieces. The end result is the following recurrence.

M(m) ≤ M

(
3m

4
+ O(1)

)

+ M
(m

8
+ O(1)

)
+ cm + O(1).

Solving this recurrence by strong induction gives

M(m) ≤ Cm

for some constant C (see Sect. 6.2 for an explicit C which works for large n). This
proves that M(m) = O(m), and hence Theorem 5.6. �

To conclude Theorem 1.4, it remains to show that for any c, for large enough n,
any irreducible representation in τ⊗�c√n� is contained in ρ⊗2

m . In the next section, we
explain our results in more detail and fill in this last step to complete the proof of
Theorem 1.4 even in non-triangular number cases.

6 Detailed Proof of Theorem 1.4

We follow the same plan as in the proof overview, giving more detail and showing the
extensions to non-triangular values of n. First, we rigorize some of our earlier work
with staircase sum identities.

6.1 Staircase sum identities, revisited

Here is a result we used in the overview, which will now be proven.

Proposition 5.5 For any n, k, we have:

1.

(
ρn +H

(
(k − 1)V ρ� n

k−1 �
))

+V

⎛

⎝
k−1∑

V
i=0

⎛

⎝ρ⌊
n+� n

k−1 �−k+1+i

k

⌋

⎞

⎠

⎞

⎠ = ρn+� n
k−1 �,

2.

(
ρn +H

(
(k − 1)V ρ� n

k−1 �
))

+V

⎛

⎝
k−1∑

V
i=0

⎛

⎝ρ⌊
n+� n

k−1 �+1+i

k

⌋

⎞

⎠

⎞

⎠ = ρn+� n
k−1 �+1.
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Proof We simply check each equality by evaluating the left sides. We begin with 1.
We have ρn = (n, n − 1, . . . 1). Because vertical addition is equivalent to taking the
disjoint union of the row-multisets, we have (k−1)V ρ� n

k−1 � = (� n
k−1�, � n

k−1�, . . . , 1)
where each distinct value is repeated k − 1 times. Therefore,

(
ρn +H ((k − 1)V ρ� n

k−1 �)
)

=
(

n +
⌊

n

k − 1

⌋

, . . . , n +
⌊

n

k − 1

⌋

− k + 2, n +
⌊

n

k − 1

⌋

− k, . . .

)

where the omitted row lengths are precisely the values n+� n
k−1�+1− jk for positive

integral j . Again using the fact that the vertical addition is simply disjoint union of
row lengths, it suffices to check that

⎛

⎝
k−1∑

V
i=0

⎛

⎝ρ⌊
n+� n

k−1 �−k+1+i

k

⌋

⎞

⎠

⎞

⎠

consists of precisely these row lengths. That the largest row lengths match follows

from Hermite’s identity. Because the k numbers
⌊
n+� n

k−1 �−k+1+i
k

⌋
differ pairwise by

at most 1, the row lengths of

⎛

⎝
k−1∑

V
i=0

⎛

⎝ρ⌊
n+� n

k−1 �−k+1+i

k

⌋

⎞

⎠

⎞

⎠

will decrease by k until reaching 0, which is exactly the correct behaviour.
The proof of 2 is identical, except now the omitted row lengths are those of the

form n +
⌊

n
k−1

⌋
+ 1− jk for non-negative integers j . �

It is easy to see that the function f (n) = n+
⌊

n
k−1

⌋
attains all integer values except

those congruent to−1 mod k. Such values are attained by f (n)+1, so Proposition 5.5
suffices to break up any staircase into smaller pieces.

We now use the above proposition to construct a decomposition of any large stair-
case into a staircase of about ( ik )

2 times its area and k2 − i2 staircases of about 1
k2

its
area, for any fixed i < k.

Definition 34 Define a k-layer decomposition of ρm as a decomposition of ρm into
2k staircases which have sizes given by the left-hand side of Eq. 1 of Proposition 5.5,

where m = n +
⌊

n
k−1

⌋
, and which sum to ρm in the way indicated by that equation.

The piece ρn in this decomposition is called the core.
For 1 ≤ i ≤ k−1, define a (k, i)-layer decomposition of ρm recursively as follows:
A (k, k − 1)-layer decomposition of ρm is a k-layer decomposition of ρm .
For i < k−1, a (k, i)-layer decomposition of ρm is the result of taking a (k, i+1)-

layer decomposition of ρm , and further decomposing its core through a (k−1, i)-layer
decomposition.
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Thus, a (k, i)-layer decomposition is a decomposition of ρm into k2−i2+1 smaller
staircases. We extend the definition of the core to these decompositions and introduce
a related term for the remaining pieces.

Definition 35 We call the large part of a (k, i)-layer decomposition of ρm the core
and the other k2 − i2 parts the flakes.

It is clear that, for fixed (i, k), the flakes formed differ by only O(1) in length.
In fact, as long as 2i ≤ k, by using Proposition 5.5 intelligently, we can ensure that

they differ by at most 1.

Definition 36 We call a (k, i)-layer decomposition of ρm into parts where all flakes
pairwise differ in length by at most 1 a smooth layer decomposition.

Proposition 6.1 For any (m, k, i) with 2i ≤ k, there is a smooth (k, i)-layer decom-
position of ρm.

Proof We first examine based on the value of j to see which flake lengths can arise
in a (k, 1) decomposition.

If 0 ≤ j ≤ k−2, then wemay use part 1. of Proposition 5.5. The core length is n =
t (k− 1)+ j , which means the flake lengths are

⌊
n

k−1

⌋
= t and

⌊
n+

⌊
n

k−1

⌋
−k+1+i

k

⌋

=
⌊
t (k−1)+ j+t−k+1+i

k

⌋
=

⌊
(t−1)(k)+ j+1+i

k

⌋
. Because i ≤ k− 1 we have (t − 1)k+ j +

1+ i < (t + 1)k, so these numbers range over the set {t − 1, t}.
If 1 ≤ j ≤ k − 1, then we may use part 2. of Proposition 5.5. The core length is

n = t (k−1)+ j−1, whichmakes the flake lengths
⌊

n
k−1

⌋
= t and

⌊
n+

⌊
n

k−1

⌋
+1+i

k

⌋

=
⌊
t (k−1)+ j−1+t+1+i

k

⌋
= t +

⌊
j+i
k

⌋
. This clearly ranges over {t, t + 1}.

Now, assume first that j < k − i . Then, we may use 1. of Proposition 5.5 i times,
having after 	 iterations a core of length t (k − 	) + j and all flakes of lengths in
{t − 1, t}. Because j < k− i , we always have j ≤ k− 	− 2 for 	 ≤ k− 1, so we can
complete the i iterations in this way.

If j ≥ k − i , then as 2i ≤ k we have j ≥ i . Then, we may instead use only part 2.
of the proposition, which after 	 iterations leaves a core of length t (k − 	) + j − 	.
Because j ≥ i , this is strictly greater than t (k − 	) for all 	 < i , so we can again run
this process to completion, with all flakes of length in {t, t + 1}. In either case, we are
done. �

6.2 Proof of Theorem 5.6

We now prove Theorem 5.6, restated with an explicit asymptotic constant.

Theorem 5.6 (With explicit constant) For all m, ρ⊗2
m ⊗ τ⊗(1184m+O(1)) contains all

partitions of n = (m+1
2

)
.
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Proof We use Proposition 5.5 to write ρm as a (k, 1) decomposition

ρm = (ρx +H ((k − 1)V ρy)) +V

(
k−1∑

V
i=0

ρzi

)

,

where up to O(1) error, we have x ≈ (k−1)m
k , y ≈ zi ≈ m

k .
Now, suppose that we have partitions λ0 . . . λ2k−1 such that

c(ρx , ρx , λ0),

c(ρy, ρy, λ j )

for 1 ≤ j ≤ k − 1 and

c(ρzi , ρzi , λk+i )

for 0 ≤ i ≤ k − 1.
Then, repeated application of the semigroup property implies

c

(

(k − 1)V ρy, (k − 1)V ρy,

k−1∑

H
i=1

(λi )

)

, c

⎛

⎝
k−1∑

V
j=0

(ρz j ),

k−1∑

V
j=0

(ρz j ),

2k−1∑

H
i=k

(λi )

⎞

⎠ ,

which in turn imply

c

(

ρx +H ((k − 1)V ρy), (ρx +H ((k − 1)V ρy),

k−1∑

H
i=0

(λi ))

)

and so

c

(

ρx +H ((k − 1)V ρy) +V

(
k−1∑

V
i=0

ρzi

)

, ρx +H ((k − 1)V ρy)

+V

(
k−1∑

V
i=0

ρzi

)

,

2k−1∑

H
i=0

(λi )

)

�⇒ c

(

ρm, ρm,

2k−1∑

H
i=0

(λi )

)

.

Thus, we only need to show how to decompose an arbitrary partition as a horizontal
sum of many smaller partitions. �
Lemma 6.2 Suppose λ � n, where n = k(k+1)

2 , and the columns of λ have sizes
c1 ≥ c2 ≥ · · · ≥ cl . Then, if either cl ≥ k or c1 ≤

⌊ k
2

⌋ + 1, we have c(ρk, ρk, λ).
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Proof First, consider the case where cl ≥ k. Then, for 1 ≤ j ≤ l, we have
∑ j

i=1 ci ≥
k j ≥ k+ (k− 1)+ · · ·+ (k− ( j − 1)), while for j > l,

∑ j
i=1 ci ≥ n. So, λ is clearly

dominance comparable to the staircase.
Now, consider the case where c1 ≤ ⌊ k

2

⌋ + 1. Now for any j < k, the leftmost j

columns of ρk have average size
k+(k− j+1)

2 ≥ k+2
2 , which is at least the average size

of the first j columns of λ. For j ≥ k, the sizes of the leftmost j columns of ρk sum
to n. So, λ and ρk are again comparable in the dominance order.

Thus, in either case, c(ρk, ρk, λ) follows by Theorem 2.6. �
We now introduce a lemma which allows us to break up a partition μwith bounded

height into partitions contained in staircase tensor squares. The reader may wish to
note that only the first part of the lemma is needed to conclude that O(

√
n) standard

representations suffice to give every representation, by taking, e.g. (k, i) = (7, 5)
instead of ((k, i) = (4, 3). However, using the second part results in a better constant
factor. Recall that we defined M(m) = max{H(1), H(2), . . . , H(m)}, where H(m)

was the minimal non-negative integer 	 such that ρ⊗2
m ⊗ τ⊗	

n contains all partitions of
n as constituents.

Lemma 6.3 Consider a partition μ and staircases ρs1 , . . . , ρsr with si ∈ {b − 1, b}
for all i . Assume that the height of the largest column c1 satisfies c1 ≤ C and
also 0 ≤ (

∑
i |ρsi |) − |μ| ≤ C. Then, there exists a partition μ̂ such that

c
(∑

H
r
i=1 ρsi ,

∑
H
r
i=1 ρsi , μ̂

)
and also the generalized blockwise distance Δ =

Δ(μ̂, μ) between μ̂ and μ satisfies

(1) Δ ≤ (4r − 3)C + M(b)
and

(2) Δ ≤ (4r + 9)C + M(� b2�)
Proof We break up μ by its column lengths c1 ≥ c2 · · · ≥ ch . We will construct parti-
tions ζ1 . . . ζr which horizontally sum to μ̂ ≈ μ. We begin by constructing partitions
ζ ∗
i , and then adjusting each ζ ∗

i to form ζi .
To form ζ ∗

i , we preliminarily use the greedy algorithm to assign to ζ ∗
1 as many

columns from μ as possible subject to |ζ ∗
1 | ≤ |ρs1 | starting from the smallest column

ch and then continue similarlywith ζ ∗
2 and so on through ζ ∗

r . Note that some columns of
μmaybe included in none of the ζ ∗

i . The assumptions c1 ≤ C and 0 ≤ ∑
i |ρsi |−|μ| ≤

C guarantee that for each i , we have

|ζ ∗
i | ≤ |ρsi | ≤ |ζ ∗

i | + C.

Now, we modify each ζ ∗
i based on the height condition of Lemma 6.2. For each

i , set Xi to be the height of the smallest column of ζi and Yi to be the height of the
largest. Clearly, we have X1 ≤ Y1 ≤ X2 . . . ≤ Xr ≤ Yr . We leave alone those ζ ∗

i with
Yi ≤ � b2� - such ζi can easily be modified to satisfy dominance by Lemma 6.2 as we
will see later.

We have some remaining set S of i such that Yi > � b2�. Now, because we have
Xi+1 ≥ Yi , at most 1 value of i ∈ S satisfies Xi ≤ � b2�, namely only the minimal
value i0 of S. Therefore, for all i ∈ S\{i0}, we have Xi > � b2�.
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For each i ∈ S\{i0}, we break ρsi into a sum of 4 smaller staircases ρsi,1 . . . ρsi,4 by
setting k = 2 in Proposition 5.4. We also use the same greedy algorithm as before to
extract from ζ ∗

i four partitions ζ ∗
i,1 . . . ζ ∗

i,4 such that |ρsi, j | − C ≤ |ζ ∗
i, j | ≤ |ρsi, j | and

the ζ ∗
i, j use distinct columns of ζ ∗

i .

Because si ≤ b, we have si, j ≤ � b2�. For all i ∈ S\{i + 0}, Xi > � b2�, and the
smallest column in any ζ ∗

i, j is certainly at least as large as Xi . This means that the ζ ∗
i, j

now satisfy the other size condition in Lemma 6.2; by breaking down our partitions,
we have preserved the “tallness” of the ζ ∗

i in the ζ ∗
i, j while decreasing the total size,

making them sufficiently “relatively tall” to apply Lemma 6.2.
Now, we finish part (1). We will add squares to the small staircases ζ ∗

i , ζ
∗
i, j while

preserving the respective height conditions of Lemma 6.2. Let R be the set of partitions
consisting of ζi for i /∈ S and ζi, j for i ∈ S\{i0}. We know that for each partition in
R, we can bring its total size to the size of the corresponding staircase ρsi or ρsi, j by
adding at most C squares.

We consider μ as the disjoint union of column-length multisets of the partitions
in R, ζ ∗

i0
, and the remaining leftover columns. We make block moves to bring each

partition ζ ∗
i or ζ ∗

i, j in R to be of size si or si, j , while preserving the respective condition
from Lemma 6.2. Note that because we have |ζ ∗

i | ≤ |ρsi | and |ζ ∗
i, j | ≤ |ρsi, j |, we can

achieve the first goal with all block moves being the addition of a new block.
We show that we can add new blocks freely without destroying our height condi-

tions. For i /∈ S, we need to avoid increasing the height of ζ ∗
i , and we do this by adding

additional blocks only as new columns of length 1. The resulting modifications of ζ ∗
i

are our desired ζ ∗
i . For i ∈ S\{i0}, we need to avoid decreasing the minimum height

of the columns of ζ ∗
i, j , and we do this by adding blocks only as rows of length 1, or

equivalently increasing the longest column length. The resulting modifications of ζ ∗
i, j

are our ζi, j .
We clearly have |R| ≤ 4r − 4. Recall that we are consider μ as a disjoint union of

the partitions of R, as well as ζ ∗
i0
and some leftovers columns. We claim that by the

above procedure, we can perform at most (4r − 4)C block moves on μ to modify all
partitions ζ ∗

i , ζ ∗
i, j in R into ζi , ζi, j without affecting ζ ∗

i0
. This is simple: we repeatedly

move a block from the leftovers columns onto ζ ∗
i or ζ ∗

i, j in the manner described
above. If the leftover column runs out, we instead create a brand new block to add to
the partition being modified, so this procedure carries out the desired function.

Now,wemodify ζ ∗
i0
.We can add atmostC blocks from the remainder of the leftover

columns or out of nowhere to ζ ∗
i0
. This forms ζ ∗∗

i0
with |ζ ∗∗

i0
| = |ρsi0 |. By definition of

M , we can thenmodify at mostM(si0) blocks in order to reach a partition ζi0 appearing
in ρ⊗2

si0
. Because we assumed

0 ≤
(

∑

i

|ρsi |
)

− |μ|

if we used a leftover column block whenever possible, we are now completely out of
leftover column blocks, which means that our block moves have resulted in only the
partitions ζi , ζi0 , ζi, j .
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In all, we havemade at most (4r−4)+1 sets of at mostC blockmoves each, as well
as an additionalM(si0) ≤ M(b).We now let μ̂ the partition formed from the horizontal
sum of the resulting ζi , ζi, j , and ζi0 . Because we assumed 0 ≤ ∑

i |ρsi | − |μ|, we
must have consumed all of the leftover squares, so μ̂ is precisely a horizontal sum
of partitions comparable to the staircases ρsi . Using the semigroup property first to
combine the modifications of ζi, j and then to combine all the ζi , we have that μ̂ is a
constituent in the horizontal sum

r∑

H
i=1

ρsi .

We made at most (4r − 3)C + M(b) block moves in transforming μ into μ̂. Thus,
part (1) is proved.

The modification to prove part (2) is simple: assuming Xi0 ≤ � b2�, we go one step
further and split ρsi0 into 4 staircases, and split ζi0 as with the other ζi . We now repeat
the argument above just to these 4 parts ζi0, j : some parts have a small maximum
height, and of those that do not, at most 1 fails to have a sufficiently small maximum
height after another level of subdivision. The modification of the expression in the
conclusion results from the subdivision of the exception case i0 into smaller parts:
there are additional 12 pieces which need C block moves each, but on the other hand,
the size of the exceptional piece is halved.

We now get onwith themain proof of Theorem 5.6. Fix an arbitrary partitionμ � n.
Recall from Proposition 5.5 that we may write ρm as

ρm = (ρx +H ((k − 1)V ρy)) +V

(
k−1∑

V
i=0

ρzi

)

where up to O(1) error, we have x ≈ (k−1)m
k , y ≈ zi ≈ m

k . By Proposition 6.1,
we may take y, zi pairwise differing by at most 1. The idea is to split μ into a large
part corresponding to ρx and smaller parts corresponding to the other terms and then
make someminor modifications to each part via block moves and apply the semigroup
property. We will set k = 4, so x ≈ 3m

4 and y ≈ zi ≈ m
4

We first split μ according to its Durfee square. Specifically, we may partition the
blocks of μ into 3 pieces: the Durfee square D, the blocks T1 to the right of D, and
the blocks T2 below D. WLOG, we may assume |T1| ≥ |T2|, as otherwise we could
conjugate μ and start over; since the staircases are symmetric, this does not affect
anything. Let D have side length d.

If the columns of μ are c1 ≥ c2 ≥ · · · ≥ cl , consider the smallest j such that
∑ j

i=1 ci ≥ |ρx |. Since |T1| ≥ |T2|, we have that
∑

⌊
d
2

⌋

i=1 ci ≤ |D|
2 + |T2| ≤ 1

2n <

|ρx | ≈ 9n
16 . So j > d

2 , and thus n ≥ jc j > d
2 c j , yielding c j < 2n

d .
Furthermore, if d2 = |D| ≤ 1

8n, then j > d, so c j ≤ d ≤ 1
2
√
2

√
n by definition of

the Durfee square. So either c j ≤ 1
2
√
2

√
n, or d > 1

2
√
2

√
n and c j < 2n

d < 4
√
2n. So,

c j < 4
√
2n in either case.
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We now split off the region of the partition corresponding to the first j columns.
Let the portion split off be λ0, and let the remaining portion of the partition be A. By

definition of j , we have 0 ≤
(
3|ρy | + ∑3

i=0 |ρzi |
)
− |A| ≤ c j ≤ 4

√
2n.

To finish, we need to split A into smaller staircase-sized partitions in such a way
that makes the total number of block movements needed small. To this end, we apply
Lemma 6.3 with r = 2k − 1, where s1 = · · · = sk−1 = y and sk+i = zi for
0 ≤ i ≤ k − 1. Here, we set k = 4. Since the largest column involved has size
μ′
1 < 4

√
2n, we can set C = 4

√
2n and get

c

(
r∑

H
i=1

ρsi ,

r∑

H
i=1

ρsi , μ̂

)

for some μ̂ such that Δ(A, μ̂) ≤ 37C + M(� y
2 �). Since |A| ≤ |μ̂|, μ = λ0 +H A

can be transformed into λ∗0 +H μ̂ by at most 37C + M(� y
2 �) block moves. Because

blockwise distance between equally sized partitions is simply the number of blocks
which need to be moved to go from one to the other, this means that

τ
⊗(37C+M(� y

2 �))
n ⊗ (λ∗0 +H μ̂)

contains our original partition μ, where λ∗0 is some partition of size |ρx |.
By definition, there is a partition λ∗∗0 of size |ρx | such that c(ρx , ρx , λ

∗∗
0 ) and

Δ(λ∗0, λ∗∗0 ) ≤ M(x). So, by subadditivity of blockwise distance, as well as the layer
decomposition for ρm , we have

M(m) ≤ M(x) + 37C + M
(⌈ y

2

⌉)
= M

(
3m

4
+ O(1)

)

+M
(m

8
+ O(1)

)
+ 148m + O(1).

as C = 4
√
2n = 4m + O(1). It is easy to see by strong induction that this recurrence

gives

M(m) ≤ (148+ o(1))

(1− 3
4 − 1

8 )
m = (1184+ o(1))m.

�

6.3 Generalization to all n

We now carry out the comparatively simple procedure of extending Theorem 5.6 to
non-triangular values of n. Since staircases can only have triangular sizes, we make a
simple modification to the partitions ρm to give them the correct size.

Definition 37 The irregular staircase ξn of size n = m(m+1)
2 + k, where 0 ≤ k ≤ m,

is the partition ξn = ρm +H 1k .
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So, an irregular staircase is a staircase with a trivial representation horizontally
added to give it the desired total size. Note that (m, k) are uniquely determined by n
in the above.

Corollary 6.4 For all n, ξ⊗2
n ⊗ τ⊗(1185+o(1))

√
2n contains all partitions of n.

Proof We use Theorem 5.6. Given n, take the largest m such that
(m+1

2

) ≤ n. Let

k = n − (m+1
2

)
, so k ≤ m. Then, ξn = ρm +H 1k . We show that an arbitrary partition

μ of n may be transformed into a partition μ̂ of n − k horizontally summed with 1k ,
usingm block movements. As k ≤ m, it suffices to transformμ into a partition with at
least m parts of length 1. But this is trivial: repeatedly remove a block from a column
of length at least 2, and move the block to create a column of length 1. If we can make
m such moves, we are done. If not, when we cannot make any more moves, the current
partition is a horizontal strip, and we are again done.

Now that this is shown, we have that μ is contained in (μ̂ +H 1k) ⊗ τ⊗m
n . By

Theorem 5.6, we have that μ̂ is contained in ρ⊗2
m ⊗ τ

⊗(1184+o(1))m
n−k . Thus, there exists

ν such that c(ρm, ρm, ν) with blockwise distance Δ(ν, μ̂) ≤ (1184 + o(1))m. The
semigroup property gives

c(ξn, ξn, ν + 1k).

We have Δ(ν + 1k, μ̂ + 1k) ≤ (1184 + o(1))m by Proposition 5.1. Since also
Δ(μ̂ + 1k, μ) ≤ m, we conclude that Δ(μ, ν + 1k) ≤ (1185+ o(1))m. Since μ was
arbitrary, we have shown that

ξ⊗2
n ⊗ τ⊗(1185+o(1))m

contains all partitions of n.
From

√
2n = m + O(1), we conclude the desired result. �

6.4 Replacing the standard representations

Lemma 6.5 For any 	 > 0, for large n = m(m+1)
2 , if λ is an irreducible representation

of Sn such that λ is a component of τ⊗�	m�
n , then λ is a component of ρ⊗2

m .

Proof The irreducible components of τ
⊗�	m�
n are precisely those that correspond to

partitions λ of n whose blockwise distance from 1n is at most �	m�.
We use Proposition 5.5 with k = 	1m

1
2 for 	1 depending on 	. This decomposes

ρm into a large piece of side length aboutm− m
1
2

	1
, as well as about 2k−1 small pieces

of side length m
1
2

	1
and area m

2(	1)2
.

Each column of λ has size at most 	m + 1, and there are at least n − 2	m columns
of height 1. So, as long as 1

	21
> 2	, we can use each of the 2k − 1 small staircase

pieces to cover, in their tensor square, a hook consisting of one of the 2k − 1 tallest
columns along with part of the first row (chosen to give the correct total size). By an
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easy induction using the semigroup property (see [10]), hooks are contained in the
tensor square of staircases.

The remaining columns are necessarily very short: letting c1 ≥ c2 ≥ · · · be the
column lengths, we have (2k)(c2k) ≤ ∑2k

i=1 ci ≤ 	m + 2k = O(m). Therefore,

the remaining columns are all of size O(m
1
2 ). By Lemma 6.2, we conclude that this

remaining large part of λ is dominance comparable to the corresponding-size staircase.
The semigroup property now yields the lemma. �

We can also extend Lemma 6.5 to irregular staircases.

Lemma 6.6 For any 	 > 0, for large enough n, if λ is an irreducible representation

of Sn such that λ is a component of τ⊗�	√n�
n , then λ is a component of ξ⊗2

n , the tensor
square of the irregular staircase.

Proof The irreducible components of τ
⊗�	√n�
n are precisely those that correspond to

partitions λ of n whose blockwise distance from 1n is at most �	√n�. So, there are at
least n−2	

√
n columns of height 1. Again take the largestm such that

(m+1
2

) ≤ n, and

let k = n− (m+1
2

)
. For large enough n, we can remove k columns of size 1 and leave a

partition λ0 of n0 =
(m+1

2

)
that has distance at most 	

√
n ≤ (1.1)	

√
n0 from the trivial

representation of size n0. By Lemma 6.5, for large enough n, all such λ are contained
in ρ⊗2

m , and so by the semigroup property, after adding the trivial representation back,
we must have ξ⊗2

n which contains λ. �
We can finally prove Theorem 1.4 on tensor fourth powers, with an explicit choice

λ = ξn .

Theorem 1.4 For sufficiently large n, the tensor fourth power ξ⊗4
n contains all par-

titions of n.

Proof Corollary 6.4 implies that for sufficiently large n, ξ⊗2
n ⊗ τ

⊗�1186√2n�
n contains

all partitions of n. So for any μ � n, ξ⊗2
n ⊗ ν contains μ for some ν contained in

τ
⊗�1186√2n�
n . Lemma 6.6 thus implies that μ is contained in ξ⊗4

n , as claimed. �

7 Concluding remarks

We have shown that staircase tensor squares ρ⊗2
m contain almost all partitions in 2

natural probability distributions and that there are partitions λ � n for all large n such
that λ⊗4 contains all partitions of n.

Remark The argument used to show that tensor 4th powers contain every representa-
tion proceeds by showing first that every partition λ is near another partition contained
in the tensor square ρ⊗2, and then shows that the nearness can be encompassed in
another ρ⊗2 factor. To prove the full tensor square conjecture using our semigroup
methods, one would need to remove all of the standard representations, which means
each semigroup property application would need to be exactly correct. As a result,
improving the exponent from 4 to 2 seems more difficult. Intuitively, our value 4 is
really 2�1+ ε�.
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Fig. 12 A triple with positive Kronecker coefficient

Remark Our results in this paper focused on the staircase partitions, but many of the
arguments can be adapted for partitions which can be similarly broken down into
staircase pieces. For instance, the caret partition γk mentioned in the introduction may
be expressed as γk = (ρ2k+H ρk−1)+V ρk−1. By breaking down the ρ2k into 4 pieces,
we have broken γk into 6 approximately equal staircases. As a result, the proof of
Theorem 1.6 on Plancherel-random partitions applies to γ⊗2

k as well.

Remark Intuitively, the rectangular Young diagrams should be the most difficult to
deal with using the semigroup property: if λ is rectangular and λ = λ1 +H λ2, both
λ1 and λ2 must be rectangular. Therefore, we have very little freedom in applying the
semigroup property. It is, however, easy to show that rectangles are constituents of
the tensor cubes ρ⊗3

m ; see Appendix 10.2 for details. Further exploration could yield
more insight into how difficult general partitions are to fit into a tensor cube.

Remark The question of whether the semigroup property combined with combina-
torial arguments involving dominance and symmetry suffices to prove the full tensor
square conjecture remains open. Regardless, checking for Kronecker coefficient pos-
itivity inductively using the semigroup property seems much faster than directly
computing Kronecker coefficients. Of course, the semigroup property may fail to
detect positive Kronecker coefficients.

Remark We have, using a computer to implement the semigroup property in conjunc-
tion with Theorem 2.6 on dominance ordering, verified the Saxl conjecture up to ρ9.
These two facts suffice for all cases except the 6 by 6 square in ρ⊗2

8 . This case follows
from the semigroup property using the additional fact that c(λ, λ, λ) holds for every
symmetric partition λ [2], but our construction seems rather ad hoc. We explain it here
using some helpful visuals. In the diagram (below), each colour corresponds to an
application of the semigroup property, beginning with the red squares (which satisfy
constituency by the theorem mentioned above). Thus, the 3 depicted partitions yield
a positive Kronecker coefficient.

We now add the rectangle to itself and add the other 2 partitions to each other,
giving c(ρ8, ρ8, μ) for μ the 6 by 6 square (Fig. 12).
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8 Appendix 1: Technical lemma on β-sum flexibility

8.1 Overview of the proof

We conclude by proving the key technical result used in the proof of Theorem 1.6.
This result is restated below:

Theorem 4.2 For any β > 0, let P(n, β) denote the probability that a (Plancherel)
random partition of n is β-sum flexible. Then we have

lim
n→∞ P(n, β) = 1

for all β.

We will estimate the typical value for the maximum height among the smallest nα

columns, for 1
6 < α ≤ 1

2 . These bounds will enable us to conclude Theorem 4.2.
We first recall from, e.g. [4] that, for a random partition of n, the number λ1 − λ2 of
columns of size 1 is �(n1/6) with high probability. In fact, λ1−λ2

n1/6
converges weakly

to a non-trivial limiting density.
This result tells us that for any ε there exists δ such that, for large n, we will have at

least δn1/6 parts of size 1 with probability at least 1− ε. This means that the condition
in Theorem 4.2 is safe for all columns of size at most δn1/6. If the sum of all these
columns is of size �(nα), the condition in Theorem 4.2 is now safe for all columns
with at most cnα size, for some c. Our plan is to “bootstrap” in this manner up to
�(n1/2). If we can achieve the condition up to this point, we will have proved (4),
because for pieces of size �(n1/2) the limit shape easily implies Theorem 4.2.

We actually estimate a closely related quantity, for which explicit formulae exist.
For a partition λ, we follow [4] in denoting by D(λ) the set {λi − i}. We will also
workwith poissonized Plancherel measureMθ instead of ordinary Plancherel measure
Mn . At the end, we will depoissonize to recover information about the measures Mn .
The use of Poissonized Plancherel measure is that useful exact formulae describe the
behaviour of a random partition.

Definition 38 For θ ∈ R
+, the Poissonized Plancherel measure Mθ is a probability

distribution over all partitions λ, with

Mθ (λ) = e−θ θ |λ|
(
dim(λ)

|λ|!
)2

.

Conceptually, we pick a Mθ partition by first taking n to be Poisson with mean θ ,
and then picking a Plancherel random λ � n.

The formulas to follow will allow us to estimate the mean and variance μθ,w, σ 2
θ,w

of T (λ,w) = |D(λ) ∩ Z≥w|, where λ is taken from poissonized Plancherel measure
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with mean θ . Because the set D(λ) corresponds to the vertical border edges of the
Young diagram, this approximately gives the height of the wth smallest column. By
setting w = 2

√
n − Knα , knowledge of these quantities will allow us to understand

roughly the value of the maximum-size column among the first �(nα).
We now list the formulas and bounds we will use for these computations.

8.2 Formulas for poissonized Plancherel measure

Definition 39 The Bessel function of the first kind Jν is defined as

Jν(x) =
∞∑

m=0

(−1)m( x2 )2m+ν

(m!)Γ (m + ν + 1)
.

Definition 40 The Airy function Ai is defined as

Ai(x) = 1

π

∫ ∞

0
cos

(
u3

3
+ xu

)

du.

Definition 41 For a partition λ = (λ1, λ2, . . ., define D(λ) to be the set {λi − i}.
Definition 42 Define the function J(x, y; θ) as

J(x, y; θ) =
∞∑

s=1

Jx+s(2
√

θ)Jy+s(2
√

θ).

Lemma 8.1 [4, Theorem 2, Proposition 2.9] Let λ be chosen according to Mθ . Then
for any finite X = {x1, x2 . . . xs} ⊆ Z, the probability that D(λ) ⊇ X is

Mθ ({λ|D(λ) ⊇ X}) = det
[
J(xi , x j , θ)

]
1≤i, j≤s .

Lemma 8.2 [11] Jν(x) ≤ x−1/3 and Jν(x) ≤ ν−1/3.

Lemma 8.3 [4, Lemma 4.4] For x ∈ R we have

∣
∣
∣n1/6 J2n1/2+xn1/6(2n

1/2) − Ai(x)
∣
∣
∣ = O

(
n−1/6

)
, n → ∞

where additionally the implicit constant in O(n−1/6) is uniform for x in any compact
set.

Lemma 8.4 [4, Proposition 4.3] For fixed a ∈ R,

lim
n→∞

⎛

⎜
⎝

∞∑

k=2
√
n+an

1
6

J (k, k; n)

⎞

⎟
⎠ =

∫ ∞

0
t (Ai(a + t))2 dt.
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Specializing to a = 0 gives

Lemma 8.5

lim
n→∞

⎛

⎝
∞∑

k=2
√
n

J (k, k; n)

⎞

⎠ =
∫ ∞

0
t (Ai(t))2dt.

Lemma 8.6 [4, Lemma 4.5] There exist C1,C2,C3, ε > 0 such that for sufficiently
large n, for any A > 0, s > 0, we have

∣
∣Jr+Ar1/3+s(r)

∣
∣ ≤ C1r

−1/3 exp
(
−C2(A

3
2 + s A

1
2 r−1/3)

)
, s ≤ ε

∣
∣Jr+Ar1/3+s(r)

∣
∣ ≤ exp (−C3(r + s)) , s ≥ ε

for all r � 0.

Setting r = 2n
1
2 and A = 2− 1

3 in Lemma 8.6, squaring, and adjusting the values
Ci as needed, we have the following for all s, for some fixed values Ci , ε, and large
enough n.

Lemma 8.7 There exist C1,C2,C3, ε > 0 such that for sufficiently large n, for any
s > 0, we have

(
J2n1/2+n1/6+s(2n

1/2)
)2 ≤ C1n

−1/3 exp
(
−C2(1+ sn−1/6)

)
, s ≤ εn1/2

(
J2n1/2+n1/6+s(2n

1/2)
)2 ≤ exp

(
−C3(2n

1/2 + s)
)

, s ≥ εn1/2.

8.3 Proof of Theorem 4.2

We proceed as described in Sect. 8.1. First, direct application of Lemma 8.1 in the
case |X | = 1, combined with linearity of expectation, yields that

μθ,w =
∞∑

y=w

J (y, y, θ) =
∞∑

y=w

∞∑

s=1

(Jy+s(2
√

θ))2 =
∞∑

r=1

r(Jw+r (2
√

θ))2,

where the last equality is a simple sum rearrangement. Now let θ = n, w = 2n1/2 −
Knα, 1

6 < α ≤ 1
2 , as alluded to before. We will now establish the bounds on this

expectation.

Lemma 8.8 μn,(2n1/2−Knα) = Ω
(
nα− 1

6

)
.

Proof Taking n sufficiently large, we have that

μn,(2n1/2−Knα) =
∞∑

r=1

r(J2n1/2−Knα+r (2
√
n))2
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≥
Knα+n1/6∑

r=Knα−n1/6

r(J2n1/2−Knα+r (2
√
n))2

≥
n1/6∑

j=−n1/6

(
Knα

2

)

(J2n1/2+ j (2
√
n))2

=
(
Knα

2

) n1/6∑

j=−n1/6

(J2n1/2+ j (2
√
n))2.

Because the Airy function has no zeros in the interval [−1, 1] and is continuous,
the uniformity in Lemma 8.3 implies that each squared term in this last sum is of size
�(n−1/3). Since we have �(n1/6) terms in the sum, we conclude that for large n,

μn,(2n1/2−Knα) ≥
(
Knα

2

) n1/6∑

j=−n1/6

(J2n1/2+ j (2
√
n))2 = �(nα− 1

6 ).

�
Lemma 8.9 μn,(2n1/2−Knα) = O

(
n2α− 1

3

)
. Further, given fixed α, the implicit con-

stant in O(n2α− 1
3 ) is O(K 2)

Proof Using Lemma 8.5, we see that

μn,(2n1/2−Knα) =
∞∑

y=2n1/2−Knα

J (y, y, n)

=
2n1/2∑

y=2n1/2−Knα

J (y, y, n) +
∞∑

y=2n1/2

J (y, y, n)

=
2n1/2∑

y=2n1/2−Knα

J (y, y, n) + O(1).

Expanding out the definition of J(y, y, n) we have that

2n1/2∑

y=(2n1/2−Kn)α

J(y, y, n) =
2n1/2∑

y=(2n1/2−Knα)

∞∑

s=1

(Jy+s+1(2n
1/2))2 =

(
Knα
∑

	=1

	(J	+s+1(2n
1/2))2

)

+ Knα
∞∑

m=2n1/2

(Jm(2n1/2))2,

where the last equality follows from another simple regrouping of terms. By
Lemma 8.2, for any value of 	 we have J	+s+1(2n1/2) ≤ n−1/6. Thus, we have
that the first sum is of appropriate size:
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(
Knα
∑

	=1

	(J	+s+1(2n
1/2))2

)

≤
(
Knα
∑

	=1

	

)

n−1/3 ≤ K 2n2α−
1
3 .

To establish Lemma 8.9, it remains to show that the latter term

Knα
∞∑

m=2n1/2

(Jm(2n1/2))2

is of appropriate size. First, note that from Lemma 8.2 again,

Knα
2n1/2+n1/6∑

m=2n1/2

(Jm(2n1/2))2 ≤ Knαn1/6(n−1/3) = Knα− 1
6 = O(n2α−

1
3 ),

where the last equality follows from the assumption α > 1
6 . We are left with upper-

bounding the sum

Knα
∞∑

m=2n1/2+n1/6

(Jm(2n1/2))2.

Now,usingLemma8.7, take suitable constantsC1,C2,C3, ε, and letn be large enough,
so that we have for all s

(J2n1/2+n1/6+s(2n
1/2))2 ≤ C1n

−1/3 exp(−C2(1+ sn−1/6)), s ≤ εn1/2

(J2n1/2+n1/6+s(2n
1/2))2 ≤ exp(−C3(2n

1/2 + s)), s ≥ εn1/2.

We claim that the above sum is also O(nα− 1
6 ), or equivalently that

∞∑

m=2n1/2+n1/6

(Jm(2n1/2))2 =
(2+ε)n1/2+n1/6∑

m=2n1/2+n1/6

(Jm(2n1/2))2

+
∞∑

m=(2+ε)n1/2+n1/6

(Jm(2n1/2))2 = O(n−1/6).

For the first of these 2 sums, we have

(2+ε)n1/2+n1/6∑

m=2n1/2+n1/6

(Jm(2n1/2))2 =
εn1/2∑

s=0

(J2n1/2+n1/6+s(2n
1/2))2

≤
εn1/2∑

s=0

C1n
−1/3 exp(−C2(1+ sn−1/6))
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≤ C1n
−1/3 exp(−C2)

∞∑

s=0

(exp(−C2(n
−1/6)))s = C1n−1/3 exp(−C2)

1− exp(−C2n−1/6)

= �

(
C1n−1/3 exp(−C2)

C2n−1/6

)

= �

(
C1 exp(−C2)

C2
n−1/6

)

= O(n−1/6).

For the second, we have

∞∑

m=(2+ε)n1/2+n1/6

(Jm(2n1/2))2 =
∞∑

s=εn1/2

(J2n1/2+n1/6+s(2n
1/2))2

≤
∞∑

s=εn1/2

exp(−C3(2n
1/2 + s))

≤
∞∑

s=0

exp(−C3(2n
1/2 + s)) = exp(−2C3n1/2)

1− exp(−C3)
= exp(�(−n1/2)) = O(n−1/6).

Note that only the first part of our bounding affects the eventual constant in the

O(n2α− 1
3 ) of the lemma statement, because the other terms are O(nα− 1

6 ) = o(n2α− 1
3 ).

So, combining these separate bounds, we have established the lemma. �

Now we verify that T (n, 2n1/2 − Knα) is concentrated around its mean.

Lemma 8.10 If λ is distributed according to poissonized Mn, then T = T (λ, 2n1/2−
Knα) is concentrated near itsmeanμ = μn,(2n1/2−Knα), in the sense that for all ε > 0,

lim
n→∞P[|T − μ| > εμ|] = 0.

Proof To show the lemma,we estimate the variance σ 2 of T (λ, 2n1/2−Knα). Perhaps
surprisingly, this is very easy. We will show that

σ 2 = σ 2
n,(2n1/2−Knα)

≤ μ = μn,(2n1/2−Knα),

which suffices by the Chebyshev inequality, since μ grows to infinity with n by
Lemma 8.8. To show this, we note the following general fact (Lemma 8.11): if
X = ∑∞

j=0 x j is a finite-expectation sum of Bernoulli (0 or 1) random variables

with pairwise non-positive covariances, then σ 2
X ≤ μX .

In our case, this lemma easily implies the result: when λ is distributed according to
poissonized Mn we have

T (λ, 2n1/2 − Knα) =
∞∑

w=2n1/2−Knα

I (w ∈ D(λ)),
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where the indicator variables I are 0 or 1 according to the truth value of their argument.
We need only check that Cov(I (x ∈ D(λ)), I (y ∈ D(λ))) ≤ 0 for x  = y. We have

Cov(I (x ∈ D(λ)), I (y ∈ D(λ))) = P[{x, y} ⊆ D(λ)] − P[x ∈ D(λ)]P[y ∈ D(λ)].

Using Lemma 8.1, this is

det

(
J (x, x; n) J (x, y; n)

J (y, x; n) J (y, y; n)

)

− J (x, x; n)J (y, y; n) = −J (x, y; n)J (y, x; n)

= −J (x, y; n)2 ≤ 0,

since J (x, y; n) is symmetric in x and y. Therefore, the covariances are all negative,
so it only remains to verify Lemma 8.11 �
Lemma 8.11 X = ∑∞

j=0 x j is a finite-expectation sum of Bernoulli variables with

pairwise non-positive covariances, then σ 2
X ≤ μX

Proof To prove this, we simply compute σ 2
X = E[X2] − E[X ]2. The condition on

covariances is equivalent to E[xi x j ] ≤ E[xi ]E[x j ] for all i  = j . Because E[x] =∑∞
i=0 E[xi ] is finite, its square is finite, so we have

(E[x])2 =
( ∞∑

i=0

(E[xi ])2
)

+
⎛

⎝
∑

i> j≥0

E[xi ]E[x j ]
⎞

⎠ < ∞.

Because E[xi x j ] ≤ E[xi ]E[x j ], we find that

E[x]2 + μX = E[x]2 + E[x] =
( ∞∑

i=0

(E[xi ])2 + E[xi ]
)

+
⎛

⎝
∑

i> j≥0

E[xi ]E[x j ]
⎞

⎠

≥
( ∞∑

i=0

(E[x2i ])
)

+
⎛

⎝
∑

i> j≥0

E[xi x j ]
⎞

⎠ = E[x2].

�
Wenow know that the bounds in lemmas 8.8, 8.9 apply to almost all partitions λ, not

only “average” partitions: for someconstants B1(K , α), B2(K , α)where B2 = O(K 2)

for fixed α, if λ is distributed according to Mn we have

B1(K , α)nα− 1
6 ≤ T (λ, 2n1/2 − Knα) ≤ B2(K , α)n2α−

1
3

with probability 1 − o(1) as n → ∞. We now depoissonize the result. The key
observation, as described in [8], is that simple Plancherel measures Mn may be viewed
as samplings at time n of a growth process on partitions, in which we begin with an
empty partition and add additional blocks randomly at each step. It is clear that adding
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a block to λ cannot decrease the value of T (λ,w). So because we can embed these
Plancherel measures into a growth process, the expectations are monotone: for 	 < n
we have

P

[
λ(	) < B1(K , α)nα− 1

6

]
≥ P

[
λ(n) < B1(K , α)nα− 1

6

]

and for 	 > n we have

P

[
λ(	) > B2(K , α)n2α−

1
3

]
≥ P

[
λ(n) > B2(K , α)n2α−

1
3

]
.

We claim that, for n large, the probability of a Poisson variable with mean n to
be less than n converges to 1

2 . Indeed, this is an immediate result of the Central
Limit Theorem for independent, identically distributed random variables applied to
the Poisson random variable with mean 1. Therefore,

lim sup
n→∞

Mn

({
λ|T (λ, 2n1/2 − Knα) < B1(K , α)nα− 1

6

})

≤ 2 lim sup
n→∞

Mn
({

λ|T (λ, 2n1/2 − Knα) < B1(K , α)nα− 1
6

})
= 0,

and similarly for the upper bound; a low probability of deviation for poissonized
Plancherel measure directly implies the same bound (up to a factor of 2) for standard
Plancherel measure. So, we have

B1(K , α)nα− 1
6 ≤ T (λ, 2n1/2 − Knα) ≤ B2(K , α)n2α−

1
3

with probability 1− o(1) for λ distributed according to Mn measure.
Now we establish the connection between T (λ, 2n1/2 − Knα) and the column

sizes. It will be valuable to visualize a Young diagram (in English coordinates) as a
block-walk beginning from the far-right of the top border line, with coordinates (n, 0).
In this model, every down-move corresponds to a value (λi − i) and every left-move
corresponds to the end of a column.With this inmind, T (λ, 2n1/2−Knα) is essentially
the height of the largest column so far after n− 2n1/2 + Knα moves from the starting
point. The idea is that our upper bound lets us move far out without fearing that our
largest column is too big. Our lower bound tells us that many of the columns we have
formed are large, implying that the sum of their sizes is large. The only caveat is that if
we are moving vertically, T measures the current vertical distance moved, but may not
exactly measure a column height; we may be in the middle of a column. However, we
will circumvent this issue by using multiple values of K simultaneously, and showing
that in between there must be many horizontal moves.

Pick an ε > 0. We will give a bootstrapping argument that gives result (4) for
parameter β with probability 1 − 6ε. First, because the number of size-1 columns
λ1 − λ2 satisfies

λ1−λ2
n1/6

converges in distribution to a limiting density, there exists δ1

such that (for large n) with probability at least 1− ε, there are at least δ1
β
n1/6 parts of

size 1. Using lemmas 8.8 and 8.9, since 1
4 − 1

6 = 1
12 and 2

4 − 1
3 = 1

6 , we may pick δ2,

and then δ3, such that for large n, with probability at least 1− ε,
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T (λ, 2n1/2 − δ2n
1/4) ≥ δ3n

1
12

and

T (λ, 2n1/2 − 2δ2n
1/4) ≤ δ1n

1
6

(for the second inequality, we use the fact that the constant factor in Lemma 8.9 is

O(K 2)). Now, for large n, we have δ2n1/4 − δ1n
1
6 ≥ δ2

2 n
1/4. This implies that D(λ)

cannot contain more than δ2
2 n

1/4 of the interval of integers [2n1/2 − 2δ2n1/4, 2n1/2 −
δ2n1/4] as this would violate the latter inequality above. In view of our block-walking
model, this is equivalent to at least δ2

2 n
1/4 horizontal move being made in between the

steps n − 2n1/2 + δ2n1/4, n − 2n1/2 + 2δ2n1/4 meaning that at least δ2
2 n

1/4 columns

in this range have height at least δ3n
1
12 (this lower bound on the height comes from

the first inequality above). Because the largest column among these is smaller than

δ1n
1
6 , the condition in result (4) holds for all columns up to size δ1n

1
6 . Therefore, by

bootstrapping, it holds for all columns with size at most β times the sum of their sizes,
or at most

β

(
δ2

2
n

1
4

) (
δ3n

1
12

)
= βδ2δ3

2
n

1
3 = δ4n

1
3 .

Now we repeat the argument once more. Again using Lemma 8.9, we pick δ5 such
that with probability 1− ε,

T
(
λ, 2n

1
2 − 2δ5n

1
3

)
≤ δ5

2
n

1
3

and

δ5 ≤ δ4.

The first is possible because the constant in Lemma 8.9 is O(K 2), implying that it is
o(K ) for K small. Given δ5 we can then pick δ6 such that with probability 1− ε,

T (λ, 2n1/2 − δ5n
1
3 ) ≥ δ6n

1/6.

The first inequality above implies that of the δ5n1/3 block moves from step n −
2n1/2 + δ5n1/3 to step n − 2n1/2 + 2δ5n1/3, we may make at most δ5

2 n
1/3 vertical

moves. Hence, wemake at least δ5
2 n

1/3 horizontal moves in this span. By the definition

of δ6, we make a column of size at least δ6n
1
6 each time, giving a total column size

sum of δ5δ6
2 n1/2.

Now we are almost done. Our bootstrapping has shown Theorem 4.2 for columns
of size at most βδ5δ6

2 = δ7n1/2 with probability at least 1 − 4ε. Bootstrapping once
more, we can now sum up all the column lengths of size at most δ7n1/2. At scale
�(n1/2), we can simply apply the limit shape theorem to conclude that for almost all
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partitions, the sum of such column lengths is�(n), a constant fraction of the total size,
because we are collecting a positive-area amount of the limit shape. Because almost
all partitions have all columns of size O(

√
n), we have bootstrapped to completion

with error probability 6ε and so the result is proved.

9 Appendix 2: Generalization of dominance result

We extensively used Theorem 2.6 stating that if ρm, λ are dominance comparable,
then c(ρm, ρm, λ). We present a generalization.

Theorem 9.1 For partitions μ, ν � n, if μ has distinct row lengths and ν � μ, then
c(μ,μ, ν).

This is strictly more general than Theorem 2.6 because in the case when μ = ρm
we have c(μ,μ, ν) for all ν � μ. Sinceμ = μ′, conjugating gives c(μ,μ, ν′) as well,
and so we have recovered both cases of Theorem 2.6.

Proof The proof of this generalization requires only slight modification of the proof
of the original result in [10]. We quote from there the following definition. �
Definition 43 Let d = |λ| = |μ| = |ν|. A Young hypergraph H of type (λ, μ, ν), is
a hypergraph with d vertices such that

1. The are three layers of hyperedges Eλ, Eμ, Eν .
2. Each of Eλ, Eμ, Eν contains each vertex in exactly 1 hyperedge.
3. There is a bijection between the vertices of H and the boxes of λ such that 2

vertices lie in a common hyperedge of Eλ iff the corresponding boxes in λ lie in
the same column. Analogously for Eμ and μ and for Eν and ν.

Given a Young hypergraph of type (λ, μ, ν), we consider the ways to label its
vertices with positive integers. In particular, we have the following definitions.

Definition 44 We call a labelling of the vertex set of a Young hypergraph of type
(λ, μ, ν) λ-permuting if for each hyperedge eλ of λ with |eλ| = k, the labels of
the vertices of eλ are a permutation of {1, 2, . . . , k}. We define μ-permuting and ν-
permuting analogously.

Definition 45 We call a labelling of the vertex set of a Young hypergraph of type
(λ, μ, ν) λ-distinct if for each hyperedge eλ ofλwith |eλ| = k, the labels of the vertices
of eλ consist of distinct numbers. We define μ-distinct and ν-distinct analogously.

Definition 46 We call a labelling of the vertex set of a (λ, μ, ν) Young hypergraph
H perfect if it is λ-permuting, μ-permuting, and ν-distinct.

Then the finish of the proof of [10][2.1] (see Section 5) amounts to the following
lemma.

Lemma 9.2 If there exists a Young hypergraph such that there is exactly 1 perfect
labelling of its vertices then c(λ, μ, ν) holds.
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The proof in [10] uses as Young hypergraphs for ρm the rows and columns of the
Ferrers diagram of ρm , which works because ρm is symmetric. We now adapt this to
an arbitrary μ with distinct row lengths; for any ν � μ we show there exists a perfect
Young hypergraph of type (μ,μ, ν).We use the Ferrers diagram forμ as the vertex set.
For the first hypergraph H1 corresponding to μ, we simply take the columns of μ as
the hyperedges. Note that in English coordinates this amounts to, for each hyperedge,
greedily taking the left-most vertex in each available row. For our second hypergraph
H2 corresponding to μ we greedily take vertices from the right of each row instead.
For example, when μ = ρm this amounts to taking the diagonals as hyperedges. It is
easy to see that H2 is also a hypergraph of type μ. We claim that H1 and H2 already
limit the possible vertex labellings to a unique one, namely the labelling which assigns
to each vertex its row number.

Lemma 9.3 There is only one vertex labelling of the Ferrers diagram of μ which is
μ-permuting with respect to both H1 and H2. This labelling assigns to each vertex its
row number.

Proof We first make an easy observation. For any vertex v of our hypergraph, the
hyperedge of H2 containing v also contains a vertex in each higher row, all of which
are strictly to the right of v. This is clear because the rows of μ have distinct lengths.

Now we inductively show that any such labelling must just be the row numbering.
We induct on columns, starting from the furthest right. Clearly the rightmost column’s
unique vertex is labelled 1, because it is contained in a size 1 hyperedge of H1.

For each subsequent column, assume that all columns to the right are labelled by
row numbers. We do a further induction within the column, starting from the bottom
vertex. Call the column under consideration C , and say its vertices are v1 in row 1,
and so on to vk in row k. For some vertex vi in C , assume that v j is labelled j for all
j > i ; we show vi is labelled as i .
To do so, note that by our initial observation, vi must be labelled at least i ; its

hyperedge in H2 contains labels from 1 to (i − 1) already. However, its hyperedge in
H1 is simply C , which already contains all labels greater than i . Therefore the only
choice for vi is to be labelled i .

This completes the induction. Clearly the described labelling indeed satisfies the
given conditions, so the lemma is proved. �

Now the combination of the above lemmas implies that if we can find a perfect
(μ,μ, ν) Young hypergraph for the above vertex labelling extending H1, H2 above,
then we have c(μ,μ, ν). In fact, we can do so for precisely those ν which dominate
μ. It is clear that to find a Eν hypergraph which yields a perfect Young hypergraph,
it is equivalent to find a filling of ν with content μ such that each column has distinct
entries. (By such a filling of ν with content μ we mean a labelling of the boxes of
ν such that the number of k labels is the size μk of the kth row of μ.) By [10][4.1],
the existence of such a filling is equivalent to ν � μ, so the proof of Theorem 9.1 is
complete. �
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10 Appendix 3: The generalized semigroup property and tensor cubes

10.1 The semigroup property for many partitions

We first generalize c(·, ·, ·) to longer sequences of representations.
Definition 47 For k a positive integer let

c(λ1, λ2, . . . , λk)

denote the assertion that λ1 is a constituent of λ2 ⊗ λ3 ⊗ . . . λk .

As in the k = 3 case, c is symmetric because it simply asserts the positivity of

1

n!
∑

σ∈Sn
χλ1(σ )χλ2(σ ) . . . χλk (σ ).

We now show that the semigroup property still applies for longer sequences using
induction.

Lemma 10.1 If c(λ1, . . . λk) and c(μ1, . . . μk) then also c(λ1+H μ1, . . . , λk+H μk).

Proof First, the result is trivially true for k ≤ 2 since c(λ1) = 1 ⇐⇒ λ1 is trivial
and c(λ1, λ2) ⇐⇒ λ1 = λ2. For k ≥ 3 we induct from base case of 2.4. So take
k > 3 and assume the result for k − 1.

Because c(λ1, . . . λk) there exists a partition α such that c(λ1, λ2, . . . λ(k−2), α)

and c(λ(k−1), λk, α). Similarly there exists β such that c(μ1, . . . , μ(k−2), β) and
c(μ(k−1), μk, β). We now conclude using the inductive hypothesis that

c(λ1 +H μ1, . . . , λ(k−2) +H μ(k−2), α +H β)

and

c(λ(k−1) +H μ(k−1), λk +H μk, α +H β).

Together these imply c(λ1 +H μ1, . . . , λk +H μk) as desired. �
As in the k = 3 case, we may vertically add any even number of partitions in

applying the semigroup property: this is because conjugating an even number of the
partitions does not change the truth of c(λ1, . . . λk).

10.2 Rectangles appear in ρ⊗3
m

As mentioned in the remarks, rectangles are difficult to control using the semigroup
property because they can only be broken up into smaller rectangles. This suggests
that rectangles should be the hardest case for the Saxl conjecture. In this section, we
show that despite this, rectangles appear in the tensor cube of the staircase. In fact, the
proof is a fairly simple induction.
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Definition 48 The rectangle partition R(a, b) is the rectangular Young diagram
(a, a, . . . a) with b rows.

Theorem 10.2 Any rectangular partition λ = R(a, b) of size
(m+1

2

)
is a constituent

in the tensor cube ρ⊗3
m . Equivalently, if ab = (m+1

2

)
then c(ρm, ρm, ρm, R(a, b)).

Proof We induct on m. Assume WLOG that a ≥ b. If a ≥ m then b ≤ m+1
2 and by

Lemma 6.2, λ and ρm are dominance comparable. Thus, the result follows in this case.
Thus, we may assume that m+1

2 < a < m. Then we have that (2a − m) and
(2m − a − 1) are positive. We prove some simple lemmas. �
Lemma 10.3 b + 2a − 2m − 1 ≥ 0 and a(b + 2a − m − 1) = |ρ2a−m−1|.
Proof 0 ≤ (2a−m)(2a−m−1)

2 = m2+m
2 + 2a2 − 2am − a = ab + 2a2 − 2am − a =

a(b + 2a − 2m − 1). Because a ≥ 0, b + 2a − 2m − 1 ≥ 0 follows. �
Lemma 10.4 If μ = R(2a − m, 2m − a − 1) then

c(μ,μ,μ,μ).

Proof In fact this holds for any μ at all. We have

k(μ,μ,μ,μ) = 〈μ⊗2, μ⊗2〉 > 0

�
Lemma 10.5

c(ρ(2m−2a), ρ(2m−2a), ρ(2m−2a), R(m − a, 2m − 2a + 1)).

Proof This follows from the inductive hypothesis because the total number of blocks
in the rectangle and staircases are clearly equal. �
Lemma 10.6

c
(
ρ(2a−m−1), ρ(2a−m−1), ρ(2a−m−1), R(a, b + 2a − 2m − 1)

)
.

Proof This follows from the inductive hypothesis and Lemma 10.3. �
Now note that

(R(2a−m, 2m−2a+1) +H R(m−a, 2m−2a+1)) +V R(a, b+2a−2m+1)

= R(a, 2m − 2a − 1) +V R(a, b + 2a − 2m − 1) = R(a, b)

while

(R(2a − m, 2m − 2a + 1) +H ρ(2m−a)) +V ρ(2a−m−1) = ρm .
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Fig. 13 A geometric proof that rectangles are contained in ρ⊗3
m

This latter identity is a rewriting of the geometrically obvious

(R(x, y) +H ρy) +V ρx = ρ(x+y).

Theorem10.1 applied to these lemmas and identities gives the result; because 4 is even,
it is permissible to vertically add all 4 partitions when using the semigroup property.
Geometrically, we are simply combining shapes as below (Fig. 13).

References

1. Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence
of random permutations. J. Am. Math. Soc. 12(4), 1119–1178 (1999)

2. Bessenrodt, C., Behns, C.: On the Durfee size of Kronecker products of characters of the symmetric
group and its double covers. J. Algebra 280(1), 132–144 (2004)

3. Billingsley, P.: Probability and Measure, vol. 939. Wiley, New York (2012)
4. Borodin, A., Okounkov, A., Olshanski, G.: Asymptotics of Plancherel measures for symmetric groups.

J. Am. Math. Soc. 3, 481–5150 (2000). (electronic)
5. Bürgisser, P., Ikenmeyer, C.: The complexity of computing Kronecker coefficients. In: 20th Annual

International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), Dis-
crete Mathematics & Theoretical Computer Science Proceedings, AJ. Assoc. Discrete Mathematics &
Theoretical Computer Science, Nancy, pp. 357–368 (2008)

6. Christandl, M., Harrow, A.W., Mitchison, G.: Nonzero Kronecker coefficients and what they tell us
about spectra. Commun. Math. Phys. 270(3), 575–585 (2007)

7. Fristedt, B.: The structure of random partitions of large integers. Trans. Am. Math. Soc. 337(2), 703–
735 (1993)

8. Fulman, J.: Stein’s method and Plancherel measure of the symmetric group. Trans. Am. Math. Soc.
357(2), 555–570 (2005)

9. Fulton, W., Harris, J.: Representation Theory, vol. 129. Springer, Berlin (1991)
10. Ikenmeyer, C.: The Saxl conjecture and the dominance order. Discret. Math. 338(11), 1970–1975

(2015)
11. Krasikov, I.: Uniform bounds for Bessel functions. J. Appl. Anal. 12(1), 83–91 (2006)
12. Pak, I., Panova, G., Vallejo, E.: Kronecker Products, Characters, Partitions, and the Tensor Square

Conjectures. arXiv preprint arXiv:1304.0738 (2013)

123

http://arxiv.org/abs/1304.0738


80 J Algebr Comb (2017) 45:33–80

13. Regev, A.: Kronecker multiplicities in the (k, 	) hook are polynomially bounded. Isr. J. Math. 200(1),
39–48 (2014)

14. Stanley, R.P.: Enumerative Combinatorics, vol. 2, vol. 62 of Cambridge Studies in Advanced Math-
ematics. Cambridge University Press, Cambridge (1999). With a foreword by Gian-Carlo Rota and
appendix 1 by Sergey Fomin

15. Vershik, A.M.: Statistical mechanics of combinatorial partitions, and their limit configurations. Funk-
tsional. Anal. i Prilozhen. 30(2), 19–39 (1996)

16. Veršik, A.M., Kerov, S.V.: Asymptotic behavior of the Plancherel measure of the symmetric group and
the limit form of Young tableaux. Dokl. Akad. Nauk SSSR 233(6), 1024–1027 (1977)

123


	The Saxl conjecture for fourth powers via the semigroup property
	Abstract
	1 Introduction and main results
	2 Basic tools
	2.1 Partitions and representations
	2.2 The semigroup property and dominance ordering

	3 Overview of the probabilistic approach
	3.1 Partition measures
	3.2 Limit shapes of partition measures
	3.3 Overview of proofs for probabilistic results

	4 Proofs of probabilistic results
	4.1 The uniform case
	4.2 The Plancherel case

	5 Overview of the deterministic approach
	5.1 Blockwise distances
	5.2 Staircase sum identities
	5.3 Overview of Proof of Theorem 1.4

	6 Detailed Proof of Theorem 1.4
	6.1 Staircase sum identities, revisited
	6.2 Proof of Theorem 5.6
	6.3 Generalization to all n
	6.4 Replacing the standard representations

	7 Concluding remarks
	Acknowledgements
	8 Appendix 1: Technical lemma on β-sum flexibility
	8.1 Overview of the proof
	8.2 Formulas for poissonized Plancherel measure
	8.3 Proof of Theorem 4.2

	9 Appendix 2: Generalization of dominance result
	10 Appendix 3: The generalized semigroup property and tensor cubes
	10.1 The semigroup property for many partitions
	10.2 Rectangles appear in ρmotimes3

	References




