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Abstract We prove a conjecture of Knutson asserting that the Schubert structure con-
stants of the cohomology ring of a two-step flag variety are equal to the number of
puzzles with specified border labels that can be created using a list of eight puzzle
pieces. As a consequence, we obtain a puzzle formula for the Gromov–Witten invari-
ants defining the small quantum cohomology ring of a Grassmann variety of type A.
The proof of the conjecture proceeds by showing that the puzzle formula defines an
associative product on the cohomology ring of the two-step flag variety. It is based on
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an explicit bijection of gashed puzzles that is analogous to the jeu de taquin algorithm
but more complicated.

Keywords Schubert calculus · Two-step flag manifolds · Puzzle ·
Littlewood–Richardson rule · Quantum cohomology of Grassmannians ·
Gromov–Witten invariants
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1 Introduction

At the end of the last millennium, Knutson gave an elegant conjecture for the Schubert
structure constants of the cohomology ring of any partial flag variety SL(n)/P of type
A [6]. The conjecture states that each Schubert structure constant in H∗(SL(n)/P;Z)

is equal to the number of triangular puzzles with specified border labels that can
be created using a list of puzzle pieces. The special case for Grassmannians was
established in [8,9]. Unfortunately, Knutson quickly discovered counterexamples to
his general conjecture. Buch, Kresch, and Tamvakis later proved that the Gromov–
Witten invariants defining the small quantum cohomology ring of a Grassmann variety
are equal toSchubert structure constants on two-stepflagvarieties, and itwas suggested
that Knutson’s conjecture might be true in this important special case [2]. This was
supported by verifying with the help of a computer that the conjecture is correct for all
two-step varieties Fl(a, b; n)with n ≤ 16. The purpose of the present paper is to give a
proof of Knutson’s conjecture for arbitrary two-step flag varieties. As a consequence,
we obtain a quantum Littlewood–Richardson rule: a puzzle formula for the three point,
genus zero Gromov–Witten invariants on any Grassmannian of type A, see Sect. 8.

After Knutson formulated his general conjecture and the work [2] appeared, a
different positive formula for the Schubert structure constants on two-step flag varieties
was proved by Coskun [4]. This rule expresses the structure constants as the number
of certain chains of diagrams called mondrian tableaux, which correspond to the
components of a degeneration of an intersection of Schubert varieties. Although it is
well adapted to the geometry, Coskun’s rule does not address the validity of Knutson’s
conjecture for two-step flag varieties.

Recent work of Knutson and Purbhoo [7] shows that the Belkale–Kumar coeffi-
cients [1] for SL(n)/P are computed by a special case of Knutson’s original puzzle
conjecture. This special case uses only a subset of the puzzle pieces, and it is not lim-
ited to 2-step flag varieties. On the other hand, the set of Belkale–Kumar coefficients
is a proper subset of the structure constants of the cohomology ring of any flag variety
other than a Grassmannian.

In this paper, a puzzle piece means a (small) triangle from the following list.
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In Knutson’s original conjecture, the side labels of the puzzle pieces were parenthe-
sized strings of the integers 0, 1, and 2. The labels that are greater than two can be
translated to such strings as follows:

3 = 10, 4 = 21, 5 = 20, 6 = 2(10), and 7 = (21)0.

This description adds intuition to the puzzle pieces. However, we will stick to labels
in the set {0, 1, 2, 3, 4, 5, 6, 7} in this paper. The labels 0, 1, 2 are called simple and
the other labels 3, 4, 5, 6, 7 are called composed.

A triangular puzzle is an equilateral trianglemade frompuzzle pieceswithmatching
labels. The puzzle pieces may be rotated but not reflected. If all labels on the border
of a puzzle are simple, then all composed labels in the puzzle are uniquely determined
from the simple labels. One may therefore omit the edges with composed labels in
pictures of puzzles. The following two pictures show the same puzzle with andwithout
its composed labels.
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A puzzle with simple border labels is the same as an equilateral triangle made of
composed puzzle pieces from the following list. All can be rotated and the fourth and
sixth can be stretched in the direction of the longest side:
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The Schubert varieties Xu of the flag manifold X = Fl(a, b; n) are indexed by
integer vectors u of length n, with a entries equal to 0, b − a entries equal to 1, and
n − b entries equal to 2, see Sect. 2. Such vectors will be called 012-strings for X .
Knutson’s conjecture for two-step flag varieties is the following result.

Theorem 1 Let Xu, Xv , and Xw be Schubert varieties in Fl(a, b; n). Then the triple
intersection number

∫
Fl(a,b;n)

[Xu] · [Xv] · [Xw]
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is equal to the number of triangular puzzles for which u, v, and w are the labels on
the left, right, and bottom sides, in clockwise order.

u v

w

Theorem 1 is proved by establishing that the puzzle rule defines an associative
product on the cohomology ring of X , following the strategy introduced in [3] in the
case of Grassmannians. The corresponding identities among structure constants are
obtained from an explicit bijection of puzzles. This bijection is a generalization of
the classical jeu de taquin algorithm on semistandard Young tableaux (see [12] for a
discussion of the bijections between tableaux and puzzles), but is significantly more
involved and is defined by a list of 80 different rules for propagating a gash from one
side of a puzzle to another. A gash involves a pair of puzzle edges where the puzzle
pieces do not have matching labels, a notion introduced by Knutson and Tao [8], and
extended to our setting in Sect. 5. The large number of propagation rules makes a few
parts of our proof tedious but still straightforward to verify.

One important property of the jeu de taquin algorithm for tableaux is that consec-
utive Schützenberger sliding paths do not cross each other (see e.g. [3, section 2]).
This implies that a suitable bijection of tableaux can be obtained by repeating the
jeu de taquin algorithm several times, an idea which has been used in many proofs
of the classical Littlewood–Richardson rule for Grassmannians, see e.g. [3,5,14] and
the references therein. Unfortunately, this property does not hold for the correspond-
ing propagation paths in puzzles for two-step flags, which may in fact cross each
other. Example 7.7 illustrates the problem. We overcome this difficulty by carrying
out several propagations simultaneously, interlacing the individual steps, to obtain the
desired bijection. Naturally, this requires some care, and the precise manner in which
the simultaneous propagations are controlled is the main technical innovation in this
paper. The issue of crossing propagation paths shapes our proof in subtle but significant
ways; for example, while there are many possible ways to formulate the propagation
rules, our presentation is tailored to handle crossings as seamlessly as possible.

This paper is organized as follows. In Sect. 2 we reduce the proof of Theorem 1
to the verification of two identities which roughly state that the puzzle rule defines an
associative ring. Section 3 proves one of these identities, which says thatmultiplication
by one has the expected result.We also reformulate the puzzle rule in terms of rhombus-
shaped puzzles and identify the required properties of a bijection on such puzzles.
Section 4 defines a relation on strings of puzzle labels that generalizes the Pieri rule for
two-step flag varieties. This relation is crucial for carrying out multiple propagations
simultaneously and for dealing correctly with crossing propagation paths. In Sect. 5
we give an informal discussion of propagations in two-step puzzles, after which Sect. 6
gives the complete list of propagation rules together with case-by-case analysis that
verifies that every (unfinished) gash can be moved by a unique rule. At a first reading,
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Sect. 6.1 through 6.6 may very well be skimmed, with greater attention given to
Sect. 6.7, which records properties essential to the proof of the main result. Section 7
puts the combinatorial constructions together to obtain the required bijection and
finish the proof. Finally, Sect. 8 applies Theorem 1 to obtain a quantum Littlewood–
Richardson rule for the Gromov–Witten invariants on Grassmannians.

2 Strategy of the proof

Theorem 1 will be proved by applying the following principle to the multiplicative
action of the cohomology ring H∗(X;Z) on itself. This principle was first applied
to classical Schubert calculus in [3]. A related principle in the setting of equivariant
cohomology was introduced in [11] and used in [8].

Lemma 2.1 Let R be an associative ring with unit 1, let S ⊂ R be a subset that
generates R as a Z-algebra, and let M be a left R-module. Let μ:R × M → M be any
Z-bilinear map satisfying that, for all r ∈ R, s ∈ S, and m ∈ M we have μ(1, m) = m
and μ(rs, m) = μ(r, sm). Then μ(r, m) = rm for all (r, m) ∈ R × M.

Proof Since R is generated by S and μ is linear in its first argument, it is enough to
show that μ(r, m) = rm whenever m ∈ M and r = s1s2 · · · sk is a product of factors
si ∈ S. This follows from the assumptions by induction on k. ��

Let X = Fl(a, b; n) = {(A, B):A ⊂ B ⊂ C
n and dim(A) = a and dim(B) = b}

be the variety of two-step flags in C
n of dimensions (a, b). Let e1, . . . , en be the

standard basis for Cn . For a subset S ⊂ C
n , we let 〈S〉 ⊂ C

n denote the span of S. A
012-string for X is a string u = (u1, . . . , un)with a zeros, b −a ones, and n −b twos;
this corresponds to a minimal length coset representative for the parabolic subgroup
Sa × Sb−a × Sn−b of the Weyl group Sn .

Given a 012-string for X , consider the point (Au, Bu) ∈ X , where Au = 〈ei :ui = 0〉
and Bu = 〈ei :ui ≤ 1〉. The Schubert variety Xu ⊂ X is the closure of the orbit of
(Au, Bu) for the action of the lower triangular matrices in GL(n). Equivalently, Xu

is the variety of points (A, B) ∈ X for which dim(A ∩ 〈ep, . . . , en〉) ≥ dim(Au ∩
〈ep, . . . , en〉) and dim(B ∩〈ep, . . . , en〉) ≥ dim(Bu ∩〈ep, . . . , en〉) for all p ∈ [1, n].
The codimension of Xu in X is equal to the number of inversions �(u) = #{(i, j):1 ≤
i < j ≤ n and ui > u j }. The Schubert classes [Xu] given by all 012-strings for X
form a basis for the cohomology ring H∗(X;Z). The Poincaré dual of the 012-string
u = (u1, u2, . . . , un) is the reverse string u∨ = (un, un−1, . . . , u1). With this notation
we have

∫
X [Xu] · [Xv] = δu∨,v .

Given 012-strings u, v, andw for X , we letCw
u,v be the number of triangular puzzles

with labels u, v, andw on the left, right, and bottom borders, with u and v in clockwise
direction and w in counter-clockwise direction.

u v

w
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Define a Z-bilinear map μ:H∗(X;Z) × H∗(X;Z) → H∗(X;Z) by

μ([Xu], [Xv]) =
∑
w

Cw
u,v[Xw] ,

where the sum is over all 012-strings w for X . It follows from Poincaré duality that
Theorem 1 is equivalent to the identity

μ([Xu], [Xv]) = [Xu] · [Xv] (1)

for all 012-strings u and v for X . We will prove this by identifying a generating subset
S ⊂ H∗(X;Z) of special Schubert classes that satisfies the conditions of Lemma 2.1.

Given two 012-strings u and u′, with u = (u1, u2, . . . , un), we write u
1−→ u′ if

there exist indices i < j such that (1) ui ∈ {0, 1}, (2) u j = 2, (3) uk < ui for all
k with i < k < j , and (4) u′ is obtained from u by interchanging ui and u j . This
corresponds to a covering relation in the ordering induced from the Bruhat order on

Sn . More generally, for p ∈ N we write u
p−→ u′ if there exists a sequence u = u0 1−→

u1 1−→ · · · 1−→ u p = u′ such that, if ut is obtained from ut−1 by interchanging the
entries of index it and jt , then jt ≤ it+1 for all t ∈ [1, p − 1]. For example, the chain

02110020202
1−→ 20110020202

1−→ 20120010202
1−→ 20120020102

1−→ 20120020120

implies that

02110020202
4−→ 20120020120 .

Given an integer p with 0 ≤ p ≤ n − b, we let p denote the 012-string p =
(0a, 1b−a−1, 2p, 1, 2n−b−p). This string defines the special Schubert variety

Xp = {(A, B) ∈ X | B ∩ 〈eb+p, . . . , en〉 �= 0} .

The corresponding special Schubert class is the Chern class [Xp] = cp(C
n
X/B), where

A ⊂ B ⊂ C
n
X = C

n × X is the tautological flag of subbundles on X . The Pieri formula
for X states that [10,13]

[Xp] · [Xu] =
∑

u
p−→u′

[Xu′ ] , (2)

where the sum is over all 012-strings u′ for which u
p−→ u′.

We will derive (1) as a consequence of the following two identities, which will be
proved later using an explicit bijection of puzzles (c.f. [3, Proposition 1]). Recall that
0 = (0a, 1b−a, 2n−b) is the identity 012-string for which [X0] = 1 ∈ H∗(X;Z).
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Proposition 2.2 Let u, v, and w be 012-strings for X and let p ≥ 0 be an integer.
Then we have

Cw
0,u = δu,w (3)

and ∑
u

p−→u′

Cw
u′,v =

∑
v

p−→v′

Cw
u,v′ . (4)

Fix an orthogonal form on C
n and set X̂ = Fl(n − b, n − a; n). Then the map

φ:X → X̂ that sends a point (A, B) to (B⊥, A⊥) is an isomorphism of varieties,
called the duality isomorphism. The corresponding isomorphism of cohomology rings
φ∗:H∗(X̂;Z) → H∗(X;Z) is given by φ∗[X̂û] = [Xu], where û = (2 − un, 2 −
un−1, . . . , 2 − u1).

For each integer p ∈ [0, a], define the 012-string p̃ = (0a−p, 1, 0p, 1b−a−1, 2n−b).
This string defines the special Schubert variety

X p̃ = {(A, B) ∈ X | dim(A ∩ 〈ea−p+2, . . . , en〉) ≥ p}

and the special Schubert class [X p̃] = cp(A∨) ∈ H∗(X;Z). By applying φ∗ to both
sides of the Pieri rule (2) for X̂ , we obtain the identity

[X p̃] · [Xu] =
∑

u
p̃−→u′

[Xu′ ] (5)

in H∗(X;Z), where we write u
p̃−→ v if and only if û

p−→ v̂.
The duality isomorphism has a corresponding bijection on puzzles that reflects a

puzzle in a vertical line and substitutes all labels according to the following rule:

0 �→ 2 ; 1 �→ 1 ; 2 �→ 0 ; 3 �→ 4 ; 4 �→ 3 ; 5 �→ 5 ; 6 �→ 7 ; 7 �→ 6 .

This bijection implies that we have Cw
u,v = C ŵ

v̂,̂u for all 012-strings u, v, w for X . In
particular, Eq. (4) applied to X̂ gives the identity

∑
u

p̃−→u′

Cw
u′,v =

∑
v

p̃−→v′

Cw
u,v′ , (6)

for all 012-strings u, v, w for X and integers p ∈ [0, a].
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Proof of Theorem 1 Set R = M = H∗(X;Z) and

S = {[Xp]:1 ≤ p ≤ n − b} ∪ {[X p̃]:1 ≤ p ≤ a} .

By using that X is a Grassmann bundle over a Grassmann variety, it follows that R
is generated by S. The identity (3) shows that μ(1, [Xu]) = [Xu], and (4) and (6)
together with the Pieri formulas (2) and (5) imply

μ([Xu] · [Xp], [Xv]) =
∑

u
p−→u′

μ([Xu′ ], [Xv])

=
∑

v
p−→v′

μ([Xu], [Xv′ ]) = μ([Xu], [Xp] · [Xv])

for all 012-strings u and v for X and 1 ≤ p ≤ n − b, and an analogous identity
with [X p̃] for 1 ≤ p ≤ a. By the bilinearity of μ, this shows that the conditions of
Lemma 2.1 are satisfied. We deduce that Eq. (1) holds for all 012-strings u and v, as
required. ��

3 Multiplication by one

In this section we prove the first claim in Proposition 2.2 and use it to reformulate the
puzzle formula in terms of rhombus-shaped puzzles. We need the following lemma.

Lemma 3.1 Let 0 = (0n0 , 1n1 , 2n2) be an identity string and let x ∈ {0, 1, 2} be a
simple label that occurs in this string. Then there exists a unique union of matching
puzzle pieces of the form

0

0

xx

with left label x and bottom labels 0 in right-to-left direction. The right border of this
unique puzzle has label x, and the labels on the top border is the identity string 0′
obtained by removing one copy of x from 0.

Proof We consider each possible value of x in turn. If x = 0, then the shape must be
filled with (unions of) puzzle pieces from the following list:

2

2
0 05

1

1
0 03

0
0 0

0

0
00 0(d)(c)(b)(a)

In fact, if we fill the shape from left to right, then we are forced to place the rhombus
(a) above each 2 on the bottom border. After this we must place the rhombus (b) above
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each 1 on the bottom border; the only alternative rhombus
6

1
0 23 cannot be used

because each 1-label on the bottom border is followed by a 0 or a 1 to the right.
Finally, the triangle (c) must be placed above the first 0 on the bottom border, and the
rest of the shape must be filled with the rhombus (d).

If x = 1, then a similar argument shows that the shape must be filled with the
(unions of) puzzle pieces:

2

2
1 14

1
1 1

1

1
11 1

0

0
31 1

And if x = 2, then the shape must be filled with the pieces:

2
2 2

2

2
22 2

1

1
42 2

0

0
52 2

In all three cases exactly one single triangle is used, with the label x on all sides. This
accounts for the removed x on the top border. ��

The first identity in Proposition 2.2 follows from the following corollary.

Corollary 3.2 Let v be any 012-string for X and let 0 = (0a, 1b−a, 2n−b) be the
identity string. Then there exists a unique triangular puzzle with labels 0 on the left
border and labels v on the right border, both in clockwise direction.

0 v

v

The bottom labels of this unique puzzle are v, in counter-clockwise direction.

Proof This follows by induction on the number of rows, using the 120◦ clockwise
rotation of Lemma 3.1. ��

For technical reasons, it is convenient to express the constants Cw
u,v in terms of

puzzles of rhombus shape. We will use this interpretation in the proof of the second
identity of Proposition 2.2.

Corollary 3.3 The constant Cw
u,v is equal to the number of puzzles of the following

rhombus shape, with top border u, right border 0, bottom border v, and left border w,
with u, 0, and v in clockwise direction and w in counter-clockwise direction.
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w 0

u

v

Proof Any such rhombus-shaped puzzle consists of the (rotated) unique puzzle from
Corollary 3.2 in the lower-right half and a (rotated) triangular puzzle with border labels
u, v, and w in the upper-left half. ��

Let u, v, and w be 012-strings for X and let p ∈ [0, n − b]. To prove the sec-
ond identity of Proposition 2.2, it suffices to construct a bijection between the set of

rhombus-shaped puzzles with border labels u′, 0, v, w such that u
p−→ u′, and the set

of rhombus-shaped puzzles with border labels u, 0, v′, w such that v
p−→ v′.

w 0

u

v

w 0

u

v

We will construct a more general bijection where the top and bottom borders are not
required to have simple labels. The advantage of this is that we can restrict our attention
to puzzles with a single row. The first ingredient in our construction is an appropriate

generalization of the Pieri relation u
p−→ v for strings of arbitrary labels. This is the

subject of the next section.

4 A Pieri rule for label strings

Define a label string to be any finite sequence u = (u1, u2, . . . , u�) of integers from
the set [0, 7] = {0, 1, 2, 3, 4, 5, 6, 7}. These strings are generalizations of the 012-
strings that represent Schubert classes on two-step flag varieties. In this section we

introduce a generalization of the Pieri relation u
p−→ v that has meaning when u and v

are arbitrary label strings of the same length.

We start by defining the basic relation u
1−→ v. This relation implies that v is obtained

by changing exactly two entries of u. There are 15 possible rules for how the entries can
be changed, and in each case there are restrictions onwhich entries can appear between
the entries being changed. Each rule is determined by a triple ((a1, b1), S, (a2, b2))
where a1, b1, a2, b2 ∈ [0, 7] and S ⊂ [0, 7]. The corresponding rule says that, if u
contains a substring consisting of a1 followed by any number of integers from S and
ending in a2, then one may replace a1 in the substring with b1 and simultaneously
replace a2 with b2. We will use the following graphical representation of the rule:

a1 a2

b1 b2
S∗
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Table 1 Rules for the Pieri
relation on label strings

0
2

2
0

3
2 0* 2

3
0
4 2* 4

0
1
2 03* 2

1
1
2 03* 5

7
7
5 03* 2

1
7
5 03* 5

7
1
4 02* 4

1
1
4 02* 5

3
3
5 02* 4

1
3
5 02* 5

3
0
5 24* 5

0
0
5 24* 6

1
1
6 24* 5

0
1
6 24* 6

1

The set S is specified by listing its elements followed by a star to indicate that its
elements can be repeated. If S is empty, then the middle third of the line segment is
omitted. The complete list of rules is given in Table 1. These rules are organized into
six types called A, B, C, D, E, F, (these have no relation to the classification of types in
Lie theory!). Notice that just two of the rules relate 012-strings, and these reproduce

the definition of u
1−→ v from Sect. 2; the remaining rules follow a similar pattern. As

we will see in Sect. 5, the complete set of rules defining u
1−→ v arises as a subset of

the gashes that can occur in propagation algorithm.

Definition 4.1 Let u and v be label strings of the same length. Then the relation u
1−→ v

holds if and only if v can be obtained from u by using one of the rules in Table 1. In

this case we say that the relation u
1−→ v has index (i, j), where i < j are the unique

integers such that ui �= vi and u j �= v j .

Example 4.2 According to the second rule of type D, we have 72130335644
1−→

72230337644, and this relation has index (3, 8).

Definition 4.3 Let u and v be label strings of the same length. A Pieri chain from u

to v is a sequence u = u0 1−→ u1 1−→ · · · 1−→ u p = v such that, if ut−1 1−→ ut has index
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(it , jt ) for each t , then is < jt whenever s ≤ t . The Pieri chain is right-increasing if

it satisfies the stronger condition j1 < j2 < · · · < jp. We will write u
p−→ v if there

exists a Pieri chain of length p from u to v.

Example 4.4 We have 04730202245
5−→ 40720522015, with (right-increasing) Pieri

chain 04730202245
1−→ 40730202245

1−→ 40720302245
1−→ 40720320245

1−→
40720322045

1−→ 40720522015.

Notice that some swaps of integers in a Pieri chain can happen inside others: for
instance, in Example 4.4 the fourth swap (at position (8, 9)) happens inside the fifth (at
position (6, 10)). In Sect. 7, this property will be utilized to allow propagation paths
to cross each other in a controlled way. The two results below are essential for this

application. Notice also that the definitions imply that u
p−→ v if and only if v∨ p−→ u∨,

where u∨ denotes the label string u in reverse order.

Lemma 4.5 Let u
1−→ v

1−→ w be a Pieri chain, where u
1−→ v has index (i, j) and

v
1−→ w has index (k, l). Assume that k < j . Then we have either i < k < l < j ,

u
1−→ v has type E, and v

1−→ w has type A, or k < i < j < l, u
1−→ v has type A,

and v
1−→ w has type E. Furthermore, there exists a unique label string v′ such that

u
1−→ v′ 1−→ w is a Pieri chain with the inequalities and types interchanged.

Proof Assume that u
1−→ v follows the rule ((a1, b1), S, (a2, b2)) and that v

1−→ w

follows the rule ((c1, d1), T, (c2, d2)), both of which come from Table 1:

a1 a2

b1 b2
S∗ c1 c2

d1 d2
T∗

Thenwehave vi = b1, v j = b2, vk = c1, vl = c2, vs ∈ S for i < s < j , and vs ∈ T for
k < s < l. By inspection of Table 1 we have b1, c2 ∈ {2, 4, 5, 6}, b2, c1 ∈ {0, 1, 3, 7},
and S ∪ T ⊂ {0, 2, 3, 4}. It follows that i, j, k, l are pairwise distinct integers, and
the inequalities i < j , k < l, i < l, k < j allow exactly four possibilities for their
relative orderings. We consider these possibilities in turn.

Case 1 Assume that i < k < j < l. Then c1 ∈ S and b2 ∈ T . Using that b2, c1 ∈
{0, 1, 3, 7} ∩ {0, 2, 3, 4} = {0, 3}, we deduce that both of the applied rules are not
of type A, C, D, or F. This in turn implies that c1 = b2 = 3 and S ∪ T ⊂ {0, 2}, a
contradiction.

Case 2 Assume that k < i < l < j . This case is impossible by an argument similar
to Case 1.

Cases 3 and 4 Assume that i < k < l < j or k < i < j < l. Then c1, c2 ∈ S or
b1, b2 ∈ T , which implies that the types of the rules are as stated in the lemma. In
both cases the label string v′ is obtained by setting v′

k = d1, v′
l = d2, and v′

s = us for
s �= k, l. ��
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Corollary 4.6 Let u and v be label strings of the same length and let p ∈ N.

(a) Assume that u
p−→ v. Then u is a 012-string if and only if v is a 012-string.

(b) Assume that both u and v are 012-strings. Then the relation u
p−→ v of the Pieri

rule (2) holds if and only if u
p−→ v holds in the sense of label strings.

Proof Only the rule of type A and the first rule of type D in Table 1 can be applied
to a 012-string, and they will replace such a string with a new 012-string. Part (a) and

the special case of (b) in which p = 1 follow from this. Let u = u0 1−→ u1 1−→ · · · 1−→
u p = v be a Pieri chain such that ut−1 1−→ ut has index (it , jt ) for each t . Since no

relation ut−1 1−→ ut has type E, it follows from Lemma 4.5 that jt ≤ it+1 for each t .
The general case of part (b) follows from this. ��

Proposition 4.7 (a) Let u and v be label strings with u
p−→ v. Then there exists a

unique right-increasing Pieri chain from u to v.

(b) Let u = u0 1−→ u1 1−→ · · · 1−→ u p = v be any Pieri chain from u to v, and let

(it , jt ) be the index of ut−1 1−→ ut for each t ∈ [1, p]. If j1 = min{ j1, . . . , jp},
then u1 belongs to the unique right-increasing Pieri chain from u to v.

Proof Let u = u0 1−→ u1 1−→ · · · 1−→ u p = v be any Pieri chain, and let ut−1 1−→ ut

have index (it , jt ). Assume that jt+1 ≤ jt for some t . Then it+1 < jt , so Lemma 4.5
implies that it < it+1 < jt+1 < jt . Moreover, there exists a label string v′ such
that ut−1 1−→ v′ has index (it+1, jt+1) and v′ 1−→ ut+1 has index (it , jt ). By replacing
ut with v′, we obtain a new Pieri chain where the pairs (it , jt ) and (it+1, jt+1) are
interchanged. We repeat this procedure until j1 < j2 < · · · < jp. This shows that
there exists at least one right-increasing Pieri chain from u to v. If the initial Pieri
chain satisfies j1 = min{ j1, . . . , jp}, then the string u1 will never be replaced and will
remain unchanged in the right increasing Pieri chain.

To see that the right-increasing Pieri chain is uniquely determined from u and v,

assume that the last step u p−1 1−→ v follows the rule ((a1, b1), S, (a2, b2)), and let (i, j)
be the index of the last step. Notice that j is the largest integer for which u j �= v j ,
and we have (a2, b2) = (u j , v j ). This pair determines the type of the rule, which in
turn determines the set S. Now i is the largest integer for which i < j and vi /∈ S.
We have b1 = vi , and the entire rule is determined by the triple (b1, a2, b2). We now
obtain u p−1 by applying the inverse rule to v, and by induction there exists a unique
right-increasing Pieri chain from u to u p−1. ��

5 Gashes and swap regions

In this section, wewill workwith parallelogram-shaped puzzleswith a single row, such
that the left and right border edges have simple labels. Such puzzles will be called
single-row puzzles. We will say that a single-row puzzle has border (c1, u, v, c2) if u
is the string of labels on the top border from left to right, v is the string of labels on
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the bottom border from left to right, c1 is the simple label on the left border, and c2 is
the simple label on the right border.

c1 c2

u

v

Given label strings u and v′ of the same length, simple labels c1, c2 ∈ {0, 1, 2}, and
an integer p ≥ 0, we will construct a bijection between the set of single-row puzzles

with border (c1, u′, v′, c2) for which u
p−→ u′, and the set of single-row puzzles with

border (c1, u, v, c2) for which v
p−→ v′. We start with the simplest case where p = 1.

The bijection is formulated in terms of gashed single-row puzzles in which some
puzzle pieces next to each other do not have matching labels. More precisely, a gash
is a pair of puzzle edges with labels on both sides, together with a connected sequence
of edges between them, so that certain conditions are satisfied. The two edges with
labels on both sides are called the left leg and the right leg of the gash. By definition,
every gash must have one of the types A, B, C, D, E, F, which correspond to the types
of the Pieri relations in Table 1, but since the edges of a gash need not all be horizontal,
the definitions are not identical. For each type there are a set of choices for the left
leg, the middle segment of edges, and the right leg. These choices are listed in Table 2
and may be combined in any way, as long as the orientation of the edges remains as
shown, and the height of the gash is at most one, i.e. at most one non-horizontal edge
may be included. The labels of the edges in Table 2 should be understood in the same
way as for the Pieri relation in the previous section. If a horizontal edge is labeled with
a sequence of numbers followed by a star, then any number of connected horizontal
edges with labels from the sequence may be included. A non-horizontal edge labeled
with a sequence of numbers means a single edge whose label is one of these numbers.
Notice that Table 1 lists all possible horizontal gashes.

Example 5.1 Here are two gashes, one of type D and another of type F.

7
5

2
1

3
6

3 0
0 2

6
14 2

Let P be a single-row puzzle with border (c1, u′, v′, c2) such that u
1−→ u′. Then

the label string u′ can be obtained by interchanging two entries of u. Change the
corresponding two edges on the top border of P to have the entries of u as their top
labels and the entries of u′ as their bottom labels. This creates a horizontal gash on the
top border of P , and the resulting gashed puzzle contains all the information required
by the bijection. We will formulate the bijection as a transformation rule on gashed
puzzles. This transformation takes a single-row puzzle with a gash on the top border
and changes it by propagating the gash to the bottom border.
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Table 2 Gashes allowed in a
gashed puzzle

0
2

2
0

3
2 0* 2

3
0
4 2* 4

0

3 2 2 3

1
2 03* 2

1

7
5

03*

03*
0156

5
7

4 2

03*

03*
02 2 4

1
4 02* 4

1

3
5

02*

02*
03

5
3

1 2

02*

02*
0156 2 1

0
5

5
0

1
6 24* 6

1

0 2 2 0

If a gash is not on the bottom border of its puzzle, then we define the front edge of
the gash as follows. If the gash is horizontal on the top border, then the front edge is
the left leg. Otherwise, the front edge is the unique non-horizontal edge of the gash. A
propagation is carried out by one or more steps that move the front edge to the right.
The labels between the old and new front edges may be changed in the process, and
the type of the gash may change as well. The subset of puzzle pieces and edges that are
changed is called a swap region, and the change itself is called a swap. The result of
the bijection is the gashed puzzle obtained when the gash reaches the bottom border.
Before we give the complete list of swap regions and the proof that propagations are
well-defined (in Sect. 6), we first consider two examples.
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Example 5.2 Let u = 0241, u′ = 2041, and v′ = 5410. If we start with the unique
single-row puzzle with border (2, u′, v′, 0) and use u to introduce a gash on the top
border, then this gash is propagated to the bottom border by the following sequence
of swaps. Each of these swaps is carried out by applying a unique named swap region.

0
2

2
0 4 1

5 4 1 0
2 0 0 02 0 7 3 0

0 2 4 1

0
5 4 1 0

5 2 0 0 02 2 7 3 0

0 2 4 1

0
5 4 1 0

5 2 2 0 02 2 1 3 0
0 2 4 1

0
5 4 6

1 0
5 2 2 02 2 1 3 0

The swap region that is applied first is called AF. It has the following effect.

0
2

2
0

5
2 02 0

0 2

0
5

5 2 02 2

The name indicates that a gash of type A is replaced with a gash of type F. A more
compact description of this rule is given in the following diagram.

0
2

2
0

0
5

2 02

This diagram shows the gashes both before and after the swap. To obtain the region
before the swap, one replaces all gashes on the bottom and right sideswith their outside
labels. The region after the swap is obtained by replacing the gashes on the top and left
sides with their outside labels. In both cases the labels of the inner edges are uniquely
determined by requiring that the interior of a swap region is a union of puzzle pieces
with matching labels. The other two swap regions used in the example are called FF11
and FF9.

4

4
2 0 2 0

6
1

2 0 3

Example 5.3 Let u = 1015, u′ = 1027, and v′ = 2031, consider the unique single-
row puzzle with border (1, u′, v′, 2), and use u to create a gash on the top border. In
this case the propagation carries out the following sequence of swaps.
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1 0 1
2

5
7

2 0 3 1
1 7 1 41 4 4 0 2

1 0 1 5
7

1
2 0 3 1

1 3 1 41 1 1 0 2

1 0 1 5
7

1
2 0 3 1

1 3 1 41 1 1 0 2
1 0 1 5

1
2 0 3 1

1 3 1 2 41 1 1 0 2

1 0 1 5

1
2 0 3 2

1

1 3 1 21 1 1 0 2

This example uses the swap regions DD2, DD11, DD17, and DD7.

0* 1
2

1
2 0*

1 1
3

1 0

5
7
2 40

2
1

2 4 2

The label 0∗ on the first swap region DD2 indicates that the corresponding edges may
be repeated any number of times, including zero. The swap region DD11 does not
cause any change to the puzzle; it simply allows the front edge of a gash to move to
the right.

6 Propagation rules

In this section we give the complete list of swap regions required for carrying out the
bijection for p = 1. At the same time we prove that any gash that is not on the bottom
border of its puzzle can be moved to the right by applying a unique swap region. This
establishes that the list of swap regions gives a well-defined map on gashed puzzles.

Each gash type comes with its own set of swap regions. More precisely, a swap
region may be used only if its name starts with the type of the gash at hand. The
proof that the list of swap regions is complete consists of a case-by-case analysis
of all possible gashes: we exhaustively consider all cases for how the puzzle may
look near the gash and provide a unique swap region to cover every possibility. This
analysis is organized by gash type and comprises Sect. 6.1 through 6.6. The reader
who does not wish to verify the completeness of the analysis may safely skim these
sections. In Sect. 6.7, we record the properties of the list that are essential to the proof
of Proposition 2.2.

In the following we assume that we are given a gashed single-row puzzle, such
that the gash is not located on the bottom border. We will identify the unique swap
region that must be applied to propagate the gash. If the front edge of the gash is not
horizontal, then this edge will be the left side of the swap region. Similarly, if applying
the swap region results in a new gash that is not on the bottom border, then the front
edge of the new gash is taken to be the right side of the swap region. In all cases, the

123



990 J Algebr Comb (2016) 44:973–1007

reader should observe that the simplicity of the left and right border labels implies that
the indicated swap regions are completely contained in the puzzle.

6.1 Swap regions for a gash of type A

Assume that the gash is of type A. Then it is located on the top border of the puzzle.
Let a and b be the labels of the edges going south-west and south-east from the middle
node of the gash.

0
2

2
0

a b

The following table lists all possible values of a and b together with the unique swap
region that can be applied in each case. Notice that the ‘Before’ and ‘After’ fields
indicate only one particular instance of swap regions that include stretchable edges.

0
2

2
0

0
2

2
0

0 0

0
2

2
0

2 0
0 0 05 0

0 2

0
2

2
0

0 0 00 5

0* 0
2

2
0

3
2 0* 2

3

1 0
0 0

2
2
0

2 0 3
1 7 1 04 4 0

0 0 2

3
2 0 2

3

1 0 0 00 0 5

0* 0
2

2
0

1
2 0* 2

1

1 3
0 0

2
2
0

2 0 1
1 7 1 34 4 1

0 0 2

1
2 0 2

1

1 3 3 31 1 6

0
2

2
0

0
2

2
0

4 4

0
2

2
0

2 0
1 74 4 4

0 2

0
2

2
0

7 14 4 4

0
2

2
0

0
5

2 02

0
2

2
0

5
2 02 0

0 2

0
5

5 2 02 2

0
2

2
0

0
4

2 32

0
2

2
0

4
2 32 1

0 2

0
4

5 2 32 2

0
2

2
0

0
2

2
0

2 2

0
2

2
0

2 0
2 52 2 2

0 2

0
2

2
0

5 22 2 2

0
2

2
0

0
2

2
0

3 3

0
2

2
0

2 0
3 3 36 1

0 2

0
2

2
0

3 3 31 6

6.2 Swap regions for a gash of type B

Assume now that the gash is of type B, located on the top border of the puzzle. Let a
and b be the labels of the edges indicated in the picture.

123



J Algebr Comb (2016) 44:973–1007 991

3
2

2
30*

a b

The table lists the possible values of a and b together with the corresponding swap
regions.

3
2 0* 2

3

0
2

2
0 0*

0 1

3
2 0 2

3

2 0 0
0 0 0 15 0 0

3 0 2

0
2

2
0 0

0 1 7 10 4 4

0* 3
2 0* 2

3

3
2 0* 2

3 0*
1 1

0 3
2 0 2

3

2 0 3 0
1 7 1 0 14 4 0 0

0 3 0 2

3
2 0 2

3 0
1 0 1 7 10 0 4 4

3
2 0* 2

3

3
5 0*

2 12

3
2 0 2

3

5 0
2 0 12 0 0

3 0 2

3
5 0

6 5 2 12 2 2

3
2 0* 2

3

3
2 0* 2

3

2 2

3
2 0 2

3

2 0 3
2 5 62 2 2 2

3 0 2

3
2 0 2

3

6 5 22 2 2 2

6.3 Swap regions for a gash of type C

6.3.1. Assume that the gash has type C and is located at the top border of the puzzle.
Let a be the indicated label.

0
4

4
02*

a

The table lists the possible values of a and the corresponding swap regions.
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0
4 2* 4

0

0
4 2* 4

0

0 0

0
4 2 4

0

4 2 0
0 0 0 07 5 0

0 2 4

0
4 2 4

0

0 0 0 00 5 7

0
4
3 21

0
4
21

0
3 21

6.3.2. Assume that the gash has type C with the following shape. Let a and b be the
labels of the edges going south-east and east from the top node of the left leg. Notice
that b may be the right leg of the gash, in which case the value of b is displayed as 4

0 .

4
0

3 2

2*
a

b

The table lists the possible values of a and b together with the corresponding swap
regions.

4
0

0
5

3 2 2 0

4
0

5
3 2 00

4

0
5

3 2 01

4
0

0
4

3 2 2 3

4
0

4
3 2 31

4

0
4

3 2 31

4
0

0
2

2
0

3 2 2

4
0

2 0
3 2 52 2

4

0
2

2
0

3 21 2

2

2
3 2 3 2

2

2
3 2 22

2

2
3 3 26

6.3.3. Assume that the gash has typeCwith the following shape. The unique applicable
swap region is determined by the indicated label a.

0
4

2 3
2* a

4
0

2 3 1
0

2 3 1
4
0

2 1

2

2
2 3 2 3

2

2
2 3 36

2

2
2 2 32
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6.4 Swap regions for a gash of type D

6.4.1. Assume that the gash has type D and is located on the top border of the puzzle.
Let a be the labels of the left leg and let b be the label of the edge going south-west
from the right node of the left leg.

03*a
b

The table lists the possible values of a and b and the corresponding swap regions.

1
2

1
2

0 0

1
2

2
0 05

1

1
2

0 03

0* 1
2

1
2 0*

1 1
0 1

2

2 0
1 7 14 4

0 1

1
2 0

1 3 11 1

1
2
4 22

1
2
22

1
4 22

1
2 0* 2

1

0
2

2
0 0*

3 1

1
2 0 2

1

2 0 0
3 3 3 16 1 1

1 0 2

0
2

2
0 0

3 1 7 11 4 4

7
5
4 20

7
5
20

7
4 20

6.4.2. Assume that the gash has type D with the following shape.

4 2

03*
a

The unique applicable swap region is determined by the indicated label a.

7
5

4 2 0
5

4 2 0
7
5

4 0

0* 2
1

1
4 0*

4 2 2 1

0 2
1

4 0
4 2 3 11 1

0 2

1
4 0

4 5 2 12 2

1
2

4 2 2
2

4 2 2
1
2

4 2

2
1

1
6

4 2 2 0

2
1

6
4 2 03

2

1
6

4 2 02
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6.4.3. Assume that the gash has type D with the following shape.

2 4
03* a

The unique applicable swap region is determined by the indicated label a.

2
1

2 4 2
1

2 4 2
2
1

2 2

5
7

2 4 0
7

2 4 0
5
7

2 0

6.4.4. Assume that the gash has type D with the following shape.

03*

03*
a b

The unique applicable swap region is determined by the indicated labels a and b.

0
0 0

0
0 0

0
0 0

2
1

2
1

0 0

2
1

1
0 03

2

2
1

0 05

3
1 0

3
1 0

3
1 0

0* 2
1

2
1 0*

1 1
0 2

1

1 0
1 3 11 1

0 2

2
1 0

1 7 14 4

0
5 2

0
5 2

0
5 2

3
6 2

3
6 2

3
6 2

6.4.5. Assume that the gash has type D with the following shape (given by the solid
black lines).

03*

03*
a b
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The unique applicable swap region is determined by the indicated labels a and b.

0
00

0
00

0
00

3
10

3
10

3
10

5
7
2 40

5
7
40

5
2 40

2
1
2 42

2
1
42

2
2 42

0
52

0
52

0
52

3
62

3
62

3
62

6.5 Swap regions for a gash of type E

6.5.1. Assume that the gash has type E and is located on the top border of the puzzle.
Let a be the labels of the left leg and let b be the label of the edge going south-west
from the right node of the left leg.

02*a
b

The table lists the possible values of a and b and the corresponding swap regions.

1
4

1
4

0 0

1
4

4
0 07

1

1
4

0 03

1
4
1 21

1
4
21

1
1 21

3
5
1 20

3
5
20

3
1 20

6.5.2. Assume that the gash has type E with the following shape. Let a be the label
of the edge going south-east from the top node of the left leg, and let b be the first
non-zero label on the horizontal part of the gash. The following could be the labels of
the right leg of the gash.
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1 2

0* 02*
a

b

The table lists the possible values of a and b and the corresponding swap regions. In
two cases the value of b is omitted, as it does not influence on the choice of swap
region.

3
5

1 2 0
5

1 2 0
3
5

1 0

1
4

1 2 1
4

1 2 1
1
4

1 1

0* 2

2 0*
1 2 1 2

0 2

2 0
1 2 5 22 2

0 2

2 0
1 7 1 24 4

0* 4
1

1
2 0*

1 2 2 4

0 4
1

2 0
1 2 5 42 2

0 4

1
2 0

1 3 2 41 1

0* 5
3

3
2 0* 2

3

1 2 2
0 5

3

2 0 3
1 2 5 62 2 2

0 5

3
2 0 2

3

1 0 20 0 2

4
1

1
6

1 2 2 0

4
1

6
1 2 03

4

1
6

1 2 01

6.5.3. Assume that the gash has type E with the following shape.

2 1
02* a

The unique applicable swap region is determined by the indicated label a.

4
1

2 1 1
1

2 1 1
4
1

2 1

0* 2

2 0*
2 1 2 1

0 2

2 0
2 1 7 14 4

0 2

2 0
2 5 2 12 2

5
3

2 1 0
3

2 1 0
5
3

2 0

6.5.4. Assume that the gash has type E with the following shape.

02*

02*
a b
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The unique applicable swap region is determined by the indicated labels a and b.

0
0 0

0
0 0

0
0 0

4
1

4
1

0 0

4
1

1
0 03

4

4
1

0 07

2
0 5

2
0 5

2
0 5

0
3 1

0
3 1

0
3 1

2
3 6

2
3 6

2
3 6

6.5.5. Assume that the gash has type E with the following shape (given by the solid
black lines).

02*

02*
a b

The unique applicable swap region is determined by the indicated labels a and b.

0
00

0
00

0
00

5
3
2 10

5
3
10

5
2 10

4
1
2 11

4
1
11

4
2 11

0
31

0
31

0
31

2
05

2
05

2
05

2
36

2
36

2
36
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6.6 Swap regions for a gash of type F

6.6.1. Assume that the gash has type F and is located on the top border. Then the
unique applicable swap region is determined by the labels a of the left leg.

24*a

0
5
0 20

0
5
20

0
0 20

1
6
0 23

1
6
23

1
0 23

6.6.2. Assume that the gash has type F with the following shape. Let a and b be the
labels of the edges going south-east and east from the top node of the left leg. Notice
that b may be the labels of the right leg.

0 2

24*
a

b

The table lists the possible values of a and b together with the corresponding swap
regions.

5
0

0
5

0 2 2 0

5
0

5
0 2 00

5

0
5

0 2 00

5
0

0
4

0 2 2 3

5
0

4
0 2 31

5

0
4

0 2 30

6
1

1
4

0 2 2 1

6
1

4
0 2 11

6

1
4

0 2 13

4

4
0 2 0 2

4

4
0 2 21

4

4
0 0 27

5
0

0
2

2
0

0 2 2

5
0

2 0
0 2 52 2

5

0
2

2
0

0 20 2

6
1

1
2

0 2 2 4

6
1

2
0 2 42

6

1
2

0 2 43

2

2
0 2 0 2

2

2
0 2 22

2

2
0 0 25

6
1

1
6

0 2 2 0

6
1

6
0 2 03

6

1
6

0 2 03
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6.6.3. Assume that the gash has type F of the following shape. Then the unique applica-
ble swap region is determined by the indicated label a.

2 0
24* a

5
0

2 0 0
0

2 0 0
5
0

2 0

6
1

2 0 3
1

2 0 3
6
1

2 3

2

2
2 0 2 0

2

2
2 0 05

2

2
2 2 02

4

4
2 0 2 0

4

4
2 0 07

4

4
2 2 01

6.7 Properties of the bijection

We finish this section by recording some consequences of the analysis just carried
out. Given any single-row puzzle P with a gash on its top border, we let �(P) denote
the puzzle obtained by propagating the gash to the bottom border, using the swap
regions of this section. For any parallelogram-shaped puzzle P , let ρ(P) denote the
180◦ rotation of P .

Proposition 6.1 The assignment � is a well-defined map from the set of single-row
puzzles with a gash on the top border into the set of single-row puzzles with a gash on
the bottom border. Furthermore, if P is any single-row puzzle with a gash on the top
border, then ρ �ρ �(P) = P.

Proof The well definedness of � follows by observing that the swap regions of
Sect. 6.1 through 6.6 cover all possible cases. For the second claim, suppose that
P is a gashed puzzle and P ′ is the result of applying a swap regionR to P . An inspec-
tion of the swap region tables shows that also the 180◦ rotation ofR is a swap region,
and this swap region can be applied to ρ(P ′) to produce ρ(P). If R is called XY,
where X and Y are distinct gash types, then the 180◦ rotation ofR is called YX. And
if R is called XXm, where X is a gash type and m is an integer, then the rotation of
R is called XXm′ for a (possibly) different integer m′. The proposition follows from
this. ��
Example 6.2 The 180◦ rotation of the first propagation in Sect. 5 is carried out with
the swap regions FF2, FF4, and FA.
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0 1
6 4 5

0

1 4 2 0
0 2 2 50 3 1 2 2

0 1 4 5
0

1 4 2 0
0 0 2 2 50 3 1 2 2

0 1 4 5
0

1 4 2 0
0 0 0 2 50 3 7 2 2

0 1 4 5

1 4 0
2

2
0

0 0 0 20 3 7 0 2

The 180◦ rotation of the second propagation in Sect. 5 is carried out with the swap
regions DD3, DD5, DD16, and DD12.

We record two additional consequences that are important for the general bijection
for p ≥ 2. Let P be a gashed single-row puzzle with label c1 on the left border and
label c2 on the right border. We will say that P has border (c1,

u
u′ , v′, c2) if P has a

horizontal gash on the top border corresponding to the relation u
1−→ u′, and the bottom

border of P has labels v′. Similarly we will say that P has border (c1, u, v
v′ , c2) if P

has a horizontal gash on the bottom border corresponding to the relation v
1−→ v′, and

the top border of P has labels u.

Lemma 6.3 Let P be a single-row puzzle with a gash on its top border. Let
(c1,

u
u′ , v′, c2) be the border of P, let (c1, u, v

v′ , c2) be the border of �(P), let (i, j)

be the index of u
1−→ u′, and let (k, l) be the index of v

1−→ v′. Then we have i ≤ l and

k < j . Moreover, if one of the relations u
1−→ u′ or v

1−→ v′ has type E, then i − 1 ≤ k
and j − 1 ≤ l.

Proof The inequalities i ≤ l and k < j are equivalent to the existence of a non-
horizontal puzzle edge e, such that the top node of e separates the left and right legs of
the gash on P , and the bottom node of e separates the left and right legs of the gash on
�(P). Assume at first that the propagation P �→ �(P) involves a swap regionR that
moves both legs of the gash. In this case an inspection of the propagation table shows
that e may be taken as one of the interior edges of R. Otherwise some intermediate
puzzle in the propagation contains a non-horizontal gash whose front edge is different

from both of its legs. We may then take e to be the front edge of this gash. If u
1−→ u′

has type E, then the second claim follows because none of the legs of a gash of type
E are able to move more than one step to the left during a propagation. This can be

seen by inspecting the swap regions in Sect. 6.5. Finally, if v
1−→ v′ has type E, then

the same argument applies to ρ �(P). ��
Definition 6.4 Let P be a single-row puzzle with border (c1,

u
u′ , v′, c2), and let

(c1, u, v
v′ , c2) be the border of �(P). We will say that the propagation P �→ �(P)

has type X–Y if the relation u
1−→ u′ has type X and the relation v

1−→ v′ has type Y.
Given a small triangle τ of P , the top part of τ is the intersection of τ with the top
border of P , and the bottom part of τ is the intersection of τ with the bottom border of
P . One of these ‘parts’ of τ is a point, and the other is a small horizontal line segment.
We will say that τ is an interior triangle of the propagation P �→ �(P) if the top part
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of τ is located between the left and right legs of the gash on P , and the bottom part of
τ is located between the left and right legs of the gash on �(P).

Lemma 6.5 Let P be a single-row puzzle with a horizontal gash on the top border,
and assume that the propagation P �→ �(P) has type E–E. Then all interior triangles
are unchanged by this propagation and come from the list:

0
0 0

2
0 5

0
3 1

2
3 6

0
00

2
05

0
31

2
36

Proof This follows by inspection of the swap regions in Sect. 6.5. The triangles on
the list correspond to the swap regions EE10, EE12, EE13, EE14, EE15, EE19, EE18,
and EE20. ��

7 The general bijection

Let P be a single-row puzzle with border (c1, u′, v′, c2) and let u be a label string

such that u
p−→ u′ for some p. We define a new single-row puzzle�u(P) as follows. If

u = u′, then set �u(P) = P . If p = 1 and u
1−→ u′, then let P ′ be the puzzle obtained

from P by changing the border to (c1,
u
u′ , v′, c2), let (c1, u, v

v′ , c2) be the border of
�(P ′), and let �u(P) be the puzzle obtained from �(P ′) by changing this border to

(c1, u, v, c2). Otherwise let u = u0 1−→ u1 1−→ · · · 1−→ u p = u′ be the unique right-
increasing Pieri chain from u to u′. By induction on p we may assume that �u1(P)

has already been defined. We then set �u(P) = �u(�u1(P)).

Example 7.1 Letu =(1, 0, 2, 4, 2, 5),u′ = (4, 2, 0, 6, 2, 0), andv′ =(2, 5, 1, 2, 2, 0).
We list the intermediate puzzles occurring when the map �u is applied to a puzzle
with border (1, u′, v′, 2). For each step we have colored the union of the swap regions
used to change the puzzle.

4 2 0 6 2 0

2 5 1 2 2 0
2 2 0 2 2 51 2 0 3 2 2 2

4 2 0 1 2 5

2 5 1 2 0 2
2 2 0 0 0 21 2 0 3 5 0 2

1 2 0 4 2 5

2 3 4 2 0 2
1 1 0 0 0 21 4 0 7 5 0 2

1 0 2 4 2 5

3 2 4 2 0 2
1 0 0 0 0 21 0 5 7 5 0 2
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Lemma 7.2 Let ũ be any label string contained in the unique right-increasing Pieri
chain from u to u′. Then we have �u(P) = �u(�ũ(P)).

Proof Let u = u0 1−→ u1 1−→ · · · p−→ u p = u′ be the right-increasing Pieri chain. It
follows from the definition that �u(P) = �u(�u1(P)). If ũ �= u, then ũ is contained
in the unique right-increasing Pieri chain from u1 to u′, so by induction on p we obtain
�u(�u1(P)) = �u(�u1(�ũ(P))) = �u(�ũ(P)), as required. ��

Lemma 7.3 Let P be a single-row puzzle with border (c1, u p, v p, c2), and let u0 1−→
u1 1−→ · · · 1−→ u p be a right-increasing Pieri chain. Let (c1, ut , vt , c2) be the border

of �ut
(P) for each t ∈ [0, p]. Then v0

1−→ v1
1−→ · · · 1−→ v p is a Pieri chain.

Before we prove Lemma 7.3, we emphasize that the produced Pieri chain v0
1−→

v1
1−→ · · · 1−→ v p is not necessarily right increasing; when this occurs, we say that the

propagation paths cross. In addition, the lemma is false without the assumption that

the Pieri chain u0 1−→ u1 1−→ · · · 1−→ u p is right increasing. These points are essential
to how propagation paths are allowed to cross each other in a controlled way.

Proof Since�ut−1
(P) = �ut−1

(�ut
(P)) by Lemma 7.2, it follows from the definition

of � in Sect. 6 that vt−1 1−→ vt for each t ∈ [1, p]. Let (it , jt ) be the index of

ut−1 1−→ ut , and let (kt , lt ) be the index of vt−1 1−→ vt for each t . Then we have
j1 < j2 < · · · < jp by assumption, and Lemma 6.3 implies that it ≤ lt and kt < jt
for each t . Let 1 ≤ s < t ≤ p; we must show that ks < lt . If jt−1 ≤ it , then this is
true because ks < js ≤ jt−1 ≤ it ≤ lt . Otherwise, it follows from Lemma 4.5 that

ut−1 1−→ ut has type E, so Lemma 6.3 implies that jt − 1 ≤ lt . In this case we obtain
ks < js ≤ jt − 1 ≤ lt , as required. ��

Corollary 7.4 Let P be a single-row puzzle with border (c1, u′, v′, c2) such that u
p−→

u′ for some u and p, and let (c1, u, v, c2) be the border of �u(P). Then v
p−→ v′.

Proof This follows from Lemma 7.3. ��

Notice that if we turn the last puzzle in Example 7.1 upside-down and apply �v′∨
,

then the sequence of propagations in the example will be undone in reverse order.
However, when the propagation paths cross, we get a slightly different propagation
order. This occurs when a propagation of type A–A is carried out inside a propagation
of type E–E.

Example 7.5 We show the steps involved in applying �u to a single-row puzzle with
border (0, u′, v′, 0), where u = (3, 0, 0, 2, 2, 4), u′ = (5, 0, 2, 2, 0, 1), and v′ = u∨.
The first step is a propagation of type E–E, while the second and third steps are
propagations of type A–A.
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5 0 2 2 0 1

4 2 2 0 0 3
2 3 3 3 3 10 1 6 6 1 1 0

3 0 2 2 0 4

1 2 2 0 0 5
1 3 3 3 3 20 1 6 6 1 1 0

3 0 2 0 2 4

1 2 0 2 0 5
1 3 3 3 3 20 1 6 1 6 1 0

3 0 0 2 2 4

1 0 2 2 0 5
1 3 3 3 3 20 1 1 6 6 1 0

Notice that the resulting puzzle is equal to the 180◦ rotation of the initial puzzle P , so
we have ρ �uρ �u(P) = P . However, the second application of �u does not undo
the propagations of the first application of �u in the expected reverse order. This is
the main issue in the proof of Proposition 7.6 below.

Let Q be a single-row puzzle with border (c1, u, v, c2) such that v
p−→ v′ for some

v′ and p. Then we define �v′(Q) = ρ �v′∨
ρ(Q). Lemma 7.3 implies that this puzzle

has border (c1, u′, v′, c2) for a label string u′ with u
p−→ u′.

Proposition 7.6 Let P be a single-row puzzle with border (c1, u′, v′, c2) and let u be

a label string such that u
p−→ u′ for some p. Then we have �v′(�u(P)) = P.

Proof We proceed by induction on p. The statement is clear if p = 0, and
for p = 1 it follows from Proposition 6.1. Assume that p ≥ 2 and let u =
u0 1−→ u1 1−→ · · · 1−→ u p = u′ be the unique right-increasing Pieri chain. For
each t ∈ [0, p] we set Pt = �ut

(P), and we let (c1, ut , vt , c2) be the border

of this puzzle. Then v = v0
1−→ v1

1−→ · · · 1−→ v p = v′ is a Pieri chain by

Lemma 7.3. Let (it , jt ) be the index of ut−1 1−→ ut and let (kt , lt ) be the index of

vt−1 1−→ vt .
Assume first that kp = max{k1, . . . , kp}. Then it follows from Proposition 4.7(b)

and Lemma 7.2 that �v′(P0) = �v′(�v p−1(P0)). Since P0 = �u(Pp−1),
we obtain from the induction hypothesis that �v p−1(P0) = Pp−1. We deduce
that �v′(�u(P)) = �v′(P0) = �v′(�v p−1(P0)) = �v′(Pp−1) = P , as
required.

Otherwise, we have kp < ks for some s ≤ p − 1. Since {vt } is a Pieri
chain, this implies that kp + 1 ≤ ks < min(l p−1, l p). It follows that the rela-

tion v p−1 1−→ v p is not of type A, and Lemma 4.5 implies that kp < kp−1 <

l p−1 < l p, the relation v p−2 1−→ v p−1 has type A, and v p−1 1−→ v p has type
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E. Lemma 6.3 now implies that i p ≤ kp + 1 ≤ kp−1 < jp−1, so another
application of Lemma 4.5 shows that i p < i p−1 < jp−1 < jp, the rela-

tion u p−2 1−→ u p−1 has type A, and the relation u p−1 1−→ u p has type E.
Notice also that kt ≤ l p−1 − 1 = kp−1 for each t ∈ [1, p − 1], so kp−1 =
max{k1, . . . , kp}.

The propagation P = Pp �→ Pp−1 is carried out by first changing the bor-

der of Pp to (c1,
u p−1

u p , v p, c2), then applying �, and finally changing the border
of the resulting puzzle to (c1, u p−1, v p−1, c2). This application of � is therefore a
propagation of type E–E. Furthermore, the step Pp−1 �→ Pp−2 is carried out by

changing the border of Pp−1 to (c1,
u p−2

u p−1 , v
p−1, c2), applying �, and changing the

border of the result to (c1, u p−2, v p−2, c2). Here, the application of � is a propa-
gation of type A–A, which can happen only by applying a single swap region R
of type AA1, AA2, AA3, or AA4. Notice that all small triangles of R (before the
swap) must be interior triangles to the propagation Pp �→ Pp−1 of type E–E. We
therefore deduce from Lemma 6.5 that R must have type AA1 or AA4. Since the
triangles after a swap of type AA1 or AA4 are also on the list of Lemma 6.5, the
E–E and A–A propagations can be carried out in the opposite order with the same
result.

More precisely, let ũ be the unique label string described in Lemma 4.5, so

that u p−2 1−→ ũ
1−→ u′ is a Pieri chain, u p−2 1−→ ũ has type E, and ũ

1−→
u′ has type A. Similarly, let ṽ be the unique label string such that v p−2 1−→
ṽ

1−→ v′ is a Pieri chain, v p−2 1−→ ṽ has type E, and ṽ
1−→ v′ has type

A. Now set P̃ = �ũ(P). Then P̃ has border (c1, ũ, ṽ, c2) and �u p−2
(P̃) =

Pp−2.

Using that u0 1−→ · · · 1−→ u p−2 1−→ ũ is a right-increasing Pieri chain, we obtain

P0 = �u(Pp−2) = �u(�u p−2
(P̃)) = �u(P̃). Since v0

1−→ · · · 1−→ v p−2 1−→ ṽ
1−→ v′

is a Pieri chain and ṽ
1−→ v′ has index (kp−1, l p−1) with kk−1 = max{k1, . . . , kp},

we obtain from Proposition 4.7(b) and Lemma 7.2 that �v′(P0) = �v′(�ṽ(P0)).
Finally, since the induction hypothesis implies that �ṽ(P0) = �ṽ(�

u(P̃)) = P̃ ,
we obtain �v′(�u(P)) = �v′(P0) = �v′(�ṽ(P0)) = �v′(P̃) = P , as required.

��
Proof of Proposition 2.2 The identity (3) follows from Corollary 3.2. Let u, v′, w1,
and w2 be 012-strings and let p ∈ N. We will say that a parallelogram-shaped puzzle
has border (w1, u, v′, w2) if u gives the labels of the top border, v′ gives the labels of
the bottom border, w1 gives the labels of the left border, and w2 gives the labels of the
right border, all in north-west to south-east order. Recall from Sect. 3 that to prove the
identity (4) it suffices to construct a bijection between the set of parallelogram-shaped

puzzles with border (w1, u′, v′, w2) such that u
p−→ u′, and the set of parallelogram-

shaped puzzles with border (w1, u, v, w2) such that v
p−→ v′. We do this by modifying

one row at the time.
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w1 w2

u

v

w1 w2

u

v

Given a parallelogram-shaped puzzle P ′ with border (w1, u′, v′, w2), let n be the
number of rows in this puzzle, let P ′

i be the subpuzzle in the i-th row for 1 ≤ i ≤ n

(counted from top to bottom), and let (ci , u′i−1
, u′i , c′

i ) be the border of P ′
i . Then

u′0 = u′ and u′n = v′. Set u0 = u and P1 = �u0(P ′
1). Assume inductively that

P1, . . . , Pi have already been defined. Then let (ci , ui−1, ui , c′
i ) be the border of

Pi and set Pi+1 = �ui
(P ′

i+1). Finally, let �u(P ′) be the union of the rows Pi for
i ∈ [1, n], and let v be the labels of the bottom border of this puzzle. Then �u(P ′) is
a valid puzzle with border (w1, u, v, w2) such that v

p−→ v′. Finally, it follows from
Proposition 7.6 that ρ �v′∨

ρ �u(P ′) = P ′, which implies that the map P ′ �→ �u(P ′)
is a bijection. ��
Example 7.7 Here is an example of the bijection in the proof of Proposition 2.2 in a
case where two propagation paths cross each other.

1
2 0 2 2

1

4 2 0 1

2 2 0 1

2 3 3 12 1 6 1 1

2 2 5 41 2 2 2 2

1
2 0 2

1 2

4 0
2

2
0 1

2 2 0 1

2 3 1 12 1 1 4 1

2 2 5 41 2 2 2 2

1 0 2 2

1
4

0
2

2
0

4
1

2 2 0 1

4 5 2 22 2 2 2 1

2 2 5 41 2 2 2 2

1 0 2 2

1 0
2

2
0 4

2 1
2 0 2

1

4 5 2 22 2 2 2 1

1 1 3 21 4 1 1 2

1 0 2 2

1 0 2 4

1
2 2 0 2

1

4 5 2 22 2 2 2 1

1 3 3 21 1 6 1 2

Here is what happens if the propagations are carried out one after another: that
is, each gash is allowed to propagate to the bottom of the puzzle before the next
propagation begins.
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1
2 0 2 2

1

4 2 0 1

2 2 0 1

2 3 3 12 1 6 1 1

2 2 5 41 2 2 2 2

1
2 0 2

1 2

4 0
2

2
0 1

2 2 0 1

2 3 1 12 1 1 4 1

2 2 5 41 2 2 2 2

1
2 0 2

1 2

4 0 2 1

2 0
2

2
0 1

2 3 1 12 1 1 4 1

2 5 2 41 2 2 2 2

1 0 2 2

1
4 0 2 4

1

2 0
2

2
0 1

4 5 2 22 2 2 2 1

2 5 2 41 2 2 2 2

1 0 2 2

1 0 2 4

2 0
2

1
0

2
1

4 5 2 22 2 2 2 1

1 7 1 21 4 4 1 2

Notice that the resulting 012-strings v = (2, 0, 1, 2) and v′ = (2, 2, 0, 1) on the

bottom border do not satisfy v
2−→ v′. This illustrates why several propagations must

be handled simultaneously and in the correct sequence, in order to obtain a proof of
Proposition 2.2.

8 A quantum Littlewood–Richardson rule

LetY = G(m, n) denote theGrassmannian parametrizingm-dimensional complex lin-
ear subspaces ofCn . The Schubert varieties Yu in Y and their classes [Yu] in H∗(Y,Z)

may be indexed by 02-strings u = (u1, . . . , un) with m zeroes and n − m twos. The
codimension of Yu in Y is equal to the number of inversions �(u).

Let u, v, andw be three 02-strings as above and fix a nonnegative integer d such that
�(u) + �(v) + �(w) = m(n − m) + nd. The three-point, genus zero Gromov–Witten
invariant 〈[Yu], [Yv], [Yw]〉d may be defined as the number of rational maps f : P1 →
Y of degreed such that f (0) ∈ Yu , f (1) ∈ Yv , and f (∞) ∈ Yw, whenever the Schubert
varieties Yu , Yv , and Yw are taken to be in general position. When d = 0, we have that
〈[Yu], [Yv], [Yw]〉0 is equal to the triple intersection number

∫
Y [Yu]·[Yv]·[Yw], which is

a Schubert structure constant in the cohomology of the Grassmannian Y , and given by
the classical Littlewood–Richardson rule. In general, the invariants 〈[Yu], [Yv], [Yw]〉d

are Schubert structure constants in the small quantum cohomology ring of Y , which
is a q-deformation of H∗(Y,Z).

If d ≤ min(m, n−m), define a 012-string ud by changing the first d twos and the last
d zeroes of u to ones. For example, if Y = G(4, 10), d = 2, and u = 2, 022, 020, 202,
then ud = 1, 012, 021, 212. We similarly define the 012-strings vd and wd . Our main
theorem may now be used to establish the following conjecture of Buch, Kresch, and
Tamvakis from [2, section 2.4].

Theorem 2 (Quantum Littlewood–Richardson rule) Let Yu, Yv , and Yw be Schubert
varieties in G(m, n), and suppose that �(u) + �(v) + �(w) = m(n − m) + nd.
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The Gromov–Witten invariant 〈[Yu], [Yv], [Yw]〉d is equal to the number of triangular
puzzles for which ud , vd , and wd are the labels on the left, right, and bottom sides, in
clockwise order, when d ≤ min(m, n − m), and is zero otherwise.

Proof The 012-strings ud , vd , and wd index Schubert varieties Xud , Xvd , and Xwd in
the two-step flag variety Fl(m − d, m + d; n). According to [2, Corollary 1] we have

〈[Yu], [Yv], [Yw]〉d =
∫
Fl(m−d,m+d;n)

[Xud ] · [Xvd ] · [Xwd ].

The desired result follows by applying Theorem 1. ��
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