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Abstract A2-cell decomposition of a closed orientable surface is called a regularmap
if its automorphism group acts transitively on the set of all its darts (or arcs). It is well
known that the group G = Aut+(M) of all orientation-preserving automorphisms of
such a map M is a finite quotient of the free product � = Z ∗ C2. In this paper we
investigate the situation where G is nilpotent and the underlying graph of the map is
simple (with no multiple edges). By applying a theorem of Labute (Proc Amer Math
Soc 66:197–201, 1977) on the ranks of the factors of the lower central series of �

(via the associated Lie algebra), we prove that the number of vertices of any such
map is bounded by a function of the nilpotency class of the group G. Moreover, we
show that for a fixed nilpotency class c there is exactly one such simple regular map
Mc attaining the bound, and that this map is universal, in the sense that every simple
regular map M for which Aut+(M) is nilpotent of class at most c is a quotient of
Mc. In particular, there are finitely many such quotients for any given value of c, and
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every regular mapM, whether simple or non-simple, for which Aut+(M) is nilpotent
of class at most c, is a cyclic cover of exactly one of them.

Keywords Regular map · Graph embedding · Nilpotent group

Mathematics Subject Classification 57M15 · 05C10 · 05E18 · 57M60

1 Introduction

Regular maps are cellular decompositions of closed surfaces exhibiting the largest
possible number of symmetries, or the largest number of these that preserve orien-
tation. The study of regular maps grew out of work in the late 1800s by Dyck and
Burnside and others on group actions on surfaces, and was progressed substantially
by Brahana [1]. Since those earliest times, regular maps have been closely related to
their automorphism groups.

The main reason behind this is the fact that the group of all orientation-preserving
automorphisms of any regular map on an orientable surface having p-gonal faces, with
q facesmeeting at each vertex, is a smooth finite quotient of the ordinary triangle group

�(q, 2, p) = 〈 a, b | aq = b2 = (ab)p = 1 〉,

with ‘smooth’ (here) meaning that the orders of the elements a, b and ab are preserved,
or equivalently, that the kernel is torsion-free. Conversely, any smooth homomorphism
from �(q, 2, p) to a finite group G gives rise to a unique regular map with p-gonal
faces, q at each vertex, whose orientation-preserving automorphism group is isomor-
phic to G.

In this paper we address the problem of classification of regular maps with a given
automorphism group. This problem has received relatively little attention in compar-
ison to classifying regular maps on a given surface, or with a given underlying graph.
Complete classification results are very rare and, aside from the folklore result describ-
ing regular maps with abelian automorphism groups, most of them are related to finite
simple groups—see [11,12,19], for example.

Herewe take another viewpoint, and concentrate our attention on orientably-regular
maps for which the orientation-preserving automorphism group is nilpotent. We will
call these nilpotent maps. Our attention is restricted to regular maps on orientable
surfaces, because the only non-orientable regular maps with nilpotent automorphism
group are cycles of length 2n (for each n ≥ 1) embedded in the projective plane, and
their geometric duals; see [22, p. 450] or [9, Theorem 3.4].

In contrast to the abelian case, the class of nilpotentmaps is rich. This class includes,
for example, regular embeddings of the complete bipartite graphs Kn,n and regular
embeddings of the n-dimensional cubes, when n is a power of 2; indeed, the auto-
morphism groups of all such maps are 2-groups (since the numbers of vertices and
the orders of vertex-stabilisers are powers of 2). Recently completed classifications of
these two families of maps (in [3,6–8]) show that both complete bipartite maps and
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n-cube maps exhibit a great variety of forms, and suggest that achieving a complete
classification of nilpotent regular maps may be a very difficult problem.

The first thorough study of nilpotent regular maps was undertaken by Malnič,
Nedela and Škoviera in [16]. Two fundamental observations were made in the latter
study: first, a nilpotent regular map with non-abelian automorphism group must be
bipartite (see [16, Theorem 3.4]), and second, every nilpotent regular map can be
uniquely decomposed into a direct product of a regular map whose automorphism is a
2-group and a spherical regular map consisting of a single vertex and odd number of
semi-edges (see [16, Theorem 3.2]). Moreover, it is easy to see that the second factor
adds only edges that are parallel to the edges of the first factor. It follows that nilpotent
maps tend to have multiple edges, and those with simple underlying graph must arise
from 2-groups.

It is also known that every orientably-regular mapMwith multiple edges gives rise
to two smaller regular maps: a quotient regular map M′ which has the same number
of vertices as M but with simple underlying graph, and a regular embedding M′′
of the dipole graph which has two vertices and the same multiplicity as M; see [23,
Theorem 3] or [9, Theorem 2.1]. Moreover, ifM is nilpotent, then bothM′ andM′′
are also nilpotent. It follows that the problem of classifying nilpotent maps splits into
the problem of classifying nilpotent maps with simple underlying graph, the problem
of classifying nilpotent dipoles, and the problem of determining how these two types
of regular maps may be combined.

As shown in [16], nilpotent dipoles are not difficult to classify. In fact, for every
integerμ ≥ 2, up to isomorphism there are only one, two, or four nilpotent dipolemaps
with edge-multiplicity μ; see [16, Theorem 4.6]. Hence the main part of our classifi-
cation problem involves understanding nilpotent maps with simple underlying graph.

Our main objective in this paper is to show that for any positive integer c, there
are only finitely many regular maps with simple underlying graph, such that the
orientation-preserving automorphism group of the map is nilpotent of class c. In fact,
weprove that the number of vertices of any suchmap is boundedby a function of c.Also
wegive an exact formula for themaximumnumber of vertices of a simple nilpotentmap
of class c, and show that thismaximum is achieved by exactly one nilpotent simplemap
Mc, and that every other simple nilpotent map of the given class c is a quotient ofMc.

We do this in Sect. 3, after giving some further background in Sect. 2, and to
complete the paper we give all nilpotent simple maps of class 2 to 4 in Sect. 4.

2 Preliminaries

In this section we provide some further background, first on orientably-regular maps,
and second on nilpotent groups.

2.1 Orientably-regular maps

A map is a cellular embedding of a connected graph or multigraph into a closed
surface, giving a decomposition of the surface into 0-cells (the vertices), 1-cells (the
edges), and 2-cells (called the faces of the map). Note that the faces must be simply-
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connected (that is, homeomorphic to a unit disc inR2), which forces connectedness of
the underlying graph. A map is said to be orientable if its carrier surface is orientable.

An automorphism of amapM is a permutation of the cells ofM that sends vertices
to vertices, edges to edges, and faces to faces, and preserves incidence between them.
The group of all automorphisms of M is denoted by Aut(M). In the orientable
case, an automorphism may preserve or reverse orientation, but in this paper, we
will deal with only orientable maps, and we will consider only orientation-preserving
automorphisms. These form a group Aut+(M), which has index 1 or 2 in Aut(M),
depending on whether the map is chiral or reflexible, respectively.

It is easy to see that by connectedness, every orientation-preserving automorphism
is uniquely determined by its effect on any given ordered edge (or arc, or dart) of
M, and so Aut+(M) acts semi-regularly on the set DM of all darts ofM. It follows
that the largest conceivable number of orientation-preserving automorphisms is equal
to |DM|, and that this maximum is achieved if and only if the action of Aut+(M)

is transitive (and hence regular) on DM. Thus M is said to be regular (or to be
more precise, orientably-regular) if Aut+(M) is transitive on DM, or equivalently,
if |Aut+(M)| = |DM|.

When M is orientably-regular, the group Aut+(M) also acts transitively on ver-
tices, and on edges, and on faces of M. It follows that every vertex has the same
degree/valency q, and every face has the same size p, and in this case, we say thatM
has type {p, q}.

Next, it is well known that every orientably-regular mapM can be identified with
a triple (G; a, b), where G is a finite group and {a, b} is a generating pair for G
with b2 = 1. The easiest way to do this is to take G = Aut+(M), and then let a
be an automorphism of M that fixes a vertex v and induces a single-step rotation
of its q neighbours, consistently with the orientation of the surface, and let b be an
automorphism ofM that interchanges v with one of its neighbours, reversing the edge
e between them. In that case, the product ab preserves a face f containing e (and v),
and induces a single-step rotation of the p vertices of f , again consistently with the
orientation of the surface. Then a and b satisfy the defining relations of the ordinary
triangle group �(q, 2, p), namely aq = b2 = (ab)p = 1, and also by connectedness,
they generate G.

Any such triple (G; a, b)may be called an algebraic orientably-regular map. From
any such triplewe can construct an orientably-regularmapM, as follows. The vertices,
edges, and faces ofMmaybe taken as the (right) cosets inG of the subgroupsV = 〈a〉,
E = 〈b〉 and F = 〈ab〉, respectively, with incidence between given by non-empty
intersection of cosets. In particular, the number of vertices ofM is equal to the index
of V = 〈a〉 inG. Furthermore, the groupG acts naturally onM by rightmultiplication
of cosets, preserving incidence, and indeed G = Aut+(M).

If the underlying graph of this map M has multiple edges, then some non-trivial
subgroup of V = 〈a〉 is preserved by b, and so the core of V in G is non-trivial. The
converse also holds, and therefore the map M = (G; a, b) has simple underlying
graph if and only if V = 〈a〉 is core-free in G.

Also the genus of the carrier surface of M is the non-negative integer g given by
the Euler-Poincaré formula 2 − 2g = |G|(1/q − 1/2 + 1/p).
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An easy example of an algebraic orientably-regular map M = (G; a, b) occurs
whenG is a cyclic group of order n, generated by the elementa, andb is the identity ele-
ment of G. This map has a single vertex and n darts, with each dart being self-reverse.

Now let M1 = (G1; a1, b1) and M2 = (G2; a2, b2) be algebraic orientably-
regular maps. If there exists a group epimorphism φ : G1 → G2 taking a1 �→ a2 and
b1 �→ b2, then we call φ a map homomorphism fromM1 toM2, and say thatM2 is
a quotient ofM1, andM1 is a cover ofM2. (Note: we are not requiring the valency
of vertices to be preserved.)

It is sometimes helpful to extend the symbol for the type of an orientably-regular
mapM by adding the size of a Petrie polygon. APetrie path is a walk in the underlying
graph of M that is like a ‘zig-zag’, having the property that any two but no three
consecutive edges belong to a face ofM, and a Petrie polygon is a closed Petrie path.
An orientably-regular map M = (G; a, b) of type {p, q} with Petrie polygons of
size r is said to have type {p, q}r . It is easy to see that r is twice the order of the
commutator [a, b] = a−1bab.

The mirror image of an orientably-regular map M is obtained by reversing its
orientation. In particular, ifM = (G; a, b) then the mirror image ofM is isomorphic
to (G; a−1, b), and has the same type asM. Similarly, the (geometric) dual ofM is
obtained by interchanging the roles of vertices and faces. In particular, when M =
(G; a, b) has type {p, q}r , the dual of M is also orientably-regular, of type {q, p}r ,
and is isomorphic to (G; ab, b). Themirror-dual ofM is the mirror image of the dual
ofM (or equivalently, the dual of the mirror image ofM), and also has the same type
as the dual of M.

For more information about regular maps and the associated groups, see [5]. For
more specific details of some of the above properties and constructions, see [13,17].

2.2 Nilpotent groups

We use standard concepts and notation from group theory. We let |H | denote the order
of a subgroup H of a group G, and let |G : H | denote its index in G, and we let |x |
denote the order of an element x of G. Also we use [x, y] as an abbreviation for the
commutator x−1y−1xy of an ordered pair (x, y) of elements of G, and [H, K ] for the
subgroup generated by all commutators [x, y] with x ∈ H and y ∈ K , when H and
K are subgroups of G.

We define higher-order commutators inductively by setting

[x1, x2, . . . , xi+1] = [[x1, x2, . . . , xi ], xi+1] for i ≥ 1.

In the next section, we will use commutator identities (such as [a, b]2 = [a, b2][b,
[a, b]]) in the lead-up to the proofs of our main theorems.

Next, for any group G, set G0 = G and then define Gn+1 = [G,Gn], for all n ≥ 0,
so that G = G0 ≥ G1 ≥ G2 ≥ · · · is the lower central series of G, with each Gn

normal in G. (Note that some authors denote Gn by γn+1(G) or Ln+1(G) or similar.)
It is easy to prove that if G is generated by a subset X , then Gn is generated by

all conjugates in G of elements of [x1, x2, . . . , xn+1] with xi ∈ X for 1 ≤ i ≤ n+1,
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or equivalently, by Gn+1 and all such commutators; see [10, Hilfsatz III.1.11] for
example.

The group G is said to be nilpotent if Gc is trivial for some c, and then the smallest
c for which this happens is called the nilpotency class of G. Also (in general) for each
n ≥ 0, we may consider the quotient G/Gn . For example, G/G1 = G/[G,G] is the
abelianisation of G, and if Gn−1 �= Gn , then G/Gn is called the maximal class n
nilpotent quotient of G.

Every finite p-group is nilpotent, and every direct product of nilpotent groups is
nilpotent. In fact, an equivalent definition for finite groups is that G is nilpotent if and
only if G is the direct product of its Sylow subgroups; see [10, Hauptsatz III.2.3].

3 Nilpotent maps

In this section we prove our main theorems. We establish an upper bound on the
number of vertices of a nilpotent regular map of class c. In doing so, we derive an
exact formula for the maximum number of vertices in such a map, and show that there
is exactly one nilpotent map Mc of class c with simple underlying graph attaining
this maximum, and derive some of its properties.

Webeginwith the observation that in proving theboundwemay restrict our attention
to maps whose automorphism group is a 2-group. The following lemma is essentially
a rephrasing of Theorem 3.2 from [16].

Lemma 3.1 Let M = (G; a, b) be an orientably-regular map for which G =
Aut+(M) is nilpotent. Then M has a quotient M′ = (H ; a′, b′) with the property
that H is a 2-group and M′ has the same number of vertices as M.

Proof Since G is nilpotent, G is isomorphic to the direct product of its Sylow sub-
groups, and so can be expressed as a direct product H × K , where H is the Sylow
2-subgroup of G and K is the Hall 2′-subgroup of G (of odd order).

Now the canonical generators of G = Aut+(M) can be written as a = a′a′′ and
b = b′b′′, where 〈a′, b′〉 = H and 〈a′′, b′′〉 = K , but since b2 = 1 and K has odd
order, we must have b′′ = 1, and therefore K is cyclic, generated by a′′. It follows
that the subgroup H determines an orientably-regular map M′ = (H ; a′, b′) whose
automorphism is a 2-group. Also since H and K have relatively prime orders, we find
that |G|/|〈a〉| = |H ||K |/(|〈a′〉||〈a′′〉|) = |H |/|〈a′〉|, and so the maps M and M′
have the same number of vertices.

Finally, it is easy to see that M′ is isomorphic to (G/K ; aK , bK ), and hence a
quotient of M, as required. �


Now let � = Z ∗C2 be the free product of the infinite cyclic group with the cyclic
group of order 2, with presentation 〈 x, y | y2 = 1 〉.

Clearly, every finite homomorphic imageG of this group� gives rise to an algebraic
map M = (G; a, b), where a and b are the images of x and y, respectively. When
investigating a bound for the number of vertices of (G; a, b)withG nilpotent, we may
restrict our attention to the case where the vertex-stabiliser V = 〈a〉 is core-free in G.
By the proof of Lemma 3.1, in that case G is a 2-group.
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Before we proceed further, we introduce two infinite families of nilpotent quotients
of � :

Example 3.2 For each m ≥ 2, the dihedral group Dm = 〈 a, b | am = b2 = (ab)2 =
1 〉 is a quotient of � via the epimorphism taking (x, y) to (a, b). Also Dm is nilpotent
whenever m is a power of 2; indeed, if m = 2k then Dm has nilpotency class k. On
the other hand, for all m ≥ 2 the subgroup generated by a is normal, and hence not
core-free in Dm .

Example 3.3 For any n ≥ 1, let m = 2n and let P be the wreath product Cm � S2,
which is generated by two commuting elements u and v of order m and an involution
t that interchanges u and v by conjugation. Now ut = v, so 〈u, t〉 = P , and u and t
have orders m and 2, so P is a quotient of �. Next, [u, t] = u−1 ut = u−1v = w, say,
and this has order m, and is centralised by u and inverted by (conjugation by) t , so
w generates a cyclic normal subgroup of P . It follows that P1 = [P, P] is generated
by w, and an easy induction shows that Pj is the subgroup generated by w2 j−1

, for
all j . The smallest j for which Pj is trivial is n+1, since w has order m = 2n , and
so P has nilpotency class n+1. Also t conjugates each non-trivial power of u to the
same non-trivial power of v, and in particular, t does not centralise the involution
um/2 = u2

n−1
. Hence the core K of the cyclic subgroup generated by u is trivial.

Note The regular map associated with Example 3.2 is the dual of the standard embed-
ding of the m-cycle on the sphere. In Example 3.3 the underlying graph of the
associated regular map is the complete bipartite graph Km,m and the map is known
as the standard embedding of Km,m . The associated surface is the Fermat curve
xm + ym = 1; see [14].

We now proceed with some theory of nilpotent quotients of the group � = Z ∗C2.

Lemma 3.4 The factor group �n/�n+1 is non-trivial and abelian, for all n ≥ 0.

Proof First, the derived subgroup of �n is contained in [�,�n] = �n+1, and so
�n/�n+1 is abelian, for all n ≥ 0. To see that �n/�n+1 is non-trivial, we note that
the dihedral group D2n+1 = 〈 a, b | a2n+1 = b2 = (ab)2 = 1 〉 is a quotient of �, and
is nilpotent of class n + 1. It follows that D2n+1 is a quotient of �/�n+1 but not of
�/�n , so �n �= �n+1, and �n/�n+1 is non-trivial.

Even more can be said about the factors �n/�n+1 when n ≥ 1.

Proposition 3.5 For each n ≥ 1, the factor �n/�n+1 of the lower central series of �
is a finite elementary abelian 2-group.

Proof First, we know that �n/�n+1 is abelian (by Lemma 3.4), and also that
�n/�n+1 is finitely generated, since �n is generated by �n+1 and commutators
[x1, x2, . . . , xn+1] with xi ∈ X = {x, y} for 1 ≤ i ≤ n+1 (by [10, Hilfsatz III.1.11]).
Hence all we have to do is to show that �n/�n+1 has exponent 2. On the other
hand, �n is generated by conjugates of elements of the form [a, b], where a and b
are elements of � and �n−1, respectively, and so this reduces to showing that the
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square of each such [a, b] lies in �n+1. To do this, we use the easily proved fact that
[a, b]2 = [a, b2][b, [a, b]] for all a and b (in a given group).
Now �1 is generated by all conjugates of z = [x, y], since adjoining the relation

[x, y] = 1 to the presentation for the 2-generator group � gives the abelianisa-
tion �/[�,�] = �/�1. Also if w ∈ � then w−1zw = z[z, w] = z[[x, y], w] ∈
z[�1, �] = z�2, and therefore every conjugate of z lies in the coset z�2. Thus �1/�2
is cyclic, generated by z�2. Moreover, if we take a = x and b = y in the commutator
identity [a, b]2 = [a, b2][b, [a, b]], we find that z2 = [x, y]2 = [x, y2][y, [x, y]] =
[y, [x, y]] ∈ [�,�1] = �2. Thus �1/�2 has order 2.

Next, suppose n > 1, and let a and b be elements of � and �n−1, respectively.
Then by induction, we may assume that �n−1/�n has exponent 2, and hence that
b2 ∈ �n . It follows that [a, b2] ∈ [�,�n] = �n+1, and then since also [b, [a, b]] ∈
[�, [�,�n−1]] = [�,�n] = �n+1, the above commutator identity gives [a, b]2 as the
product of a pair of elements of �n+1, so [a, b]2 ∈ �n+1. Hence the square of every
generator of �n lies in �n+1, and so �n/�n+1 has exponent 2, as required. �


Note that Proposition 3.5 does not hold for n = 0, because �0/�1 = �/[�,�] is
the abelianisation of �, which is isomorphic to Z ⊕ C2 (since x has infinite order).

Corollary 3.6 (xy)2
n ∈ x2

n
�n for all n ≥ 1.

Proof We prove this by induction on n. First (xy)2 = x2x−1yxy = x2[x, y] ∈ x2�1.
Next, suppose (xy)2

n = x2
n
z where z ∈ �n . Then

(xy)2
n+1 = (x2

n
z)2 = (x2

n
)2x−2n zx2

n
z−1z2 = x2

n+1 [x2n , z−1]z2,

and as [x2n , z−1] ∈ [�,�n] = �n+1 and also z2 ∈ �n+1 (because � j/� j+1 has

exponent 2), it follows that (xy)2
n+1 ∈ x2

n+1
�n+1. �


The first factor �/�1 of the lower central series of � is the abelianisation of �,
which is isomorphic to Z ⊕ C2 since x has infinite order while y has order 2. The
second factor �1/�2 is cyclic of order 2, as shown in the proof of Proposition 3.5.

The ranks of the factor groups �n/�n+1 for n > 1 are given by some work by
Labute [15] on the associated Lie algebra. These ranks are determined by a sequence
of integers and two related sequences of partial sums, defined as follows:

Set h1 = 0, and then for n ≥ 2 take

hn = 1

n

∑

d|n
μ(n/d)

⎛

⎝
∑

0≤i≤d/3

(−1)i
d

d−2i

(
d−2i

i

)
2d−3i

⎞

⎠ ,

gn = h1 + h2 + · · · + hn =
n∑

j=1

hn,

fn = g1 + g2 + · · · + gn =
n∑

i=1

gn,
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where μ denotes the Möbius function. The first few terms of these three sequences
are given below, each starting from n = 1:
hn : 0, 1, 1, 1, 2, 2, 4, 5, 8, 11, 18, 25, 40, 58, 90, 135, 210, 316, …
gn : 0, 1, 2, 3, 5, 7, 11, 16, 24, 35, 53, 78, 118, 176, 266, 401, 611, 927, …
fn : 0, 1, 3, 6, 11, 18, 29, 45, 69, 104, 157, 235, 353, 529, 795, 1196, 1807, 2734, ….

We note that the sequence hn above agrees in all but the first termwith the sequence
A006206 in Neil Sloane’s On-line Encyclopedia of Integer Sequences [20], which
counts (among other things) the number of aperiodic binary necklaces of length n
with no subsequence 00, excluding the single-term necklace ‘0’.

The main theorem we use from the work of Labute is the following:

Theorem 3.7 (Labute [15]) The rank of the factor group�n−1/�n is gn, for all n ≥ 2.

An immediate consequence is the following:

Corollary 3.8 The order of the quotient �1/�n is 2 fn , for all n ≥ 2.

Proof |�1 : �n| = |�1 : �2||�2 : �3| . . . |�n−1 : �n| = 2g2+g3+ ··· +gn = 2 fn− f1 =
2 fn . �


The above information will help us find the orders of the largest nilpotent simple
maps of given class.

Before continuing further, we define H (n) to be the class n nilpotent quotient �/�n

of �. Also we need the following lemma, concerning the generators x and y of �:

Lemma 3.9 [x2k, y] = [xk, [y, xk]][[y, xk], y] for all k.
Proof Since y2 = 1, we have

[xk, [y, xk]][[y, xk], y] = x−k[xk, y]xk[y, xk][xk, y]y[y, xk]y
= x−k[xk, y]xk y[y, xk]y
= x−k x−k yxk yxk yyx−k yxk y = x−2k yx2k y = [x2k, y].

�

Proposition 3.10 For n ≥ 0, the subgroup of H (n+1) = �/�n+1 generated by the
image of x2

n
is normal, but for n > 0, the subgroup generated by the image of x2

n−1

is not.

Proof First, we show that [x2i , y] lies in �i+1, for all i ≥ 0. This is obvious for i = 0,
and we can prove it easily by induction for all i > 0: if k = 2i−1 and [xk, y] ∈ �i ,
then [xk, [y, xk]] ∈ [�,�i ] = �i+1 and [[y, xk], y] ∈ [�i , �] = �i+1, and so Lemma
3.9 implies that [x2i , y] = [x2k, y] is a product of a pair of elements of �i+1.

It follows that y−1(x2
n
)y = x2

n [x2n , y] lies in the coset x2n�n+1, for all n. Hence
in the quotient �/�n+1, the image of y normalises the cyclic subgroup Xn/�n+1 gen-
erated by x2

n
�n+1. Since x2

n
is centralised by x , the latter subgroup is also centralised

by the image of x , and so we find that Xn/�n+1 � �/�n+1.
On the other hand, suppose that the subgroup generated by the image of x2

n−1
in

�/�n+1 were normal. Then in the quotient C2n � S2 of � considered in Example 3.3,
the subgroup generated by u2

n−1
would be normal, but it is not—contradiction. �
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For a quotient of � to be the group of a regular map with simple underlying graph,
we need the stabiliser of a vertex to be core-free. It follows that the largest nilpotent
quotient of class c that is admissible is the quotient U (c) = H (c)/K , where K is the
core of the subgroup generated by the image of x in H (c) = �/�c, and every other
admissible quotient that is nilpotent of class at most cwith a core-free vertex-stabiliser
is a quotient of U (c).

Theorem 3.11 For each c ≥ 1, the groupU (c) = H (c)/K has order 2c+ fc , where fc is
as given just before Theorem3.7. The corresponding regularmaphas type {2c, 2c−1}2c ,
with valency 2c−1, face-size 2c, and Petrie polygons of length 2c.

Proof By Proposition 3.10 we know that the core K of the cyclic subgroup Xc/�c

generated by the image of x in H (c) = �/�c is generated by the image of x2
c−1

.
It follows that in the quotient U (c) = H (c)/K , the order of the image of x is 2c−1.
Also because the subgroup generated by x has trivial intersection with both �1 and
the subgroup generated by y, the abelianisation of U (c) has order 2c−1 · 2 = 2c.
Next, by Corollary 3.8 the factor group �1/�c has order 2 fc , and hence so does its
image in the quotient (�/�c)/K = U (c),which is the derived subgroup (U (c))1. Thus
|U (c)| = |U (c) : (U (c))1||(U (c))1| = 2c · 2 fc = 2c+ fc .

We now calculate the orders of the images of xy and [x, y] inU (c),which determine
the sizes of faces and Petrie polygons in the resulting map. By Corollary 3.6, we know
that (xy)2

c
lies in �c, and so the order of the image of xy inU (c)divides 2c. Similarly,

the commutator [x, y] lies in �1, and the exponent of �1/�c divides 2c−1 (since
� j/� j+1 has exponent 2 for 1 ≤ j < c), and so the order of the image of [x, y] in
U (c)divides 2c−1. On the other hand, consider the class c nilpotent quotient C2c−1 � S2
of � in Example 3.3 (with n = c−1). In this group, the images of xy and [x, y] are
the elements ut and [u, t], and these have orders 2m = 2c andm = 2c−1, respectively
(since (ut)2 = uut = uv and [u, t] = u−1ut = u−1v). It follows that the orders of the
images of xy and [x, y] inU (c)are exactly 2c and 2c−1, and hence in the corresponding
map, the face-size is 2c, and the length of Petrie polygons is 2 · 2c−1 = 2c as well. �


Corollary 3.12 For every integer c ≥ 1 there exists a unique nilpotent regular
map Mc of class c with simple underlying graph, having 21+ fc vertices, and type
{2c, 2c−1}2c . Furthermore, this map is ‘universal’, in the sense that every nilpotent
regular map of class at most c with simple underlying graph is a quotient ofMc.

We note that by its universality, the map Mc is reflexible, and also self-Petrie
(isomorphic to its Petrie dual—see [5] or [21]). In fact, universality of Mc implies
also that for every odd j the map Mc is invariant under the Coxeter/Wilson ‘hole’
operator Hj , which replaces the image x̄ of the generator x by its j-th power x̄ j

(see [21]). Similarly,Mc is invariant under every ‘e-switch’, which replaces the local
rotations at all vertices in one part of a bipartite map by their e-th powers (see [18]).
The cases j = −1 and e = −1 correspond to reflection and the Petrie dual operator,
respectively.
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4 Nilpotent simple regular maps of small class

We list below all of the nilpotent maps of class 2 to 4, having simple underlying graph.
There are 26 such maps, and for each one, we give its genus g, its type {p, q}r and
the order of its orientation-preserving automorphism group G = Aut+(M), as well
as defining relators for G (as words in the given generators x and y of � = Z ∗ C2 =
〈 x, y | y2 = 1 〉). These were found with the help of theMagma system [2]. The last
one for each class c is the universal map Mc. All of these maps are reflexible.

c g {p, q}r |G| Defining relators for G

2 0 {4, 2}4 8 x2, y2, (xy)4

3 0 {8, 2}8 16 x2, y2, (xy)8

3 1 {4, 4}4 32 x4, y2, (xy)4, [x, y]2
3 3 {8, 4}8 32 x4, y2, (xy)2(x−1y)2

3 5 {8, 4}8 64 x4, y2, xyx2yx−1yx−2y, (xy)4(x−1y)4

4 0 {16, 2}16 32 x2, y2, (xy)16

4 1 {4, 4}8 64 x4, y2, (xy)4, (x2y)2(x−2y)2

4 5 {8, 4}4 64 x4, y2, [x, y]2, (x2y)2(x−2y)2

4 7 {16, 4}16 64 x4, y2, xyx2yx−1yx−2y, (xy)6(x−1y)2

4 9 {8, 4}8 128 x4, y2, (x2y)2(x−2y)2, xyx2yxyx−1yx−2yx−1y, (xy)4(x−1y)4

4 13 {16, 4}16 128 x4, y2, xyx2yx−1yx−2y, (xy)8(x−1y)8

4 13 {16, 4}16 128 x4, y2, (x2y)2(x−2y)2, xyx2yxyx−1yx−2yx−1y, (xy)5x−1yxyx−1y
4 21 {16, 8}16 128 x8, y2, (xy)2(x−1y)2

4 21 {16, 8}16 128 x8, y2, xyx2yx−1yx−2y, x3yx−1yxyx−3y
4 25 {16, 4}16 256 x4, y2, (x2y)2(x−2y)2, xyx2yxyx−1yx−2yx−1y,

(xy)4(x−1y)2(xy)2(x−1y)2(xy)2(x−1y)4

4 33 {8, 8}8 256 x8, y2, xyx2yx−1yx−2y, (xy)8

4 33 {8, 8}8 256 x8, y2, x3yx−2yxyx−2y, (xy)8

4 41 {16, 8}16 256 x8, y2, xyx2yx−1yx−2y, (xy)4(x−1y)4

4 41 {16, 8}16 256 x8, y2, x3yx−2yxyx−2y, (xy)4(x−1y)4

4 65 {8, 8}8 512 x8, y2, (x2y)2(x−2y)2, xyx4yx−1yx−4y, (xyxyx−2y)2, (xy)8

4 81 {16, 8}16 512 x8, y2, xyx2yx−1yx−2y, (xy)5(x−1y)4(xy)3(x−1y)4

4 81 {16, 8}16 512 x8, y2, (x2y)2(x−2y)2, xyx4yx−1yx−4y, (xyxyx−2y)2, (xy)4(x−1y)4

4 81 {16, 8}16 512 x8, y2, x3yx−2yxyx−2y,
(xy)3(x−1y)2xy(x−1y)3(xy)2x−1y(xy)2(x−1y)2

4 81 {16, 8}16 512 x8, y2, (x2y)2(x−2y)2, xyx4yx−1yx−4y, (xyxyx−2y)2,
(xy)3(x−1y)2xy(x−1y)2

4 81 {16, 8}16 512 x8, y2, (x2y)2(x−2y)2, xyx4yx−1yx−4y, (xyxyx−2y)2,
x3yx−1yxyx−1yxy(x−1y)3

4 161 {16, 8}16 1024 x8, y2, (x2y)2(x−2y)2, xyx4yx−1yx−4y, (xyxyx−2y)2,
(xy)5(x−1y)2xy(x−1y)3(xy)2(x−1y)3

For class 5, there are 681 simple maps, of which 663 are reflexible (with genera
ranging from 0 to 13313), while the remaining 18 such maps fall into nine chiral pairs
(of genera 45, 105, 177, 417 (two pairs) and 833 (four pairs)). The smallest chiral
examples are a pair of genus 25 and type {16, 4}8, with G = Aut+(M) having order
256 and nilpotency class 6; these are the dual andmirror-dual of the chiral map labelled
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C25.1 in the first author’s list of all arc-transitive chiral maps of genus 2 to 101 (see
[4]).
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