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Abstract The depth statistic was defined by Petersen and Tenner for an element of
an arbitrary Coxeter group in terms of factorizations of the element into a product of
reflections. It can also be defined as the minimal cost, given certain prescribed edge
weights, for a path in the Bruhat graph from the identity to an element. We present
algorithms for calculating the depth of an element of a classical Coxeter group that
yield simple formulas for this statistic. We use our algorithms to characterize elements
having depth equal to length. These are the short-braid-avoiding elements. We also
give a characterization of the elements for which the reflection length coincides with
both depth and length. These are the boolean elements.
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1 Introduction

Let (W, S) be a Coxeter system. Two statistics on elements of W are classically
associated to any Coxeter system. First, each element w ∈ W can be written as a
product w = s1 · · · sr of simple generators si ∈ S. The length �S(w) of w is the
minimal number of simple generators s ∈ S needed to express w, so

�S(w) := min{r ∈ N | w = s1 · · · sr for some s1, . . . , sr ∈ S}. (1)

If r = �S(w), then any word w = s1 · · · sr is called a reduced expression for w.
The second statistic is known as reflection length. Let

T := {wsw−1 | s ∈ S, w ∈ W }. (2)

This is known as the set of reflections of W . The reflection length �T (w) is the
minimal number of reflections t ∈ T needed to express w, so

�T (w) := min{r ∈ N | w = t1 · · · tr for some t1, . . . , tr ∈ T }. (3)

Let � = �+ ∪ �− be the root system for (W, S), with � ⊂ � the simple roots.
The depth dp(β) of a positive root β ∈ �+ is defined as

dp(β) := min{r | s1 · · · sr (β) ∈ �−, s j ∈ S}.

It is easy to see that dp(β) = 1 if and only if β ∈ �. As a function on the set of roots,
depth is also the rank function for the root poset of a Coxeter group, as developed in
[5, §4].

Now, if we denote by tβ the reflection corresponding to the root β, Petersen and
Tenner introduced [11] a new statistic, also called depth and denoted dp(w) for any
w ∈ W , by defining

dp(w) := min

{
r∑

i=1

dp(βi ) | w = tβ1 · · · tβr , tβi ∈ T

}
.

Petersen and Tenner further observe that depth always lies between length and
reflection length. For each positive root β, one has

dp(tβ) = dp(β) = �S(tβ) + 1

2
. (4)

Hence, by definition,

�T (w) ≤ �T (w) + �S(w)

2
≤ dp(w) ≤ �S(w). (5)

Petersen and Tenner focus mainly on the case where (W, S) is the symmetric group
(with S being the adjacent transpositions). In particular, they provide the following:
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• A formula for depth in terms of the sizes of excedances. To be specific, they show

dp(w) =
∑

w(i)>i

(w(i) − i).

• The maximum depth for an element in Sn (for each fixed n) and a characterization
of the permutations that achieve this depth. (Both were also previously found by
Diaconis and Graham [6] starting from the above formula, which they called the
total displacement of a permutation.)

• An algorithm that, given w ∈ W , finds an expression w = t1 · · · tr that realizes the
depth of w.

• Characterizations both of the permutations w such that dp(w) = �S(w) and of
the permutations such that dp(w) = �T (w). Note that by (5), the latter equality is
equivalent to �T (w) = dp(w) = �S(w).

In this paper, we provide analogous results for the other infinite families of finite
Coxeter groups, namely the group Bn of signed permutations and its subgroup Dn of
even signed permutations. (The dihedral groups were also treated in [11].) Definitions
and our conventions for working with these groups follow in Sect. 2.

In each case, we give a formula for depth that, like those in [11], is in terms of
sizes of excedances, except we need to introduce a small adjustment factor that can be
explicitly calculated from the interaction of the signs and the sum decomposition of
the underlying unsigned permutation. Using our formulas, we can find the maximum
depth for any element in Bn or Dn for a given n and describe the signed permutations
that achieve this maximum.

Furthermore, we give algorithms that, given an element w, produce reflections
t1, . . . , tr such that w = t1 · · · tr and dp(w) = ∑r

i=1 dp(tr ). Our algorithms differ
from that of Petersen and Tenner in two respects that are worth mentioning. First, their
algorithm produces an expression with r = �T (w) reflections. This turns out to be
impossible in types B and D; indeed, there are elements w in both Bn and Dn where
no factorization ofw into �T (w) reflections realizes the depth. Second, we produce an
expression that is realized by a strictly increasing path in right weak order, which,
as we recall, is the partial order on W that is the transitive closure of the relation
where, for any w ∈ W and s ∈ S, w <R ws if �S(w) + 1 = �S(ws). (See [5, §3.1]
for further details.) To be precise, if we let wi = t1 · · · ti for all i with 1 ≤ i ≤ r ,
then �S(wi ) >R �S(wi−1) for all i , 2 ≤ i ≤ r . Petersen and Tenner only produce an
expression realized by an increasing path in Bruhat order.

Our algorithms have two properties implying that they produce an increasing path
in right weak order. One is that they always produce a reduced factorization, meaning
that �S(wi ) = �S(wi−1) + �S(ti ), and hence, �S(w) = ∑r

i=1 �S(ti ). Also, our algo-
rithms only use right multiplication. This means, given an element w, we produce the
last reflection tr , then recursively apply our algorithm to wtr , unlike the algorithm of
Petersen and Tenner, which, givenw, sometimes produces t1, then recursively decom-
poses t1w, and sometimes produces tr , then recursively decomposes wtr .

Using the property that depth is always realized by a reduced factorization into
reflections, it is easy to see that the elements w with �S(w) = dp(w) are precisely the
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short-braid-avoiding elements introduced by Fan [8]. In type B, these are precisely
the top-and-bottom fully commutative elements of Stembridge [13], confirming the
conjecture of Petersen and Tenner. The elements w with �T (w) = dp(w) are the
boolean elements of Tenner [14].

The remainder of our paper is organized as follows. Section 2 gives our conventions
for type B and type D and states our main theorems. Section 3 gives our algorithm
and the proof of our formula in type B, and Sect. 4 does the same for type D. Section
5 discusses the coincidences of depth, length, and reflection length. Section 6 lists a
series of open problems and various considerations stemming from the realization of
depth by reduced factorizations.

We thank Kyle Petersen for useful discussions, including letting us know that we
were unnecessarily duplicating efforts by independently working on these questions.

2 Definitions, conventions, and main results

Unless otherwise stated, the conventions we use for working with Bn and Dn are those
of [5, §8.1–8.2], where more details and proofs of statements can be found. For n ∈ N

we set [n] := {1, . . . , n}, and for m, n ∈ Z we set [m, n] := {m,m + 1, . . . , n}.

2.1 Type B

We define Bn to be the group of signed permutations on [n]. This is the group of
all bijections w of the set [−n, n] \ {0} onto itself such that w(−i) = −w(i) for all
i ∈ [−n, n] \ {0}, with composition as group operation. Since an element w ∈ Bn

is entirely determined by w(i) for i > 0, we write w = [w(1), . . . , w(n)] and call
this the window notation for w. For convenience, we will usually write our negative
signs above a number rather than to its left when using window notation. We denote
by sign(w(i)) and |w(i)| the sign and absolute value of the entry w(i). We let

sB0 := [1, 2, . . . , n] = (−1, 1),

si := [1, . . . , i−1, i+1, i, i+2, . . . , n]=(i, i + 1)(−i,−i − 1) for i ∈ [n − 1],

and SB := {sB0 , s1, . . . , sn−1}. Then (Bn, SB) forms a Coxeter system.
To state our formula for depth, we need the notion of an indecomposable element

and some associated definitions. These are standard definitions for permutations, but
as far as we are aware, they have not been previously extended to signed permutations.

Definition 2.1 Let u ∈ Bk, v ∈ Bn−k . Define the direct sum of u and v by:

(u ⊕ v)(i) :=
{
u(i) i ∈ {1, . . . , k};
sign(v(i − k))(|v(i − k)| + k) i ∈ {k + 1, . . . , k + l}.

A signed permutationw ∈ Bn is decomposable if it can be expressed as a nontrivial
(meaning 1 ≤ k ≤ n − 1) direct sum of signed permutations and indecomposable
otherwise. Every signed permutation has a unique expression as the direct sum of
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indecomposable signed permutations w = w1 ⊕ · · · ⊕ wk . This expression is called
the type B decomposition of w. The indecomposable pieces are called the type B
blocks (or simply blocks).

Definition 2.2 Given a signed permutation w = w1 ⊕ · · · ⊕ wk ∈ Bn , we define the
B-oddness ofw, denoted by oB(w), as the number of blocks in the sum decomposition
with an odd number of negative entries.

For example, if we let w = [4, 3̄, 1, 2̄, 7, 5, 6̄, 9, 8̄], then w is decomposable with
w = w1 ⊕ w2 ⊕ w3, where the blocks are w1 = [4, 3̄, 1, 2̄], w2 = [3, 1, 2̄], and
w3 = [2, 1̄]; moreover, oB(w) = 2. On the other hand, w′ = [8̄, 1, 9, 3, 5, 2, 6̄, 4, 7]
is indecomposable with oB(w′) = 0. The negative identity [1̄, . . . , n̄] is the oddest
element in Bn , with oddness n.

Given a signed permutation w, let

Neg(w) := {i ∈ [n] | w(i) < 0} and neg(w) := #Neg(w).

Now we can present an explicit formula for the depth of a permutation in Bn in terms
of window notation.

Theorem 2.3 Let w ∈ Bn. Then

dp(w) =
∑

{i∈[n]|w(i)>i}
(w(i) − i) +

∑
i∈Neg(w)

|w(i)| + oB(w) − neg(w)

2
. (6)

One can also reformulate this formula as follows to more closely match the formula
of Petersen and Tenner for the symmetric group:

Corollary 2.4 Let w ∈ Bn. Then

dp(w) = 1

2

⎛
⎝

⎛
⎝ ∑

{i∈[−n,n]\{0}|w(i)>i}
(w(i) − i)

⎞
⎠ + oB(w) − neg(w)

⎞
⎠ .

The group Bn can also be realized as the subgroup of the symmetric group S2n
consisting of the permutations w with w(i) + w(2n + 1− i) = 2n + 1 for all i ∈ [n].
Under this realization of Bn , the formula will translate to a similar form, but the term
neg will not appear any more.

Using our formula, we can easily show:

Corollary 2.5 For each w ∈ Bn we have dp(w) ≤ (n+1
2

)
, with equality if and only if

w = [1̄, 2̄, . . . , n̄].
Petersen and Tenner ask whether dp(w) can always be realized by a product of

�T (w) reflections. The following example shows that this is impossible in type B.

Example 2.6 Let w = [4̄, 2̄, 3̄, 1̄] ∈ B4. Then dp(w) = 8, since w is indecomposable
and oB(w) = 0. However, �T (w) = 3, and there are essentially only twoways to write

123



650 J Algebr Comb (2016) 44:645–676

w as the product of 3 reflections. One is to write w as the product of t1̄4 = [4̄, 2, 3, 1̄],
t2̄2 = [1, 2̄, 3, 4], and t3̄3 = [1, 2, 3̄, 4] in some order. (These reflections pairwise
commute.) The sum of the depths of these reflections is 9 > 8. One can also write w

as the product of t1̄4 = [4̄, 2, 3, 1̄], t2̄3 = [1, 3̄, 2̄, 4], and t23 = [1, 3, 2, 4] in some
order. The sum of the depths of these reflections is also 9 > 8.

However, we will show that our algorithm always produces a factorization of w

with the following property.

Theorem 2.7 Let w ∈ Bn. Then there exist reflections t1, . . . , tr such that w =
t1 · · · tr , dp(w) = ∑r

i=1 dp(ti ), and �S(w) = ∑r
i=1 �S(ti ).

One says that w = t1 · · · tr is a reduced factorization if �S(w) = ∑r
i=1 �S(ti ). This

theorem says that the depth of w is always realized by a reduced factorization of w

into transpositions. Note that we can consider Sn as the subgroup of Bn consisting of
permutations with no negative signs or equivalently as the Coxeter subgroup generated
by s1, . . . , sn−1. Hence, this theorem holds for Sn , and it is new even in that case.

2.2 Type D

We define Dn to be the subgroup of Bn consisting of signed permutations with an even
number of negative entries when written in window notation, or, more precisely, we
define Dn := {w ∈ Bn | neg(w) is even}. Let

sD0 := [2̄, 1̄, 3, . . . , n] = (1,−2)(−1, 2),

and SD = {sD0 , s1, . . . , sn−1}, where the si ’s are defined as in type B for i ∈ [n − 1].
Then (Dn, SD) forms a Coxeter system.

To state our formula in type D, we first need to be more careful about our notion of
decomposibility. Given a signed permutationw ∈ Dn , we can give a decomposition of
w asw = w1⊕· · ·⊕wk , where we insist that eachwi ∈ Dm ,m ≤ n and, furthermore,
no wi is a direct sum of elements of Dp, p < m. We call this decomposition of w a
type D decomposition and the blocks of this decomposition type D blocks.

We can also look at w ∈ Dn as an element of Bn and consider its type B decom-
position. Note that a type D block wi may split into bi smaller B-blocks, which we
denote wi = wi

1 ⊕ · · · ⊕ wi
bi
, where possibly bi = 1. Note that, whenever bi > 1,

wi
1 and wi

bi
must have an odd number of negative entries and the remaining central

B-blocks wi
2, . . . , w

i
bi−1 must have an even number of negative entries.

Definition 2.8 For each w ∈ Dn , we define the D-oddness of w, denoted by oD(w),
to be the difference between the number of type B blocks and the number of type D
blocks, or, equivalently, we define oD(w) := ∑

i (bi − 1).

For example, if w = [−2, 1, 3, 4,−5,−7,−8, 6], then the type D decomposition
is w = w1 ⊕w2 where w1 = [−2, 1, 3, 4,−5] and w2 = [−2,−3, 1], while the type
B decomposition has w = w1

1 ⊕ w1
2 ⊕ w1

3 ⊕ w1
4 ⊕ w2

1 (so b1 = 4 and b2 = 1) with
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w1
1 = [−2, 1],w1

2 = [1],w1
3 = [1],w1

4 = [−1], andw2
1 = w2 = [−2,−3, 1]. Hence,

oD(w) = 3. The oddest element in Dn is [1̄, 2, . . . , n − 1, n̄], with D-oddness n − 1.
Since every B-decomposable type D block has exactly two type B blocks with an

odd number of negative entries, and the D-oddness of w is at least its number of B-
decomposable type D blocks, we have oD(w) ≥ 1

2o
B(w) (where oB(w) is calculated

by considering w as an element of Bn via the embedding of Dn in Bn).
Now we can state our formula for depth in type D. Note that depth depends on the

Coxeter system, so w ∈ Dn will have different depth considered as an element of Dn

compared to considering it as an element of Bn .

Theorem 2.9 Let w ∈ Dn. Then

dp(w)=
⎛
⎝ ∑

{i∈[n]|w(i)>i}
(w(i)−i)

⎞
⎠+

⎛
⎝ ∑

i∈Neg(w)

|w(i)|
⎞
⎠ + (oD(w)−neg(w)). (7)

One also has a reformulation more closely matching the formula of Petersen and
Tenner for the symmetric group:

Corollary 2.10 Let w ∈ Dn. Then

dp(w) = 1

2

⎛
⎝

⎛
⎝ ∑

{i∈[−n,n]\{0}|w(i)>i}
(w(i) − i)

⎞
⎠ − 2neg(w)

⎞
⎠ + oD(w).

Using our formula, we can show the following:

Corollary 2.11 For each w ∈ Dn we have dp(w) ≤ (n
2

) + ⌊ n
2

⌋
. Equality occurs for

2
n−2
2 elements if n is even and 2

n+1
2 elements if n is odd.

The signed permutation of Example 2.6 also shows that dp(w) cannot always be
realized by a product of �T (w) reflections in type D (though its depths in type B and
type D are different).

Example 2.12 Let w = [4̄, 2̄, 3̄, 1̄] ∈ D4. Then dp(w) = 6, since w is indecompos-
able and oD(w) = 0. However, �T (w) = 3, and the only ways to write w as the
product of 3 reflections are as the product of t1̄4 = [4̄, 2, 3, 1̄], t2̄3 = [1, 3̄, 2̄, 4], and
t3̄3 = [1, 3, 2, 4] in some order. (These reflections pairwise commute.) The sum of the
depths of these reflections is 7 > 6.

As in type B, however, our algorithm always produces a reduced factorization of
w.

Theorem 2.13 Let w ∈ Dn. Then there exist reflections t1, . . . , tr such that w =
t1 · · · tr , dp(w) =

r∑
i=1

dp(ti ), and �S(w) =
r∑

i=1
�S(ti ).
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2.3 Coincidences of depth, length, and reflection length

The proofs of Theorems 2.7 and 2.13 are distinct, each using the specific combinatorial
realization of these groups described above. However, using these theorems, we can
uniformly prove results on the coincidence of depth, length, and reflection length.

Following Fan [8], we say that w ∈ W is short-braid-avoiding if there does not
exist a consecutive subexpression si s j si , where si , s j ∈ S, in any reduced expression
for w.

Theorem 2.14 Let w be an element of Sn, Bn, or Dn. Then dp(w) = �S(w) if and
only if w is short-braid-avoiding.

Since in Bn , the short-braid-avoiding elements are precisely the top-and-bottom
fully commutative elements defined by Stembridge [13, §5], we confirm a conjecture
of Petersen and Tenner [11, §5].

Let W be any Coxeter group. An element w ∈ W is called boolean if the principal
order ideal of w in W , B(w) := {x ∈ W | x ≤ w}, is a boolean poset, where ≤
refers to the Bruhat order. Recall that a poset is boolean if it is isomorphic to the set
of subsets of [k] ordered by inclusion for some k.

Theorem 2.15 Let W be any Coxeter group and w ∈ W. Then dp(w) = �T (w) if
and only if w is boolean.

These lead to the following enumerative results.

Corollary 2.16 (1) The number of elements w ∈ Bn satisfying dp(w) = �S(w) is the
Catalan number Cn+1 = 1

n+2

(2(n+1)
n+1

)
.

(2) The number of elements w ∈ Dn satisfying dp(w) = �S(w) is 1
2 (n + 3)Cn − 1.

Corollary 2.17 (1) The number of elements w ∈ Bn satisfying �T (w) = dp(w) =
�S(w) is the Fibonacci number F2n+1.

(2) The number of elements w ∈ Bn satisfying �T (w) = dp(w) = �S(w) = k is

k∑
i=1

(
n + 1 − i

k + 1 − i

)(
k − 1

i − 1

)
,

where for k = 0 the sum is defined to be 1.

Corollary 2.18 (1) For n ≥ 4, the number of elements w ∈ Dn satisfying �T (w) =
dp(w) = �S(w) is

13 − 4b

a2(a − b)
an + 13 − 4a

b2(b − a)
bn,

where a = (3 + √
5)/2 and b = (3 − √

5)/2.

123



J Algebr Comb (2016) 44:645–676 653

(2) For n > 1, the number of elementsw ∈ Dn satisfying �T (w) = dp(w) = �S(w) =
k is

LD(n, k) = L(n, k) + 2L(n, k − 1) − L(n − 2, k − 1) − L(n − 2, k − 2),

where L(n, k) =
k∑

i=1

( n−i
k+1−i

)(k−1
i−1

)
, L(n, k) is 0 for any (n, k) on which it is

undefined, and LD(1, 0) = 1 and LD(1, 1) = 0.

3 Realizing depth in type B

3.1 Reflections, length, and depth in type B

For the reader’s convenience we state here the basic facts on reflections, length, and
depth for the Coxeter system (Bn, SB). The facts on reflections and their lengths can
be found in [5, §8.1].

The set of reflections is given by

T B := {ti j , tī j | 1 ≤ i < j ≤ n} ∪ {tī i | i ∈ [n]},

where ti j = (i, j)(ī, j̄), tī j = (ī, j)(i, j̄), and tī i = (ī, i) in cycle notation. In

particular, there are n2 reflections in Bn . We summarize below the result in window
notation of right multiplication by each type of reflection.

(1) The reflections ti j .
Right multiplication of w by ti j swaps the entry w(i) in location i with the entry
w( j) in location j in such a way that each digit moves with its sign. For example,

[3̄, 1, 4, 2] t12→ [1, 3̄, 4, 2].
(2) The reflections tī j .

Right multiplication by tī j swaps entry w(i) in location i with entry w( j) in

location j and changes both signs. For example, [3̄, 1, 4, 2] t1̄2→ [1̄, 3, 4, 2].
(3) The reflections tī i .

Right multiplication by tī i changes the sign of the entry w(i) in location i . For

example, [3, 1̄, 4, 2] t2̄2→ [3, 1, 4, 2].
The length of a permutation w ∈ Bn is measured by counting certain pairs of

entries, known as B-inversions. We can divide them into three types. For w ∈ Bn , we
have already defined the set Neg(w); now we set

Inv(w) := {(i, j) | 1 ≤ i < j ≤ n, w(i) > w( j)}, and
Nsp(w) := {(i, j) | 1 ≤ i < j ≤ n, w(i) + w( j) < 0}.
If we let inv(w) := #Inv(w) and nsp(w) := #Nsp(w), then we have the following

formula for the length

�S(w) = inv(w) + neg(w) + nsp(w). (8)
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Note that a pair (i, j) may appear in both Inv(w) and Nsp(w), in which case this
pair is counted twice in calculating �S(w).

From Eqs. (4) and (8), we immediately obtain the depths of the three types of
reflections

Lemma 3.1 The depths of reflections in type B are as follows.

dp(ti j ) = j − i, dp(tī j ) = i + j − 1, and dp(tī i ) = i.

We can also easily determine whether w = vt is a reduced factorization.

Lemma 3.2 Let v,w ∈ Bn, t ∈ T B, and w = vt . Then �S(w) = �S(v)+ �S(t) if and
only if one of the following hold:

(1) t = ti j , w(i) > w( j), and for all k with i < k < j , w(i) > w(k) > w( j).
(2) t = tī j , w(i) < 0, w( j) < 0, for all k with 1 ≤ k < i , w(k) > w(i) and

w(k) + w( j) < 0, and for all k′ �= i with 1 ≤ k′ < j , w(k′) > w( j) and
w(i) + w(k′) < 0.

(3) t = tī i , w(i) < 0, and for all k with 1 ≤ k < i , we have |w(k)| < |w(i)|.
Proof Let t be equal to ti j , tī j or tī i , and let v,w ∈ Bn such that w = vt . It is obvious
that �S(w) ≤ �S(v) + �S(t), so we only need to determine when strict inequality
occurs. We write each t as a product of simple reflections t = si1 · · · sir and show that
each of the conditions of the lemma corresponds to the assertion that, for each k ∈ [r ],
one has �S(wsi1 · · · sik−1sik ) < �S(wsi1 · · · sik−1).

(1) If t = ti j , then t = s j−1s j−2 · · · si si+1 · · · s j−1. Each appearance of sk in this
expression (i ≤ k < j) has the effect of exchanging w(k) with either w(i) or
w( j). This reduces the length for each sk if and only if condition (1) is met.

(2) If t = tī j then its decomposition into simple reflections is

t = si−1 · · · s1s j−1 · · · s2sB0 s1sB0 s2 · · · s j−1s1s2 · · · si−1.

In the first consecutive substring si−1 · · · s1, multiplying by sk reduces the length
(for 1 ≤ k ≤ i − 1) if and only if w(i) < w(k). Similarly, in the second part
s j−1 · · · s2, multiplying by sk′ (for i + 1 ≤ k′ < j) or sk′+1 (for 1 ≤ k′ < i)
reduces the length if and only if w( j) < w(k).
Then, in the next consecutive substring sB0 s1s

B
0 , the two appearances of sB0

reduce length if and only if w(i), w( j) < 0. Furthermore, whenever we have
w(i), w( j) < 0, intervening s1 reduces length since it moves a negative entry to
the left of a positive entry.
The following part s2 · · · s j−1 moves the entry −w(i) to the j-th position. Hence,
each sk′+1 (if 1 ≤ k′ < i) or sk′ (if i + 1 ≤ k′ < j) will reduce length if and
only if −w(i) > w(k). Similarly, each sk in the final substring s1 · · · si−1 reduces
length if and only if −w( j) > w(k) for each 1 ≤ k < i .

(3) If t = tī i then t = si si−1 · · · s1sB0 s1s2 · · · si . Here, each application of sk appearing
before sB0 reduces the length if and only if w(k) > w(i). After the application of
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sB0 , each successive sk will reduce length if and only if −w(i) > w(k). Hence, in
order for every sk in the word representing t to reduce length, it is necessary and
sufficient that |w(k)| < |w(i)| for all 1 ≤ k < i . (The single sB0 clearly reduces
length if and only if w(i) < 0.) �

3.2 Algorithm for realizing depth in type B

To keep the logical status of our theorem clear as we work through the proof, we
let d(w) denote our expected value of dp(w) according to our formula. Hence, for
w ∈ Bn , let

d(w) :=
∑

{i∈[n]|w(i)>i}
(w(i) − i) +

∑
i∈Neg(w)

|w(i)| + oB(w) − neg(w)

2
.

In order to prove Theorem 2.3, we proceed in two steps. First, we supply an algo-
rithm that associates to eachw ∈ Bn a decomposition ofw into a product of reflections
whose sum of depths is d(w). This will prove that d(w) ≥ dp(w). Then we will show
that d(w) ≤ dp(w).

It will be more convenient for us to describe our algorithm as an algorithm to sortw
to the identity signed permutation [1, . . . , n] using a sequence of right multiplications
by reflections tik jk . One can then recover a decomposition of w as the product of these
reflections in reverse order. Our algorithm is applied on each indecomposable part of
w separately; hence, from now on we assume that w is indecomposable. We say that
an entry x is in its natural position in w if x = w(x).

Algorithm 3.3 Let w ∈ Bn be indecomposable.

(1) Let i be the position such that the entry w(i) is maximal among all w(i) with
w(i) > i , for i ∈ [n]. (If no such i exists, continue to the next step.) Now let j
be the index such that the entry w( j) is minimal among all j with i < j ≤ w(i).
Right multiply by ti j . Repeat this step until w(i) ≤ i for all i , 1 ≤ i ≤ n.
Let u be the element obtained after the last application of Step 1, i.e.,

w
ti1 j1→ · · · tik jk→ u.

(2) If neg(u) ≥ 2 then right multiply u by t ¯i j , where w(i) and w( j) are the two
negative entries of largest absolute value in u, and go back to Step 1. If neg(u) = 1
then right multiply u by tī i , where w(i) is the sole negative entry, and go back to
Step 1. If neg(u) = 0, then we are finished.

In other words, the algorithm begins by shuffling each positive entry w(i) which
appears to the left of its natural position into its natural position, starting from the
largest and continuing in descending order. Once this is completed, an unsigning
move is performed. If there is more than one negative entry in w, we unsign a pair,
thus obtaining two new positive entries. The process restarts, and the entries may be
further shuffled. Unsigning and shufflingmoves continue to alternate until neither type
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of move can be performed. The last unsigning move will be a single one if the number
of negative entries in w is odd.

At the end of the algorithm, there are no negative entries, and no positive entry is to
the left of its natural position. Hence, we must have the identity signed permutation.

Note that although the algorithm assumes that w is indecomposable, it can happen
in the course of the algorithm that w is transformed into a decomposable permutation.
This does not pose a problem since the only way this occurs is by creating blocks on
the right consisting entirely of positive entries that are further acted upon only by Step
1, and indecomposability matters only in determining when neg(u) = 1 in Step 2.

We demonstrate our algorithm in the following example. The depth of each reflec-
tion is given below the corresponding arrow.

Example 3.4 Let w = [6̄, 3̄, 2̄, 8, 7, 5, 9, 4̄, 1̄] ∈ B9. Our first step is to shuffle entry
9 to position 9:

w = [6̄, 3̄, 2̄, 8, 7, 5, 9, 4̄, 1̄] t78→
1

[6̄, 3̄, 2̄, 8, 7, 5, 4̄, 9, 1̄] t89→
1

[6̄, 3̄, 2̄, 8, 7, 5, 4̄, 1̄, 9].

Then we further apply Step 1, first to the entry 8 and then to 7:

[6̄, 3̄, 2̄, 8, 7, 5, 4̄, 1̄, 9] t47→
3

[6̄, 3̄, 2̄, 4̄, 7, 5, 8, 1̄, 9] t78→
1

[6̄, 3̄, 2̄, 4̄, 7, 5, 1̄, 8, 9]
t57→
2

[6̄, 3̄, 2̄, 4̄, 1̄, 5, 7, 8, 9].

Now, none of the positive entries are located to the left of its natural position, so we
proceed with Step 2 to unsign the two most negative entries, which are 6̄ and 4̄:

[6̄, 3̄, 2̄, 4̄, 1̄, 5, 7, 8, 9] t1̄4→
4

[4, 3̄, 2̄, 6, 1̄, 5, 7, 8, 9].

We apply again Step 1 to push 6 and then 4 forward to their natural positions:

[4, 3̄, 2̄, 6, 1̄, 5, 7, 8, 9] t45→
1

[4, 3̄, 2̄, 1̄, 6, 5, 7, 8, 9] t56→
1

[4, 3̄, 2̄, 1̄, 5, 6, 7, 8, 9]
t12→
1

[3̄, 4, 2̄, 1̄, 5, 6, 7, 8, 9] t23→
1

[3̄, 2̄, 4, 1̄, 5, 6, 7, 8, 9] t34→
1

[3̄, 2̄, 1̄, 4, 5, 6, 7, 8, 9].

We now unsign the pair 3̄ and 2̄:

[3̄, 2̄, 1̄, 4, 5, 6, 7, 8, 9] t1̄2→
2

[2, 3, 1̄, 4, 5, 6, 7, 8, 9].

Now we again apply Step 1 to move 3 and 2 to their natural positions:

[2, 3, 1̄, 4, 5, 6, 7, 8, 9] t23→
1

[2, 1̄, 3, 4, 5, 6, 7, 8, 9] t12→
1

[1̄, 2, 3, 4, 5, 6, 7, 8, 9].
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Finally we unsign 1:

[1̄, 2, 3, 4, 5, 6, 7, 8, 9] t1̄1→
1

[1, 2, 3, 4, 5, 6, 7, 8, 9],

and we are done. We obtained w = t1̄1t12t23t1̄2t34t23t12t56t45t1̄4t57t78t47t89t78. The
sum of the depths of the reflections in the decomposition is 22, and this agrees with
d(w) = (8 − 4) + (7 − 5) + (9 − 7) − (−6 − 3 − 2 − 4 − 1) + 1−5

2 , since w is
indecomposable.

Note that, in w, 9 is two places away from its natural position, so 9− w−1(9) = 2.
This is the cost we pay for moving 9 to its place. Likewise, 8 and 7 contribute 4 and 2,
respectively. The treatment of the pair 6 and 4, starting with their unsigning and ending
with their arrival at their natural positions, costs 6+4−1 = 9. The treatment of 2 and
3 costs 2 + 3 − 1, and the unsigning of 1 costs 1. Each of these costs corresponds to
a specific contribution to dp(w) in Eq. 6, and we will show this correspondence holds
in general.

As is clear from the description, given any w ∈ Bn , the algorithm retrieves the
identity permutation. Now we show that the total depths of the transpositions applied
in the algorithm is exactly d(w). This will prove that dp(w) ≤ d(w). The proof is
based on the following four lemmas.

Lemma 3.5 Letw ∈ Bn be indecomposable. Then the total cost of the first application
of Step 1 is

∑
w(i)>i (w(i) − i), and the resulting permutation u ∈ Bn has d(u) =

d(w) − ∑
w(i)>i (w(i) − i).

Proof Define E(w) := {w(i) | w(i) > i}. If w(m) is the largest entry in E(w), then
the algorithm starts with several applications of Step 1 to move w(m) to its natural
position. Furthermore, no positive entry is moved to the left of its natural position
in these moves since there will always be an entry w( j) ≤ m among the entries in
positions j with m < j ≤ w(m). In fact, by our choice of m, w( j) < w(m) for all
such j , and, among the w(m) −m distinct integers {w(m + 1), . . . , w(w(m))}, all of
which are smaller than w(m), one must be less than or equal to m. Hence, the moves
that bringw(m) to its natural position costw(m)−m and decrease

∑
w(i)>i (w(i) − i)

by w(m) − m. Thus, the first statement follows by induction on #E(w).
The second statement follows since there are no i with u(i) > i , and Step 1 does

not change any negative entries of w (though it may move them around) or affect its
oddness. �
Observation 3.6 Let w ∈ Bn , and assume that Step 1 has been applied on w until it
cannot be continued, obtaining u ∈ Bn . Let k denote the largest absolute value of a
negative entry in u (which is the same as in w). Then

• The signed permutation u consists of two parts: the leftmost k entries, which form
an indecomposable permutation u′, and the last n − k entries, each of which is
positive and in its natural position.

• All the positive entries in u are located to the right of (or in) their natural positions.
In particular, every entry in u of absolute value greater than k is positive and in its
natural position.
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Lemma 3.7 Let w ∈ Bn be indecomposable. Then Step 1 of the algorithm yields a
permutation u satisfying u(i) < 0, u( j) < 0, |u(i)| ≥ j , and |u( j)| ≥ i , where |u(i)|
and |u( j)| are the two largest absolute values of negative entries and i < j .

Proof Let k be defined as in the observation, and let x := |u(i)| and y := |u( j)|.
For any p ≤ k, there must exist q ≤ p such that u(q) < −p. (Indeed, there must
be some q ≤ p with |u(q)| > p since u′ is indecomposable, and we cannot have
u(q) > 0 since every positive entry is at or to the right of its natural position after
Step 1.) Applying this fact to p = j − 1 immediately yields that x ≥ j since −x is
the smallest entry among the first j − 1 entries.

Now, we show y ≥ i . If y > x , then by what we have just shown we have
y > x ≥ j > i , so we are done. Otherwise, y < x . Consider the positions of the
x − y − 1 entries of absolute values y + 1, . . . , x − 1. These entries must be positive
since x and y are the two negative entries of largest absolute value. Hence after Step
1, they must be at or to the right of their natural positions, and, in particular, to the
right of position y. Moreover, these entries must be at or to the left of position x since
x is the smallest entry in u, so k = x and u(p) > x for all p > x . If y < i , this
means both x and y are in positions to the right of position y, and hence, the entries
−y, y+1, . . . , x−1,−x are in positions y+1, . . . , x = k, a contradiction. Therefore,
we must have y ≥ i . �
Lemma 3.8 Let u ∈ Bn such that u(m) < m for all m, and let i < j be such that
u(i) < 0, u( j) < 0, |w(i)| ≥ j and |w( j)| ≥ i . Then right multiplying u by t ¯i j
and repeatedly applying Step 1 of the algorithm until it can no longer be applied
unsigns w(i) and w( j) and puts them in their natural positions. These reflections
cost in total exactly |w(i)| + |w( j)| − 1. The resulting permutation u′ ∈ Bn has
d(u′) = d(u) − (|w(i)| + |w( j)| − 1).

Proof Right multiplication by tī j unsigns w(i) and w( j), switches their places, and
costs i+ j−1. Subsequently, moving |w(i)| to its place adds a further |w(i)|− j , for a
total of |w(i)|+i−1. By the same reasoning,moving |w( j)| to its place adds |w( j)|−i
to the depth, yielding a total of (|w(i)|+ i − 1)+ (|w( j)|− i) = |w(i)|+ |w( j)|− 1.
Furthermore, as in the proof of Lemma 3.5, no positive entry is moved to the left of
its natural position in the Step 1 moves.

For the second claim, note that there are no m with u(m) > m or u′(m) > m, the
only change to negative entries is that w(i) and w( j) have been made positive, and
oB(u) = oB(u′). �

Finally, we have the following:

Lemma 3.9 Let u ∈ Bn such that u(m) ≤ m for all m, and suppose neg(u) = 1. Then
d(u) = |w(i)|, where w(i) is the unique negative entry. Furthermore, applying Step
2 and then repeatedly applying Step 1 until it can no longer be applied costs exactly
|w(i)| and results in the identity signed permutation.

Proof First, note that we have d(u) = |w(i)|+ 1−1
2 . Now note that, since neg(u) = 1,

we must have i = 1, meaning that the single negative entry must be in the leftmost
position, since every positive entry is at or to the right of its natural position. Therefore,
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unsigning |w(i)| and moving it to its natural position add 1 + (|w(i)| − 1) = |w(i)|
to d(w) since, as in the proof of Lemma 3.5, no positive entry is moved to the left of
its natural position in the Step 1 moves. These moves produce a signed permutation
with no negative entries where every entry is at or to the right of its natural position,
which must be the identity. �

By the lemmas above, every time we run through a full series of Step 1 moves, or a
Step 2move followed by a series of Step 1moves,we reduce d(w) by exactly the cost of
themovesweuse.Hence, by induction,wehave shown thatwe can sortw to the identity
with cost d(w). This shows that d(w) ≥ dp(w) for an indecomposable permutationw.
Since the algorithm is separately applied to each block of a decomposable permutation,
and the formula d(w) is additive over blocks, we can conclude the following.

Proposition 3.10 For any w ∈ Bn, d(w) ≥ dp(w).

3.3 Proofs of Theorem 2.3 and subsequent corollaries.

To prove that d(w) ≤ dp(w), it is sufficient to prove the following lemma.

Lemma 3.11 For any element w ∈ Bn and any reflection t ∈ T B,

d(w) − dp(t) ≤ d(wt).

We now prove Theorem 2.3 assuming this lemma.

Proof of Theorem 2.3 By Proposition 3.10, d(w) ≥ dp(w). We now prove d(w) ≤
dp(w) by induction on dp(w). If dp(w) = 0, then w = e, and d(e) = 0. Otherwise,
there exists a reflection t ∈ T B such that dp(w) − dp(t) = dp(wt). By the inductive
hypothesis, dp(wt) = d(wt). Now, by Lemma 3.11, d(w) − dp(t) ≤ d(wt) =
dp(wt) = dp(w) − d(t). Hence, d(w) ≤ dp(w) as desired. �

Now we prove the lemma in cases for each type of reflection t .

Proof of Lemma 3.11 Let us denote the three terms in Eq. (6) by A, B, and C , respec-
tively. It will be convenient to let �d := d(w) − d(wt) and �A,�B, and �C be the
analogous differences. The claim can be proved by analyzing each type of reflection
and the entries in the positions the reflection acts on.
Case 1: t = ti j , (dp(t) = j − i). Clearly �B = 0, and neg(w) = neg(wt).
(a) w(i) < i .

The most change that t can do to the block structure of w is to join i and j into a
single block, with every entry in between being a different singleton block. This turns
j − i + 1 blocks into a single block. Potentially, all of these blocks can be odd, and
they are all fused into a single even block, so oB(w) can decrease by at most j − i +1.
Since no other terms of d decrease, d(w) − d(wt) ≤ j−i+1

2 ≤ j − i since j − i ≥ 1.
(Since we could have w( j) > i , the first term can change, but only to increase d.)
(b) i ≤ w(i) < j .
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Note that w(i) and i are in the same block, so the most change t can do to the block
structure is to join w(i) and j into a single block, which decreases oB(w) by at most
j − w(i) + 1. Furthermore,

�A = w(i) − i +
{

(w( j) − j) − (w( j) − i), if w( j) ≥ j
−max{0, w( j) − i}, if w( j) < j

.

In both cases, �A ≤ w(i) − i . Hence, �d ≤ w(i) − i + j−w(i)+1
2 ≤ j − i since

j − w(i) ≥ 1.
(c) j ≤ w(i).

In this case, blocks can only be split up and not merged, so oB(w) cannot decrease.
Moreover, �A = 0 unless w( j) ≤ j , in which case �A = (w(i)− i)− (w(i)− j)−
max{0, w( j) − i} ≤ j − i .
Case 2: t = tī j , and w(i) < 0 and w( j) < 0 (dp(t) = i + j − 1). In this case
�B = |w(i)| + |w( j)|. Moreover, neg(w) − neg(wt) = 2.
(a) |w(i)| < i .

Suppose first that |w( j)| ≥ i . In this case �A = −(|w( j)| − i), and �C ≤
( j−i+1)−2

2 .Hence,�d ≤ i+|w(i)|+ j−i−1
2 ≤ 3i+ j−3

2 ≤ i+ j−1 since |w(i)| ≤ i−1.
If |w( j)| < i , then �A = 0, and �C = −1; hence, �d = |w(i)| + |w( j)| − 1 ≤

i + j − 1.
(b) i ≤ |w(i)| < j .

Suppose first that |w( j)| ≥ i . In this case �A = −(|w( j)| − i), and �C ≤
( j−|w(i)|+1)−2

2 .Hence,�d ≤ i +|w(i)|+ j−|w(i)|−1
2 ≤ 2i+2 j−2

2 since |w(i)| ≤ j −1.
If |w( j)| < i , then A does not change, �C ≤ −1, and �d ≤ i + j − 1.

(c) j ≤ |w(i)|.
Suppose first that |w( j)| ≥ i . In this case �A ≤ −(|w(i)| − j) − (|w( j)| − i),

and oB(wt) ≥ oB(w), so �C ≤ −1. Hence, �d ≤ i + j − 1. If |w( j)| < i , then
�A ≤ −(|w(i)| − j) and �d ≤ j + |w( j)| − 1 ≤ i + j − 1.
Case 2’: t = tī j , and w(i) > 0 and w( j) > 0.
(a) w(i) < i .

In this case �A and �B are negative, and �C ≤ j−i+3
2 . Hence, �d ≤ i + j − 1.

(b) i ≤ w(i) < j .
In this case �A ≤ (w(i) − i) + max{0, (w( j) − j)}, �B = −w(i) − w( j), and

�C ≤ j−w(i)+3
2 , and clearly �d ≤ i + j − 1.

(c) j ≤ w(i).
In this case �d is negative.

Case 2”: t = tī j , and w(i) < 0 and w( j) > 0.
(a) and (b) |w(i)| < i or i ≤ |w(i)| < j

In this case �A = max{0, w( j) − j}, �B = |w(i)| − w( j), and �C ≤ j−i+1
2 .

Hence, �d ≤ i + j − 1.
(c) j ≤ w(i).

In this case, if w( j) ≥ j , then �A = w( j) − |w(i)|, �B = |w(i)| − w( j), and
�C ≤ j−i+1

2 . Hence, �d ≤ i + j − 1.
The symmetric case w(i) > 0 and w( j) < 0 is similar.
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Case 3: t = tī i and w(i) < 0, (dp(t) = i). In this case �B = |w(i)|, and the block
structure does not change.
(a) |w(i)| < i

Clearly A does not change, and �d = |w(i)| − 1/2 ≤ i − 1/2 < i.
(b) |w(i)| ≥ i

In this case �d < i since �A = −|w(i)| and i ≥ 1.
Case 3”: t = tī i and w(i) > 0. In this case �B = −w(i), and the block structure
does not change.
(a) w(i) < i

Clearly �d is negative
(b) w(i) ≥ i

In this case �d = w(i) − i − w(i) + 1/2 ≤ i , which is still negative. �

Now we prove Corollary 2.4.

Proof of Corollary 2.4 Let w ∈ Bn . First note that

n∑
i=1

(i − |w(i)|) = 0,

or equivalently

∑
w(i)>0

(i − w(i)) +
∑

w(i)<0

(i + w(i)) = 0.

Therefore,

∑
w(i)>0

(i − w(i)) +
∑

w(i)<0

(i − w(i)) = −2
∑

w(i)<0

w(i) = 2
∑

w(i)<0

|w(i)|,

and

1

2

n∑
i=1

(i − w(i)) =
∑

w(i)<0

|w(i)|.

Now add
∑

i>0,w(i)>i
(w(i) − i)) to both sides. We have

1

2

⎛
⎝ ∑

i>0,w(i)>i

(w(i) − i) +
∑

i>0,w(i)<i

(i − w(i))

⎞
⎠

=
∑

i>0,w(i)>i

(w(i) − i) +
∑

i>0,w(i)<0

|w(i)|,
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or

1

2

⎛
⎝ ∑

i>0,w(i)>i

(w(i) − i) +
∑

i<0,w(i)>i

(w(i) − i)

⎞
⎠

=
∑

i>0,w(i)>i

(w(i) − i) +
∑

i>0,w(i)<0

|w(i)|,

which shows the equality of the formula in Corollary 2.4 with that of Theorem 2.3. �
Now we prove Corollary 2.5.

Proof of Corollary 2.5 Let i ∈ [n] and consider the contribution of w(i) to dp(w)

in Theorem 2.3. If w(i) > 0, then w(i) contributes at most w(i) − 1 to the first
summand. On the other hand, if w(i) < 0, then it always contributes |w(i)| to the
second summand and − 1

2 to the third, for a total contribution of |w(i)| − 1
2 . In either

case, w(i) contributes at most an additional 1
2 to the third summand (if w(i) < 0 is

a block by itself). Hence, the greatest contribution is made if all entries are negative
and each constitutes a full block. �

3.4 Reducedness of factorization

Letw ∈ Bn be indecomposable.Use the algorithm towritew as a product of reflections
w = t1 · · · tr realizing the depth of w. Then, for each k ∈ [r ], depending on whether
tk is equal to ti j , tī i , or tī j , replace tk by the following reduced expression:

ti j by s j−1 · · · si+1si si+1 · · · s j−1,

tī i by si−1 · · · s1sB0 s1 · · · si−1, and

tī j by si−1 · · · s1s j−1 · · · s2sB0 s1sB0 s2 · · · s j−1s1s2 · · · si−1.

To prove Theorem 2.7, we show the following.

Theorem 3.12 Thedecomposition ofw = t1 · · · tr given by the algorithm,where every
ti is replaced as explained above, is reduced. In particular, our algorithm defines a
chain from the identity to w in the right weak order of W.

Proof It is sufficient to show that in each step of the algorithm

�S(wt) = �S(w) − �S(t).

We discuss the following three cases.
Step 1: The reflections applied in Step 1 are of the form t = ti j , where w(i) is
the maximal positive entry in w and w( j) is the minimal entry among those with
i < j < w(i). Hence, for any i < k < j , one has w(i) > w(k) > w( j). Therefore,
the result follows by Lemma 3.2(1).
Step 2, Case A: In Step 2, we either apply t = tī j or tī i . If we apply t = tī j , then,
for any k ∈ [ j − 1] \ {i}, we have |w(k)| < min{|w(i)|, |w( j)|}. Hence, the result
follows by Lemma 3.2(2).
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Step 2, Case B: If we apply t = tī i in Step 2, then w(i) is the first entry in
an indecomposable block w p of w, as argued in the proof of Lemma 3.9, and
w(i) < 0. All other entries in w p are positive, and all entries in the previous
blocks of w are smaller in absolute value then |w(i)|. Hence, the result follows from
Lemma 3.2(3). �

4 Realizing depth in type D

4.1 Reflections, length, and depth in type D

For the reader’s convenience, we state here the basic facts on reflections, length, and
depth for the Coxeter system (Dn, SD). The facts about reflections and length can be
found in [5, §8.2].

In the group Dn , the set of reflections is given by

T D := {ti j , tī j | 1 ≤ i < j ≤ n},

where ti j = (i, j)(ī, j̄) and tī j = (ī, j)(i, j̄) in cycle notation. In particular, there

are n2 − n reflections in Dn . These reflections act on signed permutations in window
notation just as they do in type B.

The length of a signed permutation w ∈ Dn is given by

�S(w) = inv(w) + nsp(w), (9)

where inv(w) and nsp(w) are defined as in type B. This means the only difference is
that neg(w) contributes to length in type B but not in type D. As in type B, a pair (i, j)
may appear in both Inv(w) and Nsp(w), in which case this pair is counted twice in
calculating �S(w).

From Eqs. (4) and (9), we immediately obtain the depths of the two types of reflec-
tions

Lemma 4.1 The depths of reflections in type D are as follows.

dp(ti j ) = j − i and dp(tī j ) = i + j − 2.

The rules for determining whether w = vt is a reduced factorization are the same
as in type B, with one minor change.

Lemma 4.2 Let v,w ∈ Dn, t ∈ T D, and w = vt . Then �S(w) = �S(v) + �S(t) if
and only if one of the following hold:

(1) t = ti j , w(i) > w( j), and for all k with i < k < j , w(i) > w(k) > w( j).
(2) t = tī j , w(i) + w( j) < 0, for all k with 1 ≤ k < i , w(k) > w(i) and w(k) +

w( j) < 0, and for all k′ �= i with 1 ≤ k′ < j , w(i) + w(k′) ≤ 0 and
w(k′) > w( j).
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Proof As in the proof of Lemma 3.2, we write each t as a product of simple reflections
t = si1 · · · sir and show that each of the conditions of the lemma corresponds to the
assertion that for each k ∈ [r ] one has �S(wsi1 · · · sik−1sik ) < �S(wsi1 · · · sik−1).

(1) If t = ti j , then the proof is exactly as for the analogous case in Lemma 3.2.
(2) If t = tī j then its decomposition into simple reflections is

t = si−1 · · · s1s j−1 · · · s2sD0 s2 · · · s j−1s1s2 · · · si−1.

The proof here is the same as for Lemma 3.2, except the central sB0 s1s
B
0 has

become an sD0 , which causes the conditions w(i), w( j) < 0 to be replaced with
the condition w(i) + w( j) < 0. �

4.2 Algorithm for realizing depth in type D

As before, we let d(w) denote our expected value of dp(w) according to our formula.
Hence, for w ∈ Dn , let

d(w) :=
∑

{i∈[n]|w(i)>i}
(w(i) − i) +

∑
i∈Neg(w)

|w(i)| + oD(w) − neg(w).

In order to prove Theorem 2.9, we proceed in two steps. First, we supply an algo-
rithm that associates to eachw ∈ Dn a decomposition ofw into a product of reflections
whose sum of depths is d(w). This will prove that d(w) ≥ dp(w). Then we will show
that d(w) ≤ dp(w).

As in type B, we will present our algorithm as an algorithm to sort w to the identity
signed permutation [1, . . . , n] by a sequence of right multiplications by reflections
tik jk . One can then recover a decomposition of w as the product of these reflections in
reverse order. Our algorithm is applied on each type D block of w separately; hence,
from now on we assume that w is type D indecomposable.

Algorithm 4.3 Let w ∈ Dn be type D indecomposable and w = w1 ⊕ · · · ⊕ wb be
its type B decomposition.

(1) If every positive entry in wb is to the right of its natural position, then proceed to
the next step. Otherwise, let i be the position such that w(i) is maximal among
all entries (necessarily in wb) with w(i) > i . Now let j be the position such that
w( j) is minimal among all w( j) for which i < j ≤ w(i). Right multiply by ti j .
Repeat this step until w(i) ≤ i for all i in wb.

(2) If our signed permutation is now type B indecomposable (disregarding any posi-
tive entries with absolute value greater than that of any negative entry, which are
now all in their natural positions), proceed to the next step. Otherwise, let i be the
index of the first position in the last type B block, and right multiply by t(i−1)i .
Then go back to Step 1.

(3) Right multiply by tī j , where w(i) and w( j) are the two negative entries of largest
absolute value, and go back to Step 1.
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The algorithm begins by shuffling each positive entryw(i) in the rightmost B-block
that appears to the left of its natural position into its natural position, starting from the
largest and continuing in descending order. Once this is completed, we join the two
rightmost B-blocks (not counting the string of positive entries in their natural positions
at the far right) by a simple reflection and continue moving positive entries that are to
the left of their natural positions in the newly enlarged rightmost B-block. At the end
of this process, our signed permutation (which was assumed to be D-indecomposable)
is B-indecomposable (excepting the string of positive entries in their natural positions
at the far right), and every positive entry is to the right of its natural position. Then
we unsign a pair, thus obtaining two new positive entries. The entire process restarts,
and the remaining entries might be further shuffled. Unsigning and shuffling moves
continue to alternate until neither type of move can be performed.

At the end of the algorithm, there are no negative entries, and no positive entry is to
the left of its natural position. Hence, we must have the identity signed permutation.

As in the type B algorithm, it can happen that w is transformed into a D-
decomposable permutation, but this does not pose a problem since the only way this
occurs is by creating blocks on the right consisting entirely of positive entries that will
be further acted upon by Step 1 to move them to their natural positions, and indecom-
posability only matters in ensuring we do not join B-blocks from different D-blocks
in Step 2.

We give an example of our algorithm.

Example 4.4 Let w = [5, 1̄, 3̄, 2, 4̄, 6, 9, 8̄, 7] ∈ D9. Note w is D-indecomposable
but has 3 B-blocks. We have d(w) = (5−1)+ (9−7)+ (1+3+4+8)+2−4 = 20.
Our first step is to shuffle entry 9 to position 9:

w = [5, 1̄, 3̄, 2, 4̄, 6, 9, 8̄, 7] t78→
1

[5, 1̄, 3̄, 2, 4̄, 6, 8̄, 9, 7] t89→
1

[5, 1̄, 3̄, 2, 4̄, 6, 8̄, 7, 9].

Now we apply Step 2:

[5, 1̄, 3̄, 2, 4̄, 6, 8̄, 7, 9] t67→
1

[5, 1̄, 3̄, 2, 4̄, 8̄, 6, 7, 9].

Wehave nopositive entries in the rightmost relevantB-block (ignoring the rightmost
block consisting of the 9 by itself) that are to the left of their natural positions, so we
bypass Step 1 and apply Step 2 again:

[5, 1̄, 3̄, 2, 4̄, 8̄, 6, 7, 9] t56→
1

[5, 1̄, 3̄, 2, 8̄, 4̄, 6, 7, 9].

Now we apply Step 1:

[5, 1̄, 3̄, 2, 8̄, 4̄, 6, 7, 9] t15→
4

[8̄, 1̄, 3̄, 2, 5, 4̄, 6, 7, 9].
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Then we unsign the two most negative entries:

[8̄, 1̄, 3̄, 2, 5, 4̄, 6, 7, 9] t1̄6→
5

[4, 1̄, 3̄, 2, 5, 8, 6, 7, 9].

We then push 8 and then 4 forward to their natural positions:

[4, 1̄, 3̄, 2, 5, 8, 6, 7, 9] t67→
1

[4, 1̄, 3̄, 2, 5, 6, 8, 7, 9] t78→
1

[4, 1̄, 3̄, 2, 5, 6, 7, 8, 9]
t13→
2

[3̄, 1̄, 4, 2, 5, 6, 7, 8, 9] t34→
1

[3̄, 1̄, 2, 4, 5, 6, 7, 8, 9].

Finally, we unsign the 1 and the 3 and push the 3 forward to its natural position:

[3̄, 1̄, 2, 4, 5, 6, 7, 8, 9] t1̄2→
1

[1, 3, 2, 4, 5, 6, 7, 8, 9] t23→
1

[1, 2, 3, 4, 5, 6, 7, 8, 9],

and we are done. The decomposition w = t23t1̄2t34t13t78t67t1̄6t15t56t67t89t78 is
obtained, and the sum of depths of the reflections involved is 20, as expected.

Note that 9 − 7 = 2 is the cost we pay to move 9 to its place, and 5 − 1 = 4 is the
cost we pay to move 5 to its place. Furthermore, we pay 2 = oD(w) in Step 2 moves
to joinw into a single B-block. The treatment of the pair 8 and 4, from their unsigning
to their arrival at their natural positions, costs 8 + 4 − 2 = 10, and the treatment of 1
and 3 together costs 1 + 3 − 2 = 2.

Now we show, as suggested, that the total depths of the reflections applied in the
algorithm is exactly d(w). This will prove that dp(w) ≤ d(w). The proof is based on
the following lemmas. We will assume that w is D-indecomposable with b B-blocks,
and, for k ∈ [b], we let ak be the index of the last entry in the k-th B-block, so that the
k-th B-block has ak − ak−1 entries.

Lemma 4.5 Let w ∈ Dn be D-indecomposable. Then the total cost of the first
series of applications of Step 1 before the first application of Step 2 or Step 3 is∑

i>ab−1,w(i)>i (w(i) − i).

The proof for this lemma is entirely identical to that of Lemma 3.5.

Lemma 4.6 Suppose w is D-indecomposable, and let u be the result of a series of
applications of Step 1 after c − 1 applications of Step 2 to w. Unless u is the identity,
u(ab−c + 1) < 0. Furthermore, the cost of the k-th application of Step 2 and the
ensuing series of applications of Step 1 is 1 + ∑

ab−c−1<i≤ab−c,u(i)>i (u(i) − i) =
1+ ∑

ab−c−1<i≤ab−c,w(i)>i (w(i) − i). Hence, the total cost of all applications of Step

1 and Step 2 before the first application of Step 3 is
∑

w(i)>i (w(i) − i) + oD(w).
Furthermore, if v is the result of all applications of Step 1 and Step 2 before

the first application of Step 3, then v consists of one B-indecomposable (and D-
indecomposable) block in positions [1, k] and positive entries all in their natural
positions further to the right, where k is the absolute value of the most negative entry
of w.
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Proof We proceed by induction on c. In the base case where c = 1, since u is not the
identity andw is D-indecomposable, the rightmost B-block ofw must have a negative
entry. Assume for contradiction that u(ab−1+1) > 0, and let j be the leftmost position
in the b − c + 1-th B-block such that u( j) < 0. Then we must have 0 < w(i) ≤ i
for all i with ab−c+1 < i < j since, otherwise, w(i) would have been swapped with
u( j) or some other negative entry when it was moved. (It is possible that u( j) started
further to the right, but if the entry u( j) was to the right of the position w(i) when
w(i) was moved, then it is to the right of position p for any p < w(i), and hence, it
would never have been moved to the j-th position.) This contradicts the assumption
that [ab−1 + 1, n] forms a single B-block.

Now we treat the inductive case. By the inductive hypothesis, when the reflection
tab−c+1,ab−c+1+1 in Step 2 is applied to a signed permutation u, u(ab−c+1) ≤ ab−c+1
(since ab−c+1 is the rightmost position in a B-block), and u(ab−c+1 + 1) < 0. Hence,
this reflection does not affect the set {i ∈ [ab−c + 1, ab−c+1] | u(i) > i}, and, as
no other reflections have previously been applied to these positions, {i ∈ [ab−c +
1, ab−c+1] | u(i) > i} = {i ∈ [ab−c + 1, ab−c+1] | w(i) > i}. Hence, by the
argument of Lemma 3.5, the total cost of the single Step 2 move and the ensuing series
of Step 1 moves is 1 + ∑

ab−c<i≤ab−c+1,w(i)>i (w(i) − i). Furthermore, by the same
argument as in the previous paragraph, u(ab−c + 1) < 0.

Since we started with oD(w) + 1 B-blocks, we performed oD(w) Step 2 moves,
each of which cost depth 1, so the cost of all these moves is

∑
w(i)>i

(w(i)− i)+oD(w).

If v is the signed permutation produced by the c-th application of Step 2, we must
have v(ab−c + 1) ≤ ab−c, and this entry is not moved before the first application of
Step 3. Hence, positions ab−c and ab−c + 1 will be in the same block. Furthermore,
since v(ab−c) < 0 and |v(ab−c)| is larger than the absolute value of any entry in the
b − c-th B-block, the ensuing series of Step 1 moves will not break this B-block (and
further Step 2 and Step 1 moves are all to its left), so ab−c−1 + 1 and ab−c remain
in the same B-block. Hence, the resulting permutation is B-indecomposable except
possibly for a string of positive entries all in their natural positions at the far right. �
Lemma 4.7 Let w ∈ Dn be D-indecomposable. Then, whenever Step 3 is performed,
we have a permutation u satisfying u(i) < 0, u( j) < 0, |u(i)| ≥ j , and |u( j)| ≥ i ,
where |u(i)| and |u( j)| are the two largest values of negative entries and i < j .

Since u is B-indecomposable (except for the entries at the far right), the proof is
the same as for Lemma 3.7.

Lemma 4.8 Let u ∈ Dn be B-indecomposable such that u(m) < m for all m, and
let i < j be such that u(i) < 0, u( j) < 0, |w(i)| ≥ j and |w( j)| ≥ i . Then right
multiplying u by tī j and repeatedly applying Step 1 of the algorithm until it can no
longer be applied will unsign w(i) and w( j) and put them in their natural positions.
These reflections cost in total exactly |w(i)| + |w( j)| − 2. The resulting permutation
u′ ∈ Dn has d(u′) = d(u) − (|w(i)| + |w( j)| − 2) and is B-indecomposable (except
possibly for positive entries in their natural positions at the far right).

The proof is entirely identical to the proof of Lemma 3.8, except that multiplying
by tī j costs i + j − 2 rather than i + j − 1.
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By the lemmas above, the total cost of the algorithm applied to w ∈ Dn , a D-
indecomposable signed permutation, is d(w). Since the algorithm is separately applied
to each D-block of a D-decomposable permutation, and the formula d(w) is additive
over D-blocks, we can conclude the following.

Proposition 4.9 For any w ∈ Dn, d(w) ≥ dp(w).

4.3 Proof of Theorem 2.9 and subsequent corollaries

To prove that d(w) ≤ dp(w), it is sufficient to prove the following lemma.

Lemma 4.10 For any element w ∈ Dn and any reflection t ∈ T D,

d(w) − dp(t) ≤ d(wt).

We now prove Theorem 2.9 assuming this lemma.

Proof of Theorem 2.9 By Proposition 4.9, d(w) ≥ dp(w). We now prove d(w) ≤
dp(w) by induction on dp(w). If dp(w) = 0, then w = e, and d(e) = 0. Otherwise,
there exists a reflection t ∈ T D such that dp(w) − dp(t) = dp(wt). By the inductive
hypothesis, dp(wt) = d(wt). Now, by Lemma 4.10, d(w) − dp(t) ≤ d(wt) =
dp(wt) = dp(w) − d(t). Hence, d(w) ≤ dp(w) as desired. �

Now we prove the lemma in cases for each type of reflection t . The proof is iden-
tical to that of Lemma 3.11 except for differences caused by the different definitions
of oddness and the different depths of tī j in the two cases. We will only note the
differences and refer to the previous proof where possible.

Proof of Lemma 4.10 As in the proof of Lemma 3.11, we denote the three terms in
Eq. (7) by A, B, and C , respectively, and let �d := d(w) − d(wt) and �A,�B, and
�C be the analogous differences. Then we analyze each type of reflection and the
entries in the positions the reflection acts on.
Case 1: t = ti j , (dp(t) = j − i). Clearly �B = 0.
a) w(i) < i . Again, the most change t can do to the B-block structure of w is to join
i and j into a single B-block, with each entry in between being a different singleton
B-block. Then t turns j − i + 1 B-blocks into a single B-block. In the worse case,
i and j are in the same D-block, in which case oD(w) can decrease by j − i . Since
�A = 0 in this case, �d ≤ j − i .
b) i ≤ w(i) < j .

Combining the analogous argument in Lemma 3.11 and Case 1(a) above, we see
�A ≤ w(i) − i and �C ≤ j − w(i), so �d ≤ j − i .
c) j ≤ w(i).

This case is exactly as in Lemma 3.11.
Case 2: t = tī j , and w(i) < 0 and w( j) < 0 (dp(t) = i + j − 2). In this case
�B = |w(i)| + |w( j)| − 2.
a) |w(i)| < i .
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Suppose first that |w( j)| ≥ i . In this case �A = −(|w( j)| − i), and �C ≤ j − i.
Hence, �d ≤ |w(i)| + j − 2 ≤ i + j − 2.

If |w( j)| < i , then �A = 0, and �C = 0; hence, �d = |w(i)| + |w( j)| − 2 ≤
i + j − 2.
b) i ≤ |w(i)| < j .

Suppose first that |w( j)| ≥ i . In this case �A = −(|w( j)| − i), and �C ≤
j − |w(i)|. Hence, �d ≤ i + j − 2.
If |w( j)| < i , then A does not change, �C ≤ 0, and �d ≤ i + j − 2.

c) j ≤ |w(i)|.
Suppose first that |w( j)| ≥ i . In this case �A ≤ −(|w(i)| − j) − (|w( j)| − i),

and oD(wt) ≥ oD(w), so �C ≤ 0. Hence, �d ≤ i + j − 2. If |w( j)| < i , then
�A ≤ −(|w(i)| − j) and �d ≤ j + |w( j)| − 2 ≤ i + j − 2.
Case 2’: t = tī j , and w(i) > 0 and w( j) > 0.
a) w(i) < i .

In this case �A and �B are nonpositive and �C ≤ j − i . Hence, �d ≤ i + j − 2
as i ≥ 1.
b) i ≤ w(i) < j .

In this case �A ≤ (w(i) − i) + max{0, (w( j) − j)}, �B = −w(i) − w( j) + 2,
and �C ≤ j − w(i), and clearly �d ≤ i + j − 2.
c) j ≤ w(i).

In this case �d is negative.
Case 2”: t = tī j , and w(i) < 0 and w( j) > 0.
This is the same as the analogous case for Lemma 3.11, except that �C ≤ j − i
instead, and we can conclude that �d ≤ i + j − 2.

The symmetric case w(i) > 0 and w( j) < 0 is similar. �

The proof of Corollary 2.10 from Theorem 2.9 is exactly the same as the proof of
Corollary 2.4 from Theorem 2.3. Now we prove Corollary 2.11.

Proof of Corollary 2.11 Let i ∈ [n], and consider the contribution of w(i) to dp(w)

in Eq. (7). If w(i) > 0, then w(i) contributes at most w(i) − i to the first summand.
On the other hand, if w(i) < 0, then it always contributes |w(i)| − 1 to the second
summand. Hence, it is clear that a maximal element must have at most one positive
entry. In fact, ifw had two positive entriesw(i), w( j), the D-oddness could be greater
than n/2 but could never make up for the w(i) + w( j) − 2 that would be lost from
the second term of Eq. (7).

If n is even the elements with maximal D-oddness (equal to n/2) must be of the
form

[1̄, |2̄, 3̄|�, . . . |n − 2, n − 1|�, n̄],

where the notation |ī, i + 1|� means that we can consider the entries ī and i + 1 in
either of the two possible orders. The number of all such elements is clearly 2

n−2
2 since

for any of the (n − 2)/2 pairs we have two choices for ordering its entries. The depth
of such elements is equal to

(n
2

) + n/2.
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If n is odd, then the set of maximal elements splits into four families of elements
of the form

[|∗, ∗||3̄, 4̄|�, . . . |n − 2, n − 1|�, n̄],

where the pair |∗, ∗| can be [1, 2̄], [2, 1̄], [2̄, 1], or [1̄, 2]. The D-oddness is (n − 1)/2
in the first three cases, and (n+1)/2 in the last one. In all cases we reach the maximum
depth

(n
2

) + (n − 1)/2. Clearly there are 4 × 2
n−3
2 such elements, and we are done. �

4.4 Reducedness of factorization

Let w ∈ Dn be indecomposable. Use our algorithm to write w as a product of reflec-
tions w = t1 · · · tr realizing the depth of w. Then, for each k ∈ [r ], depending on
whether tk is equal to ti j or tī j , replace tk by the following product of simple reflec-
tions:

ti j by s j−1 · · · si+1si si+1 · · · s j−1, and

tī j by si−1 · · · s1s j−1 · · · s2sD0 s2 · · · s j−1s1s2 · · · si−1.

To prove Theorem 2.13, we show the following.

Theorem 4.11 Thedecomposition ofw = t1 · · · tr given by the algorithm,where every
ti is replaced as explained above, is reduced. In particular, our algorithm defines a
chain from the identity to w in the right weak order of W.

Proof It is sufficient to show that in each step of the algorithm

�S(wt) = �S(w) − �S(t).

We discuss the following three cases.
Step 1: The reflections applied in Step 1 are of the form t = ti j , where w(i) is
the maximal positive entry in w and w( j) is the minimal entry among those with
i < j < w(i). Hence, for any i < k < j one has w(i) > w(k) > w( j). Therefore,
the result follows by Lemma 4.2(1).
Step 2: In Step 2, we apply t(i−1)i , where i is the index of the first position in the last
type B block. By Lemma 4.6, w(i) < 0, and since w(i − 1) and w(i) are in different
B-blocks, |w(i − 1)| < |w(i)|. Hence, the result follows by Lemma 4.2(1).
Step 3: We apply t = tī j , where, for any k ∈ [ j − 1] \ {i}, we have |w(k)| <

min{|w(i)|, |w( j)|}. Hence, the result follows by Lemma 4.2(2). �

5 Coincidences of length, depth, and reflection length

5.1 Coincidence of length and depth

In this sectionwe consider some of the consequences of Theorems 3.12 and 4.11. First,
we characterize of the elements w ∈ Bn and w ∈ Dn satisfying dp(w) = �S(w). For

123



J Algebr Comb (2016) 44:645–676 671

the symmetric group, Petersen and Tenner showed that the corresponding elements
are precisely the fully commutative ones [11, Thm. 4.1]. The situation in Bn and Dn

is similar. Indeed, our proof covers the case of the symmetric group Sn and is different
from that of Petersen and Tenner.

Since our considerations apply to any Coxeter group, we begin with a general
definition. Let (W, S) be a Coxeter system, and let w ∈ W . We say that the depth
of w is realized by a reduced factorization if there exist t1, . . . , tr ∈ T such that
w = t1 · · · tr , dp(w) = ∑r

i=1 dp(tr ), and �S(w) = ∑r
i=1 �S(tr ). By Theorems 3.12

and4.11, the depth of every element of Bn and Dn is realized by a reduced factorization.
Note that we can also apply our algorithm for Bn (or Dn) to its subgroup of unsigned
permutations to get an analogous result for Sn . If the depth of every element of (W, S)

is realized by a reduced factorization, we say that depth is universally realized by
reduced factorizations in (W, S). We do not know of any examples where depth is not
realized by a reduced factorization.

Our characterization of elements for which length and depth coincide is as follows.

Theorem 5.1 Let (W, S) be any Coxeter group. For any w ∈ W, dp(w) = �S(w)

if and only if w is short-braid-avoiding and the depth of w is realized by a reduced
factorization. Hence, for a Coxeter group (W, S) in which depth is universally realized
by reduced factorizations, an element w ∈ W satisfies the equality dp(w) = �S(w) if
and only if w is short-braid-avoiding.

Proof Suppose that w ∈ W is not short-braid-avoiding. Then w is a reduced product
of the form usi s j siv for some u, v ∈ W and si , s j ∈ S. Hence, dp(w) ≤ dp(u) + 2+
dp(v) < �S(w).

Now suppose the depth of w is not realized by a reduced factorization (using the
set of reflections T ). Then, in particular, the depth of w is not realized by a reduced
expression (using only the set of simple reflections S). Hence, dp(w) < �S(w).

Note that dp(w) ≤ �S(w) is true for all w, and suppose dp(w) < �S(w). If the
depth of w is not realized by a reduced factorization, we are done. If the depth of w is
realized by a reduced factorization, then there exist t1, . . . , tr ∈ T with w = t1 · · · tr
where �S(ti ) > 1 for some i . The reflection ti has a palindromic reduced expression
ti = s1 · · · s j−1s j s j−1 · · · s1 for some simple generators s1, . . . , s j ∈ S, where j =
dp(ti ) [5, Ex. 1.10].

Since w = t1 · · · tr is a reduced factorization, given any reduced expression for
ti , there exists a reduced expression for w containing as a consecutive subexpression
this reduced expression of ti . Therefore, w has a reduced expression of the form w =
· · · s1 · · · s j−1s j s j−1 · · · s1 · · · . In particular, this reduced expression has s j−1s j s j−1
consecutively, so w is not short-braid-avoiding. �

Since depth is universally realized by reduced factorizations in the classical Coxeter
groups, we have the following corollary.

Corollary 5.2 Let w be an element of Sn, Bn, or Dn. Then dp(w) = �S(w) if and
only if w is short-braid-avoiding.

AsFan [8] remarks, for elements of a simply lacedCoxeter group, being short-braid-
avoiding is equivalent to being fully commutative, and for non-simply laced groups,
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the short-braid-avoiding elements form a subset of the fully commutative ones. Hence,
our corollary generalizes the result of Petersen and Tenner for Sn .

We point out an alternative characterization of the short-braid-avoiding elements
in Bn as the fully commutative top-and-bottom elements defined by Stembridge [13],
since Petersen and Tenner originally suggested this characterization for the elements
w ∈ Bn with dp(w) = �S(w).

Proposition 5.3 Let W = Bn. Then w ∈ W is a fully commutative top-and-bottom
element if and only if it is short-braid-avoiding.

Proof Suppose w ∈ W is short-braid-avoiding. Then w is A-reduced in the sense of
Stembridge [13], since its reduced word cannot contain sB0 s1s

B
0 s1 or s1s

B
0 s1s2s1s

B
0 s1.

Let w̃ ∈ An = Sn+1 be the A-reduction of w.
Sincew is short-braid-avoiding, w̃ is fully commutative. Hence, all reduced expres-

sions for w̃ are in the same commutativity class. All commutativity relations in An are
also relations in Bn , so all reduced expressions for w̃ lift to reduced expressions forw.
Therefore,w is the only elementwhose A-reduction is w̃. Hence, it is a top-and-bottom
element.

Now supposew ∈ W is not short-braid-avoiding. Ifw is not fully commutative, we
are done. If w is fully commutative but not short-braid-avoiding, it must have s1sB0 s1
or sB0 s1s

B
0 as consecutive generators in a reduced expression. In the first case, w is not

a top element, and in the second, it is not a bottom element. �

Remark 5.4 An immediate proof of this result can be obtained by using the char-
acterization of fully commutative elements of type B given in [3, §4.4] and [13,
Corollaries 5.6 and 5.7]. In fact, heaps of top-and-bottom fully commutative ele-
ments of type B are alternating heaps having zero or one occurrences of a label sB0 . In
particular, by [3, Theorem 1.14], they are in bijection with certain bicolored Motzkin
paths [3, Definition 1.11]. This identification can be used to prove Corollary 5.2 in a
manner analogous to Petersen and Tenner’s proof for Sn . (See [11, §4.1].)

Remark 5.5 As was stated in Proposition 5.3, in type B, an element is short-braid-
avoiding if and only if it is fully commutative top-and-bottom. Therefore, the first
part of Corollary 2.16 follows from Corollary 5.2 and Proposition 5.9 (c) of [13]. The
second part, regarding type D, is a consequence of Section 3.3 in [12] since, in Dn ,
the short-braid-avoiding elements are precisely the fully commutative ones.

Our characterization of when dp(w) = �S(w) can also be stated using pattern
avoidance by using Corollaries 5.6, 5.7, and 10.1 in [13].

Theorem 5.6 Let w ∈ Bn. Then dp(w) = �S(w) if and only if w avoids the following
list of patterns:

[1̄, 2̄], [2̄, 1̄], [1, 2̄], [3, 2, 1], [3, 2, 1̄], [3, 1, 2̄].
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Theorem 5.7 Letw ∈ Dn. Then dp(w) = �S(w) if and only ifw avoids the following
list of patterns:

[1̄, 2̄, 3̄], [1, 2̄, 3̄], [2̄, 1̄, 3̄], [2, 1̄, 3̄], [2̄, 1, 3̄], [2, 1, 3̄], [3̄, 1̄, 2̄], [3, 1̄, 2̄],
[3̄, 1, 2̄], [3, 1, 2̄], [3̄, 2, 1], [3, 2, 1], [3̄, 2, 1̄], [3, 2, 1̄], [1̄, 3̄, 2̄], [1, 3̄, 2̄],
[2̄, 3̄, 1̄], [2̄, 3̄, 1], [2, 3̄, 1̄], [2, 3̄, 1].

5.2 Coincidence of depth, length, and reflection length

In this section we characterize the elements in a Coxeter group that satisfy �T (w) =
dp(w) = �S(w). Actually, this characterization easily follows from results in [7], [11],
and [14], all of which predate our work. Nevertheless, we present it here for the sake
of completeness.

Let W be a Coxeter group. Following Tenner [14], we say an element w ∈ W is
boolean if the principal order ideal of w in W , B(w) := {x ∈ W | x ≤ w} is a
boolean poset, where ≤ refers to the Bruhat order. Recall that a poset is boolean if it
is isomorphic to the poset of subsets of [k], ordered by inclusion, for some k.

Theorem 7.3 of [14] states that an element w ∈ W is boolean if and only if some
(and hence any) reduced decomposition ofw has no repeated letters. Furthermore, the
following result is due to Dyer [7, Theorem 1.1].

Proposition 5.8 Let (W, S) be a Coxeter system, and let w = s1 · · · sn be a reduced
decomposition of w ∈ W. Then �T (w) is the minimum natural number k for which
there exist 1 ≤ i1 < · · · < ik ≤ n such that e = s1 · · · ŝi1 · · · ŝi2 · · · ŝik · · · sn, where ŝ
indicates the omission of s.

From these two results one can easily conclude that, for each w ∈ W , we have that
�T (w) = �S(w) if and only if w is boolean. Hence, by [14, Theorem 7.4] we get the
following results.

Theorem 5.9 Let w ∈ Bn. Then �T (w) = dp(w) = �S(w) if and only if w avoids the
following list of patterns:

[1̄, 2̄], [2̄, 1̄], [1, 2̄], [3, 2, 1], [3, 2, 1̄], [3̄, 2, 1],
[3, 2̄, 1], [3, 4, 1, 2], [3, 4, 1̄, 2], [3̄, 4, 1, 2].

Theorem 5.10 Let w ∈ Dn. Then �T (w) = dp(w) = �S(w) if and only if w avoids
the following list of patterns:

[1̄, 2̄, 3̄], [1̄, 3̄, 2̄], [2̄, 1̄, 3̄], [2̄, 3̄, 1̄], [3̄, 1̄, 2̄], [3̄, 2̄, 1̄], [3, 2, 1], [3, 4, 1, 2],
[3, 2, 1̄], [3, 1̄, 2̄], [3, 4, 1̄, 2̄], [3, 4, 2̄, 1̄], [3̄, 2, 1], [2̄, 3̄, 1], [3̄, 4, 1, 2],
[4̄, 3̄, 1, 2], [1, 2̄], [3, 2̄, 1], [3̄, 2, 1̄], [3̄, 4, 1̄, 2].

Moreover, by [14, Corollaries 7.5 and 7.6] we get a proof of Corollaries 2.17 and
2.18.
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6 Open questions and further remarks

There remain many possible further directions for the further study of depth. First,
we have analogues of the questions asked in [11, Section 5] for the symmetric group.
While we have enumerated the elements of maximal depth in Bn and Dn , the number
of elements of other, non-maximal depths remains unknown.

Question 6.1 How many elements of Bn or Dn have depth k?

For the symmetric group Sn , Guay-Paquet and Petersen found a continued fraction
formula for the generating function for depth [9].

Petersen and Tenner also asked the following question, which we now extend to Bn

and Dn :

Question 6.2 Which elements of Bn or Dn have dp(w) = (�T (w) + �S(w))/2?

Furthermore, it seems possible that variations of our techniques can be extended
to the infinite families of affine Coxeter groups, for which combinatorial models as
groups of permutations on Z are given in [5, Chapter 8].

Question 6.3 What are the analogues of Theorems 2.3 and 2.9 for the infinite families
of affine Coxeter groups?

Given Examples 2.6 and 2.12, we can ask the following:

Question 6.4 For which elements of Bn and Dn can depth be realized by a product
of �T (w) reflections?

We also ask some questions relating to Theorems 3.12 and 4.11.

Question 6.5 Is depth universally realized by reduced factorizations for all Coxeter
groups? If so, is there a uniform proof? If not, can one characterize the elements of
Coxeter groups whose depth is realized by a reduced factorization?

It would be interesting to know the answer even for various specific Coxeter groups.
For example, one might answer this question for the infinite families of affine Coxeter
groups. The question is interesting even for the finite exceptional Coxeter groups. One
can attempt to use a computer to find the answer in this case, but finding a feasible
method for computing the answer seems nontrivial for E8 or even E7.

Furthermore, there is another perspective on Theorems 3.12 and 4.11 that leads to
further questions.

Given aCoxeter group (W, S) and an elementw ∈ W , define the reduced reflection
length �R(w) by

�R(w) := min{r ∈ N | w = t1 · · · tr for t1, . . . , tr ∈ T and �S(w) =
r∑

i=1

�S(ti )}.

(10)

Note that, by definition �T (w) ≤ �R(w) ≤ �S(w).
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For example,w = [4, 2, 5, 1, 3] ∈ S5 has a reduced expressionw = s3s4s1s2s1s3 =
s3s4(s1s2s1)s3. Hence, �S(w) = 6, and one can check that �R(w) = 4. However, its
reflection length is equal to 2 since w = (s3s4s3)(s3s1s2s1s3) = t35t14. Hence, in this
case �T (w) < �R(w) < �S(w).

Reduced reflection length is related to depth as follows.

Proposition 6.6 Let (W, S) be a Coxeter group and w ∈ W. Then

dp(w) ≤ �R(w) + �S(w)

2
.

If the depth of w is realized by a reduced factorization, then we have equality. In
particular, for w in a classical finite Coxeter group, dp(w) = (�R(w) + �S(w))/2.

Proof There must exist some t1, . . . , tr so that w = t1 · · · tr realizes �R(w), meaning
that �R(w) = r and �S(w) = ∑r

i=1 �S(ti ). Hence,

dp(w) ≤
r∑

i=1

dp(ti ) =
r∑

i=1

1 + �S(ti )

2
= �R(w) + �S(w)

2
.

Now suppose the depth of w is realized by a reduced factorization. Then there
exist t1, . . . , tr with w = t1 · · · tr and �S(w) = ∑r

i=1 �S(ti ). Therefore, �R(w) ≤ r .
Moreover,

dp(w) =
r∑

i=1

1 + �S(ti )

2
= r + �S(w)

2
.

Since �R(w) ≤ r , we have

dp(w) ≥ �R(w) + �S(w)

2
.

�
One can give an alternate definition of reduced reflection length as follows. We

have �S(wt) = �S(w) + �S(t) if and only if w <R wt in right weak order. Hence,
�R(w) is the length of the shortest chain e = w0 <R · · · <R wr = w in right weak
order where, for all i ∈ [r ], wi = wi−1t for some reflection t . Given a partial order
≺ on W , define �≺(w) to be the length of the shortest chain e = w0 ≺ · · · ≺ wr = w

where, for all i ∈ [r ], wi = wi−1t for some reflection t . If ≺ is Bruhat order, then
�≺ = �T , and if ≺ is right (or left) weak order, �≺ = �R , a formula for which (for Sn ,
Bn , and Dn) is given above.

Hence, for any partial order on W (or at least partial orders whose relations are a
subset of the relations of Bruhat order), we can ask the following.

Question 6.7 Find formulas for �≺ for other partial orders on Coxeter groups. Deter-
mine for which elements �≺ = �S.
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We also have the following generalization of Question 6.2.

Question 6.8 Which elements of W have �≺(w) = �T (w)?

A particularly interesting family of partial orders are the sorting orders of Arm-
strong [1], which were further studied by Armstrong and Hersh [2]. These partial
orders contain all the relations of weak order but are contained in Bruhat order.
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