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Abstract We study the Hecke algebra H(q) over an arbitrary field F of a Coxeter
system (W, S) with independent parameters q = (qs ∈ F : s ∈ S) for all generators.
This algebra always has a spanning set indexed by the Coxeter group W , which is
indeed a basis if and only if every pair of generators joined by an odd edge in the
Coxeter diagram receives the same parameter. In general, the dimension of H(q)

could be as small as 1. We construct a basis for H(q) when (W, S) is simply laced.
We also characterize when H(q) is commutative, which happens only if the Coxeter
diagram of (W, S) is simply laced and bipartite. In particular, for type A, we obtain
a tower of semisimple commutative algebras whose dimensions are the Fibonacci
numbers. We show that the representation theory of these algebras has some features
in analogy/connection with the representation theory of the symmetric groups and the
0-Hecke algebras.

Keywords Hecke algebra · Independent parameters · Fibonacci number ·
Independent set · Grothendieck group

1 Introduction

Let W := 〈S : (st)mst = 1, ∀s, t ∈ S〉 be a Coxeter group. The (Iwahori-)Hecke
algebra of the Coxeter system (W, S) is a one-parameter deformation of the group
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algebra of W , which has significance in many areas, such as algebraic combinatorics,
knot theory, quantum groups, representation theory of p-adic groups, and so on. We
generalize the definition of the Hecke algebra of (W, S) from a single parameter to
multiple independent parameters.

Definition 1.1 Let F be an arbitrary field. The Hecke algebra H(q) = HS(q) of the
Coxeter system (W, S) with independent parameters q = (qs ∈ F : s ∈ S) is the
(associative) F-algebra generated by {Ts : s ∈ S} with
• quadratic relations (Ts − 1)(Ts + qs) = 0 for all s ∈ S,
• braid relations (TsTt Ts · · · )mst = (Tt TsTt · · · )mst for all s, t ∈ S.

Here (aba · · · )m is an alternating product of m terms.

The algebraH(q) can be represented by the Coxeter diagram of (W, S) with extra
labels qs for all vertices s ∈ S. For simplicity, we only draw the labels of the vertices
but not the vertices themselves. For example, we draw

1 0 1 0 1 0 1 0

for the usual Coxeter system of type B8 whose Coxeter diagram is

s1 s2 s3 s4 s5 s6 s7 s8

with independent parameters q = (qsi : 1 ≤ i ≤ 8) = (1, 0, 1, 0, 1, 0, 1, 0).
The quadratic relations for H(q) can be rewritten as T 2

s = (1 − qs)Ts + qs for
all s ∈ S. If qs �= 0, then Ts is invertible and T−1

s = q−1
s Ts + 1 − q−1

s . For any
w ∈ W with a reduced expression w = st · · · r where s, t, . . . , r ∈ S, the element
Tw := TsTt · · · Tr is well defined thanks to the word property of W (see, e.g., [3,
Theorem 3.3.1]).

If qs = q for all s ∈ S, then H(q) is the usual Hecke algebra of (W, S) with
parameter q. If one only insists qs = qt whenever mst is odd, then H(q) is the
Hecke algebra with unequal parameters in the sense of Lusztig [7]. Now, we allow
q = (qs ∈ F : s ∈ S) to be arbitrary. The following result may be well known to the
experts, and we include a proof for it in the end of Sect. 3 for completeness.

Theorem 1.2 The algebraH(q) is always spanned by {Tw : w ∈ W }, which is indeed
a basis if and only if H(q) is a Hecke algebra with unequal parameters, i.e., qs = qt
whenever mst is odd.

In general, we show that the algebra H(q) could be much smaller than the group
algebra FW .

Theorem 1.3 If there exist s, t ∈ S with mst odd such that qs and qt are distinct
nonzero parameters, then one hasHS(q) ∼= HS\R(q)where R consists of all elements
r ∈ S connected to s via some path with odd edge weights and nonzero vertex labels
in the Coxeter diagram of (W, S).
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Thus, we always assume without loss of generality thatH(q) is collapse free, i.e.,
if mst is odd and qs �= qt , then at least one of qs and qt is 0. We next characterize
when H(q) is commutative.

Theorem 1.4 The algebraH(q) is collapse free and commutative if and only if (W, S)

is simply laced and exactly one of qs and qt is 0 for any pair of elements s, t ∈ S with
mst = 3.

We construct a basis forH(q) (not necessarily commutative) when (W, S) is simply
laced (Theorem 4.3). It implies the dimension of a commutative H(q), giving one
motivation for our study of the commutative case.

Corollary 1.5 Let G be the underlying graph of the Coxeter diagram of (W, S),
and let I(G) be the set of all independent sets in G. If H(q) is collapse free and
commutative, then its dimension is |I(G)| (the Merrifield-Simmons index of the graph
G). In particular, if (W, S) is of type An, then the dimension ofH(q) is the Fibonacci
number Fn+2.

Example 1.6 Let F be a field with at least 3 distinct elements 0, 1, and c. LetH(q) be
given by the diagram below.

0 c 1 0 1

1 1 c

1 0 1 c 1

Removing the boxed elements gives 3 connected components 0, 0 1, and

1 0 1. Thus, the dimension ofH(q) is 2 ·8 ·5 = 80 by Theorems 1.2, 1.3, 1.4,
and Corollary 1.5.

Theorem 1.4 shows that ifH(q) is collapse free and commutative, then the Coxeter
diagram of (W, S) must be a simply laced bipartite graph. Here a bipartite graph is a
graph whose vertices can be partitioned into two disjoint setsU and V such that every
edge connects one vertex in U and one in V . Computations in Magma suggest the
following conjecture, which is verified for type A (Theorem 5.4). This gives another
motivation for our study of the commutative case.

Conjecture 1.7 If the Coxeter diagram of (W, S) is a simply laced bipartite graph G,
then a collapse-freeH(q) has minimum dimension equal to |I(G)|, which is attained
when H(q) is commutative.

For the irreducible simply laced Coxeter systems of type A, D, ˜A, and ˜D, the
dimensions of collapse free and commutative Hecke algebras H(q) are given below,
which all happen to satisfy the Fibonacci recurrence.

Note that the Coxeter diagram of ˜An is a cycle of length n, which is bipartite if
and only if n if even. However, the dimensions given above for ˜An make sense for all
integers n ≥ 1. This is because we can define a commutative algebraH(G, R) whose
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Coxeter diagram Dimensions Known as OEIS entry

An (n ≥ 1) 2,3,5,8,13,… Fibonacci numbers Fn+2 A000045
Dn (n ≥ 2) 4,5,9,14,23,… ? A000285
˜An (n ≥ 3) 4,7,11,18,29,… Lucas numbers Ln A000032
˜Dn (n ≥ 5) 17, 24, 41,65,106,… ? A190996

dimension is |I(G)| for any (unweighted) simple graph G with vertex set V (G) and
edge set E(G) and for any R ⊆ V (G), such that a collapse-free and commutative
Hecke algebraH(q) is isomorphic toH(G, R) where G is the Coxeter diagram of the
simply laced (W, S) and R = {s ∈ S : qs = −1}. This algebraH(G, R) is defined as
the quotient of the polynomial algebra F[xv : v ∈ V (G)] by its ideal generated by

{x2r : r ∈ R} ∪ {x2v − xv : v ∈ V (G) \ R} ∪ {xuxv : uv ∈ E(G)}.

It is also a quotient of the Stanley-Reisner ring of the independence complex of G [5].
We show the following results on the representation theory of H(G, R). The pro-

jective indecomposable H(G, R)-modules are indexed by I(G − R), where G − R
is the graph obtained from G by deleting R and all edges incident to R. The simple
H(G, R)-modules are all one dimensional and also indexed by I(G − R). The Cartan
matrix of H(G, R) is a diagonal matrix. The algebra H(G, R) is semisimple if and
only if R = ∅.

We next apply the above results to type A. Let G = Pn−1 be a path with n −
1 vertices. One sees that the dimension of the algebra H(Pn−1, R) is equal to the
Fibonacci number Fn+1.We further assume that this algebra is semisimple, i.e., R = ∅,
and write Hn := H(Pn−1,∅). If char (F) �= 2 then Hn is isomorphic to the Hecke
algebra H(q) of the Coxeter system of type An−1 with independent parameters q =
(0, 1, 0, 1, . . .) or q = (1, 0, 1, 0, . . .). We summarize our results on the algebra Hn

below. The reader who is familiar with the representation theory of the symmetric
group Sn and/or the 0-Hecke algebraHn(0) can see certain features of our results in
analogy with Sn and/or Hn(0).

The semisimple commutative algebra Hn has Fn+1 many nonisomorphic simple
modules, which are all one dimensional and indexed by compositions of nwith internal
parts larger than 1. TheGrothendieck group G0(Hn) of finite-dimensional representa-
tions ofHn is a free abelian group on these simpleHn-modules. The tower of algebras
H• : H0 ↪→ H1 ↪→ H2 ↪→ · · · has a Grothendieck group

G0(H•) :=
⊕

n≥0

G0(Hn)

with a product and a coproduct given by the induction and restriction along the embed-
dings Hm ⊗ Hn ↪→ Hm+n .

Although not a bialgebra, G0(H•) has a self-dual basis consisting of simple Hn-
modules for all n ≥ 0. We provide explicit formulas for the structure constants of the
product and coproduct of G0(H•) in terms of this self-dual basis, which are naturally
all positive. This result connects G0(H•) to the Grothendieck groups of the finite-
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dimensional (projective) representations of the 0-Hecke algebras Hn(0), or equiv-
alently, the dual Hopf algebras NSym of noncommutative symmetric functions and
QSym of quasisymmetric functions. It turns out that G0(H•) is a quotient algebra of
NSym and a subcoalgebra of QSym, but its antipode satisfies a different rule than the
antipodes of QSym and NSym. The Bratteli diagram of the towerH• is a binary tree
on compositions with internal parts larger than 1.

This paper is structured as follows. We first provide preliminaries in Sect. 2. Then,
we discuss when H(q) collapses or becomes commutative in Sect. 3. We study the
algebra H(q) of a simply laced Coxeter system in Sect. 4 and investigate the simply
laced bipartite case in Sect. 5. We provide more results on the commutative case in
Sect. 6 and give the type A specialization in Sect. 7. Finally, we give remarks and
questions in Sect. 8.

2 Preliminaries

2.1 Coxeter groups and Hecke algebras

A Coxeter group is a group with the following presentation

W := 〈S : s2 = 1, (sts · · · )mst = (tst · · · )mst , ∀s, t ∈ S, s �= t〉

where the generating set S is finite, mst = mts ∈ {2, 3, . . .} ∪ {∞}, and (aba · · · )m
is an alternating product of m terms. By convention, no relation is imposed between
s and t if mst = ∞. The pair (W, S) is called a Coxeter system.

The Coxeter diagram of (W, S) is an edge-weighted graph whose vertices are the
elements in S and whose edges are the unordered pairs {s, t} with weight mst for all
s, t ∈ S such that mst ≥ 3, s �= t . An edge with weight mst ≤ 5 is often drawn as
mst − 2 many multiple edges between s and t . An edge is simply laced if its weight
is 3. If every edge is simply laced, then the Coxeter system (W, S) and its Coxeter
diagram are both called simply laced.

An element w in W can be written as a product of elements in S. Among all
such expressions, the shortest ones are called reduced, and the length of a reduced
expression of w is called the length of w and denoted by �(w). A nil-move deletes s2,
and a braid-move replaces (sts · · · )mst with (tst · · · )mst in the expressions of w ∈ W
as products of elements in S. By [3, Theorem 3.3.1], W satisfies the following word
property.

Word property Any expression of w ∈ W as a product of elements in S can be
transformed into a reduced expression of w by braid-moves and nil-moves, and every
pair of reduced expressions for w can be connected via braid-moves.

A subset I ⊆ S generates a parabolic subgroup WI := 〈I 〉 of W . The pair (WI , I )
is a Coxeter system whose Coxeter diagram is the edge-weighted subgraph of the
Coxeter diagram of (W, S) induced by the vertex subset I ⊆ S. If S1, . . . , Sk are
the vertex sets of the connected components of the Coxeter diagram of (W, S), then
W = WS1 ×· · ·×WSk . Thus, (W, S) is irreducible if its Coxeter diagram is connected.
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There is a well-known classification for finite irreducible Coxeter groups, among
which type A is of particular interest. The symmetric groupSn is the Coxeter group of
type An−1 with generating set S consisting of the adjacent transpositions si := (i, i+1)
for i = 1, . . . , n−1. The Coxeter diagram ofSn is the path s1 s2 · · · sn−1 .

The (Iwahori-)Hecke algebraHS(q) of a Coxeter system (W, S) is a one-parameter
deformation of the group algebra of W . Let F be a field, and let q ∈ F. Then, HS(q)

is defined as the F-algebra generated by {Ts : s ∈ S} with
• quadratic relations: (Ts − 1)(Ts + q) = 1, ∀s ∈ S,
• braid relations: (TsTt Ts · · · )mst = (TtTsTt · · · )mst , ∀s, t ∈ S, s �= t .

The specialization of the Hecke algebraHS(q) at q = 1 gives the group algebra FW ,
and the specialization at q = 0 gives the 0-Hecke algebraHS(0). If (W, S) is of type
An−1, then we write Hn(q) := HS(q) and Hn(0) := HS(0).

If w ∈ W has a reduced expression w = st · · · r , where s, t, . . . , r ∈ S, then
Tw := TsTt · · · Tr is well defined thanks to the word property of W . It is well known
that {Tw : w ∈ W } is a basis for HS(q). One has

TsTw =
{

(1 − q)Tw + qTsw, �(sw) < �(w),

Tsw, �(sw) > �(w),
(2.1)

for all s ∈ S and w ∈ W . This gives the regular representation of HS(q).

2.2 Representation theory of associative algebras

We review some general results on the representation theory of associative algebras
(see, e.g., [2, § I]). LetF be a field, and let A be a finite-dimensional (unital associative)
F-algebra. Let M be a (left) A-module. If M has no submodules except 0 and itself,
then M is simple. If M is a direct sum of simple A-modules, then M is semisimple.
The algebra A is semisimple if it is semisimple as an A-module. Every module over
a semisimple algebra is also semisimple. If M cannot be written as a direct sum of
two nonzero A-submodules, then M is indecomposable. If M is a direct summand of
a free A-module, then M is projective.

The (Jacobson) radical rad(M) of M is the intersection of all maximal A-
submodules of M , which turns out to be the smallest submodule N of M such that
M/N is semisimple. One has rad(M1 ⊕ M2) = rad(M1)⊕ rad(M2) if M1 and M2 are
two A-modules. The radical of the algebra A is defined as rad(A)with A itself viewed
as an A-module. If A happens to be commutative, then all nilpotent elements in A
form an ideal of A, called the nilradical of A, which is always contained in rad(A).
The top ofM is the quotient module top(M) := M/rad(M). The socle soc(M) ofM is
the sum of all minimal submodules of M , which is the largest semisimple submodule
of M .

Every A-module can be written as a direct sum of indecomposable A-submodules.
Let A itself as an A-module be a direct sum of indecomposable A-modulesP1, . . . ,Pk .
AlthoughPi is not simple in general, its topCi is.Moreover, every projective indecom-
posable A-module is isomorphic to somePi , and every simple A-module is isomorphic
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to some Ci . Suppose without loss of generality that {P1, . . . ,P�} and {C1, . . . ,C�}
are complete lists of nonisomorphic projective indecomposable A-modules and sim-
ple A-modules, respectively, where � ≤ k. Then, the Cartan matrix of A is [ai j ]i, j∈[�]
where ai j is the multiplicity of C j among the composition factors of Pi .

The Grothendieck group G0(A) of the category of finitely generated A-modules is
defined as the abeliangroup F/R,where F is the free abeliangroupon the isomorphism
classes [M] of finitely generated A-modules M , and R is the subgroup of F generated
by the elements [M] − [L] − [N ] corresponding to all exact sequences 0 → L →
M → N → 0 of finitely generated A-modules. The Grothendieck group K0(A) of
the category of finitely generated projective A-modules is defined similarly. We often
identify a finitely generated (projective) A-module with the corresponding element in
the Grothendieck group G0(A) (K0(A)). It turns out that G0(A) and K0(A) are free
abelian groups with bases {C1, . . . ,C�} and {P1, . . . ,P�}, respectively. If L , M, N
are all projective A-modules, then the exact sequence 0 → L → M → N → 0 is
equivalent to the direct sum decomposition M ∼= L ⊕ N . If A is semisimple, then
G0(A) = K0(A) since Pi = Ci for all i .

Let B be a subalgebra of A. The induction N ↑ A
B of a B-module N from B to A

is the A-module A ⊗B N . The restriction M ↓ A
B of an A-module M from A to B

is M itself viewed as a B-module. The induction and restriction are well defined for
isomorphic classes of modules.

2.3 Representation theory of symmetric groups and 0-Hecke algebras

The (complex) representation theory of the symmetric group is fascinating and has rich
connections with symmetric function theory. The simpleCSn-modules Sλ are indexed
by partitions λ of n, and every CSn-module is a direct sum of simple CSn-modules,
i.e., CSn is semisimple. Thus, the Grothendieck group G0(CSn) = K0(CSn) is a
free abelian group on the isomorphism classes [Sλ] for all partitions λ of n. The tower
of groups S• : S0 ↪→ S1 ↪→ S2 ↪→ · · · has a Grothendieck group

G0(CS•) :=
⊕

n≥0

G0(CSn).

Using the natural embedding Sm × Sn ↪→ Sm+n , one can define the product of Sμ

and Sν as the induction of Sμ ⊗ Sν from Sm × Sn to Sm+n for all partitions μ � m
and ν � n, and define the coproduct of Sλ as the sum of its restriction toSi ×Sn−i for
i = 0, 1, . . . , n, for all partitions λ � n. This gives G0(CS•) a self-dual graded Hopf
algebra structure, as the product and coproduct share the same structure constants,
namely the Littlewood-Richardson coefficients.

The Frobenius characteristic map ch sends a simple Sλ to the Schur function sλ,
giving a Hopf algebra isomorphism between the Grothendieck group G0(CS•) and
Sym, the ring of symmetric functions (see Stanley [11, Chapter 7]).

The 0-Hecke algebra Hn(0) has analogous representation theory as the sym-
metric group Sn . We first review some notation. A composition is a sequence
α = (α1, . . . , α�) of positive integers. Let σi := α1 + · · · + αi for i = 1, . . . , �.
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The size |α| of the composition α is the sum of all its parts α1, . . . , α�, i.e., |α| = σ�.
If |α| = n then we say that α is a composition of n and write α |� n. The descent
set of α is D(α) := {σ1, . . . , σ�−1}. Sending α to D(α) gives a bijection between
compositions of n and subsets of [n − 1].

Now recall from Norton [8] that the 0-Hecke algebra Hn(0) has the following
decomposition

Hn(0) =
⊕

α|�n

Pα(0)

where the Pα(0) is pairwise nonisomorphic indecomposable Hn(0)-modules. The
top of Pα(0) is one dimensional and denoted by Cα(0). Thus, the two Grothendieck
groupsG0(Hn(0)) and K0(Hn(0)) are free abelian groups on the isomorphism classes
ofCα(0) and Pα(0), respectively, for all compositions α. Associated with the tower of
algebras H•(0) : H0(0) ↪→ H1(0) ↪→ H2(0) ↪→ · · · are two Grothendieck groups

G0(H•(0)) :=
⊕

n≥0

G0(Hn(0)) and K0(H•(0)) :=
⊕

n≥0

K0(Hn(0)).

They are dual graded Hopf algebras with product and coproduct again given by
induction and restriction of representations along the natural embeddings Hm(0) ⊗
Hn(0) ↪→ Hm+n(0) of algebras. The duality is given by the pairing 〈Pα(0),Cβ(0)〉 :=
δα, β for all compositions α and β.

For later use, we review the explicit formulas for the product of K0(H•(0)) and the
coproduct ofG0(H•(0)). Letα = (α1, . . . , α�) andβ = (β1, . . . , βk)be compositions
of m and n, respectively. We write

αβ := (α1, . . . , α�, β1, . . . , βk) and α � β :=(α1, . . . , α�−1, α� + β1, β2, . . . , βk).

For any i ∈ {0, 1, . . . ,m}, let r be the largest integer such that σr := α1 + · · · + αr is
no more than i , and write

α≤i := (α1, . . . , αr , i − σr ) and α>i := (σr+1 − i, αr+2, . . . , α�)

where we ignore i − σr if it happens to be 0.

Proposition 2.1 (Krob and Thibon [6]) For any α |� m and β |� n, one has

Pα(0) ⊗̂Pβ(0) := (

Pα(0) ⊗ Pβ(0)
) ↑ Hm+n(0)

Hm (0)⊗Hn(0)
= Pαβ(0) ⊕ Pα�β(0),


(Cα(0)) :=
m

∑

i=0

Cα(0) ↓ Hm (0)
Hi (0)⊗Hm−i (0)

=
m

∑

i=0

Cα≤i (0) ⊗ Cα>i (0).
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For example, one has P213(0) ⊗̂P223(0) = P213223(0) ⊕ P21523(0). Let ∅ be the
empty composition of n = 0. Then


(C121(0)) = C∅(0) ⊗ C121(0) + C1(0) ⊗ C21(0) + C11(0) ⊗ C11(0)

+C12(0) ⊗ C1(0) + C121(0) ⊗ C∅(0).

The representation theory of the 0-Hecke algebras is connected with the dual
graded Hopf algebras QSym of quasisymmetric functions and NSym of noncommu-
tative symmetric functions. There are dual bases for QSym and NSym consisting of
the fundamental quasisymmetric functions Fα and the noncommutative ribbon Schur
functions sα for all compositions α. Krob and Thibon [6] introduced two Hopf algebra
isomorphisms

Ch : G0(H•(0)) ∼= QSym and ch : K0(H•(0)) ∼= NSym

defined by Ch(Cα(0)) = Fα and ch(Pα(0)) = sα for all compositions α. There is an
injection Sym ↪→ QSym of Hopf algebras given by inclusion, as well as a surjection
NSym � Sym of Hopf algebras by taking commutative image.

3 Collapse and commutativity

Let (W, S) be a Coxeter system and let F be a field. Recall from Definition 1.1 that
the Hecke algebra H(q) = HS(q) of the Coxeter system (W, S) with independent
parameters q = (qs ∈ F : s ∈ S) is the (associative) F-algebra generated by {Ts : s ∈
S} with
• quadratic relations (Ts − 1)(Ts + qs) = 0 for all s ∈ S,
• braid relations (TsTt Ts · · · )mst = (Tt TsTt · · · )mst for all s, t ∈ S.

In this section, we study when the algebra H(q) collapses or becomes commutative.
We first study the parabolic subalgebras ofH(q). We know that any subset R ⊆ S

generates a Coxeter subsystem (WR, R) of (W, S). However, the subalgebra ofH(q)

generated by {Tr : r ∈ R} is not necessarily isomorphic to the Hecke algebraHR(q) of
theCoxeter system (WR, R)with independent parameters (qr : r ∈ R). For example, if
there exist two elements s and t in S such that qs and qt are distinct nonzero parameters
and mst is odd, then the algebra H{s}(q) is two dimensional, but Theorem 3.2 below
gives Ts = 1 in H(q). To guarantee an isomorphism between these two algebras, we
assume that R ⊆ S is admissible, i.e., if mst is odd for s ∈ R and t ∈ S \ R then
either qs = 0 or qt = 0. If R is admissible, then one sees that S \ R is also admissible.
We denote the generating set of HR(q) by {T ′

r : r ∈ R}, which satisfies the relations
(T ′

r − 1)(T ′
r + qr ) = 0 and (T ′

r T
′
t T

′
r · · · )mrt = (T ′

t T
′
r T

′
t · · · )mrt for all r, t ∈ R.

Proposition 3.1 For any R ⊆ S, there is an algebra surjection from HR(q) to the
subalgebra of H(q) generated by {Tr : r ∈ R} by sending T ′

r to Tr for all r ∈ R,
which is an isomorphism when R is admissible.
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Proof Sending T ′
r to Tr for all r ∈ R gives an algebra map φ : HR(q) → H(q)

whose image is the subalgebra of H(q) generated by {Tr : r ∈ R}. Suppose that R is
admissible and define

ψ(Ts) =

⎧

⎪

⎨

⎪

⎩

T ′
s , if s ∈ R,

1, if s ∈ S \ R, qs �= 0,

0, if s ∈ S \ R, qs = 0.

One sees that the quadratic relations are preserved by ψ . We next check the braid
relations. Let s, t ∈ S with mst = m.

If s and t are both in R then ψ(Ts) = T ′
s and ψ(Tt ) = T ′

t satisfy the same braid
relation as Ts and Tt .

If s ∈ R and t ∈ S \ R, then ψ(Tt ) ∈ {0, 1}. When m is even, one has

(ψ(Ts)ψ(Tt )ψ(Ts) · · · )m = (ψ(Tt )ψ(Ts)ψ(Tt ) · · · )m .

Whenm is odd and qt = 0, one hasψ(Tt ) = 0 and the above quality still holds. When
m is odd and qt �= 0, one has ψ(Tt ) = 1 and the admissibility of R implies qs = 0.
Thus,

(ψ(Ts)ψ(Tt )ψ(Ts) · · · )m = (T ′
s )

(m+1)/2 = (T ′
s )

(m−1)/2 = (ψ(Tt )ψ(Ts)ψ(Tt ) · · · )m .

It follows that ψ is a well-defined algebra map. Restricted to the image of φ, the
map ψ is nothing but the inverse of φ. Thus, the result holds. ��

We say that a path in the Coxeter diagram of (W, S) is odd if all its edges have odd
weights, and nonzero if all its vertices, including the two end vertices, correspond to
nonzero parameters. The collapsed subset of S consists of all elements r ∈ S that are
connected to some other vertex s (depend on r ) with qs �= qr via an odd nonzero path.

Theorem 3.2 If R is the collapsed subset of S, then (i) Tr = 1, ∀r ∈ R, (ii) Ts /∈ F,
∀s ∈ S \ R, and (iii)H(q) ∼= HS\R(q).

Proof By definition, for any r ∈ R, there exists an odd nonzero path (r, s, . . . , t) from
r to some t ∈ S such that qr �= qt . We show (i) by induction on the length of the path.
First assume that the length is 1, i.e., there is an edge between r and t with an odd
weight m := mrt . The braid relation between Tr and Tt implies that

Tr (Tr Tt Tr · · · Tr )m = (Tr Tt Tr · · · Tt )m+1 = (Tt Tr Tt · · · Tt )mTt .

Using the quadratic relations for Tr and Tt , one obtains

qr (TtTr Tt · · · )m−1 + (1 − qr )(Tr Tt Tr · · · )m = qt (TtTr Tt · · · )m−1

+(1 − qt )(TtTr Tt · · · )m .

Hence,
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(qr−qt )(TtTr Tt · · · Tr )m−1=(qr−qt )(Tr Tt Tr · · · Tr )m = (qr − qt )(TtTr Tt · · · Tt )m .

Since qr �= 0, qt �= 0, and qr �= qt , one can apply the inverses of Tr , Tt , and (qr − qt )
to get Tr = Tt = 1.

Now suppose that the path (r, s, . . . , t) has length at least two. If qr �= qs then
Tr = 1 by the above argument. Otherwise, qr = qs �= qt and one has Ts = 1 by
induction, since (s, . . . , t) is an odd nonzero path of smaller length. Then, applying
T−1
r to the braid relation between Tr and Ts gives Tr = 1. This proves (i).
To show (ii), we assume Ts ∈ F for some s ∈ S. If qs = 0, then {s} is admissible, and

thus, the subalgebra of H(q) generated by Ts is two dimensional by Proposition 3.1,
which is absurd. Therefore, qs �= 0. Let U be the set of all elements in S that are
connected to s via odd nonzero paths, including s itself. Then, qu �= 0 for all u ∈ U .
One sees that U is admissible, and hence, the subalgebra of H(q) generated by {Tu :
u ∈ U } is isomorphic to the algebraHU (q) by Proposition 3.1. If |{qu : u ∈ U }| = 1,
thenHR(q) has a basis indexed byWU , and hence, Ts /∈ F, a contradiction. Therefore,
|{qu : u ∈ U }| ≥ 2. This forces s ∈ R and establishes (ii).

Finally, one sees that S\R is admissible. By Proposition 3.1,HS\R(q) is isomorphic
to the subalgebra ofH(q) generated by {Ts : s ∈ S \ R}. Hence, (iii) follows from (i).

��
By Theorem 3.2, we may always assume without loss of generality that H(q) is

collapse free, i.e., if mst is odd and qs �= qt , then either qs or qt is 0. We next develop
some lemmas in order to characterize when H(q) is commutative.

Lemma 3.3 If S = {s, t}, qs = 0 �= qt , and m := mst is odd, then H(q) has
dimension 2m − 3 and a basis

{(TsTt Ts · · · )k, (TtTsTt · · · )k : k = 0, 1, 2, . . . ,m − 2}.

Proof Since qs = 0 �= qt andm is odd, it follows from the defining relations forH(q)

that

(TsTt Ts · · · Ts)m = (TsTt Ts · · · Tt )m+1 = (Tt TsTt · · · Tt )mTt
= qt (Tt TsTt · · · )m−1 + (1 − qt )(Tt TsTt · · · )m

which implies (Tt TsTt · · · )m−1 = (TtTsTt · · · )m and thus (TsTt Ts · · · )m−2 =
(TsTt Ts · · · )m−1. Similarly,

(TsTt Ts · · · )m = (TtTsTt · · · Ts)m+1 = Tt (Tt TsTt · · · )m
= qt (TsTt Ts · · · )m−1 + (1 − qt )(Tt TsTt · · · )m .

Thus, (TsTt Ts · · · Tt )m−1 = (TtTsTt · · · Tt )m and (TsTt Ts · · · )m−2 = (Tt TsTt · · · )m−1.
It follows thatH(q) is spanned by the desired basis. Then, it remains to show that the
dimension of H(q) is at least 2m − 3.

To achieve this, we define an H(q)-action on the F-span of Z := {(sts · · · )k,
(tst · · · )k : k = 0, 1, 2, . . . ,m−2}where (sts · · · )0 = (tst · · · )0 = 1 by convention.
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The dimension of FZ is by definition |Z | = 2m − 3. Define

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Ts(tst · · · )k = (sts · · · )k+1, 0 ≤ k ≤ m − 3,

Tt (sts · · · )k = (tst · · · )k+1, 0 ≤ k ≤ m − 3,

Ts(sts · · · )k = (sts · · · )k, 1 ≤ k ≤ m − 2,

Tt (tst · · · )k = qt (sts · · · )k−1 + (1 − qt )(tst · · · )k, 1 ≤ k ≤ m − 2,

Ts(tst · · · )m−2 = Tt (sts · · · )m−2 = (sts · · · )m−2.

One sees that the quadratic relations for Ts and Tt are both satisfied by this action, and
so is the braid relation because

(TsTt Ts · · · )m(z) = (Tt TsTt · · · )m(z) = (sts · · · )m−2, ∀z ∈ Z .

Hence, FZ becomes a cyclicH(q)-module generated by 1. This forces the dimension
of H(q) to be at least 2m − 3. ��
Lemma 3.4 Suppose that there exists a path (s = s0, s1, s2, . . . , sk = t) consisting
of simply laced edges in the Coxeter diagram of (W, S), where k ≥ 1. If qsi �= 0 and
mssi ≤ 3 for all i ∈ [k], and qs = 0, then TsTt = Tt Ts = Ts.

Proof We show TsTt = Tt Ts = Ts by induction on k. One has T 2
s = Ts since qs = 0.

One also sees that Tsi is invertible and Tsi−1Tsi Tsi−1 = Tsi Tsi−1Tsi for each i ∈ [k]. If
k = 1, then

TsTt Ts = (TsTt Ts)Ts = Tt (TsTt Ts) = T 2
t TsTt = qt TsTt + (1 − qt )TtTsTt .

Since qt �= 0, one has TsTt = Tt TsTt , and thus, Ts = TtTs using T−1
t . Then, TsTt =

TtTsTt = TsTt Ts = T 2
s = Ts .

Now assume k ≥ 2. If mst = 3, then TsTt = Tt Ts = Ts by the above argument.
Assume mst = 2, i.e., TsTt = TtTs . Let r = sk−1. Then, Tr Ts = TsTr = Ts by
induction hypothesis. Thus,

Tt Ts = Tt TsTr = TsTt Tr = TsTr Tt Tr = TsTt Tr Tt = T 2
t Ts = qt Ts + (1 − qt )Tt Ts .

This implies TsTt = Tt Ts = Ts , which completes the proof. ��
Now, we provide a characterization for whenH(q) is commutative. It implies that

there exists q ∈ F
S such thatH(q) is collapse free and commutative if and only if the

Coxeter diagram of (W, S) is simply laced and bipartite.

Theorem 3.5 Suppose that H(q) is collapse free. Then, H(q) is commutative if and
only if the Coxeter diagram of (W, S) is simply laced and exactly one of qs, qt is 0 for
any pair of elements s, t ∈ S with mst = 3.

Proof We first assume that H(q) is commutative. Let s, t ∈ S with mst ≥ 3. We
need to show that mst = 3 and exactly one of qs and qt is 0. To attain this, we first

123



J Algebr Comb (2016) 43:521–551 533

show that {s, t} is admissible. By symmetry, it suffices to show that qrqs = 0 for any
r ∈ S \ {s, t} with mrs odd. Suppose to the contrary that qrqs �= 0. Then, qr = qs
since H(q) is collapse free. Let R be a maximal subset of S containing s such that
qa = qb whenever a, b ∈ R and mab is odd. Then, r ∈ R. The maximality forces R
to be admissible. By Proposition 3.1, HR(q) is isomorphic to a subalgebra of H(q)

and thus commutative. It also has a basis {Tw : w ∈ WR} by Theorem 1.2. Hence,
mrs ≤ 2, a contradiction.

Therefore, {s, t} is admissible. Then, H{s,t}(q) is isomorphic to a subalgebra of
H(q) and hence commutative. Since mst ≥ 3, Theorem 1.2 implies that mst is odd
and qs �= qt . Then, exactly one of qs and qt must be 0 sinceH(q) is collapse free. By
Lemma 3.3, the dimension of H{s,t}(q) is 2m − 3, and hence, mst = 3. This proves
one direction of the theorem. The other direction follows from Lemma 3.4. ��

Finally, using the results in this section, we obtain a proof for Theorem 1.2. One can
check that {Tw : w ∈ W } spans H(q) using the word property of W and the defining
relations of H(q). If qs = qt whenever mst is odd, then {Tw : w ∈ W } is a basis for
H(q) by Lusztig [7, Proposition 3.3]. Conversely, suppose that {Tw : w ∈ W } is a
basis for H(q). Let s, t ∈ S with m := mst odd. The dimension d of the subalgebra
of H(q) generated by Ts and Tt equals the cardinality of the subgroup 〈s, t〉 of W ,
which is 2m by the word property of W . On the other hand, if qs �= qt , then either
d = 1 < 2m when qsqt �= 0 by Theorem 3.2, or d ≤ 2m − 3 < 2m when qsqt = 0
by Proposition 3.1 and Lemma 3.3. Hence qs = qt .

4 The simply laced case

In this section, we study a collapse-free Hecke algebra H(q) with independent para-
meters q = (qs ∈ F : s ∈ S) of a simply laced Coxeter system (W, S). We first give
some lemmas in order to construct a basis forH(q).

Lemma 4.1 If (W, S) is simply laced, then S decomposes into a disjoint union of
S1, . . . , Sk such that

(i) the elements of each Si receive the same parameters and are connected in the
Coxeter diagram of (W, S),

(ii) if s ∈ Si , t ∈ S j , i �= j , then either mst = 2 or exactly one of qs and qt is 0.

Proof We remove from the Coxeter diagram of (W, S) all the edges whose two end
vertices correspond to distinct parameters. Let S1, . . . , Sk be the vertex sets of the
connected components of the resulting graph.

If s, t ∈ Si , then there exists a path from s to t , whose vertices have the same
parameter. Thus, (i) holds.

If s ∈ Si , t ∈ S j , i �= j , and mst = 3, then one has qs �= qt , and thus, exactly one
of qs and qt is 0 since H(q) is collapse free. Hence, (ii) holds. ��

Let Wi := 〈Si 〉, where Si is as in Lemma 4.1, for all i = 1, . . . , k. We say an
element wi ∈ Wi dominates S j if i �= j and there exist s ∈ Si and t ∈ S j such that
qs = 0, mst = 3, and s occurs in some reduced expression of wi . Let W (q) be the
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set of all elements (w1, . . . , wk) ∈ W1 × · · · × Wk such that w j = 1 whenever some
wi dominates S j . We need to define an H(q)-action on FW (q). Let s be an arbitrary
element in S. Then, s ∈ Si for some i ∈ [k]. Let w = (w1, . . . , wk) ∈ W (q). We
define Ts(w) := (Ts(w)1, . . . , Ts(w)k) ∈ FW (q) as follows.

If Si is dominated by somew j , then Ts acts trivially onw, meaning that Ts(w) := w.
Otherwise, Ts acts nontrivially on w: if �(swi ) < �(wi ) then Ts(w)i = (1 − q)wi +
qswi and Ts(w) j = w j for all j �= i ; if �(swi ) > �(wi ), then Ts(w)i = swi ,
Ts(w) j = 1 for all j �= i such that s dominates S j , and Ts(w) j = w j for all j �= i
such that s does not dominates S j . In other words, if Si is not dominated by w j for
all j �= i , then Ts acts on the i th component of w in the same way as the regular
representation of the Hecke algebra HSi (qs) (see (2.1)), and for all j �= i , one has

Ts(w) j =
{

w j , if s does not dominate S j ,

1, if s dominates S j .

Lemma 4.2 One has a well defined H(q)-action on FW (q) such that every element
(w1, . . . , wk) in W (q) is equal to Tw1 · · · Twk (1).

Proof Let s ∈ Si and let w = (w1, . . . , wk) ∈ W (q). We first show that Ts(w) ∈
FW (q). We may assume that Ts acts nontrivially onw, i.e., Si is not dominated by w j

for all j �= i . If �(swi ) < �(wi ), then w ∈ W (q) implies

Ts(w) = (1 − q)w + q(w1, . . . , wi−1, swi , wi+1, . . . , wk) ∈ W (q).

If �(swi ) > �(wi ), then Ts(w) ∈ W (q) since Ts(w)i = swi and Ts(w) j = 1whenever
s dominates S j .

Next, we verify the quadratic relation for the action of Ts . If Ts acts trivially on
w, then T 2

s = (1 − qs)Ts + qs clearly holds. Assume that Ts acts nontrivially on w
and apply Ts again to Ts(w). For the i-th component, this is the same as the regular
representation of HSi (qs) (see 2.1). Hence, T

2
s = (1 − qs)Ts + qs holds for the i-th

component. Let j �= i . If s does not dominate S j , then Ts(w) j = w j is fixed by
Ts . If s dominates S j , then Ts(w j ) = 1 is also fixed by Ts , and qs = 0. Hence,
T 2
s = (1 − qs)Ts + qs also holds for the j-th component for all j �= i .
Next, we verify the braid relation between Ts and Tt for any t ∈ Si \ {s}. If one

of Ts and Tt acts trivially on w, then so does the other. Thus, we may assume that
Ts and Tt both act nontrivially on w. Then, they both act on the i-th component of w
by the regular representation of HSi (qs), and hence, the braid relation holds for this
component. Let j �= i and let T (s, t) be any product of Ts and Tt that contains both
of them. If either s or t dominates Si , then T (s, t) sends w j to 1. If neither of s and t
dominates S j , then T (s, t) fixes w j . Hence, the braid relation between Ts and Tt also
holds for the j-th component for all j �= i .

Next, assume that t ∈ S j and i �= j . First consider the case when s dominates S j .
Since qs = 0, one has Ts(w)i = wi if �(swi ) < �(wi ) and Ts(w)i = swi if �(swi ) >

�(wi ). In either case, Tt acts trivially on Ts(w), i.e., Tt (Ts(w)) = Ts(w). On the other
hand, since qt �= 0, one sees that Tt dominates nothing and thus fixes all components of
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w except the j-th one. Since s dominates S j , one also has Ts(Tt (w)) j = Ts(w) j = 1.
Hence, Ts(Tt (w)) = Ts(w).

Similarly, if t dominates Si , then one has TsTt (w) = Tt (w) = Tt Ts(w). For the
remaining case, that is, when s does not dominate S j and t does not dominates Si ,
one has mst = 2 by Lemma 4.1 (ii). We need to show that both actions of TsTt and
TtTs on w are the same. One sees for both actions that Ts and Tt act separately on
wi and w j by the regular representations of HSi (qs) and HS j (qt ), respectively. Let
h ∈ [k] \ {i, j}. If Sh is dominated by either s or t , then both TsTt and Tt Ts send wh

to 1. Otherwise, both TsTt and Tt Ts fix w j . Hence, TsTt (w) = Tt Ts(w).
Therefore, one has a well-defined action of H(q) on FW (q). One sees that every

element (w1, . . . , wk) in W (q) is equal to Tw1 · · · Twk (1) by induction on �(w1) +
· · · + �(wk). This completes the proof. ��
Theorem 4.3 Assume that (W, S) is simply laced and H(q) is collapse free. Then,
H(q) has a basis

B(q) := {Tw1 · · · Twk : (w1, . . . , wk) ∈ W (q)}.

Proof Theorem 1.2 shows that H(q) is spanned by {Tw : w ∈ W }. Let s ∈ Si ,
t ∈ S j , and i �= j . If mst = 2, then TsTt = TtTs . If mst = 3, then we may assume
0 = qs �= qt by Lemma 4.1 and it follows from Lemma 3.4 that TsTr = Ts = Tr Ts
for all r ∈ S j . Hence, for any w ∈ W , one can write Tw = Tw1 · · · Twk where
w = (w1, . . . , wk) ∈ W (q). This shows that B(q) is a spanning set for H(q). On the
other hand, it follows from Lemma 4.2 that B(q) is also linearly independent. Thus,
B(q) is a basis for H(q). ��
Corollary 4.4 Suppose that (W, S) is simply laced and let S1, . . . , Sk be given by
Lemma 4.1.

(i) A collapse-free H(q) is finite dimensional if and only if Wi := 〈Si 〉 is finite for
all i ∈ [k].

(ii) There exists q ∈ F
S such thatH(q) is collapse free and finite dimensional if and

only if there exists R ⊆ S such that the parabolic subgroups 〈R〉 and 〈S \ R〉 are
finite.

Proof (i) By Theorem 4.3, a collapse-free H(q) is finite dimensional if and only if
W (q) is finite. For any i ∈ [k], there are injections Wi ↪→ W (q) ↪→ W1 × · · · × Wk .
Hence, W (q) is finite if and only if Wi is finite for all i ∈ [k].

(ii) Suppose that H(q) is collapse free and finite dimensional. Let R := {s ∈
S : qs = 0}. By Lemma 4.1, we may assume R = S1 ∪ · · · ∪ S j . Then, 〈R〉 =
〈S1〉 × · · · × 〈S j 〉 and 〈S \ R〉 = 〈S j+1〉 × · · · × 〈Sk〉 are both finite groups by (i).
Conversely, if there exists a subset R ⊆ S such that 〈R〉 and 〈S \ R〉 are both finite
groups, then H(q) is finite dimensional by (i), where q is defined by qs = 0 for all
s ∈ R and qs = 1 for all s /∈ R. ��
Example 4.5 (i) It is well known that the Coxeter group of affine type A is infinite

and so is the associated Hecke algebra with a single parameter. However, if one
takes some parameters to be 0 and others to be 1, the resulting algebra is finite
dimensional, since all the Wi s given in the above theorem are of finite type A.
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(ii) Let the Coxeter diagram of (W, S) be the complete graph K5 with 5 vertices.
Assume thatH(q) is collapse free. There can be at most two different parameters
0 and q �= 0. Both R := {s ∈ S : qs = 0} and its complement S \ R = {s ∈ S :
qs = q} are admissible subsets of S, the larger one of which contains at least 3
elements and thus gives a copy of the infinite-dimensional Hecke algebra of affine
type A3 with a single parameter as a subalgebra ofH(q). Therefore,H(q) is never
finite dimensional in such cases.

5 The simply laced bipartite case

By Theorem 3.5, there exists q ∈ F
S such thatH(q) is collapse free and commutative

if and only if the Coxeter diagram of (W, S) is simply laced and bipartite. We give
more results for such case in this section. Recall from graph theory that an independent
set of a graph is a set of vertices of which no two are adjacent. Let TI := ∏

i∈I Ti for
all I ∈ I(G), where I(G) consists of independent sets in the underlying graph G of
the Coxeter diagram of (W, S).

Corollary 5.1 A collapse-free and commutative H(q) has a basis {TI : I ∈ I(G)}.
In particular, if (W, S) is of type An, then the dimension ofH(q) equals the Fibonacci
number Fn+2.

Proof By Theorem 3.5, the Coxeter diagram of (W, S) is a simply laced and bipartite
graphG with all edges between the two subsets {s ∈ S : qs = 0} and {t ∈ S : qt �= 0}.
Hence, the subsets S1, . . . , Sk given by Lemma 4.1 are all singleton sets. Then, the
basis B(q) forH(q) given in Theorem 4.3 consists of the elements TI for all I ∈ I(G).

Now suppose that (W, S) is of type An , i.e., its Coxeter diagram is isomorphic to
the path Pn with n vertices. If an independent set I in Pn contains one end vertex of
Pn , then removing this end point from I gives an independent set of Pn−2; otherwise,
I is an independent set of Pn−1. Thus, |I(Pn)| = |I(Pn−1)| + |I(Pn−2)|. One also
sees that |I(Pi )| = i + 1 if i = 0, 1. Thus |I(Pn)| = Fn+2 for all n ≥ 0. ��

Computations inMagma suggest the following conjecture.

Conjecture 5.2 Suppose that the Coxeter diagram of (W, S) is a simply laced and
bipartite graph G. The minimum dimension of a collapse-freeH(q) is |I(G)|, which
is attained when it is commutative.

We will verify this conjecture for type An . We first need a lemma on the Fibonacci
numbers, which are defined as F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for all n ≥ 2.

Lemma 5.3 If k ≥ 4, then k! ≥ Fk+3 + 2. Also, if a ≥ 1 and b ≥ 0, then Fa+b =
FaFb+1 + Fa−1Fb ≤ FaFb+2.

Proof The first result follows easily by induction. It is well known that Fa+b =
FaFb+1 + Fa−1Fb (see Example 7.2). Hence, Fa+b ≤ Fa(Fb+1 + Fb) = FaFb+2. ��
Theorem 5.4 LetH(q) be a collapse-free Hecke algebra of type An with independent
parameters. Then, its dimension is at least theFibonacci number Fn+2, and the equality
holds if and only ifH(q) is commutative.
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Proof We prove the result by induction on n. The Coxeter diagram for type An is
the path s1 s2 · · · sn . We write qi := qsi for all i ∈ [n]. Let S1, . . . , Sk be
the subsets of S given by Lemma 4.1. Then, S j is a path of length n j ≥ 1 for every
j ∈ [k]. We may assume, without loss of generality, that

S j = {si : n1 + · · · + n j−1 < i ≤ n1 + · · · + n j }, ∀ j ∈ [k].

If all parameters in q are the same, then H(q) has dimension (n + 1)! ≥ Fn+2.
Thus, we may assume that there exists j ∈ [k] such that qs = q �= 0 for all s ∈ S j .
Let a = n1 + · · · + n j−1, b = n j , and c = n j+1 + · · · + nk . By convention, a = 0 if
j = 1, and c = 0 if j = k. One sees that sa and sa+b+1 both dominate S j .
By Theorem 4.3, H(q) has dimension |W (q)|. We need to count the elements

(w1, . . . , wk) in W (q). If w j �= 1, then any reduced word of w j−1 cannot contain sa
and any reduced word of w j+1 cannot contain sa+b+1. It follows that (w1, . . . , w j−1)

and (w j+1, . . . , wk) are arbitrary elements in W (qi : 1 ≤ i ≤ a − 1) and W (qi :
a + b + 2 ≤ i ≤ n), respectively. Then, the number of choices for (w1, . . . , wk) in
this case is at least Fa+1((b + 1)! − 1)Fc+1, by induction hypothesis. Note that this
still holds even if a = 0 or c = 0, since F1 = 1.

Similarly, if w j = 1, the number of choices for (w1, . . . , wk) is at least Fa+2Fc+2
by induction hypothesis.

Thus, the dimension of H(q) is at least f (a, b, c) := Fa+1((b + 1)! − 1)Fc+1 +
Fa+2Fc+2. By Lemma 5.3,

f (a, b, c) = Fa+1((b + 1)! − 2)Fc+1 + Fa+c+3.

If b = 1, then this becomes f (a, b, c) = Fa+c+3 = Fn+2. If b = 2, then Lemma 5.3
implies that

f (a, b, c) > 3Fa+1Fc+1 + Fa+c+3 ≥ F4Fa+c + Fn+1 ≥ Fn + Fn+1 = Fn+2.

If b ≥ 3 then Lemma 5.3 implies that

f (a, b, c) > Fa+1Fb+4Fc+1 ≥ Fa+b+3Fc+1 ≥ Fn+2.

Therefore, f (a, b, c) ≥ Fn+2 always holds.
Finally, assume f (a, b, c) = Fn+2. By the above argument, this equality is possible

only if b = 1 and the dimensions of H(q1, . . . , qa) and H(qa+2, . . . , qn) are Fa+2
and Fc+2, respectively. Then, H(q1, . . . , qa) and H(qa+2, . . . , qn) are commutative
by induction hypothesis. The definition for a, b, and c implies qa = 0, qa+1 �= 0,
and qa+2 = 0. It follows from Theorem 3.5 that qi = 0 when i ≡ a mod 2 and
qi �= 0 otherwise. Hence, H(q) must be commutative. On the other hand, if H(q) is
commutative, then its dimension is Fn+2 by Corollary 5.1. This completes the proof.

��
Next, we explain the connection between a collapse-free and commutative H(q)

and the Möbius algebra A(L) of a finite lattice L . According to Stanley [10, § 3.9],
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the Möbius algebra A(L) is the monoid algebra of L over F with the meet operation,
and it is a direct sum of |L| many one-dimensional subalgebras.

Now let Z be a finite rank two poset. Set X := {x ∈ Z : x > y for some y ∈ Z}
and Y = Z \ X . By abuse of notation, we denote by Z the underlying graph of Z . Let
L be the distribute lattice J (Z) of the order ideals of Z ordered by reverse inclusion
(so that the meet operation is the union of ideals). Suppose that (W, S) is a Coxeter
system whose Coxeter diagram coincides with Z . Denote byH(Z) the Hecke algebra
H(q) of (W, S) with parameters q = (qs : s ∈ S) given by qs = 0 for all s ∈ X and
qs = 1 for all s ∈ Y .

Proposition 5.5 When char (F) �= 2 the algebra H(Z) is isomorphic the Möbius
algebra of J (Z).

Proof By definition, the algebra H(Z) is generated by {Tx : x ∈ X} ∪ {Ty : y ∈ Y }
with relations

⎧

⎪

⎨

⎪

⎩

T 2
x = Tx , T 2

y = 1, ∀x ∈ X, ∀y ∈ Y,

TzTz′ = Tz′Tz, ∀z, z′ ∈ Z ,

TxTy = Tx , if x > y in Z (by Lemma 3.4).

One has a basis {TI : I ∈ I(Z)} forH(Z) by Corollary 5.1.
When char (F) �= 2, one can replace the generator Ty with T ′

y := (Ty +1)/2, which
is now an idempotent, for every y ∈ Y . One checks that all other relations given above
remain same. Write T ′

x = Tx for all x ∈ X . Then, the algebra H(Z) is generated by
{T ′

x : x ∈ X}∪{T ′
y : y ∈ Y } and has a basis {T ′

I : I ∈ I(Z)}where T ′(I ) := ∏

z∈I T ′
z .

Any independent set I in I(Z) is an antichain in Z , generating an order ideal J (I )
consisting of all elements weakly below some element of I . Conversely, an order ideal
of Z corresponds to an independent set I ∈ I(Z) consisting of all maximal elements
in this order ideal. Hence, sending T ′(I ) to the order ideal J (I ) for all I ∈ I(Z) gives
a vector space isomorphism H(Z) ∼= A(J (Z)). To see this isomorphism preserves
multiplications, let I1 and I2 be two elements inI(Z). Then, T ′(I1)T ′(I2) = T ′(I1◦I2)
where I1 ◦ I2 is obtained from I1 ∪ I2 by removing all the elements that are less
than some element of I1 ∪ I2. On the other hand, the order ideal J (I1) ∪ J (I2) has
maximal elements given by I1 ◦ I2 and thus equals J (I1 ◦ I2). This completes the
proof. ��

6 The commutative case

By Theorem 3.5 and Corollary 5.1, ifH(q) is collapse free and commutative, then the
Coxeter diagram of (W, S) is simply laced with a bipartite underlying graph G, and
the dimension of H(q) is |I(G)|. In this section, we define and study a more general
commutative algebra for any (unweighted) simple graph G, whose dimension is still
|I(G)|.
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6.1 Basic results

Let G be a simple graph with vertex set V (G) and edge set E(G), and let R ⊆ V (G).
We define an algebraH(G, R) to be the quotient of the polynomial algebra F[xv : v ∈
V (G)] by the ideal generated by

{x2r : r ∈ R} ∪ {x2v − xv : v ∈ V (G) \ R} ∪ {xuxv : uv ∈ E(G)}.

The image of xv in the quotient algebra H(G, R) is still denoted by xv for all v ∈ V .
This algebra H(G, R) generalizes the commutative algebra H(q) by the following
result.

Proposition 6.1 If H(q) is collapse free and commutative, then it is isomorphic to
H(G, R) as an algebra, where G is the underlying graph of the Coxeter diagram of
(W, S) and R := {s ∈ S : qs = −1}.
Proof The algebra H(q) has another generating set {xs : s ∈ S} given by

xs :=

⎧

⎪

⎨

⎪

⎩

Ts, qs = 0,

Ts − 1, qs = −1,

(1 − Ts)/(1 + qs), otherwise.

If H(q) is collapse free and commutative, then one can check that the relations for
{Ts : s ∈ S} are equivalent to the relations for {xs : s ∈ S} in the definition ofH(G, R)

using Lemma 3.4. Thus, the result holds. ��
Remark 6.2 (i) The set R = {s ∈ S : qs = −1} associated with H(q) depends on

char (F). For example, an element s ∈ S with qs = 1 belongs to R if and only if
char (F) = 2. However, once R is chosen for the algebraH(G, R), our results on
H(G, R) do not depend on char (F) any more.

(ii) By Theorem 3.5, if H(q) is collapse free and commutative, then R = {s ∈
S : qs = −1} must be an independent set of G. But the commutative algebra
H(G, R) is well defined for any simple graph G and any subset R ⊆ V (G).

(iii) The Stanley-Reisner ring of the independence complex of G is defined as the
quotient of the polynomial algebraF[yv : v ∈ V (G)] by the edge ideal generated
by (yu yv : uv ∈ E(G)) (see, e.g., [5]). The algebraH(G, R) is a further quotient
of the Stanley-Reisner ring of the independence complex of G.

Now, we study the algebra H(G, R) and our results will naturally apply to the
commutative algebra H(q) by Proposition 6.1. We first need some notation. For any
U ⊆ V (G), we write

XU :=
∏

u∈U
xu and X−

U :=
∏

u∈U
x−
u

where x−
v := 1− xv for all v ∈ V (G). One sees that XU �= 0 if and only ifU belongs

to I(G), the set of all independent sets in G. We define the length of a nonzero
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monomial XI to be the cardinality |I | of the independent set I . We partially order
the nonzero monomials by their lengths. We denote by N (U ) the set of all vertices
that are adjacent to some vertex u ∈ U in G. We will often identify a subset U of
V (G) with the subgraph of G induced by U , whose vertex set is U and whose edge
set is {{u, v} ∈ E(G) : u, v ∈ U }. We will also write “+” and “−” for set union and
difference. For example, we write G− R for the subgraph of G induced by V (G)− R,
and hence, I(G − R) consists of all independent sets of G − R. We give two bases
forH(G, R) in the following proposition, which generalizes Corollary 5.1.

Proposition 6.3 The algebra H(G, R) has dimension |I(G)| and two bases {XI :
I ∈ I(G)} and

{

XI+J X
−
G−R−I : I ∈ I(G − R), J ∈ I(R − N (I ))

}

. (6.1)

Proof The defining relations for H(G, R) immediately imply that it is spanned by
{XI : I ⊆ I (G)}. Let FI(G) be the vector space over F with a basis I(G). We define
an action ofH(G, R) on FI(G) by

xv(I ) =
{

0, if v ∈ I ∩ R or I ∪ {v} /∈ I(G),

I ∪ {v}, otherwise.

It is not hard to check that this action satisfies the defining relations forH(G, R). For
any I ∈ I(G), one has XI (∅) = I . This forces the spanning set {XI : I ⊆ I (G)} to
be a basis for H(G, R).

One sees that any independent set of G can be written uniquely as I + J for some
I ∈ I(G− R) and J ∈ I(R−N (I )), and the shortest term in XI+J X

−
G−R−I is XI+J .

Thus, (6.1) is also a basis forH(G). ��
Let G ′ be a subgraph of G induced by V ′ ⊆ V (G), and let R′ = V ′ ∩ R. The

following corollary allows us to study the induction ofH(G ′, R′)-modules toH(G, R)

and the restriction of H(G, R)-modules toH(G ′, R′).

Corollary 6.4 The subalgebra ofH(G, R) generated by {xv : v ∈ V ′} is isomorphic
toH(G ′, R′).

Proof There is an injectionφ : H(G ′, R′) ↪→ H(G, R) of algebras defined by sending
the generators x ′

v for H(G ′, R′) to the generators xv for H(G, R) for all v ∈ V ′.
By Proposition 6.3, the algebra H(G ′, R′) admits a basis consisting of the elements
X ′
I := ∏

v∈I x ′
v for all I ∈ I(G ′). The map φ sends this basis to the basis {XI : I ∈

I(G ′)} for the subalgebra of H(G, R) generated by {xv : v ∈ V ′}, giving the desired
isomorphism. ��

6.2 Projective indecomposable modules and simple modules

We first decompose the algebra H(G, R) into a direct sum of indecomposable sub-
modules.
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Theorem 6.5 There is anH(G, R)-module decomposition

H(G, R) =
⊕

I⊆I(G−R)

PI (G, R) (6.2)

where each PI (G, R) := H(G, R)XI X
−
G−R−I is an indecomposable H(G, R)-

module with a basis

{

XI+J X
−
G−R−I : J ∈ I(R − N (I ))

}

(6.3)

and hence has dimension |I(R − N (I ))|. The top of PI (G, R), denoted by CI (G, R),
is one dimensional and admits an H(G, R)-action by

xv =
{

1, if v ∈ I,

0, if v ∈ G − I.

Proof Let I ∈ I(G − R). Since xvx−
v = 0 for any v ∈ G − R − I , and xuxv = 0

whenever v ∈ I and u ∈ N (v), one has

X J (XI X
−
G−R−I ) =

{

XI+J X
−
G−R−I , if J − I ∈ I(R − N (I )),

0, otherwise
(6.4)

for any J ∈ I(G). Hence, (6.3) spans PI (G, R). By Proposition 6.3, H(G, R) has a
basis (6.1) which is the union of the spanning sets (6.3) for all I ∈ I(G − R). This
implies the direct sum decomposition (6.2) of H(G, R) and forces the spanning set
(6.3) to be a basis for PI (G, R). The dimension of PI (G, R) is then clear.

Now, we prove that PI (G, R) is indecomposable and find its top. Since x2r = 0
for any r ∈ R, the elements in (6.3) are all nilpotent except XI X

−
G−R−I . The span

NI of these nilpotent elements is contained in the nilradical of H(G, R) and hence
in the radical of PI (G, R). By (6.4), the quotient PI (G, R)/NI is isomorphic to the
one-dimensional H(G, R)-module CI (G, R). It follows that the radical of PI (G, R)

equals NI , and the top of PI (G, R) is isomorphic to CI (G, R). Then, PI (G, R) must
be indecomposable as its top is simple. ��

By Theorem 6.5, {PI (G, R) : I ∈ I(G − R)} and {CI (G, R) : I ∈ I(G − R)}
are complete lists of pairwise nonisomorphic projective indecomposable H(G, R)-
modules and simpleH(G, R)-modules, respectively. The proof of Theorem 6.5 shows
that the radical of PI (G, R) is spanned by {XI+J X

−
G−R−I : ∅ �= J ∈ I(R − N (I ))},

and hence, the radical of H(G, R) is the ideal generated by {xr : r ∈ R}. This ideal
coincides with the nilradical of H(G, R), showing that H(G, R) is a Jacobson ring.
Some other consequences of Theorem 6.5 are listed below.

Corollary 6.6 Theorem 6.5 implies the following results.

(i) The algebra H(G, R) is semisimple if and only if R = ∅.
(ii) For any I ∈ I(G−R) one has PI (G, R) ∼= H(G, R)⊗H(G−R,∅)CI (G−R,∅).
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(iii) The socle of PI (G, R) is the direct sum of FXI+J X
−
G−R−I

∼= CI (G, R) for all
maximal J in I(R − N (I )).

(iv) The Cartan matrix of H(G, R) is the diagonal matrix
diag {|I(R − N (I ))| : I ∈ I(G − R)}.

(v) A complete set of primitive orthogonal idempotents of H(G) is given by
{XI X

−
G−R−I : I ∈ I(G − R)}.

Proof (i) An algebra is semisimple if and only if its radical is 0. The radical ofH(G, R)

is generated by {xr : r ∈ R}, which is 0 if and only if R = ∅.
(ii) There is a bilinear map H(G, R) × CI (G − R,∅) → PI (G, R) defined by

sending (X J , zI ) to X J X I X
−
G−R−I for all J ∈ I(G), where zI is an element spanning

CI (G − R,∅). This induces an algebra surjection

φ : H(G, R) ⊗H(G−R,∅) CI (G − R,∅) � PI (G, R)

which sends X J ⊗H(G−R,∅) zI to X J X I X
−
G−R−I for all J ∈ I(G). One sees that

H(G, R) ⊗H(G−R,∅) CI (G − R,∅) is spanned by {X J ⊗H(G−R,∅) zI : J ∈ I(R −
N (I ))}, which is sent by φ to the basis (6.3) for PI (G, R). Hence, φ must be an
isomorphism.

(iii) If J is maximal in I(R − N (I )), then FXI+J X
−
G−R−I admits the same action

of H(G, R) as CI (G, R). Thus, FXI+J X
−
G−R−I is a simple submodule of PI (G, R)

and must be contained in the socle of PI (G, R). Conversely, we need to show that any
simple submodule M of PI (G, R) is contained in the direct sum of FXI+J X

−
G−R−I

for all maximal J ∈ I(R − N (I )). Using the basis (6.3) for PI (G, R), one writes an
arbitrary element of M as

z =
∑

J∈I(R−N (I ))

cJ X I+J X
−
G−R−I , cJ ∈ F.

Let K be a minimal independent set in I(R − N (I )) such that cK �= 0. It suffices to
show that K is also maximal in I(R− N (I )). If not, then there exists r ∈ R− K such
that K + r ∈ I(R − N (I )). For any J ∈ I(R − N (I )), one sees that

xr X I+J X
−
G−R−I =

{

0, if r ∈ J ∪ N (I ∪ J ),

XI+J+r X
−
G−R−I �= 0, otherwise.

Thus, in the expansion of xr z in terms of the basis (6.3), the coefficients of
XI+K X−

G−R−I and XI+K+r X
−
G−R−I are 0 and cK �= 0, respectively. It follows that

xr z /∈ Fz and M is at least two dimensional. This contradicts the simplicity of M .
(iv) Let I ∈ I(G − R). We order the elements XI+J X

−
G−R−I by |J | for all J ∈

I(R − N (I )). This induces a filtration for PI (G, R), under which

xvXI+J X
−
G−R−I ≡

{

XI+J X
−
G−R−I , v ∈ I,

0, v /∈ I.
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Hence, every simple composition factor of PI (G, R) is isomorphic to CI (G, R). The
Cartan matrix follows.

(v) This follows from the decomposition ofH(G, R) given in Theorem 6.5 and the
equality

∑

I∈I(G−R)

XI X
−
G−R−I =

∑

J∈I(G−R)

∑

I⊆J

(−1)|J\I |X J = 1.

The reader who is not familiar with primitive orthogonal idempotents can find more
details in [2, § I.4]. ��

6.3 Induction and restriction

Let G ′ be an induced subgraph of G and let R′ = G ′ ∩ R. By Corollary 6.4, the fol-
lowing induction and restriction are well defined for isomorphism classes of modules:

• the induction M ↑ G,R
G ′,R′ := H(G, R) ⊗H(G ′,R′) M of anH(G ′, R′)-module M to

H(G, R),
• the restriction N ↓ G,R

G ′,R′ of an H(G, R)-module N toH(G ′, R′).

Proposition 6.7 Assume R = ∅, and hence, R′ = ∅. Write (G, R) = (G) and
(G ′, R′) = (G ′). Then, for any I ′ ∈ I(G ′),

CI ′(G ′) ↑ G
G ′ ∼=

⊕

I∈I(G):I∩G ′=I ′
CI (G).

Proof Suppose thatCI ′(G ′) = Fz. Using the universal property of the tensor product,
one obtains an algebra surjection

φ : H(G) ⊗H(G ′) Fz � H(G)XI ′ X−
G ′−I ′

which sends X J ⊗H(G ′) z to X J X I ′ X−
G ′−I ′ for all J ∈ I(G). One sees that

H(G) ⊗H(G ′) Fz is spanned by

{XI ⊗H(G ′) z : I ∈ I(G), I ∩ G ′ = I ′}

since xvz = 0 for all v ∈ G ′ − I ′. This spanning set is sent by φ to

{XI X
−
G ′−I ′ : I ∈ I(G), I ∩ G ′ = I ′}

which is a basis for H(G)XI ′ X−
G ′−I ′ since it is a spanning set triangularly related

to {XI : I ∈ I(G), I ∩ G ′ = I ′}, a linearly independent set in H(G). Thus, φ is
an isomorphism. Using the length filtration induced by |I | for all I appearing in the
above basis, one sees that the composition factors of H(G)XI ′ X−

G ′−I ′ are CI (G) for
all I ∈ I(G)with I ∩G ′ = I ′, each appearing exactly once. This completes the proof
as H(G) is semisimple by Corollary 6.6 (i). ��
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Proposition 6.8 Let I ∈ I(G − R) and J ∈ I(G ′ − R′). Then, CI (G, R) ↓ G,R
G ′,R′ ∼=

CI∩G ′(G ′, R′) and

PJ (G
′, R′) ↑ G,R

G ′,R′ ∼=
⊕

K∈I(G−R):K∩G ′=J

PK (G, R).

Proof The restriction ofCI (G, R) follows easily from the definition. By Corollary 6.6
(ii) and Proposition 6.7,

PJ (G
′, R′) ↑ G,R

G ′,R′ ∼= CJ (G
′ − R′,∅) ↑ G ′,R′

G ′−R′,∅ ↑ G,R
G ′,R′

∼= CJ (G
′ − R′,∅) ↑ G,R

G ′−R′,∅
∼= CJ (G

′ − R′,∅) ↑ G−R,∅
G ′−R′,∅ ↑ G,R

G−R,∅
∼=

⊕

K∈I(G−R), K∩G ′=J

CK (G − R,∅) ↑ G,R
G−R,∅

∼=
⊕

K∈I(G−R), K∩G ′=J

PK (G, R).

This completes the proof. ��
Remark 6.9 It is not hard to obtain the simple composition factors of the induction of
a simple H(G ′, R′)-module to H(G, R). But the restriction of a projective indecom-
posable H(G, R)-module to H(G ′, R′) is not always projective.

7 Commutative Hecke algebras of type A

We apply the previous results to commutative Hecke algebras of type A with indepen-
dent parameters.

7.1 Decomposition of Fibonacci numbers

Let (W, S) be the Coxeter system of type An whose Coxeter diagram is the path
s1 s2 · · · sn . We often identify si with i and write q := (q1, . . . , qn) ∈ F

n .
LetH(q) be a collapse-free and commutative Hecke algebra of (W, S) with indepen-
dent parameters q. Then Theorem 3.5 implies that either qi = 0 for all odd i ∈ [n] and
qi �= 0 for all even i ∈ [n], or the other way around. Proposition 6.1 provides an alge-
bra isomorphism H(q) ∼= H(Pn, R), where R := {i ∈ [n] : qi = −1}. Note that the
set R obtained fromH(q) depends on char (F). For example, if q = (1, 0, 1, 0, 1, . . .),
then R = ∅ and H(Pn, R) is semisimple if char F �= 2, but R = {1, 3, 5, . . .} and
H(Pn, R) is not semisimple if char (F) = 2. However, the algebraH(Pn, R) is defined
for any subset R ⊆ [n], and our results do not depend on char (F).We first give decom-
positions of the Fibonacci numbers.
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Proposition 7.1 Let R ⊆ [n]. Then,

Fn+2 =
∑

I∈I(Pn−R)

|I(R − N (I ))|.

Proof Let G be a simple graph, and let R ⊆ V (G). By Proposition 6.3, the dimension
of H(G, R) is |I(G)|. By Theorem 6.5, H(G, R) is the direct sum of PI (G, R) for
all I ∈ I(G − R), and the dimension of each PI (G, R) is |I(R − N (I ))|. Hence,

|I(G)| =
∑

I∈I(G−R)

|I(R − N (I ))|.

Now, take G = Pn . We know that |I(Pn)| = Fn+2 by Corollary 5.1. Thus, the result
holds.

Example 7.2 Let R := [m] for somem ∈ [n−1]. Then, the subgraph of Pn induced by
R is the path Pm . If I ∈ I(Pn−[m+1]), then I(R−N (I )) = I(R). If I ∈ I(Pn−R)

contains m + 1, then I − {m + 1} ∈ I(Pn − [m + 2]) and I(R − N (I ) = I([m − 1]).
Thus, we recover a well-known identity Fn+2 = Fm+2Fn−m+1 + Fm+1Fn−m .

Example 7.3 Let X and Y be the subsets of odd and even numbers in [n], respectively.
Then,

Fn+2 =
∑

I⊆X

2|Y−N (I )| =
∑

J⊆Y

2|X−N (J )|.

This writes a Fibonacci number as a sum of 2|X | or 2|Y | many powers of 2. Some small
examples are provided below.

n = 1 2 = 1 + 1 = 2 n = 2 3 = 2 + 1
n = 3 5 = 2 + 1 + 1 + 1 = 4 + 1 n = 4 8 = 4 + 2 + 1 + 1
n = 5 13 = 4+2+2+1+1+1+1+1 = 8+2+2+1 n = 6 21 = 8+4+2+2+2+1+1+1

7.2 The semisimple commutative case

Now,we study the representation theory of the semisimple commutative algebraHn :=
H(Pn−1,∅), where H0 := F by convention. We write α ∝ n if α = (α1, . . . , α�) is a
composition of n with all internal parts larger than 1, i.e., αi > 1 whenever 1 < i < �.

Proposition 7.4 The algebra Hn decomposes into a direct sum of Fn+1 many one-
dimensional simple submodulesCα indexed by α ∝ n, with theHn-action onCα given
by xi = 1 if i ∈ D(α) or xi = 0 otherwise.
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Proof For any composition α of n, one sees that D(α) is an independent set of Pn−1 if
and only ifα has no internal parts equal to 1. Thus, the result follows fromTheorem6.5.

Since Hn is semisimple, its two Grothendieck groups G0(Hn) and K0(Hn) are
the same. Given nonnegative integers m and n, the subalgebra of Hm+n generated
by x1, . . . , xm−1, xm+1, . . . , xm+n−1 is isomorphic to Hm ⊗ Hn , giving a natural
embedding Hm ⊗ Hn ↪→ Hm+n . Thus, there is a tower H• : H0 ↪→ H1 ↪→ H2 ↪→
· · · of algebras, whose Grothendieck group G0(H•) := ⊕

n≥0 G0(Hn) has a product
and a coproduct defined by

Cα ⊗̂Cβ := (

Cα ⊗ Cβ

) ↑ Hm+n
Hm⊗Hn

and 
(Cα) :=
∑

0≤i≤m

Cα ↓ Hm
Hi⊗Hm−i

for all α ∝ m and β ∝ n. One sees that the product ⊗̂ and the coproduct 
 are well
defined, with unit u sending 1 to C∅, and counit ε sending C∅ to 1 and Cα to 0 for
all α ∝ n, n ≥ 1. Applying Proposition 6.8 immediately gives the following explicit
formulas for the product and coproduct below. See §2.3 for the notation αβ, α � β,
α≤i , and α>i .

Proposition 7.5 For any α ∝ m and β ∝ n, one has

Cα ⊗̂Cβ =
{

Cαβ ⊕ Cα�β, if αβ ∝ m + n,

Cα�β, otherwise,
and 
(Cα) =

∑

0≤i≤m

Cα≤i ⊗ Cα>i .

For example, one has C132 ⊗̂C41 = C13241 ⊕ C1361, C121 ⊗̂C32 = C1242, and


(C122)=C∅ ⊗ C122+C1 ⊗ C22+C11 ⊗ C12+C12⊗C2+C121 ⊗ C1+C122⊗C∅.

Corollary 7.6 (i) The graded algebra and coalgebra structures of G0(H•) are dual
to each other via the pairing defined by 〈Cα,Cβ〉 := δα, β for all α ∝ m and
β ∝ n, with a self-dual basis {Cα : α ∝ n, ∀n ≥ 0}.

(ii) There is a surjection σ : K0(H•(0)) � G0(H•) of graded algebras and an
injection ι : G0(H•) ↪→ G0(H•(0)) of graded coalgebras such that the two maps
are dual to each other.

Proof The first assertion holds since it follows from Proposition 7.5 that

〈Cα ⊗̂Cβ,Cγ 〉 = 〈Cα ⊗ Cβ,
(Cγ )〉, 〈C∅,Cα〉 = ε(Cα). (7.1)

For the second assertion, first recall the representation theory of the 0-Hecke algebra
Hn(0) from §2.3. We define the surjection σ by

σ(Pα(0)) =
{

Cα, if α ∝ n,

0, otherwise.
(7.2)
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We define the injection ι by sendingCα toCα(0) for allα ∝ n. One sees that σ and ι are
maps of graded algebras and coalgebras, respectively, by comparing Proposition 7.5
with Proposition 2.1. It is not hard to check that

〈σ(Pα(0)),Cβ〉 = 〈Pα(0), ι(Cβ)〉 = δα, β, ∀α |� m, ∀β ∝ n.

This shows that σ and ι are dual maps. Hence, (ii) holds. ��

Remark 7.7 (i) Comparing the definitions forHn andHn(0), one sees that the former
is a quotient of the latter by the relations Ti Ti+1 = 0 for all i = 1, . . . , n−2. Thus,
any Hn-module is automatically an Hn(0)-module. This induces the injection
ι : G0(H•) ↪→ G0(H•(0)) given in the previous proposition. On the other hand,
Cα(0) = top(Pα(0)) admits an Hn-action and is hence isomorphic to Cα if and
only if the composition α has all internal parts larger than 1. This induces the
surjection σ : K0(H•(0)) � G0(H•) defined in (7.2).

(ii) It is well known that the number of partitions of n is no more than the Fibonacci
number Fn+1. One may suspect that the surjection K0(H•(0)) ∼= NSym �
Sym ∼= G0(CS•) factors through the surjection σ : K0(H•(0)) � G0(H•).
This is not true since the commutative image of the noncommutative ribbon Schur
function sα is the ribbon schur function sα , but f (Pα(0)) = 0 if α is a com-
position with an internal part equal to 1. Similarly, one sees that the injection
G0(CS•) ∼= Sym ↪→ QSym ∼= G0(H•(0)) does not factor through the injection
ι : G0(H•) ↪→ G0(H•(0)), since the image of the injection i is spanned byCα(0)
for all α ∝ n, n ≥ 0, but Fα ∈ Sym when α = 1n , n ≥ 3.

(iii) Unfortunately, G0(H•) is not a bialgebra: one checks that 
(C11 ⊗̂C1) �=

(C11) ⊗̂ 
(C1) where the product on the right- hand side is tensor-component-
wise. Thus, it does not fit into Zelevinsky’s theory on positive self-dual Hopf
algebras [12]. One also checks that G0(H•) is not a weak bialgebra (c.f. [4]), nor
an infinitesimal bialgebra (c.f. [1]).

Next, we consider the Bratteli diagram of the tower of algebras H0 ↪→ H1 ↪→
H2 ↪→ · · · . It has vertices at level n indexed by α ∝ n, for n = 0, 1, 2, . . ., and it has
an edge between α ∝ n and β ∝ n− 1 if and only if Cα ↓ Hn

Hn−1
∼= Cβ . One can draw

this diagram using Proposition 7.5. The first 5 levels are illustrated below.

· · · · · · · · ·
4 31 22 13 121

3

��� ���
21 12

��� ���

2

���� ���
11

���

1

���� ���

∅
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7.3 Antipode

We consider the antipode of G0(H•). In general, let A be an algebra with product μ

and unit u, and let C be a coalgebra with coproduct 
 and counit ε. The convolution
product of two maps f, g ∈ Hom F(C, A) is defined as f � g := μ◦ ( f ⊗ g)◦
. One
can check that u ◦ ε is the two-sided identity element for this convolution product.

Let (A′, μ′, u′) be another algebra and (C ′,
′, ε′) be another coalgebra such that
there exists an algebra surjection σ : A � A′ and a coalgebra injection ι : C ′ ↪→ C .
Then, u′ = σ ◦ u, ε′ = ε ◦ ι, and the following diagram is commutative, where
f ′ := σ ◦ f ◦ ι and g′ := σ ◦ g ◦ ι.

C

 �� C ⊗ C

f⊗g �� A ⊗ A
σ⊗σ����

μ �� A
σ����

C ′��
ι

��


′
�� C ′ ⊗ C ′��

ι⊗ι

��

f ′⊗g′
�� A′ ⊗ A′ μ′

�� A′

(7.3)

The antipode S of a Hopf algebra H is nothing but the two-sided inverse of the iden-
tity map 1H under the convolution product for the endomorphism algebra End F(H).
In other words, S is defined by the commutative diagram below.

H ⊗ H
S⊗1H �� H ⊗ H

μ

�����
���

H


 �����
���


 �������� ε ��
F

u �� H

H ⊗ H
1H⊗S

�� H ⊗ H
μ

��������

Note that the definition for the antipode S only requires H to be simultaneously an
algebra and a coalgebra. Moreover, if the antipode S of H exists, and if there is an
algebra surjection σ : H � H ′ and a coalgebra injection ι : H ′ ↪→ H , then one sees
from (7.3) that S′ := σ ◦ S ◦ ι is the antipode of H ′.

The antipodes of the dual graded Hopf algebras QSym and NSym are well known
to the experts. If α = (α1, . . . , α�) is a composition of n, then its reverse is the
composition rev(α) := (α�, . . . , α1), its complement is the unique composition αc

of n with D(αc) = [n − 1] \ D(α), and its conjugate is the composition ω(α) :=
(rev(α))c = rev(αc). For example, if α = 21321, then rev(α) = 12312, αc = 13122,
and ω(α) = 22131. The antipodes of QSym and NSym are defined by S(Fα) =
(−1)n Fω(α) and S(sα) = (−1)nsω(α) for all α |� n, n ≥ 0, where {Fα} and {sα} are
dual bases for QSym and NSym.

However, the same rule does notwork forG0(H•). To give the antipodes ofG0(H•),
we introduce a free Z-module Comp with a basis consisting of all compositions. By
Proposition 2.1, we can define a product α ⊗̂ β := αβ + α � β and a coproduct

(α) := ∑

0≤i≤|α| α≤i⊗α>i for all compositionsα andβ, such that there is an algebra
isomorphismComp ∼= K0(H•(0)) and a coalgebra isomorphismComp ∼= G0(H•(0)).
The basis of all compositions for Comp is self-dual under the pairing 〈α, β〉 := δα,β .
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There is an algebra surjection σ : Comp � G0(H•) defined by

σ(α) =
{

Cα, α ∝ n,

0, otherwise,
∀α |� n, ∀n ≥ 0

and a coalgebra injection ι : G0(H•) ↪→ Comp sending Cα to α for all α ∝ n, n ≥ 0.
They are dual to each other by Corollary 7.6 (ii). One can check that Comp is not a
bialgebra, but its antipode exists, giving the antipode of G0(H•).
Proposition 7.8 The map S sending α to (−1)nαc for all α |� n, n ≥ 0, is the
antipode of Comp. Consequently, the antipode of G0(H•) is σ ◦ S ◦ ι, which sends
Cα to (−1)nCαc if both α ∝ n and αc ∝ n hold for some n ≥ 0, that is, if α ∈
{22 · · · 2, 122 · · · 2, 22 · · · 21, 122 · · · 21}, or sends Cα to 0 otherwise.

Proof If S is the antipode of Comp then σ ◦ S ◦ ι is the antipode of G0(H•). Thus, it
suffices to show that

n
∑

i=0

S(α≤i ) ⊗̂ α>i = u ◦ ε(α) =
n

∑

i=0

α≤i ⊗̂ S(α>i ), ∀α |� n.

We only show the first equality and one can check that the same argument works for
the second equality. It is trivial when α = ∅. Assume n ≥ 1 below. Then, u◦ε(α) = 0.
For any β ∝ n, it follows the self-duality of Comp that

〈

n
∑

i=0

S(α≤i ) ⊗̂ α>i , β

〉

=
n

∑

i=0

〈

S(α≤i ) ⊗ α>i ,
(β)
〉 =

n
∑

i=0

〈S(α≤i ), β≤i 〉·〈α>i , β>i 〉.
(7.4)

Thus, it suffices to show that the sum of Li := 〈S(α≤i ), β≤i 〉 · 〈α>i , β>i 〉 for i =
0, 1, . . . , n equals 0. One sees that

Li =
{

(−1)i , if (α≤i )
c = β≤i , α>i = β>i ,

0, otherwise.

Let N be the set of all i ∈ {0, 1, . . . , n} such that Li �= 0. It is trivial if N = ∅.
Suppose that i ∈ N . One sees that D(α≤ j ) = D(α) ∩ [ j − 1] and D(α> j ) =

D(α) ∩ { j + 1, . . . , n − 1} for any j ; similarly for β. Hence, (α≤i )
c = β≤i implies

(α≤ j ) = β≤ j for all j < i , and α>i = β>i implies α> j = β> j for all j > i .
Since (α≤i )

c = β≤i , the number i − 1 must belong to exactly one of D(α) and
D(β). This forces α> j �= β> j for all j < i − 1. Similarly, since α>i = β>i , the
number i +1 belongs to both or neither of D(α) and D(β). This forces (α≤ j )

c �= β≤ j

for all j > i + 1. Hence, N ⊆ {i − 1, i, i + 1}.
If i belongs to exactly one of D(α) and D(β), then N = {i, i+1} since (α≤i+1)

c =
β≤i+1 and α>i−1 �= βi−1.

If i belongs to both or neither of D(α) and D(β), then N = {i − 1, i} since
(α≤i+1)

c �= β≤i+1 and α>i−1 = βi−1.
In either case, above equation (7.4) equals 1 − 1 = 0. This completes the proof. ��
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8 Questions and remarks

8.1 Dimension

If the Coxeter system (W, S) is simply laced, then using the basis for H(q) provided
in Theorem 4.3, one can obtain recursive formulas for the dimension ofH(q). Is there
anything else (e.g., closed formula and combinatorial interpretation) one can say about
this dimension? More generally, how to write down a basis for H(q) of an arbitrary
Coxeter system?

8.2 Type A

In type A, we know that the dimension of a collapse free and commutative H(q)

is a Fibonacci number; for example, one can take q = (0, 1, 0, 1, . . .) or q =
(1, 0, 1, 0, . . .). What if H(q) is not commutative?

For instance, let q be a sequence ofm−1 zeros followed by n−1 ones. Then,H(q)

is a quotient ofHm(0)⊗FSn and has dimension (m−1)!(n!+m−1), by Theorem 4.3.
How does the representation theory of this algebra connect to the representation theory
of Hm(0) and Sn?

Here is another example. If q consists of a many copies of 0 followed by b many
copies of q �= 0 and then c many copies of 0, one can use Theorem 4.3 to show that

dimH(q) = c!(a!((b + 1)! + a) + (a + 1)!c).

If q consists of a many copies of q �= 0 followed by b many copies of 0 and then c
many copies of q ′ �= 0, then

dimH(q) = b!((a + 1)! + b) + (b − 1)!((a + 1)! + b − 1)((c + 1)! − 1).

What is the representation theory ofH(q) in these two cases?
A final remark for type A: The tower of algebras H0 ↪→ H1 ↪→ H2 ↪→ · · · is

different from the tower of algebras defined by Okada [9], whose dimensions are n!
and whose Bratteli diagram is the Young-Fibonacci poset.

8.3 Other types

Our results on the commutative algebra H(G, R) applies to affine type A. Let G
be the cycle Cn with vertices 1, . . . , n and edges {1, 2}, . . . , {n − 1, n}, {n, 1}. We
know that H(Cn, R) has a basis indexed by I(Cn). One checks that if n ≥ 3, then
I(Cn) = I(Pn−1) � I(Pn−3), which is the shadow of the decomposition

H(Cn, R) ∼= H(Pn−1, R ∩ [n − 1]) ⊕ H(Pn−1, R ∩ [n − 1])xn .

Hence, for n ≥ 3, one has |I(Cn)| = Fn+1 + Fn−1 = Ln , where Ln is the n-th Lucas
number. When R = ∅ the algebraH(Cn,∅) is semisimple and has all simple modules
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one dimensional. Unfortunately, we do not have a tower of algebras H(Cn,∅), since
there is no natural embedding Cn ↪→ Cn+1, and thus have no further result in this
direction.

One can also takeG to be theCoxeter diagramoffinite type Dn (n ≥ 2) or affine type
˜Dn (n ≥ 5). The dimension of H(G, R) is 4, 5, 9, 14, 23, . . . (OEIS entry A000285)
or 17, 24, 41, 65, 106, . . . (OEIS entry A190996) in these cases.

8.4 Power series realization

In Sect. 7, we defined an algebra and coalgebra structure for the Grothendieck group
G0(H•) of the tower of algebras H• : H0 ↪→ H1 ↪→ H2 ↪→ · · · , with a self-
dual basis consisting of the simple modules, which are indexed by compositions with
internal parts larger than 1. This is further extended toCompwith a basis indexed by all
compositions. Is there a Frobenius type of characteristic map for G0(H•), or in other
words, is there a power series realization ofG0(H•) as both an algebra and a coalgebra,
similarly to G0(CS•) ∼= Sym, G0(H•(0)) ∼= QSym, and K0(H•(0)) ∼= NSym? And
how about Comp?

References

1. Aguiar, M.: Infinitesimal Hopf algebras. Contemp. Math. 267, 1–30 (2000)
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