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Abstract A finite projective plane, or more generally a finite linear space, has an
associated incidence complex that gives rise to two natural algebras: the Stanley–
Reisner ring R/I� and the inverse system algebra R/I�. We give a careful study
of both of these algebras. Our main results are a full description of the graded Betti
numbers of both algebras in the more general setting of linear spaces (giving the result
for the projective planes as a special case), and a classification of the characteristics in
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which the inverse system algebra associated to a finite projective plane has the weak
or strong Lefschetz Property.
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1 Introduction

The purpose of this note is to introduce and begin discussing a new connection between
commutative algebra and finite geometries, especially finite projective planes.Namely,
given a projective plane of order q (or more generally, a linear space), wewill naturally
associate two monomial algebras to it: one that comes from Macaulay’s inverse sys-
tems and the other from Stanley–Reisner theory, by viewing the plane as a simplicial
complex.

We refer the reader to standard texts such as [18,22] for the main definitions and
facts of combinatorial commutative algebra and to [8,12] for information on inverse
systems, though we will only employ this latter theory in the context of monomial
algebras, where it is much simpler. We refer to Moorhouse’s course notes [19] to
recall the following geometric definitions.

Definition 1.1 A point-line incidence structure is a pair (P, L), where P is a finite
set of points and L a finite set of lines, equipped with a binary relation I ⊂ P × L
such that (p, �) ∈ I precisely when p lies on � (i.e., p is incident to �).

A point-line incidence structure (P, L) is a linear space if any two distinct points
lie on exactly one common line and any line contains at least two points.

If every line in L has the same number of points, we say that (P, L) is equipointed;
otherwise, (P, L) is nonequipointed.

A finite projective plane is then a special case of a linear space.

Definition 1.2 A finite projective plane is a linear space (P, L) such that the following
extra conditions are satisfied:

(i) Any two distinct lines meet at (exactly) one point;
(ii) There exist three noncollinear points;
(iii) Every line contains at least three points.

It is well known that, for every finite projective plane (P, L), there exists an integer
q such that #P = #L = q2 + q + 1, every point lies on exactly q + 1 lines, and every
line contains exactly q + 1 points. In this case, (P, L) is said to have order q.

Our paper is structured as follows. Extending a construction for projective planes,
in the next section we introduce the incidence complex of a linear space (P, L) and
study its Stanley–Reisner ring R/I�, with an eye on the most interesting case of a
finite projective plane. Themain fact shown in Sect. 2 is a complete characterization of
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the graded Betti numbers (a much stronger set of invariants than the Hilbert function)
for any Stanley–Reisner ring R/I� (see Theorem 2.9). In particular, it will follow that,
except in trivial situations, all of these rings have depth 2 and are therefore very far
from being Cohen–Macaulay.

In Sect. 3, we present our second algebraic approach, by associating with any given
linear space (P, L) a naturally definedArtinian algebra R/I�, which is constructed via
(monomial) inverse systems. Since the ideal I� can alternatively be obtained from the
Stanley–Reisner ideal I� by adding the squares of all the variables to the generating set,
we in part rely on the results of Sect. 2 to develop this approach. Also for the algebras
R/I�, we are able to provide a full characterization of the graded Betti numbers (see
Theorem 3.4). We notice that, once again, our results carry a very neat statement when
specialized to projective planes (see Corollary 3.6).

In Sect. 4, we then turn to the weak Lefschetz property (WLP) and the strong
Lefschetz property (SLP). Recall that an Artinian K -algebra A = ⊕e

i=0Ai is said to
have the WLP if, for a general (according to the Zariski topology) linear form �, all of
the multiplication maps ×� between the K -vector spaces Ai and Ai+1 have maximal
rank (i.e., each is injective or surjective). Similarly, we say that A has the SLP if, for
all i, d ≥ 0, the maps ×�d between Ai and Ai+d have maximal rank.

The Lefschetz properties, whose study was introduced by Richard Stanley in his
work in combinatorial commutative algebra in the Seventies, can be seen as an alge-
braic abstraction of the Hard Lefschetz theorem of algebraic geometry, and their
existence carries several important consequences (e.g., to name one in the combinato-
rial direction, if an algebra A has the WLP, then its Hilbert function is unimodal; see
[10] for basic facts on algebras with theWLP and SLP). In fact, a substantial amount of
research has been done in recent years on theWLP and the SLP formonomial algebras,
which are the main object of this paper, and much of this work has been motivated by
the surprising connections that have emerged with combinatorics, in particular with
plane partitions and lattice paths. See, as a nonexhaustive list [3–6,13,15,17].

Notice that the existence of the Lefschetz properties for any algebra A of positive
depth (over an infinite field) is a trivial problem, because A is always guaranteed
to have a linear nonzero divisor, which immediately implies the injectivity of all
of the multiplication maps between its graded components. Hence, both Lefschetz
properties hold for the Stanley–Reisner ring R/I� associated to any linear spaces
(P, L). However, investigating the WLP and the SLP for the inverse system Artinian
algebras R/I� turns out to be an interesting and highly nontrivial problem. This is
the object of Sect. 4, where we give a careful study of the characteristics of the base
fields over which the algebra R/I� has the WLP in both the equipointed and the
nonequipointed cases. For the equipointed case, we also study the SLP, and the main
application will again be to the case of finite projective planes. In particular, we will
provide a classification of the characteristics of the base fields over which the algebra
R/I� corresponding to a projective plane has, respectively, theWLP and the SLP (see
Theorems 4.8, 4.10).

As we mentioned earlier, our chief goal in this paper is to begin a study of some
interesting and potentially fruitful connections between commutative algebra andfinite
geometries. In general, the relationship between these twomathematical areas has only
marginally been explored so far, and both the nature of the approaches outlined earlier
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and the neat statements of some of the results of the next sections strongly suggest
that much more can be done in this line of research. In particular, we have only
commenced to investigate the potential impact that certain algebraic tools might have
in studying problems of finite geometries. For example, a fundamental problem in the
theory of finite projective planes is to characterize the integers q that may occur as
orders of the planes. Thus, one of the most natural and consequential questions that
the interested reader may want to try to address in a subsequent work is: Is it possible
to use combinatorial commutative algebra to impose new, nontrivial restrictions on
the possible values of q? It is widely believed that q can only be a power of a prime
number, but even the existence of a projective plane of order 12 is still open. Perhaps
the fact that the graded Betti numbers of the incidence complex of a projective plane
are determined by the order of the plane (see Corollary 2.12) can serve as a starting
point for future investigations.

2 The Stanley–Reisner ring associated to a linear space

We begin by describing an incidence complex associated to a linear space. We will
prove that theAlexander dual of the incidence complex is vertex decomposable. There-
fore, the Stanley–Reisner ring associated to the incidence complex has a 3-linear
resolution and has depth 2. Then, we will describe the graded Betti numbers of the
Stanley–Reisner ring.

For the main definitions and some basic results on Stanley–Reisner theory (and
monomial ideals in general), we refer to [11,18,22].

In order to study linear spaces, we define a simplicial complex, the incidence com-
plex.

Definition 2.1 The incidence complex of a linear space (P, L) is the simplicial com-
plex � on P with facets given by the collection of points on each line in L .

Clearly � is pure (i.e., the facets all have the same dimension) if and only if (P, L)

is equipointed. We make some further comments about the incidence complex.

Proposition 2.2 Let � be the incidence complex of a linear space (P, L).

(i) The f -vector of � is of the form

f (�) =
(
1, #P,

(
#P

2

)
,
∑
�∈L

(
#�

3

)
, . . . ,

∑
�∈L

(
#�

t

))

where t = max{#� : � ∈ L}.
(ii) The minimal nonfaces of � are precisely the noncollinear triples of points.
(iii) For p ∈ P, � \ p is the incidence complex of (P \ {p}, L ′), where L ′ is the set of

lines in L not containing p together with the lines in L containing at least three
points, one of which is p, with p removed.

(iv) For p ∈ P, link�(p) is a disjoint union of simplices.

123



J Algebr Comb (2016) 43:495–519 499

Proof The first three are obvious. The fourth follows since every pair of points lies on
a unique line. Thus, the lines containing p partition the points of P \ {p}. The parts
of the partition, being on a common line, thus form the simplices of the link. ��

Recall that the Alexander dual of a simplicial complex � is the simplicial complex
�∨ of complements of nonfaces of � (see, e.g., [11, Section 1.5.3]).

Corollary 2.3 Let�be the incidence complex of a linear space (P, L), where#L > 1.
The Alexander dual �∨ is pure and (#P − 4)-dimensional.

Furthermore, Eagon and Reiner [7, Theorem 3] showed that the Alexander dual
�∨ of the simplicial complex is Cohen–Macaulay over the field K if and only if the
Stanley–Reisner ring K [�] has a linear resolution. In the stronger situation that �∨
is pure and shellable, Eagon and Reiner [7, Corollary 5] also showed that K [�] has a
linear resolution regardless of the field K .

Following [20, Definition 2.1], a pure complex � is vertex decomposable if either
� is a simplex (including the void complex) or there exists a vertex v ∈ �, called a
shedding vertex, such that both link�(v) and�\v are vertex decomposable. It is easy
to see that vertex-decomposability implies shellability.

We state without proof a simple lemma about Alexander duality and subcomplexes.

Lemma 2.4 If v is any vertex of a simplicial complex �, then

(� \ v)∨ = link�∨(v) and (link�(v))∨ = �∨ \ v.

Theorem 2.5 Let � be the incidence complex of a linear space (P, L). Then the
Alexander dual �∨ is vertex decomposable.

Proof We proceed by induction on #P . If #P = 2, then � is a simplex and so �∨ is
the void complex, which is vertex decomposable.

Suppose #P > 2, and let p ∈ P . It is easy to see that�∨\ p is vertex decomposable,
since it is the Alexander dual of the disjoint union of simplices link�(p). On the other
hand, link�∨(p) is the Alexander dual of an incidence complex of a linear space on
#P −1 vertices by Proposition 2.2(iii), which is vertex decomposable by induction. ��
Corollary 2.6 Let � be the incidence complex of a linear space (P, L). Then, the
Stanley–Reisner ring K [�] has a 3-linear resolution.

Proof Since �∨ is vertex decomposable and thus shellable, K [�] has a linear resolu-
tion by [7, Corollary 5] (see also [11, Theorem 8.1.9]). Moreover, since the minimal
nonfaces of � are triples, it is thus a 3-linear resolution. ��

In order to apply this fact, we need a result on graded Betti numbers. Recall that
graded Betti numbers of a simplicial complex � on d vertices are defined as

βi, j (K [�]) = dimK [ToriR(K , K [�])] j ,
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where R = K [x1, . . . , xd ]. Its i th total Betti number is

βi (K [�]) = dimK ToriR(K , K [�]).

The depth of a graded K -algebra A is the maximum length of a regular sequence in
A. If A is a quotient of R, then its depth is d − u, where u is the length of a minimal
free resolution of A over R.

Proposition 2.7 Let � be a simplicial complex on d vertices such that its Stanley–
Reisner ideal has an e-linear resolution. Then, for each integer i ≥ 1,

βi (K [�]) = βi,i+e−1(K [�]) =
i+e−1∑
j=0

(−1)e−1+ j f j−1(�)

(
d − j

i + e − 1 − j

)
.

In particular, the depth of k[�] is at least e − 1.

Proof In order to simplify notation, set

βi = βi,i+e−1(K [�]) and f j = f j (�).

By [11, Proposition 6.2.1], the Hilbert series of K [�] is given by

HK [�](t) =
m∑
i=0

fi−1 t
i (1 − t)−i ,

where m − 1 = dim�.
By assumption, the minimal free resolution of K [�] has the form

0 → Rβd (−e − d + 1) → · · · → Rβ2(−e − 1) → Rβ1(−e) → R → K [�] → 0.

Thus, its Hilbert series can be rewritten as

HK [�](t) = 1

(1 − t)d

⎡
⎣1 +

∑
i≥1

(−1)iβi t
i+e−1

⎤
⎦ .
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Comparing the two expressions, we get

1 +
∑
i≥1

(−1)iβi t
i+e−1 =

m∑
i=0

fi−1 t
i (1 − t)d−i

=
m∑
i=0

⎡
⎣ fi−1 t

i
d−i∑
j=0

(−1) j
(
d − i

j

)
t j

⎤
⎦

=
m∑
i=0

t i

⎡
⎣ i∑

j=0

(−1)i− j f j−1

(
d − j

i − j

)⎤⎦

It follows that

βi =
i+e−1∑
j=0

(−1)e−1+ j f j−1

(
d − j

i + e − 1 − j

)
,

as desired. In particular, we get βi = 0 if i ≥ d − e + 2, which implies the depth
estimate. ��

Remark 2.8 Observe that the above depth estimate is not true for arbitrary quo-
tients of R. For example, the ideal (x1, . . . , xd)e has an e-linear resolution, but
depth R/(x1, . . . , xd)e = 0.

We are ready to determine the graded Betti numbers of the Stanley–Reisner ring
associated to a linear space.

Theorem 2.9 Let � be the incidence complex of a linear space (P, L) and denote by
Lk the number of lines in L with k points. Then, for each integer i ≥ 1,

βi (K [�]) = βi,i+2(K [�])
=

∑
k≥1

(
#P − k

i + 2

)
Lk −

(
#P

i + 2

)
[−1 + #L]

+
(
#P − 1

i + 1

)⎡
⎣−#P +

∑
k≥2

k Lk

⎤
⎦

−
(
#P − 2

i

)⎡
⎣−

(
#P

2

)
+
∑
k≥2

(
k

2

)
Lk

⎤
⎦ .

In particular, the depth of K [�] is 2, unless � is a simplex, i.e., #L = 1.
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Proof Set d = #P and βi = βi (K [�]). By Proposition 2.2, we know the f -vector of
�. Thus, Corollary 2.6 and Proposition 2.7 give, for any i ≥ 1,

βi =
(

d

i + 2

)
− d

(
d − 1

i + 1

)
+
(
d

2

)(
d − 2

i

)
+

i+2∑
j=3

(−1) j
[∑

�∈L

(
#�

j

)](
d − j

i + 2 − j

)

=
(

d

i + 2

)
− d

(
d − 1

i + 1

)
+
(
d

2

)(
d − 2

i

)
+
∑
�∈L

i+2∑
j=3

(−1) j
(
#�

j

)(
d − j

i + 2 − j

)
.

Using Lemma 2.10 below, we obtain

βi =
(

d

i + 2

)
− d

(
d − 1

i + 1

)
+
(
d

2

)(
d − 2

i

)

+
∑
k≥2

Lk

[(
d − k

i + 2

)
−
(

d

i + 2

)
+ k

(
d − 1

i + 1

)
−
(
k

2

)(
d − 2

i

)]
,

which yields the desired formula for the Betti numbers. Furthermore, it follows

βd−2 =
(
d

2

)
− d + 1 −

∑
k≥1

Lk

[(
k

2

)
− k + 1

]

=
(
d − 1

2

)
−
∑
k≥2

Lk

(
k − 1

2

)
.

Thus, the argument is complete once we have shown that

(
d − 1

2

)
>

∑
k≥2

Lk

(
k − 1

2

)
=

∑
�∈L

(
#� − 1

2

)
,

unless � is a simplex because then the projective dimension of K [�] is d − 2, and so
the depth of K [�] is 2, as desired.

Since any two points in P lie on one and only one line, we get

(
d

2

)
=

∑
�∈L

(
#�

2

)
.

If � is not a simplex, then each point in P is on at least two lines, which implies

d ≤
∑
�∈L

(#� − 1).

The last two displayed formulas along with Pascal’s triangle equality easily give
the needed estimate. ��
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In the above argument, we used the following identity.

Lemma 2.10 Let d, k, and b be nonnegative integers. Then,

b∑
j=0

(−1) j
(
k

j

)(
d − j

b − j

)
=

(
d − k

b

)
.

Proof This follows, for example, from [9,Equation (6.18)] by takingb j = (−1) j , d =
x + y, b = n, and k = x . ��
Remark 2.11 For i = 1, one can simplify the formula in Theorem 2.9, using
Lemma 2.10. This gives the expected number

β1(K [�]) =
(
#P

3

)
−
∑
k≥3

(
k

3

)
Lk .

In the case of a projective plane, the above formula for the Betti numbers becomes
simpler.

Corollary 2.12 Let� be the incidence complex of a projective plane of order q. Then,
for each integer i ≥ 1,

βi (K [�]) = βi,i+2(K [�])

= (q2 + q + 1)

(
q2

i + 2

)
+ q3

(
q2 + q

i + 1

)
− q(q + 1)

(
q2 + q

i + 2

)
.

In particular, βq2+q−1(K [�]) = q3.

Proof Using that each line contains q + 1 points and that there are q2 + q + 1 lines,
this follows from Theorem 2.9 and a straightforward computation. ��
Example 2.13 Let � be the incidence complex of a projective plane of order q = 2.
Then, its Stanley–Reisner ring has a minimal free resolution of the form

0 → R(−7)8 → R(−6)42 → R(−5)84 → R(−4)77

→ R(−3)28 → R → K [�] → 0.

3 The inverse system algebra associated to a linear space

Let (P, L) be a linear space and set d = #P . We again assign to each point an
indeterminate, x1, . . . , xd , and let R = K [x1, . . . , xd ], where K is a field. Later we
will study how the characteristic of K affects the properties of the algebras that we
will consider.

Each line � ∈ L can be represented by a monomial xi1 . . . xi#� given by the product
of the indeterminates associated to the points on the line. We thus obtain e = #L
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monomials m1, . . . ,me. Let I be the annihilator of m1, . . . ,me via inverse systems,
that is, I consists of the polynomials that annihilate each of themonomialsm1, . . . ,me

under contraction. It is a monomial ideal. Notice that in characteristic zero, contraction
is equivalent to the differentiation action (see [12]). We will slightly abuse notation
and view I as an ideal of R. Hence, for any positive integer i , a basis for R/I is
given by the monomials of degree i that divide at least one of the mi . The set of these
monomials generates the inverse system of R/I .

3.1 Minimal generators

We first consider the minimal generators of I .
Since themonomialsm1, . . . ,me are squarefree, they are annihilated by the squares

of the indeterminates of which there are d. Further, as any two points lie on a unique
line, these are precisely the d minimal generators of degree 2.

Using this and noting that the inverse system consists of all monomials correspond-
ing to subsets of points on some line, we see that the generators of I of degree 3 are
given by the squarefree monomials corresponding to three noncollinear points.

We now claim that these quadrics and cubics form a minimal generating set for I .

Proposition 3.1 The ideal I is minimally generated in degrees 2 and 3; namely, a
minimal generating set for I consists of the d squares of the indeterminates, x21 , . . . , x

2
d ,

along with the squarefree monomials of degree 3 that correspond to all possible triples
of noncollinear points.

Proof We have to show that I does not have minimal generators whose degree is at
least four. This comes from the fact that if four or more points of the space do not
all lie on a line, then there is a subset of three that do not all lie on a line. Indeed, if
w, x, y, z do not all lie on a line but any three of them do, then in particular {w, x, y}
and {x, y, z} are both sets of collinear points. Hence, all of w, x, y, z must lie on the
line containing x and y, since this is unique. ��

Proposition 3.1 shows that I = I� + (x21 , . . . , x
2
d ), where I� is the Stanley–

Reisner ideal of the incidence complex � of (P, L) discussed in the previous section.
In particular, we have that the h-vector (or Hilbert function) of R/I is f (�), with
dimK [R/I ]1 = d and dimK [R/I ]2 = (d

2

)
.

In the case that (P, L) is a finite projective plane of order q, we have d = q2+q+1
and the h-vector of R/I is

(
1, d, d ·

(
q + 1

2

)
, d ·

(
q + 1

3

)
, . . . , d ·

(
q + 1

q

)
, d

)

(cf. [1, page 38]). Notice that this is a pure O-sequence (see, for instance, [2] for basic
facts about pure O-sequences). In fact, the h-vector of R/I is a pure O-sequence
whenever the linear space (P, L) is equipointed as then R/I is level.
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3.2 Minimal free resolution

We now consider the minimal free resolution of R/I . Let us start with some general
remarks.

Consider a simplicial complex� on the vertex set [d] = {1, 2, . . . , d}. For a subset
F ⊂ [d], denote by mF the ideal

mF = (xi | i ∈ [d] \ F).

Then, the Stanley–Reisner ideal of � in R = K [x1, . . . , xd ] can also be written as

I� =
⋂
F∈�

mF ,

where it is enough to take the intersection over the facets of �.
For a subset G of [d], let xG be the monomial

xG =
∏
i∈G

xi .

Thus, we get for the colon ideal

I� : xG =
⋂

F∈�, G⊂F

mF . (3.1)

Let now� be the incidence complex to a linear space (P, L), where d = #P . Then,
for each i , the ideal

I� : xi =
⋂

�∈L , i∈�

m�

is the Stanley–Reisner ideal of a disjoint union of simplices.
Now consider a subset G of the vertex set with at least two elements. Then, we get

I� : xG =
{
m� = (xi | i /∈ �) if G ⊂ �

R otherwise.
(3.2)

It follows in particular that I� : xG has a 1-linear resolution, unless it is the whole
ring.

Let now

Q = (x21 , . . . , x
2
d ),

and set I� = I� + Q. We want to determine the graded Betti numbers of R/I�. As
preparation, we consider the link of � with respect to any vertex.
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Proposition 3.2 Let � be the incidence complex of a linear space (P, L) and denote
by Lk the number of lines in L with k points. Then, for each point p of P and each
integer i ≥ 1,

βi (K [link�(p)]) = βi,i+1(K [link�(p)])
=

(
#P − 1

i + 1

)
[−1 + #{� ∈ L : p ∈ �}] −

∑
p∈�

(
#P − #�

i + 1

)
.

Proof By Proposition 2.2, link�(p) is a disjoint union of simplices. The vertex of
any such simplex is the set of points on a line containing p other than p. Hence, its
f -vector is

f j−1 =
{
1 if j = 0∑

p∈�

(#�−1
j

)
if j ≥ 1.

We know that the resolution of the Stanley–Reisner ideal of link�(p) is 2-linear.
Hence, Proposition 2.7 gives

βi (K [link�(p)]) = βi,i+1(K [link�(p)])

=
i+1∑
j=0

(−1) j+1 f j−1

(
#P − 1 − j

i + 1 − j

)

= −
(
#P − 1

i + 1

)
+
∑
p∈�

i+1∑
j=1

(−1) j+1
(
#� − 1

j

)(
#P − 1 − j

i + 1 − j

)
.

Using Lemma 2.10, we thus obtain

βi (K [link�(p)]) = −
(
#P − 1

i + 1

)
+
∑
p∈�

[(
#P − #�

i + 1

)
−
(
#P − 1

i + 1

)]

=
(
#P − 1

i + 1

)
[−1 + #{� ∈ L : p ∈ �}] −

∑
p∈�

(
#P − #�

i + 1

)
,

as desired. ��
Again, the formula in the case of a projective plane becomes more explicit.

Corollary 3.3 Let � be the incidence complex of a projective plane of order q. Then,
for each point p ∈ P and each integer i ≥ 1,

βi (K [link�(p)]) = q

(
q2 + q

i + 1

)
− (q + 1)

(
q2

i + 1

)
.

We are ready for the main result of this section.
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Theorem 3.4 Consider the ideal I� = I� + Q, where � is the incidence complex of
a linear space (P, L). Then, R/I� has graded Betti numbers

β1, j (R/I�) =

⎧⎪⎨
⎪⎩
#P if j = 2(#P
3

) − ∑
k≥3

(k
3

)
Lk if j = 3

0 otherwise,

and, for each integer i ≥ 2,

βi, j (R/I�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if j ≤ i + 1( #P
i+2

) − #P
( #P
i+1

) + (#P
2

)(#P−2
i

)
+∑

k≥2 Lk

[(#P−k
i+2

) − k
(#P−k

i

) + (k
2

)(#P−k
i−2

)]
+∑

k≥2 Lk

[
−( #P

i+2

) + k
( #P
i+1

) − (k
2

)(#P−2
i

)]
if j = i + 2

∑
k≥ j−i

( k
j−i

)(#P−k
2i− j

)
Lk if j ≥ i + 3.

Proof Set d = #P . By [16], the Koszul complex on the sequence x21 , . . . , x
2
d induces

an exact sequence of graded R-modules

0 → Fd → · · · → F1 → F0 = R/I� → R/I� → 0,

where (in our notation)

Fi =
⊕

G⊂[d], |G|=i

R/(I� : xG)(−2i).

Moreover, using mapping cones repeatedly gives a graded minimal free resolution
of R/I� by [16, Theorem 2.1], and thus, for all integers s and t ,

βs,t (R/I�) =
s∑

j=0

βs− j,t (Fj ). (3.3)

We know the graded Betti numbers of F0 by Theorem 2.9. Thus, in order to apply
the above formula, we now determine the graded Betti numbers of Fj for each j ≥ 1.

We begin by considering F1. Note that the ideal I� : xp is the extension ideal in
R of the Stanley–Reisner ideal of the link of � with respect to the vertex p. Hence,
I� : xp has the same graded Betti numbers as Ilink�(p), which has a 2-linear resolution
by Proposition 3.2. It follows that, for i ≥ 1,

βi (F1) = βi,i+3(F1)

=
∑
p∈P

βi (K [link�(p)])
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=
∑
p∈P

⎡
⎣[−1 + #{� ∈ L : p ∈ �}]

(
d − 1

i + 1

)
−
∑
p∈�

(
d − #�

i + 1

)⎤⎦

=
[
−d +

∑
�∈L

#�

](
d − 1

i + 1

)
−
∑
�∈L

#�

(
d − #�

i + 1

)

=
⎡
⎣−d +

∑
k≥2

k Lk

⎤
⎦(

d − 1

i + 1

)
−
∑
k≥2

k Lk

(
d − k

i + 1

)
.

Summarizing, the following formula gives all the graded Betti numbers of F1:

βi (F1) =

⎧⎪⎪⎨
⎪⎪⎩

β0,2(F1)=d if i=0

βi,i+3(F1)=
⎡
⎣−d+

∑
k≥2

k Lk

⎤
⎦(

d − 1

i + 1

)
−
∑
k≥2

k Lk

(
d − k

i + 1

)
if i≥1.

(3.4)
Now we consider Fj , where j ≥ 2. Using Formula (3.2), we obtain

Fj =
⊕

G⊂[d], |G|= j

(R/I� : xG)(−2 j) ∼=
⊕

�∈L ,G⊂�

R/(x1, . . . , xd−#�)(−2 j).

Each direct summand has a linear resolution. Thus, for all nonnegative integers i
and j ≥ 2,

βi (Fj ) = βi,i+2 j (Fj ) =
∑
�∈L

(
#�

j

)(
d − #�

i

)

=
∑
k≥ j

(
k

j

)(
d − k

i

)
Lk . (3.5)

We are now ready to apply Formula (3.3). For s = 1, we have

β1,t (R/I�) = β0,t (F1) + β1,t−1(F0)

=

⎧⎪⎨
⎪⎩

β0,2(F1) = d if t = 2

β1,3(F0) if t = 3

0 otherwise.

Thus, Remark 2.11 gives the desired first graded Betti numbers of R/I�.

123



J Algebr Comb (2016) 43:495–519 509

Let now s ≥ 2. Then, the above formulas and Theorem 2.9 provide, for each integer
t ,

βs,t (R/I�) =

⎧⎪⎨
⎪⎩
0 if t ≤ s + 1

βs,s+2(F0) + βs−1,s+2(F1) + βs−2,s+2(F2) if t = s + 2

β2s−t,t (Ft−s) = ∑
k≥t−s

( k
t−s

)(d−k
2s−t

)
Lk if t ≥ s + 3.

Therefore, it only remains to determine βs,s+2(R/I�). We have, for s ≥ 2,

βs,s+2(R/I�) =
∑
k≥1

(
d − k

s + 2

)
Lk −

(
d

s + 2

)
[−1 + #L]

+
(
d − 1

s + 1

)⎡
⎣−d +

∑
k≥2

k Lk

⎤
⎦ −

(
d − 2

s

)⎡
⎣−

(
d

2

)
+
∑
k≥2

(
k

2

)
Lk

⎤
⎦

+
⎡
⎣−d +

∑
k≥2

k Lk

⎤
⎦(

d − 1

s

)
−
∑
k≥2

k Lk

(
d − k

s

)

+
∑
k≥2

(
k

2

)(
d − k

s − 2

)
Lk

=
(

d

s + 2

)
− d

(
d − 1

s + 1

)
+
(
d

2

)(
d − 2

s

)
− d

(
d − 1

s

)

+
∑
k≥2

Lk

[(
d − k

s + 2

)
− k

(
d − k

s

)
+
(
k

2

)(
d − k

s − 2

)]

+
∑
k≥2

Lk

[
−
(

d

s + 2

)
+ k

(
d − 1

s + 1

)
−
(
k

2

)(
d − 2

s

)
+ k

(
d − 1

s

)]
,

which implies the desired formula. ��

Remark 3.5 Some of the Betti numbers of R/I� have an easy combinatorial interpre-
tation. For instance, if i ≥ 2 and j ≥ 3, then the formula forβi, j (R/I�) in Theorem3.4
can be rewritten as

βi,i+ j (R/I�) =
∑
�∈L

(
#�

j

)(
#P − #�

i − j

)
.

Thus, βi,i+ j (R/I�) equals the number of choices of i points in P such that j points
are on one line in L and i − j points are off the chosen line.

We highlight again the case of a projective plane.
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Corollary 3.6 For a projective plane of order q, the graded Betti numbers of R/I�
are

β1, j (R/I�) =

⎧⎪⎨
⎪⎩
q2 + q + 1 if j = 2(q2+q+1

3

) − (q+1
3

)
(q2 + q + 1) if j = 3

0 otherwise,

and, for each integer i ≥ 2,

βi, j (R/I�) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if j ≤ i + 1

−q(q + 1)
(q2+q+1

i+2

) + (q2 + q + 1)[( q2

i+2

) + q
(q2+q+1

i+1

) − (q + 1)
(q2
i

) + (q+1
2

)( q2

i−2

)]
if j = i + 2

(q2 + q + 1)
(q+1
j−i

)( q2

2i− j

)
if j ≥ i + 3.

In particular, βi, j (R/I�) is not zero if and only if

(i) i = j = 0 or i + 1 = j = 2;
(ii) 1 ≤ i ≤ q2 + q and j = i + 2; or
(iii) i ≥ 2 and max{i + 3, 2i − q2} ≤ j ≤ min{2i, i + q + 1}.
Proof This follows from Theorem 3.4 by a straightforward computation. ��

Of course, analogous results to those in Corollaries 3.3 and 3.6 could also be stated,
for instance, for finite affine planes.

Example 3.7 To illustrate the above computation, consider a projective plane of order
q = 2. Then, we have, using the above notation,

F2 ∼= (R/(x1, . . . , x4))
21(−4), F3 ∼= (R/(x1, . . . , x4))

7(−6), Fj = 0 if j ≥ 4.

Hence, we obtain the following diagram:

0 → F3 → F2 → F1 → R/I� → R/I� → 0
↑ ↑ ↑ ↑

R(−6)7 R(−4)21 R(−2)7 R
↑ ↑ ↑ ↑

R(−7)28 R(−5)84 R(−4)84 R(−3)28

↑ ↑ ↑ ↑
R(−8)42 R(−6)126 R(−5)196 R(−4)77

↑ ↑ ↑ ↑
R(−9)28 R(−7)84 R(−6)189 R(−5)84

↑ ↑ ↑ ↑
R(−10)7 R(−8)21 R(−7)84 R(−6)42

↑ ↑ ↑ ↑
0 0 R(−8)14 R(−7)8

↑ ↑
0 0
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It gives the following Betti table for R/I�:

0 1 2 3 4 5 6 7
-------------------------------------------------------
0: 1 - - - - - - -
1: - 7 - - - - - -
2: - 28 182 364 357 176 35 -
3: - - - 7 28 42 28 7

-------------------------------------------------------
Tot: 1 25 182 371 385 218 63 7

Notice that it is in accordance with Corollary 3.6.

Remark 3.8 Let I be the inverse system of a finite projective plane. The last line of
the Betti diagram of R/I is

0 1 2 . . . q q + 1 q + 2 q + 3 . . . q2 + q − 1 q2 + q q2 + q + 1

q + 1 − − − . . . 0 d d · ( q2

q2−1

)
d · ( q2

q2−2

)
. . . d · (q22 ) d · (q21 ) d

While this follows as a consequence of the above, it also follows by looking at the
minimal free resolution directly.

We consider a minimal free resolution for the canonical module, M , which we
will view as the inverse system module generated by the monomials mi . We know
that M is generated in the initial degree and has d minimal generators. Furthermore,
each generator mi corresponding to a line �i is annihilated by the indeterminates
corresponding to points that are not on �i . There are q2 + q + 1− (q + 1) = q2 such
indeterminates.

In the minimal free resolution of M , then, the first free module is Rd (ignoring the
twist). The linear syzygies are exactly given by the annihilation just described. For
each monomial mi , 1 ≤ i ≤ d, let xi,1, . . . , xi,q2 be the indeterminates that annihilate
mi . Then, the presentation matrix has the form

⎡
⎢⎢⎢⎢⎢⎣

x1,1 . . . x1,q2 0 . . . 0 0 . . . 0 . . . 0 . . . 0 . . .

0 . . . 0 x2,1 . . . x2,q2 0
0 . . . 0 0 . . . 0 x3,1 . . . x3,q2 . . . 0 . . . 0 . . .
...

0 . . . 0 0 . . . 0 0 . . . 0 . . . xd,1 . . . xd,q2 . . .

⎤
⎥⎥⎥⎥⎥⎦

(where theremaybe additional syzygies of higher degree). The syzygies of the columns
of this matrix are precisely the Koszul syzygies of a complete intersection of q2 linear
forms, and there are d such complete intersections.
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4 The Lefschetz properties

The purpose of this section is to determine in which characteristics of the base field
K , which we will assume throughout to be infinite, the algebra A = R/I� associated
to a linear space, as defined in Sect. 3, has the WLP or the SLP. We will do this by
applying a variety of tools coming from combinatorial commutative algebra to the
structure of linear spaces. The resulting characterizations will, in some cases, turn out
to be extremely appealing. Namely, our main result, which assumes A is associated
to a finite projective plane of order q, will show that A has the WLP if and only if

char K = 0 or char K >
⌈
q+1
2

⌉
(as usual, �x� denotes the least integer ≥ x), while

A has the SLP if and only if char K = 0 or char K > q + 1 (see Theorem 4.8 (i) and
(iv)).

Remark 4.1 ByTheorem 2.9, for any linear space the algebra R/I� has positive depth.
Hence, it always has both Lefschetz properties. Indeed (if the base field is infinite),
the fact that the depth of R/I� is positive guarantees the existence of a linear nonzero
divisor in R/I�, which immediately gives us that all maps defining the Lefschetz
properties are injective.

We first present some preliminary results and helpful facts.

Lemma 4.2 ([17]) Let A be any (standard graded) Artinian algebra, and let � be a
general linear form. Consider the maps ×� : Ai → Ai+1 defined by multiplication
by �, for i ≥ 0. Then:

(i) If ×� is surjective from some degree i to degree i + 1, then ×� is surjective in all
subsequent degrees.

(ii) If A is level and ×� is injective from some degree i to degree i + 1, then ×� is
injective in all previous degrees.

(iii) In particular, if A is level and dimK Ai = dimK Ai+1, then A has the WLP if and
only if ×� is injective (i.e., bijective) from degree i to degree i + 1.

Remark 4.3 If the algebra A is monomial, it was shown in [17, Proposition 2.2] that,
without loss of generality, one may simply assume, in studying the existence of the
WLP or of the SLP, that the linear form � is the sum of the indeterminates. Thus, from
now on, when we refer to �, it will be to the specific linear form � = x1 + · · · + xd .

We also recall that, for the ideal of the squares of the variables, the presence of the
WLP and SLP admits a nice classification.

Lemma 4.4 If A = K [x1, . . . , xd ]/(x21 , . . . , x2d ), then
(i) A has the WLP if and only if char K = 0 or char K >

⌈ d
2

⌉
.

(ii) A has the SLP if and only if char K = 0 or char K > d.

Proof The characteristic zero portion of each part follows from Stanley’s theorem in
[21].

The positive characteristic portion of (i) follows from Theorem 6.4 of [13], and the
positive characteristic portion of (ii) follows from one of Theorem 5.5, Proposition
6.7, and Corollary 6.5 of [4] (see also Theorem 7.2 therein) depending on d. ��
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Using the same notation as in the previous section, let us now consider the Artinian
monomial algebra A = R/I� = K [x1, . . . , xd ]/I� corresponding to a linear space
(P, L) with d = #P . Notice that A is level if and only if (P, L) is equipointed.

Hence, Lemma 4.4 classifies the case when #L = 1 (which includes the case
d = 2). In particular, if d = 2, then A always has the WLP and has the SLP if and
only if char K �= 2. We thus assume for the remainder of the section that d > 2.

We first note that the second and last map for the WLP are simple.

Lemma 4.5 Suppose that the largest number of points on any line is m.

(i) The map ×� : A1 → A2 is injective if and only if char K �= 2.
(ii) The map ×� : Am−1 → Am is surjective in all characteristics, for m ≥ 3.

Proof (i) Let us choose as a basis for A1 the (homomorphic images of the) indeter-
minates of R and as a basis for A2 the squarefree monomials of degree 2. Thus, the
matrix associated to ×� with respect to these bases is a

(d
2

) × d incidence matrix,
whose entries are 0 or 1 depending on whether the indeterminate divides the degree 2
monomial. In particular, each row contains exactly two 1’s, and each column contains
exactly (d − 1) 1’s.

It is easy to see that injectivity fails if and only if the columns of ×� are linearly
dependent, if and only if the first column is a linear combination of the others. A
brief thought gives that this is equivalent to the first column being equal to the sum
of the other columns, in order to account for the 1’s. But then, in any fixed row
corresponding to a 0 in the first column, there are precisely two 1’s, neither of which
is in the first column. The sum of these 1’s is therefore 0, which can occur if and only
if the characteristic of K is 2, as desired.

(ii) For any nonzero element f = xi1 , . . . , xim of Am , it easy to see that f =
� · xi1 , . . . , xim−1 , since x2i = 0 for all i and there exists at most one line passing
through any m − 1 points. This proves the result. ��
Corollary 4.6 If every line contains exactly two points (i.e., A has socle degree 2),
then A has the WLP (SLP) if and only if char K �= 2.

Thus, we may assume for the remainder of the section that the socle degree m is at
least 3.

4.1 Equipointed linear spaces

Suppose A is level, i.e., suppose every line in L has exactly m points. In this case,
each of the d vertices is part of d−1

m−1 lines, each of which is made of m vertices, i.e.,

#L = d(d−1)
m(m−1) . Thus, the h-vector of A is

(
1, d,

d(d − 1)

m(m − 1)

(
m

2

)
, . . . ,

d(d − 1)

m(m − 1)

(
m

m

))
,

which is unimodal with peak in degree m
2 if m is even and peaks in degrees m−1

2 and
m+1
2 if m is odd.
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Remark 4.7 Let C be an Artinian complete intersection generated by the squares of
m indeterminates. Let B be the R-submodule of A, defined by B = ⊕m

j=2[A] j , and
similarly let D = ⊕m

j=2[C] j . Then, B decomposes, as an R-module, as a direct sum
of #L copies of D. This is easily shown via inverse systems using the monomial
generators corresponding to the #L lines, with the direct sum being a consequence
of the fact that any two points lie on a unique line. As a result of this, the injectivity
and/or surjectivity of most maps ×� j on A follows from the corresponding result for
a monomial complete intersection of quadrics. More precisely, we have that the map
×� j between Ai and Ai+ j has maximal rank if and only if the corresponding map
between Ci and Ci+ j has maximal rank, for any given i ≥ 2 and j ≥ 0.

We are now ready for the main theorem of this section.

Theorem 4.8 Suppose A is level with socle degree m ≥ 3, coming from a linear space
with #L ≥ 2.

(i) A has the WLP if and only if char K = 0 or char K >
⌈m
2

⌉
.

(ii) A does not have the SLP if 2 ≤ char K ≤ m.
(iii) A has the SLP if char K = 0 or char K > max{m, d−1

m−1 } = d−1
m−1 .

(iv) If A is associated to a finite projective plane, then A has the SLP if and only if
char K = 0 or char K > m.

Proof (i) If m = 3, notice that, since the algebra A has socle degree m = 3, by
Lemma 4.5 we easily have that A has the WLP if and only if char K �= 2, which
proves the statement.

Let m = 4. Now the socle degree of A is m = 4 and, by Lemma 4.5, injectivity
fails for A from degree 1 to degree 2 if and only if char K = 2. Since the h-vector
of A reaches its unique peak in degree 2, by Lemma 4.2 it suffices to determine the
characteristics in which surjectivity fails for A from degree 2 to degree 3. But by
Remark 4.7, this is equivalent to determining the same result for the algebra C =
K [x1, . . . , x4]/(x21 , . . . , x24 ). This is essentially done in [13, Theorem 5.1], where it is
shown that C has the WLP in any characteristic larger than 2 (in the notation of [13,
Formula (4.3)], set k = q = r = 1 and d = 2 to immediately obtain the result). Thus,
since in characteristic zero C is well known to have the SLP and therefore the WLP
(see Stanley’s paper [21]), we conclude that A has the WLP if and only if char K �= 2,
as desired.

Suppose now that m ≥ 5 is odd. Notice that the h-vector of A is unimodal
with two peaks in its middle degrees, m−1

2 and m+1
2 . Therefore, by Lemmas 4.2

and 4.5, it suffices to show in which characteristics the map ×� is injective (i.e.,
bijective) from degree m−1

2 to degree m+1
2 . By Lemma 4.4, the algebra C =

K [x1, . . . , xm]/(x21 , . . . , x2m)has theWLP if and only if char K = 0 or char K >
⌈m
2

⌉
.

Thus, the result follows from Remark 4.7.
Finally, let m ≥ 6 be even. Hence, the h-vector of A is unimodal with a unique

peak in degree m
2 . Reasoning in a similar fashion to the previous cases, it is enough to

determine in which characteristics the map ×� is injective from degree m−2
2 to degree

m
2 , and in which characteristics it is surjective from degree m

2 to degree m+2
2 . But this

can again be achieved by invoking Remark 4.7, then Lemma 4.4.
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(ii) First, consider the maps � j : A0 → A j . Proving these maps are all injective
is tantamount to showing that the form � j itself is nonzero. If we fix any squarefree
monomialM of degree j corresponding to j collinear points (which exist since j ≤ m),
then M �= 0, and by the multinomial theorem, the coefficient of M in � j is j !, which is
obviously nonzero inZ, and nonzeromodulo any prime p > m. Thus, in particular, �m

is zeromodulo any prime p if p ≤ m. Thus, A fails to have the SLP if 2 ≤ char K ≤ m.
(iii) We first notice that d−1

m−1 ≥ m. Indeed, it was noted above that each point, Q,

of our linear space lies on d−1
m−1 lines. Among these are them lines joining Q to a point

on a line not containing Q, but there may be more lines through Q that do not meet
this line. In fact, apart from trivial cases (where there are too few points), the linear
space is a projective plane if and only if d−1

m−1 = m.
We now want to show that A has the SLP in most of the other characteristics. First

of all, recall that, because of Remark 4.7, the map ×� j between Ai and Ai+ j has
maximal rank if and only if the corresponding map between graded components of
C = k[x1, . . . , xm]/(x21 , . . . , x2m) does, for any i ≥ 2 and any j ≥ 0. Again, we
invoke Lemma 4.4, which precisely guarantees that the above maps have maximal
rank for the algebra C in characteristic zero and in all characteristics greater than m.

Thus, assuming from now on that char K = 0 or char K > m, it remains to prove
that, when i = 1, all maps ×� j between A1 and A1+ j have maximal rank (i.e., they
are all injective). We first consider j = m − 1. In this case, the matrix B for the
multiplication map ×�m−1 : A1 → Am is (m − 1)! times the incidence matrix M .
Indeed, a basis of A1 is given by the residue classes of the d variables corresponding
to the points in the linear space. The products of m variables corresponding to points
on a line form a basis of Am . Hence, all nonsquarefree summands in the expansion of
�m−1 are mapped to zero. The coefficient of the squarefree monomials appearing in
�m−1 is (m−1)!. Using (m−1)!M = B, it follows that if char K > m−1 then M has
maximal rank if and only if B has maximal rank. Furthermore, if MT M has maximal
rank, then M has maximal rank. (Note that this last fact holds only when #L ≥ #P ,
which in turn is true because of the assumption that #L ≥ 2.)

The matrix MTM is square with rows and columns indexed by the points of (P, L).
In particular, the (i, j)th entry is the number of lines containing both the i th and the
j th points; i.e., it equals d−1

m−1 if i = j , and 1 otherwise.
Thus, MTM has determinant

det(MTM) =

∣∣∣∣∣∣∣∣∣

d−1
m−1 1 · · · 1
1 d−1

m−1 · · · 1
...

. . .
...

1 1 · · · d−1
m−1

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

d−1
m−1 1 1 · · · 1

1 − d−1
m−1

d−1
m−1 − 1 0 · · · 0

...
. . .

...

1 − d−1
m−1 0 0 · · · d−1

m−1 − 1

∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣

d−1
m−1 + d − 1 1 1 · · · 1

0 d−1
m−1 − 1 0 · · · 0

...
. . .

...

0 0 0 · · · d−1
m−1 − 1

∣∣∣∣∣∣∣∣∣
=

(
d − 1

m − 1
+ d − 1

)(
d − 1

m − 1
− 1

)d−1

= m · d − 1

m − 1
·
(
d − m

m − 1

)d−1

.

Hence, MTM has a nonzero determinant in Z and modulo a prime p if p >

max{m, d−1
m−1 } = d−1

m−1 , and so, in particular, ×�m−1 : A1 → Am is injective if

char K = 0 or char K > d−1
m−1 .

Finally, assume ×� j : A1 → A j+1 is not injective for some 1 ≤ j ≤ m − 2. Thus,
� j · x = 0 for some nonzero linear form x . But this implies that �m−1 · x = �m−1− j ·
� j · x = 0, contradicting the injectivity of ×�m−1 proven above in characteristic zero
or characteristic > d−1

m−1 . This completes the proof of this case.
(iv) Suppose A is associated to a finite projective plane of order q = m − 1. In this

case, thematrixM is square and so its determinant is the square root of the determinant
of MTM , i.e., (q + 1)q(q2+q)/2. Hence

det(B) = (q!)q2+q+1 · (q + 1) · q(q2+q)/2.

Thus, ×�q : A1 → Aq+1 is an isomorphism if and only if char K = 0 or char K >

q + 1 = m, as desired. ��
We note that the determinant of the matrix M in the case of finite projective planes

was given in [14, Lemma 29].

Remark 4.9 We do not know if part (iii) of the above theorem is true even if we only
assume char K > m. An interesting test case is the affine plane of order 4, where
we have d = 16, m = 4, and d−1

m−1 = 5. Thus, if we take char K = 5, we see that
det(MT M) = 0 so we might hope that in characteristic 5 A does not have the SLP
(thus providing a counterexample to the question just asked). But in fact we have
verified experimentally that A does have the SLP. This is because we only know that
MT M having maximal rank implies that M does, but not necessarily the converse.
The converse can fail not only in characteristic p but in fact also over the complex
numbers. Interestingly, it is true over the real numbers, since for a real vector x , the
number xT MT Mx is the square of the length of Mx .

4.2 Nonequipointed linear spaces

Now we consider the case when the linear space has lines of different sizes.
Our main result for nonequipointed linear spaces is that the WLP only holds for

“almost equipointed” linear spaces.
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Theorem 4.10 Let (P, L) be a linear space with d = #P. Set n and m to be the
minimum and maximum, respectively, size of a line in L. Suppose 2 ≤ n < m. Then,
the ring A has the WLP if and only if (a) m ≤ 5 or n+1 = m, and (b) char K >

⌈m
2

⌉
or char K = 0.

Proof We must consider the maps ×� : Ai → Ai+1. Clearly, if i = 0, then the map
always has maximal rank. By Lemma 4.5, if i = 1, then the map has maximal rank
if and only if char K �= 2, and if i = m − 1, then the map always has maximal rank.
Thus, we must consider the maps when 2 ≤ i < m − 1.

In each of these cases, the matrix Mi for the map ×� : Ai → Ai+1 has columns
indexed by i-tuples of collinear points and rows indexed by (i + 1)-tuples of collinear
points. Since i ≥ 2, the matrix Mi is a block diagonal matrix with blocks indexed
by the lines in L . Let Bc be the block associated to the line c in L . The matrix Bc

is
( #c
i+1

) × (#c
i

)
. It is also the matrix for the map ×� : Ci → Ci+1, where C =

K [x1, . . . , x#c]/(x21 , . . . , x2#c). Invoking Lemma 4.4, we see that such maps all have
maximal rank if char K >

⌈ #c
2

⌉
.

Clearly, all of the blocks Bc for all matrices Mi will have maximal rank if and only
if char K = 0 or char K >

⌈m
2

⌉
. However, for Mi we also need to have all of the

blocks Bc to be either simultaneously injective or simultaneously surjective. It is an
easy exercise in comparing the peaks of binomial coefficients to see that this can only
occur if m ≤ 5 or n + 1 = m. ��

Based on experimental evidence, we offer a conjecture as to the presence of the
SLP.

Conjecture 4.11 Let (P, L) be a linear space with d = #P. Set n and m to be the
minimum and maximum, respectively, size of a line in L. Suppose 2 ≤ n < m. Then,
the ring A has the SLP if and only if char K = 0 or char K > m and one of the
following conditions holds:

(i) 3 ≤ m ≤ 4,
(ii) m = 5 and every point is on a line of size at least 4,
(iii) m ≥ 6 is even and n + 1 = m.

We close with an interesting example.

Example 4.12 Let (P, L) be the linear space consisting of two disjoint lines with
eight points each, and all the other necessary lines of size 2 between them. Then, the
associated Artinian algebra A = R/I� has h-vector

(1, 16, 120, 112, 140, 112, 56, 16, 2),

which is nonunimodal, forcing A to fail to have the WLP, which is consistent with
Theorem 4.10. More generally, and again consistently with Theorem 4.10, an “(m, n)-
bipartite” linear space gives an algebra with mn socle elements in degree 2 (coming
from the lines with two points), so when m ≥ 6 the multiplication from degree 2 to
degree 3 fails to have maximal rank.
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Remark 4.13 The previous example confirms that the nature of arbitrary linear spaces
can be very different from the subclass of projective planes, but also that they can
produce some interesting O-sequences (or equivalently, some interesting f -vectors
of simplicial complexes). Notice also that Example 4.12 is the only “(n, n)-bipartite”
linear space to yield a nonunimodal h-vector: Indeed, it is easy to see that, for any
n �= 8, a linear space consisting of two lines with n points each plus all other possible
lines containing only two points yields a unimodal h-vector. It is, however, possible
to construct other interesting nonunimodal “(m, n)-bipartite” examples when m �= n:
For instance, (m, n) = (7, 8) gives the h-vector

(1, 15, 105, 91, 105, 77, 35, 9, 1).
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