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Abstract We give several characterizations of stable intersections of tropical cycles
and establish their fundamental properties. We prove that the stable intersection of
two tropical varieties is the tropicalization of the intersection of the classical varieties
after a generic rescaling. A proof of Bernstein’s theorem follows from this. We prove
that the tropical intersection ring of tropical cycle fans is isomorphic to McMullen’s
polytope algebra. It follows that every tropical cycle fan is a linear combination of pure
powers of tropical hypersurfaces, which are always realizable. We prove that every
stable intersection of constant coefficient tropical varieties defined by prime ideals is
connected through codimension one. We also give an example of a realizable tropical
variety that is connected through codimension one but whose stable intersection with
a hyperplane is not.

Keywords Tropical geometry · Intersection theory · Polytope algebra

1 Introduction

We consider stable intersections of tropical cycles in R
n , which are pure weighted

balanced rational polyhedral complexes. Stable intersection is an important and use-
ful concept that has been studied by many authors. It first appeared under a different
guise in [5] where Fulton and Sturmfels performed multiplication of Chow cohomol-
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ogy classes on a complete toric variety using a procedure called the fan displacement
rule. The same procedure was used in [13,17] to define stable intersection of tropical
varieties and cycles. Allermann and Rau [1] gave a different definition of the intersec-
tion product of tropical cycles using tropical Cartier divisors. Katz [9] and Rau [16]
then showed independently that these two notions of intersection products coincide.
Kazarnovskii [10] independently developed a theory of tropical varieties and their
stable intersections using a different language.

Our interest in stable intersection originated fromour previouswork on computation
of tropical resultants [8]. For resultants of polynomial systems, the most ubiquitous
cases, including the cases for implicitization, are where some of the coefficients are
specialized to generic constants while we study the choices of remaining coefficients
that make the system solvable. When the resultant is defined by a single polyno-
mial, specialization corresponds to projection of the Newton polytope. In general, for
tropical varieties, which can be considered as generalizations of Newton polytopes,
specialization corresponds to stable intersection with a coordinate subspace. We were
dissatisfied with the lack of efficient algorithms for computing stable intersections
as well as the lack of elementary proofs for basic results about stable intersections,
especially those relating to perturbation of ideals, that would be accessible to a wider
computational geometry community.

The contributions of the present paper include:

• A new characterization of stable intersection that enables us to do computations
efficiently. This has been implemented in Gfan [7] and also as a polymake extension
by Hampe [6].

• Self-contained combinatorial proofs of fundamental properties of stable inter-
section, including well-definedness, dimension formula, balancing condition, and
associativity.

• An elementary proof that the stable intersection of tropical varieties is the tropical-
ization of the intersection of the varieties after a generic rescaling.

• A proof that the tropical intersection ring is isomorphic to McMullen’s polytope
algebra.

• A proof that the stable intersection of irreducible tropical varieties is connected
through codimension one, answering an open question of Cartwright and Payne
from [4].

• An example showing that stable intersection does not preserve connectivity through
codimension one, even for realizable tropical varieties.

We give a new definition of stable intersection (Definition 2.4) and show that it is
equivalent to both the fan displacement rule (Proposition 2.7) and the Allermann–Rau
intersection (Proposition 2.15). Our definition is preferable for computations since it
does not use limits as in the fan displacement rule and does not require performing
intersections iteratively on the Cartesian product as the Allermann–Rau definition
does. In Sect. 2 and in theAppendix,wegive detailed and careful proofs of fundamental
results about stable intersections without relying on algebraic geometry results.

In Sect. 3, we show that the stable intersection of tropical varieties is the tropical-
ization of the intersection of varieties after a generic scaling of variables. This was
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proven by Osserman and Payne [15, Proposition 2.7.8]; however, our methods are
different and elementary. From this, we derive Bernstein’s theorem in Sect. 4.

We show in Sect. 5 that the ring of tropical cycles with the stable intersection
product is isomorphic to McMullen’s polytope algebra, based on a result by Fulton
and Sturmfels. From this and McMullen’s work on polytope algebra, it follows that
every tropical cycle is a linear combination of pure powers of tropical hypersurfaces.
In particular, it follows that every tropical cycle is a linear combination of realizable
tropical varieties.

Tropical varieties of prime ideals are known to be connected through codimension
one. We prove that stable intersections of such tropical varieties are also connected
through codimension one (Theorem 6.1). For arbitrary (non-irreducible) tropical
cycles, even for realizable ones, the stable intersection does not preserve connectivity
through codimension one (Example 6.2).

Notations and conventions We use the max convention in tropical geometry.
Our tropical cycles are polyhedral complexes in Sect. 2, and we assume that they

are fans in Sects. 3, 4, 5, and 6.
In many situations throughout the paper, we use the notion of a generic point p in

a set S. By this we mean that p ∈ S is chosen in an implicitly given relatively open
dense subset of S. A typical situation is when S is the support of a polyhedral complex
and generic points are those in the relative interior of facets.

2 Definitions and basic properties

Let N be a lattice, NQ = N ⊗Z Q and NR = N ⊗Z R. We may sometimes refer to
NR as R

n where n is the dimension.
A tropical k-cycle in NR is a pure k-dimensional weighted balanced rational poly-

hedral complex aswe now explain. A polyhedral complex X is calledweighted if every
facet σ is assigned a number multX (σ ) which we call its multiplicity or weight. The
multiplicity is usually an integer, but we also allow rational multiplicities in Sects. 4
and 5. If a point x is in the relative interior of a facet σ , then let multX (x) := multX (σ ).
For a face σ ∈ X , let Nσ denote the maximal sublattice of N parallel to the affine
span of σ , and for any relative interior point ω ∈ σ , let Nω := Nσ .

The support supp(X) of a tropical cycle X is the union of its closed facets with
nonzero multiplicities. When it leads to no confusion, we will sometimes repress the
“supp” notation. If supp(X) = NR, then X is called complete. The link of a polyhedron
σ ⊆ R

m at a point v ∈ σ is the polyhedral cone

linkv(σ ) = {
u ∈ R

m | ∃δ > 0 : ∀ε between 0 and δ : v + εu ∈ σ
}
.

The link of a tropical cycle X at a point v ∈ supp(X) is the tropical cycle

linkv(X) = {linkv(σ ) | v ∈ σ ∈ X}

with inherited multiplicities. This is always a fan. We also use the notation linkτ (σ )

and linkτ (X) to denote links with respect to relative interior points of τ . The lineality
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space of a polyhedron P is the largest affine subspace of P , translated to the origin.
All cones in a given fan have the same lineality space, which we call the lineality space
of the fan. The lineality space of linkτ (X) contains the linear span of τ .

A weighted rational polyhedral complex X is called balanced if for any ridge
(codim-1 face) τ of X ,

∑

σ⊃τ

multX (σ ) · vσ/τ ∈ spanQ(Nτ )

where σ runs over facets of X containing τ and vσ/τ ∈ N∩linkτ (σ ) is a lattice element
generating Nσ together with Nτ . This completes the definition of tropical cycles.

The polyhedral complex structure is disregarded as follows. For a tropical cycle X
and a complete complex Y , the common refinement X ∧Y := {σ ∩ τ : σ ∈ X, τ ∈ Y }
inherits the multiplicities of X . Two cycles X and Y are identified if there exists a
complete complex Z such that X ∧ Z = Y ∧ Z with multiplicity. Moreover, we ignore
facets with multiplicity 0.

In following we will consider images of tropical cycles under linear maps. For
simplicity we assume that all polyhedra in a given cycle have the same lineality space.
Thiswill not be a restriction later aswe aremainly interested in fans. Let X be a tropical
cycle in NR and A : N → N ′ be a linearmap, inducing amap A : NR → N ′

R
. Suppose

that for a dense open subset of the image A(X), the preimage of each point consists
only of points in the relative interiors of facets in X . In other words, modulo a subspace
of the lineality space of X , the map A is generically finite-to-one on X . For the rest
of the paper, all linear maps between tropical cycles that we consider will satisfy this
property.

We can then define multiplicities on the image A(X) as follows. First endow A(X)

with a polyhedral structure such that the image of each face of X is a union of faces
of A(X). For any point ω ∈ A(X) lying in the relative interior of a facet, let

multA(X)(ω) =
∑

v

multX (v) · [N ′
ω : ANv], (1)

where the sum runs over one v for each facet of X meeting the preimage of ω.
If X is the tropical variety of an ideal I in the sense of Sect. 3 and A is the

tropicalization of a map α of tori, we have the relation A(X) = δT (α(V (I ))), where
δ is the degree of α on V (I ). This can be seen from the Sturmfels–Tevelev projection
formula for the generically finite-to-one case [18] and its generalization by Cueto–
Tobis–Yu [21, Theorem 3.4]. When A(X) is the entire ambient space, T (α(V (I )))
has multiplicity one everywhere and δ is the multiplicity of A(X). However, in general
we cannot recover δ tropically from A and T (I ) as the following example shows.

Example 2.1 Let I = 〈x1 + x2 + x3 + 1, (x3 − 2)(x3 − 1)〉 and J = 〈x1 + x2 +
1, (x3 − 2)(x3 − 1)〉 be ideals in C[x1, x2, x3] and A : Z

3 → Z
2 be the projection

to the first two coordinates. Then, T (I ) = T (J ) consists of the three rays −e1,−e2
and e1 + e2, each with multiplicity 2. The ideal J ∩ C[x1, x2] is a linear ideal. This
makes the projection of V (J ) to the first two coordinates a degree-2 map. The ideal
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I ∩ C[x1, x2], however, is generated in degree two, making the projection of V (I ) a
degree-1 map.

In otherwords, the tropical projection formula computes the push-forward of cycles,
rather than the image variety. ��
Lemma 2.2 Let τ be a ridge in X such that A(τ ) also has codimension 1 in
A(linkX (τ )). Then, A(linkX (τ )) is balanced with multiplicity defined in (1).

The proof of this lemma is a computation with lattice indices and is given in the
Appendix.

Corollary 2.3 If the support of A(X) contains a full-dimensional polyhedron, then
it is all of N ′

R
, and the multiplicity given by formula (1) is constant on a dense open

subset of N ′
R
.

Proof Suppose the support of A(X) is a union of finitely many polyhedra, but it is
not all of N ′

R
. Then, there is a face on the boundary of supp(A(X)) with dimension

dim(N ′
R
)−1. However, the balancing condition cannot hold at this face, contradicting

Lemma 2.2. The balancing condition also ensures that any two facets that meet along
a codimension one face have the samemultiplicity. Since any two facets are connected
by a path that avoids codimension two faces, all facets must have the samemultiplicity.

��
For subsets S, T ⊂ NR, we will use + for Minkowski sum S + T = {x + y :

x ∈ S, y ∈ T }. Also, let −S = {−x : x ∈ S} and S − T = S + (−T ). For a
tropical cycle X , let −X denote a tropical cycle with supp(−X) = − supp(X) and
mult−X (ω) = multX (−ω).

Suppose X and Y are tropical cycles and L is a subspace of the lineality spaces
of X and Y such that dim(X/L) + dim(Y/L) = dim((X + Y )/L). We can define
multiplicities on X + Y by applying the formula (1) to the projection of the Cartesian
product X×Y onto X+Y via (x, y) �→ x+ y. It can be verified straightforwardly that
the product X × Y is a tropical cycle with multiplicity given by multX×Y ((u, v)) :=
multX (u)multY (v). More concretely, a generic point v ∈ X + Y has multiplicity:

multX+Y (v) =
∑

σ1,σ2

multX (σ1)multY (σ2)[Nv : Nσ1 + Nσ2 ] (2)

where the sum is over all pairs of facets σ1 ∈ X and σ2 ∈ Y such that v ∈ σ1 + σ2.
Here, the formula (2) works for all v ∈ X + Y for which the fiber over v in X × Y
contains finitely many points, each of which lies in the relative interior of a facet in
X×Y . The set of all such v’s forms a dense relatively open subset of X+Y . A similar
situation arises in the following definition.

Definition 2.4 Let X and Y be tropical cycles in NR. The stable intersection X · Y is
a weighted polyhedral complex defined by:

supp(X · Y ) := {ω ∈ NR : supp(linkω X − (linkω Y )) = NR}
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which has a polyhedral complex structure as a subcomplex of X ∩ Y with a natural
polyhedral complex structure as the common refinement {σ1 ∩ σ2 : σ1 ∈ X, σ2 ∈ Y }.
For a face γ ∈ X · Y with codim(γ ) = codim(X) + codim(Y ), the multiplicity
multX ·Y (γ ) is defined to be the multiplicity of linkγ X − (linkγ Y ) given by the
formula (2) above.

We will prove in Theorem 2.13 that X · Y has codimension codim(X) + codim(Y ),
justifying defining a multiplicity of cones γ of this codimension.

Since linkγ X and − linkγ Y are tropical cycles, if the support of their Minkowski
sum linkγ X − (linkγ Y ) is all of NR, then by Corollary 2.3 the multiplicity function
is constant on a dense open subset. This constant is the multiplicity of γ in X · Y . The
multipicity of linkγ X − (linkγ Y ) is well-defined because

dim(linkγ (X)/L) + dim(linkγ (Y )/L) = dim(linkγ X) + dim(linkγ Y ) − 2 dim(L)

= dim(X) + dim(Y ) − 2 dim(L)

= 2n − codim(X) − codim(Y ) − 2 dim(L)

= 2n − codim(L) − 2 dim(L)

= n − dim(L)

= dim(linkγ X − linkγ Y ) − dim(L)

where L is the centered affine span of γ .
For a generic element v ∈ NR,

multX ·Y (γ ) =
∑

σ,τ

multX (σ )multY (τ )[N : Nσ + Nτ ]

where the sum is over all pairs of facets σ ∈ linkγ (X) and τ ∈ linkγ (Y ) such that
v ∈ σ −τ (or equivalently, σ intersects τ +v). The formula works for all v’s for which
the fiber over v under the map (x, y) �→ x+ y is a finite set in linkγ (X)×− linkγ (Y ),
each lying in the relative interior of a facet.

The formula on the right-hand side coincides with the cup product formula for
Chow cohomology of toric varieties given by the fan displacement rule of Fulton and
Sturmfels [5, Theorem 4.2].

Let T k be the set of tropical cycles in NR of codimension k with rational multiplici-
ties. Then, T k is aQ-vector space where scalar multiplication acts on the multiplicities
and the addition operation is defined as follows. For X,Y ∈ T k , their sum X ⊕ Y is
obtained by taking the union X ∪ Y and adding multiplicities on the overlaps. For a
generic point ω ∈ X ∪ Y , we have

multX⊕Y (ω) = multX (ω) +multY (ω),

while the actual multiplicities depend on the generic choice of ω. If multX⊕Y (ω) = 0,
then we remove the facet containing ω from X ⊕ Y . If multX⊕Y (ω) = 0 for ω in a
dense set of X ∪Y , then X ⊕Y is the zero cycle. Note that we only add tropical cycles
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of the same codimension and that the sum preserves codimension unless it is the zero
cycle.

Remark 2.5 (1) Every tropical cycle can be decomposed as a linear combination of
tropical cycles with positive multiplicities. This can be done, for example, by
adding and subtracting tropical cycles that are affine spans of faces with negative
multiplicities. By definition, the stable intersection is seen to be distributive over
sums of tropical cycles with positivemultiplicities. For example, linkγ (X1+X2)−
linkγ (Y ) = (linkγ (X1) + linkγ (X2)) − linkγ (Y ) = (linkγ (X1) − linkγ (Y )) +
(linkγ (X2) − linkγ (Y )) with multiplicity as full-dimensional cycles in NR.

(2) A polyhedral complex in R
n is called locally balanced if it is pure dimensional

and the link of every codimension one face positively spans a linear subspace
of R

n . We can define stable intersections of locally balanced complexes without
multiplicities using the same definition, and the set-theoretic parts of the following
results still hold.

The following result follows from Definition 2.4 and is useful for computing stable
intersections.

Lemma 2.6 For tropical cycles X and Y in NR with positive multiplicities,

supp(X · Y ) =
⋃

σ1∈X,σ2∈Y
dim(σ1+σ2)=n

σ1 ∩ σ2.

Proof For any ω ∈ X ∩ Y , linkω X − (linkω Y ) = NR if and only if there are σ1 ∈ X
and σ2 ∈ Y containing ω such that dim(σ1 + σ2) = dim(σ1 − σ2) = n. ��

In [17] stable intersections were defined by taking limits of perturbed intersections.
We will now show that this is equivalent to Definition 2.4.

Proposition 2.7 Let X and Y be tropical cycles in NR with positive multiplicities.
Then, for any generic v ∈ NR, we have

supp(X · Y ) = lim
ε→0

supp(X) ∩ (supp(Y ) + εv).

In particular, the limit set does not depend on the choice of generic v.

Proof Let ω ∈ X ∩Y , and v ∈ NR. Then, ω ∈ limε→0 X ∩ (Y + εv) if and only if for
every δ > 0 there is an ε > 0 such that X ∩ (Y + εv) contains a point within distance
δ from ω. This holds if and only if linkω(X) ∩ (linkω(Y ) + v) �= ∅, or equivalently
v ∈ linkω X − (linkω Y ).

When X and Y are balanced with positive multiplicities, the support of linkω X −
(linkω Y ) is either all of NR or has positive codimension. There are only finitely many
such positive-codimensional complexes as ω varies, so for generic v

v ∈ linkω X − (linkω Y ) ⇐⇒ linkω X − (linkω Y ) = NR.

The result follows from the two equivalences above. ��
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For any pure dimensional tropical cycles X and Y , we say that the intersection
X ∩ Y is transverse if the set of points ω ∈ X ∩ Y for which supp(linkω X) and
supp(linkω Y ) are both linear spaces that span NR together is dense in X ∩ Y . If X
and Y intersect transversely, then it follows from Lemma 2.6 that X · Y = X ∩ Y . For
any point ω in X · Y lying in the relative interiors of some facets σ ∈ X and σ ′ ∈ Y
for some choice of polyhedral structure on X and Y , we have the following simplified
multiplicity formula that follows from the definition of the stable intersection:

multX ·Y (ω) = multX (ω)multY (ω)[N : Nσ + Nσ ′ ]. (3)

Let us fix generic v ∈ NR and ε > 0. For any polyhedra σ ∈ X and τ ∈ Y , the
intersection σ ∩ (τ + εv) is either empty or contains a point in the relative interior of
both σ and τ + εv. In the latter case, codim(σ ∩ (τ + εv)) = codim(σ )+ codim(τ ).
Hence, the intersection X ∩ (Y + εv) is transverse and has codimension equal to
codim(X) + codim(Y ).

We can assign multiplicities to the limit in Proposition 2.7 as follows. We say that
a facet γ ∈ X · Y is the limit of the facet σ ∩ (τ + εv) in X ∩ (Y + εv) for sufficiently
small ε > 0 if σ, τ ⊃ γ and linkγ (σ ) ∩ (linkγ (τ ) + v) �= ∅. Since for generic v and
ε the intersection X ∩ (Y + εv) is transverse, hence stable, the facet σ ∩ (τ + εv) has
multiplicity given by formula (3) above. Combining with the multiplicity formula in
Definition 2.4, we see that

multX ·Y (γ ) =
∑

σ,τ

multX ·(Y+εv)(σ ∩ (τ + εv)) (4)

where v is generic, ε > 0 is sufficiently small, and the sum is over facets σ ∈ X and
τ ∈ Y such that the limit of σ ∩ (τ + εv) is γ .

We will now see that stable intersections and multiplicities behave well under
taking links and quotienting out by lineality. In the following, for a rational linear
space L ⊂ NR, NR/L is equipped with the lattice N/NL .

Lemma 2.8 Let X and Y be tropical cycles with positive multiplicities.

(1) For ω ∈ X · Y , we have linkω(X · Y ) = linkω(X) · linkω(Y ).
(2) For a rational linear space L contained in the lineality spaces of both X and Y ,

we have (X · Y )/L = (X/L) · (Y/L).

Proof The set-theoretic part of the first statement follows from Lemma 2.6, and the
multiplicity statement follows from the fact that linkv(linkω Z) = linkω+εv Z for any
sufficiently small positive real number ε. Indeed, for generic γ ,

multlinkω(X ·Y )(v) = multX ·Y (ω + εv) = multlinkω+εv(X)−linkω+εv(Y )(γ )

= multlinkv(linkω(X))−linkv(linkω(Y ))(γ ) = multlink ω(X)·linkω(Y )(v).

For the second statement, first observe that for a unimodular coordinate change
U we have U (X · Y ) = U (X) · U (Y ). Pick a lattice basis of NL and extend it to a
lattice basis of N . In this basis, L is a coordinate subspace and its presence in X and
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Y does not affect the construction of the stable intersection other than having to take
the product with L . ��
Lemma 2.9 Let X and Y be tropical cycles in NR with positive multiplicities. If
we identify x ∈ NR with (x, x) ∈ NR × NR, then X · Y = (X × Y ) · {	}, where
	 = {(x, x) : x ∈ NR} is the diagonal with multiplicity 1 in NR×NR and is identified
with NR.

Proof Let ω ∈ X ∩ Y , σ1 ∈ linkω(X), and σ2 ∈ linkω(Y ). Let A1 and A2 be matrices
whose sets of columns are lattice bases for Nσ1 and Nσ2 , respectively. Then, the

columns of the matrix

(
A1 0 I
0 A2 I

)
span Nσ1×σ2 + N	 over Z, while the columns

of A1 −A2 span Nσ1−σ2 over Z. Hence, dim((σ1 × σ2) + 	) = 2n if and only if
dim(σ1 + σ2) = n. Moreover,

[
N × N : Nσ1×σ2 + N	

] = [
N × N : {0} × (−Nσ1) + {0} × Nσ2 + N	

]

= [
N × N : {0} × (Nσ1 + Nσ2) + N	

]

= [
N : Nσ1 + Nσ2

]
.

For (generic) v1, v2 ∈ NR, we have (v1, v2) ∈ (σ1 × σ2)−	 if and only if v1 − v2 ∈
σ1 − σ2. The assertion follows from Definition 2.4. ��

The next three lemmas will be used to prove Theorems 2.13 and 2.14. Their proofs,
which are elementary but difficult, are given in the Appendix.

Lemma 2.10 Let X be a tropical cycle and H be a tropical cycle whose support is
an affine hyperplane, both with positive multiplicities. Then, X · H is also a tropical
cycle, possibly zero, with codim(X · H) = codim(X) + 1.

Lemma 2.11 Let X be an arbitrary tropical cycle with positive multiplicities. Sup-
pose Y is a tropical cycle of codimension r whose support is an affine linear space
such that Y = ((H1 · H2) · · · Hr ) where H1, . . . , Hr are tropical cycles with positive
multiplicities whose supports are affine hyperplanes. Then,

X · Y = (((X · Hr ) · Hr−1) · · · H1).

In particular, it follows that X · Y is a tropical cycle since the right-hand side is a
tropical cycle by Lemma 2.10.

The stable intersections on the right-hand side are well defined by Lemma 2.10.

Lemma 2.12 Let X, L1, and L2 be tropical cycles with positive multiplicities and
suppose that the supports of L1 and L2 are affine linear spaces. Then,

X · (L1 · L2) = (X · L1) · L2.
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Theorem 2.13 For tropical cycles X and Y , the stable intersection X · Y is also a
tropical cycle, balanced with

codim(X · Y ) = codim(X) + codim(Y ).

Proof Every tropical cycle can be decomposed as a cycle difference (union) of pos-
itive tropical cycles, and stable intersection is distributive over the cycle sum; see
Remark 2.5. Hence, we can assume that X and Y have positive multiplicities. By
Lemma 2.9, the stable intersection X · Y can be identified with (X × Y ) · {	}
where 	 is the diagonal in NR × NR. By Lemma 2.11, taking the stable intersection
with the diagonal 	 is a tropical cycle, balanced with expected codimension. Then,
codim(X×Y ·{	}) = codim(X)+codim(Y )+n in NR×NR. Identifying	with NR

reduces the codimension by n, so we have codim(X · Y ) = codim(X)+ codim(Y ). ��
Theorem 2.14 Stable intersection is associative, i.e., for any three tropical cycles X,
Y , and Z, we have

(X · Y ) · Z = X · (Y · Z) .

Proof First note that for tropical cycles A, B,C in NR, we have

(A · B) × C = (A × C) · (B × NR) (5)

as cycles in NR × NR. This follows from Definition 2.4. The equation holds with
multiplicities since the lattice indices of Definition 2.4 stay the same when going to
the bigger lattices. By the same argument, for a lattice M , a cycle A in MR × NR, a
cycle B in MR and the projection p : MR × NR → MR, we have

p(A) · B = p(A · (B × NR)). (6)

Letπ : NR×NR → NR andπ ′ : NR×NR×NR → NR×NR be the projections to
the first coordinates and the first and last coordinates, respectively. Let 	 = {(x, x) :
x ∈ NR}, 	′ = {(x, x, x) : x ∈ NR}, 	12 = {(x, x, y) : x, y ∈ NR}, and 	13 =
{(x, y, x) : x, y ∈ NR}. Using the diagonal trick from Lemma 2.9,

(X · Y ) · Z = π((π((X × Y ) · 	) × Z) · 	)

= π(π ′(((X × Y ) · 	) × Z) · 	)

= π(π ′((X × Y × Z) · 	12) · 	)

= π(π ′(((X × Y × Z) · 	12) · 	13))

= (π ◦ π ′)((X × Y × Z) · 	′).

The third equality follows from (5), the fourth from (6), while the last follows from
Lemma 2.12 and the fact that 	12 · 	13 = 	′. The formula on the right-hand side is
clearly associative, and so is the stable intersection. ��
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Proposition 2.15 Our definition coincideswith theAllermann–Rau intersection prod-
uct of tropical cycles.

Proof Using the diagonal trick from Lemma 2.9 and rewriting the diagonal as the
stable intersection of hyperplanes, we can reduce to the case when one of the tropical
cycles is a usual hyperplane H with multiplicity 1 and the other is a tropical cycle
X . Then, both sets contain points in the support of X whose link is not contained in
H . To compute multiplicities, suppose H is defined by ω1 = 0. By taking links if
necessary, we may assume that X · H is a linear space L ⊂ H and that X consists of k
cones, each of which is spanned by one of the vectors r (1), . . . , r (k) together with L .
Let m1, . . . ,mk be the multiplicities of those cones, respectively. Using the formula
(3) with perturbation H + εe1, we compute the multiplicity of L in X · H to be

∑

i :r (i)
1 >0

mi
[
N : NH + Nr (i)+L

] =
∑

i :r (i)
1 >0

mir
(i)
1 .

This is easily seen to coincide with the Allermann–Rau definition of multiplicities
using the tropical polynomial max(0, ω1) that defines H . ��

Let n be a positive integer. For k = 0, 1, . . . , n, let T k be the Q-vector space of
tropical codimension k cycles in NR with rational multiplicities, where addition is the
union. Let T be the direct sum T = ⊕n

k=0T
k . The stable intersection gives multipli-

cation on T . We have shown that the stable intersection is commutative, associative,
and distributive over cycle addition.

Theorem 2.16 The set T of tropical cycles forms a graded Q-algebra where addition
is union and multiplication is stable intersection.

We will see in Sect. 5 that the algebra T is isomorphic to the polytope algebra of
McMullen.

3 Stable intersections as tropical varieties of ideals

In this section, we interpret stable intersections of tropical varieties as tropicalizations
of intersections after generic perturbations by rescaling, aswewillmake precise below.

Until now, we have not assumed that our tropical cycles are fans, but for the rest of
this paper they will be. The definition of tropical varieties below can be extended to
the case where a valuation of the coefficient field is taken into account. See [14] for
details. In that setting, tropical varieties need not be fans. For simplicity, we consider
only the fan case here.

Let k be an algebraically closed field, and R be the Laurent polynomial ring of the
torus N ⊗Z k∗, i.e., R = k[M] where M = HomZ(N , Z). For ω ∈ NR, the initial
form inω( f ) of f ∈ R\{0} is the sum of terms cxv of f with 〈v, ω〉 maximal. The
initial ideal of I ⊆ R is inω(I ) := 〈inω( f ) : f ∈ I 〉. The tropical variety of an ideal
I in R is

T (I ) = {ω ∈ NR : inω(I ) �= R}.

123



112 J Algebr Comb (2016) 43:101–128

It can be given a fan structure as a subfan of the Gröbner fan of I (after possibly a
homogenization of I ), and it is a tropical cycle with multiplicities given by

multT (I )(ω) := dimk(k[M ∩ C⊥]/〈inω(I )〉)

for generic points ω in a facet C . Equivalently, the multiplicity can be defined as

multT (I )(ω) :=
∑

P∈Ass(inω(I ))

mult(P, inω(I )).

See [3,14] for more details. If L is a subspace of the lineality space of T (I ), then
T (I )/L is a tropical cycle in (N/NL)R with inherited multiplicities from T (I ), and

T (I )/L = T (I ∩ k[L⊥ ∩ M]) (7)

where the lattice L⊥ ∩ M is naturally identified with HomZ(N/NL , Z).

Lemma 3.1 Let I ⊆ k[x1, . . . , xn] be an ideal with n ≥ 1. Let ω ∈ R
n have ω1 = 0.

Considered as ideals in k(α)[x1, . . . , xn] we have

inω(〈I 〉 + 〈x1 − α〉) = inω(〈I 〉) + inω(〈x1 − α〉).

Proof The inclusion ⊇ is clear, and we will prove ⊆. The left-hand side is generated
by elements of the form inω( 1p ( f + g · (x1 − α))) with f ∈ 〈I 〉 ∩ k[α][x1, . . . , xn],
g ∈ k[α][x1, . . . , xn], p ∈ k[α]. Since p is a unit, we may ignore the 1/p factor in
our argument.

We argue that without loss of generality f ∈ I . That is, f does not involve α.
If f /∈ I , then consider the expression f = ∑

i ci Fi with ci ∈ k[α][x1, . . . , xn]
and Fi ∈ I and perform polynomial division of ci modulo α − x1 to obtain ci =
g′i (x1 − α)+ ri for some g′i ∈ k[α][x1, . . . , xn] and ri ∈ k[x1, . . . , xn]. We now have
f + g(x1 − α) = ∑

i ci Fi + g(x1 − α) = ∑
i (g

′
i (x1 − α) + ri )Fi + g(x1 − α) =∑

i ri Fi + ((
∑

i g
′
i Fi ) + g)(x1 − α). Here,

∑
i ri Fi indeed is in I .

Consider the degree of f, g · (x1 − α) and f + g · (x1 − α) in the ω grading. Since
inω(g · (x1 − α)) contains α, its terms of some ω-degree cannot cancel completely
with terms of f , if g �= 0. Therefore, inω( f + g · (x1 − α)) is either inω( f ), if the
degree of f is highest, or inω(g · (x1 − α)) if the degree of g · (x1 − α) is highest, or
inω( f ) + inω(g · (x1 − α)) if the degrees are equal. ��

The saturation of an ideal I in a ring R by an element f ∈ R is the ideal (I :
f∞) := {g ∈ R : g f m ∈ I for some m ∈ N}.
Lemma 3.2 Let I be an ideal in k[x1, . . . , xn]. Then,

T (I ) � {ω : ω1 = 0} ⇐⇒ (I : (x1x2 . . . xn)
∞) ∩ k[x1] = {0}.

Proof Consider the projection π1 of (k∗)n onto the x1 axis. The variety defined by
the ideal J = (I : (x1x2 · · · xn)∞) ∩ k[x1] is the Zariski closure π1(V (I )). By the
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fundamental theorem of tropical geometry, the tropical variety of π1(V (I )) is the
image of T (I ) under the projection onto the first coordinate axis [14, Theorem 3.2.3].
There are three possibilities for π1(V (I )):

• Empty: LHS is false, and J = k[x1] �= {0}.
• Finitely many points: the tropicalization of the projection is {0}, so the LHS is
true, and J contains a nonzero polynomial in x1 vanishing on those points.

• All of k∗: the LHS is true, and J = {0}.
��

Let I be an ideal in k[x1, . . . , xn]. For all but finitely many c ∈ k, we have

T (I + 〈x1 − c〉) = T (〈I 〉 + 〈x1 − α〉)

where the ideal in the right-hand side is ink(α)[x1, . . . , xn]. Indeed, for a homogeneous
ideal I , to find the right-hand side a finite number of Gröbner basis computations are
required, see [3]. Except for a finite number of choices of c, the Gröbner bases of
〈I 〉 + 〈x1 − α〉 are also Gröbner bases for I + 〈x1 − c〉 after substituting α with c.

Lemma 3.3 Let I be an ideal in k[x1, . . . , xn], and H be the tropical cycle in NR

defined by ω1 = 0 with multiplicity one at all points. Then,

T (I ) · H = T (〈I 〉 + 〈x1 − α〉)

as tropical cycles, where the ideals on the right-hand side are in k(α)[x1, . . . , xn] and
α is transcendental over k.

Proof Let ω ∈ R
n such that ω1 = 0. Then, the following statements are equivalent:

(1) ω ∈ T (I ) · H.

(2) T (inω(I )) � H.

(3) (inω(I ) : (x1x2, . . . , xn)∞) ∩ k[x1] = {0}.
(4) inω(〈I 〉) + 〈x1 − α〉 is monomial free.
(5) ω ∈ T (〈I 〉 + 〈x1 − α〉).
The equivalence (1) ⇔ (2) follows from the definitions of tropical varieties and stable
intersection and the statement linkω(T (I )) = T (inω I ). The equivalences (4) ⇔ (5)
and (2) ⇔ (3) follow from Lemmas 3.1 and 3.2, respectively. To see (4) ⇒ (3), note
that an ideal containing x1 − α and a nonzero polynomial in k[x1] must be the unit
ideal.

To see (3) ⇒ (4), suppose (4) does not hold; then, there is a monomialm such that
m = ∑

i pi fi + g · (x1−α) where fi ∈ inω(I ), pi ∈ k(α) and g ∈ k(α)[x1, . . . , xn].
After clearing denominators, we may assume that all pi ∈ k[α], g ∈ k[α, x1, . . . , xn]
and m = q · xv with q ∈ k[α]\{0} and v ∈ N

n . By substituting α with x1, we get
q · xv = ∑

i pi fi with pi and q being in k[x1]. Hence, q · xv is in inω(I ) and q is a
nonzero element in (inω(I ) : x1 . . . x∞n ) ∩ k[x1].

Now, we need to show that multiplicities coincide on a dense open subset. By taking
links and quotienting out lineality space as in Lemma 2.8 and Eq. (7), we can reduce
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to the case where I is one dimensional and the intersection is just {0}. In this case,
using Definition 2.4 of stable intersection multiplicities, we have

multT (I )·H (0) =
∑

σ

multT (I )(σ )[N : Nσ + NH ]

where σ runs over rays of T (I ) such that σ + H contains a fixed generic element
(a1, . . . , an) ∈ NR. For a ray σ of T (I ), let vσ denote the generator of Nσ . Then

multT (I )·H (0) =
∑

σ

multT (I )(σ )vσ 1

where σ runs over all rays of T (I ) such that the first coordinates vσ 1 and a1 have the
same sign. The right-hand side is equal to the degree of the projection of the curve
V (I ) onto the first coordinate, by the Sturmfels–Tevelev formula for push-forward of
multiplicities [18]. See the paragraph above Example 2.1. This degree is the degree of
I + 〈x − α〉 for a generic α, which is the multiplicity of the origin of T (I + 〈x − α〉).

��
Let I and J be ideals in k[x1, . . . , xn]. Let K = k(c1, c2, . . . , cn) be the field

of rational functions in indeterminates c1, c2, . . . , cn . Define I ′ to be the ideal in
K[x1, . . . , xn] generated by I and J ′ to be the ideal generated by the image of J in
K[x1, . . . , xn] under the ring homomorphism k[x1, . . . , xn] → K[x1, . . . , xn] given
by xi �→ ci xi .

Lemma 3.4 The change of coordinates from J to J ′ preserves the Gröbner fan and
the tropical variety, i.e., Gfan(J ) = Gfan(J ′) and T (J ) = T (J ′).

The fans on the left-hand sides are defined with respect to kwhile those on the right
are with respect to K.

Proof Let ≺ be any term order. Buchberger’s S-pair algorithm for Gröbner bases
commutes with the coordinate change xi �→ ci xi , so for a Gröbner basis G of J with
respect to ≺, the image of G under the map xi �→ ci xi forms a Gröbner basis of J ′
with respect to ≺. ��

We can now prove the main theorem of this section. A similar result can be found
in the work of Osserman and Payne [15, Proposition 2.7.8].

Theorem 3.5 With the notation above, we have

T (I ′) · T (J ′) = T (I ′ + J ′).

Proof Using Lemmas 3.4, 2.9, 3.3 and associativity of stable intersection, we get
T (I ′) · T (J ′) = T (I ) · T (J ) = (T (I ) × T (J )) · 	 = T (I ′′ + J ′′ + 〈c1x1 −
X1, . . . , cnxn − Xn〉) = T (I ′ + J ′) where I ′′ is the ideal generated by I in
k[x1, . . . , xn, X1, . . . , Xn] and J ′′ the ideal generated by J after substituting Xi for
xi . The second and fourth equalities are after identification of NR with the diagonal
in NR × NR. ��
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For some problems such as computation of resultants studied in [8], we want to
compute the Newton polytope of a polynomial after substituting one or more variables
with generic constants. This amounts to projecting the Newton polytope onto the
coordinate subspace of the remaining variables. By the following theorem, we can
perform this operationon tropical hypersurfaces, as orthogonal projectionof a polytope
onto a linear space is equivalent to stably intersecting the tropical hypersurface of the
polytope with the linear space. In order to work with rational polytopes that are not
integral, we allow multiplicities to be rational. The tropical hypersurface T (P) of
a rational polytope P ⊆ Q

n is then defined to be the set of normal cones of P of
dimension at most n−1. The multiplicity assigned to a normal cone C of an edge e of
P is the lattice length of e, i.e., the rational number ‖e‖/‖p‖where p is a generator for
C⊥ ∩ Z

n . The tropical hypersurface T (P) is balanced around every ridge R because
the oriented edges of the two-dimensional face of P dual to R sum to zero.

Theorem 3.6 Let P ⊂ Q
n be a polytope, L ⊂ Q

n be a rational linear subspace, and
π : Q

n → L be the orthogonal projection. Then,

T (π(P)) = (T (P) · L) + L⊥.

Proof Since L⊥ is contained in the lineality space of both sides of the equation, it
suffices to show that

T (π(P)) ∩ L = T (P) · L .

For ω ∈ Q
n , let Pω denote the face of P supported by the hyperplane whose normal

vector pointing away from P is ω. Then, linkω(T (P)) = T (Pω). For ω ∈ L , we also
have (π(P))ω = π(Pω), and

ω ∈ T (P) · L ⇐⇒ linkω T (P) + L = Q
n

⇐⇒ T (Pω) + L = Q
n

⇐⇒ T (Pω) contains a coneC such that dim(L + C) = n

⇐⇒ Pω contains an edge not in L⊥

⇐⇒ (π(P))ω contains at least two distinct points

⇐⇒ ω ∈ T (π(P)).

��
Thenormal fanof the projectionof a polytopeonto a linear subspace is the restriction

of the normal fan to the linear subspace [22, Chapter 7].

4 Volume, mixed volume, and Bernstein’s theorem

In this section, we study stable intersections of hypersurfaces of polytopes. For poly-
topes P1, P2, . . . , Pn in Q

n , the stable intersection of their hypersurfaces T (P1) · · · · ·
T (Pn) is either empty or consists only of the origin.
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Lemma 4.1 Let P and Q be polytopes such that P ∪ Q is also a polytope. Then,
(P ∪ Q) + (P ∩ Q) = P + Q, where + denotes the Minkowski sum.

Proof For a closed convex body K ⊂ Q
n , let K (x) denote its support function, i.e.,

for any x ∈ Q
n , K (x) = max{x · v : v ∈ K }. We claim that

{x · v : v ∈ P ∩ Q} = {x · v : v ∈ P} ∩ {x · v : v ∈ Q}.

An element on the left-hand side clearly belongs to the right-hand side. Conversely,
suppose v′ ∈ P and v′′ ∈ Q such that x ·v′ = x ·v′′ is an element in the right-hand side.
Then, conv({v′, v′′}) ⊆ conv(P∪Q) = P∪Q, implying that the closed line segments
conv({v′, v′′}) ∩ P and conv({v′, v′′}) ∩ Q cover conv({v′, v′′}). Hence, the two line
segments have a common point v ∈ conv({v′, v′′})∩ P ∩ Q. Because v ∈ P ∩ Q and
x · v = x · v′ = x · v′′, the value x · v′ is also in the left-hand side.

Taking maximum on both sides, using that the right-hand side is a non-empty
intersection of closed intervals in R, we get that (P ∩ Q)(x) = min(P(x), Q(x)).
Therefore,

((P ∪ Q) + (P ∩ Q))(x) = (P ∪ Q)(x) + (P ∩ Q)(x)

= max(P(x), Q(x)) +min(P(x), Q(x))

= P(x) + Q(x)

= (P + Q)(x).

Since closed convex bodies are uniquely determined by their support functions, we
get (P ∪ Q) + (P ∩ Q) = P + Q. ��

For a polytope P and a nonnegative integer r , let T r (P) denote the stable inter-
section of T (P) with itself r times. In particular, T 0(P) = R

n and T 1(P) = T (P).
Recall that ⊕ denotes the sum of tropical cycles of the same dimension, which is
taking the union of supports and adding the multiplicities on the overlap.

Proposition 4.2 Let P and Q be polytopes in Q
n such that P ∪ Q is also a polytope.

Then,

(1) T (P ∪ Q) · T (P ∩ Q) = T (P) · T (Q).

(2) T k(P ∪ Q) ⊕ T k(P ∩ Q) = T k(P) ⊕ T k(Q) for any k ≥ 0.

In the language of polytope algebra [11], the second part says that T k is a valuation
for every k ≥ 0.

Proof Let R = P ∪ Q and S = P ∩ Q. Since codimension adds under stable
intersection, T (P) · T (Q) is a codimension 2 tropical cycle. It is a subfan of T (P)∩
T (Q), which has a fan structure derived from the normal fan of the polytope P + Q.
Similarly, T (R) ·T (S) is a codimension 2 subfan of the normal fan of R+ S. We also
have P + Q = R + S by Lemma 4.1.

For a codimension-2 cone σ in the normal fan of P + Q, dim(Pσ + Qσ ) = 2. In
addition, σ is in T (P) ·T (Q) if and only if dim(Pσ ) ≥ 1 and dim(Qσ ) ≥ 1; similarly
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for T (R) ·T (S). If P(ω) �= Q(ω) for ω in the relative interior of σ , then {Pσ , Qσ } =
{Rσ , Sσ }. If P(ω) = Q(ω), then Rσ = Pσ ∪ Qσ and Sσ = Pσ ∩ Qσ . In any case,
because dim(Rσ ) ≤ max(dim(Pσ ), dim(Qσ )), it follows that σ ∈ T (P) · T (Q) if
and only if σ ∈ T (R) · T (S).

To comparemultiplicities, by taking the link at σ and quotienting out by the lineality
space, by Lemma 2.8, we reduce the problem to the case when P, Q, R, S lie in a two-
dimensional plane. By Eq. 4, the multiplicity at 0 of two tropical hypersurfaces T (P)

and T (Q) in the plane can be computed by translating one of them generically and
adding up the intersection multiplicities. By examining the dual (mixed) subdivision,
we have

multT (P)·T (Q)(σ ) = vol(Pσ + Qσ ) − vol(Pσ ) − vol(Qσ ), and

multT (R)·T (S)(σ ) = vol(Rσ + Sσ ) − vol(Rσ ) − vol(Sσ ).

See [19, Figures 3.1 and 9.7] for pictures of tropical plane curves and the dual subdivi-
sions. To see that the two quantities on the right are equal, we apply Lemma 4.1 and the
observations of the previous paragraph to get vol(Pσ +Qσ ) = vol(Rσ +Sσ ). Further-
more, vol(Pσ )+vol(Qσ ) = vol(Rσ )+vol(Sσ ) either because {Pσ , Qσ } = {Rσ , Sσ }
or because vol(Pσ )+ vol(Qσ ) = vol(Pσ ∪ Qσ )+ vol(Pσ ∩ Qσ ). We conclude that
multiplicities are equal.

To prove the statement (2), we proceed by induction on k. Since T 0(P) = R
n

for all P , the assertion is true for k = 0. For k = 1, it follows from Lemma 4.1
and the fact that T (P + Q) = T (P) ⊕ T (Q) for any polytopes P and Q. Suppose
k ≥ 2. Let p = T (P), q = T (Q), r = T (P ∪ Q), and s = T (P ∩ Q). We have
rk−2 ⊕ sk−2 = pk−2 ⊕ qk−2 by the inductive hypothesis, and rs = pq from part
(1). Multiplying them gives rk−1s ⊕ rsk−1 = pk−1q ⊕ pqk−1. Combining this with
(r ⊕ s)(rk−1 ⊕ sk−1) = (p ⊕ q)(pk−1 ⊕ qk−1), which follows from the inductive
hypothesis for 1 and k − 1, gives the desired identity rk ⊕ sk = pk ⊕ qk . ��
Theorem 4.3 Let P be a rational polytope in Q

n and T (P) be its tropical hypersur-
face. Then,

vol(P) = multT dim P (P)(0)

where vol denotes the dim(P)-dimensional volume normalized to the integer lattice
parallel to the affine span of P.

Proof In [20], Tverberg showed that every polytope can be decomposed into simplices
by a finite number hyperplane cuts. Combining this with Proposition 4.2(2) applied to
the case when P ∩ Q is lower dimensional, we reduce the problem to the case when
P is a simplex.

Now, we will show the result for the case where P is a simplex, by induction
on the dimension of P . When P is one dimensional, it is a line segment, and the
assertion is true, as the multiplicity equals the lattice length of the segment. Suppose
P is a d-dimensional simplex. By quotienting out by the lineality space of T (P) if
necessary, we may assume that P is full dimensional in its ambient space. By the

123



118 J Algebr Comb (2016) 43:101–128

inductive hypothesis, T d−1(P) is a one-dimensional fan whose rays are facet normals
of P with multiplicities equal to the respective (d − 1)-dimensional volumes of the
facets.

The multiplicity of the origin in T (P) · T d−1(P) is, by definition, the multiplicity
of theMinkowski sum T (P)−T d−1(P)which is equal toR

n as a set. Each connected
component C of the complement of T (P) is a simplicial full-dimensional cone, con-
taining exactly one ray R of −T d−1(P) in its interior because T d−1(P) has exactly
d+1 rays, d of which are rays of C and the remaining ray is the negative of a positive
linear combination of the other d rays. Taking theMinkowski sum of R with each facet
of C , we get a triangulation of C . Doing so for each complement component, we get a
triangulation of R

n (which is the normal fan of P − P). These cones are precisely the
full-dimensional cones of the form σ + R where σ is a facet of T (P) and R is a ray
of the tropical curve −T d−1(P), and they have disjoint interiors. Hence, to compute
the multiplicity of T (P) − T d−1(P), we need only to consider one such cone.

Suppose 0, v1, . . . , vn are vertices of the simplex P . Let r be the primitive vector
perpendicular to the facet containing 0, v1, . . . , vn−1 and a be the normalized volume
of that same facet. Let σ be the maximal cone of T (P) normal to the edge {0, vn}
with multiplicity equal to the lattice length l of the edge and R be the cone spanned
by r with multiplicity a. Let u1, . . . , un−1 be a lattice basis of v⊥n ∩ Z

n . According
to Definition 2.4, the multiplicity of the stable intersection of T (P) and T d−1(P) is
l · a · | det[r |u1| · · · |un−1]|, which is equal to a |rT vn|. This is equal to the volume
| det[v1|v2| · · · |vn]| of P . ��
Corollary 4.4 The function voln(λ1P1 + λ2P2 + · · · + λn Pn) is a degree n homoge-
neous polynomial in λ1, λ2, . . . , λn, and the coefficient of �n

i=1λ
ai
i is

n!
a1!a2! · · · an ! mult�n

i=1T ai (Pi )(0).

Proof We expand voln(λ1P1 + λ2P2 + · · · + λn Pn) using Theorem 4.3. The result
now follows from the distributivity of stable intersection over cycle addition (taking
unions) and the additivity of multiplicities in cycle sums. ��
Corollary 4.5 For rational polytopes P1, P2, . . . , Pn in Q

n, we have

multT (P1)·T (P2)···T (Pn)(0) = MV(P1, P2, . . . , Pn)

where MV denotes the mixed volume.

Proof The mixed volume MV(P1, . . . , Pn) is the coefficient of λ1λ2, . . . λn in the
polynomial 1

n! voln(λ1P1 + λ2P2 + · · · + λn Pn), which is equal to

multT (P1)·T (P2)···T (Pn)(0)

by Corollary 4.4.
Alternatively, we can see that the function

(P1, P2, . . . , Pn) �→ multT (P1)·T (P2)···T (Pn)(0)
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satisfies the axioms of the mixed volume, i.e., it is symmetric, multilinear, and
multT n(P)(0) = voln(P). ��

We get a proof of Bernstein’s theorem.

Theorem 4.6 (Bernstein). Let f1, f2, . . . , fn be generic Laurent polynomials in
C[x±1

1 , . . . , x±1
n ], and let I be the ideal generated by them. If I is zero dimensional,

then it has length equal to the mixed volume of the Newton polytopes of f1, f2, . . . , fn.

Proof If the coefficients are generic, then by Theorem 3.5 the tropical variety of I is
the stable intersection of the tropical hypersurfaces of f1, f2, . . . , fn , which is either
empty or consists only of the origin with multiplicity equal to the mixed volume. The
length of the ideal is the multiplicity of the origin, by the definition of multiplicity. ��

5 Relation to polytope algebra

For r = 0, 1, . . . , n, let T r be the vector space over Q of rational tropical cycles of
codimension r in R

n . Scalar multiplication acts on the multiplicities, and addition
is taking union. Then, T = T 0 ⊕ T 1 ⊕ · · · ⊕ T n is a graded algebra with stable
intersection as multiplication.

Let � be the polytope algebra of Q
n [11] defined as follows. For a polytope P ⊂

Q
n , let [P] denote the equivalence class of P under the equivalence relation P ∼

P + v for v ∈ Q
n . Then, � consists of formal Q-linear combinations of {[P] :

P is a polytope in Q
n}, modulo relations

[P ∪ Q] + [P ∩ Q] = [P] + [Q]

whenever P ∪ Q is a polytope. The multiplication is Minkowski sum:

[P] · [Q] = [P + Q].

The additive identity is 0 = [∅], the class of the empty polytope, while the multi-
plicative identity is 1 = [0], the class of a point. In �, ([P] − 1)n+1 = 0 for every
n-dimensional polytope P . Hence, the logarithm

log([P]) =
∑

k≥1

(−1)k−1([P] − 1)k/k

is defined for every non-empty polytope P . Its inverse, the exponential map exp(z) =∑
k≥0 z

k/k!, is defined for nilpotent elements z in � [11]. McMullen [11, Lemma 20]
showed that the polytope algebra � is in fact a graded algebra, where the r -th graded
piece is linearly spanned by elements of the form (log([P]))r for non-empty polytopes
P .

Theorem 5.1 There is an isomorphism of graded algebras

φ : � → T
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given by φ([P]) = 1 ⊕ T (P) ⊕ 1
2!T 2(P) ⊕ · · · ⊕ 1

n!T n(P) for polytopes P and
linearly extending to �.

Under this map, log([P]) �→ T (P), so tropicalization is the logarithm.

Proof This map is a well-defined homomorphism by Proposition 4.2. To show that it
is bijective, we use [5, Theorem 5.1], which relies heavily on [12, Theorem 5.1].

Any fan, after some subdivision, is a subfan of the normal fan of a polytope. This
can be achieved, for example, by taking the arrangement of hyperplanes spanned by
any collection of cones in the original fan. Any hyperplane arrangement gives rise to
the normal fan of a zonotope. When restricted to this polytopal fan, the algebra of
tropical cycles is isomorphic to the algebra of Minkowski weights defined by Fulton
and Sturmfels [5], which was shown to be isomorphic to the polytope algebra. ��
Corollary 5.2 Every tropical cycle is a rational linear combination of pure powers
of tropical hypersurfaces.

Proof The k-th graded piece of � is spanned by {log([P])k : P is a polytope} as
shown in [11]. For a polytope P , φ(log([P])k) = T k(P), and the assertion follows
because φ is an isomorphism. ��

This corollary can bemade constructive.Given a tropical cycle, firstmake it a subfan
of the normal fan of a simple polytope, for example, by extending it to a hyperplane
arrangement and perturbing the facets of the dual zonotope. We can then find a linear
basis F1, . . . , Fm of T 1 restricted on this fan, by linear programming, so that each Fi
has nonnegative weights and hence are tropical hypersurfaces of polytopes. Then, for
every 1 ≤ k ≤ n, the k-fold products Fi1 · Fi2 · · · · · Fik linearly span T k restricted to
this fan. We can then decompose the input fan as a linear combination of these stable
intersections of tropical hypersurfaces.

By Theorem 3.5, pure powers of tropical hypersurfaces are realizable, so we have
the following.

Corollary 5.3 Every tropical cycle is a rational linear combination of realizable trop-
ical varieties.

It is not true, however, that every tropical cycle with positive weights is a positive
rational linear combinations of realizable tropical varieties. See [2,21] for counterex-
amples.

6 Connectivity

Apure dimensional polyhedral complex is connected through codimension one if every
pair of facets is connected by a path through ridges and facets of the complex. Let k
be an algebraically closed field. Tropical varieties of prime ideals in k[x1, . . . , xn] are
connected through codimension one [3,4].

Let T1 and T2 be tropical varieties connected through codimension one. Then, the
stable intersection T1 · T2, or even transverse intersection, need not be connected
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through codimension one, as we will see in Example 6.2 below. However, for constant
coefficient tropical varieties (i.e., tropical varieties with respect to the trivial valuation)
of prime ideals, stable intersection preserves connectivity through codimension one.
A version of the following result appeared in our earlier paper [8]. This answers the
last open question in [4] affirmatively for constant coefficient tropical varieties of
irreducible varieties.

Theorem 6.1 Let I1, I2, . . . , Ik ⊂ k[x1, . . . , xn] be prime ideals, where 2 ≤ k ≤
n, and let T (I1), T (I2), . . . , T (Ik) be their constant coefficient tropical varieties,
respectively. Then, the stable intersection T (I1) · T (I2) · · · T (Ik) is itself the tropical
variety of a prime ideal and thus is connected through codimension one.

Proof First consider the case when k = 2. Using the diagonal trick, we can reduce to
the case when I1 is a prime ideal and I2 = 〈x1 − α〉 for a generic constant α. By the
discussion above Lemma 3.3, we may either take α to be a general element in k or to
be transcendental over k; both cases give the same tropical varieties.

In general, for a prime ideal I and a generic α, specializing a variable x1 to α may
not preserve primality, i.e., the ideal J1 := I +〈x1 −α〉 ⊆ k(α)[x1, . . . , xn] need not
be prime. However, we claim that all its irreducible components have the same tropical
variety. To see this, note that T (J1) = {0} × T (J2) where J2 is the ideal generated
by I in k(x1)[x2, . . . , xn]. Let J3 be the ideal generated by I in k(x1)[x2, . . . , xn]; it
is prime because primality is preserved under localization.

Whether a point is in a tropical variety can be decided by computing the saturation
of the ideal with x1, . . . , xn . This can be done usingGröbner basis computations which
are not affected by taking extensions of the coefficient field, so J2 and J3 have the
same tropical variety; hence,

{0} × T (J3) = {0} × T (J2) = T (J1).

Furthermore, since J3 is prime, all irreducible components of J2 have the same tropi-
calization by Cartwright and Payne [4, Proposition 4]. Since the tropical varieties of
the irreducible components of J3 are the same as those of the irreducible components
of J2, the conclusion follows.

We have shown that supp(T (I1) · T (I2)) is the support of the tropical variety of a
prime ideal. The cases for k > 2 follow by induction. ��

In particular, it follows that the stable intersection of constant coefficient tropical
hypersurfaces is connected through codimension one. This fact has been used for
computing stable intersections of tropical hypersurfaces via fan traversal in Gfan.

The result from Theorem 6.1 cannot be extended to the non-constant coefficient
case. To construct counterexamples, consider k lattice polytopes in k dimension having
a regular mixed subdivision with at least two mixed cells. Then, the stable intersection
of the dual tropical hypersurfaces contains at least two distinct points. By embedding
the k polytopes in R

n , we can construct disconnected stable intersections of tropical
hypersurfaces in R

n .
In general, for constant–coefficient tropical varieties of non-irreducible ideals, the

stable intersection does not preserve connectivity through codimension one, as the
following example shows.
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Example 6.2 Let T1 = T 2(1+x1+x2+x3+x4+x5) and T2 = T 2(1+x1x4+x2x5+
x23 x

3
4+x44 x

7
5+x63 x5), each of which is a stable intersection of a hypersurface with itself

and hence is a 3-dimensional fan in R
5. They are both realizable as tropical varieties

of ideals by Theorem 3.5 and connected through codimension 1 by Theorem 6.1.
Both T1 and T2 contain the two-dimensional cone spanned by −e1 and −e2, so the
union T1 ∪ T2 is connected through codimension 1. However, for the hyperplane
H = T (x1x2x3x4x5 + 1) the stable intersection (T1 ∪ T2) · H is not connected
through codimension 1. To see this, we used Gfan to compute T1 · H and T2 · H
using the command gfan_tropicalintersection --stable and verified
that (T1 · H) ∩ (T2 · H) = {0} using gfan_fancommonrefinement. Thus, the
two-dimensional fan (T1 · H) ∪ (T2 · H) is not connected through codimension 1.

The fan T1 ∪ T2 is realizable as the tropical variety of an ideal, but it cannot be
realized as the tropical variety of a prime ideal, for any choice of multiplicities. ��
Acknowledgments We thank Diane Maclagan for reading and providing feedback on an earlier draft
and the referees for many helpful suggestions that greatly improved the exposition. The first author was
supported by the Danish Council for Independent Research, Natural Sciences (FNU), and the second author
was supported by the NSF Grant DMS #1101289.

Appendix: Proofs of some results in Sect. 2

Here, we present detailed, careful proofs of some results needed to derive the dimen-
sion formula, balancing condition, and associativity of stable intersection. Although
elementary, these proofs, especially that of Lemma 2.11, are some of the most difficult
in this paper. Many subtle and intricate details need to be worked out.

We start by recalling the setting and some definitions from Sect. 2. Let X be a
tropical cycle in NR and A : N → N ′ be a linear map between lattices, inducing a
linear map A : NR → N ′

R
. We can endow A(X) with a polyhedral structure such that

the image of each face of X is a union of faces of A(X). For any point ω ∈ A(X)

lying in the relative interior of a facet, let

multA(X)(ω) =
∑

v

multX (v) · [N ′
ω : ANv

]
, (1)

where the sum runs over one v for each facet of X meeting the preimage of ω.
Lemma 2.2. Let τ be a ridge in X such that A(τ ) also has codimension 1 in
A(linkX (τ )). Then A(linkX (τ )) is balanced with multiplicity defined in (1).

Proof Let τ be a ridge in X such that A(τ ) also has codimension 1 in A(linkX (τ )).
From the balancing condition on X at τ , we have

∑

σ⊃τ

multX (σ ) · vσ/τ ∈ spanQ(Nτ ).
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Applying the map A gives

∑

σ⊃τ

multX (σ ) · Avσ/τ ∈ spanQ(ANτ ).

Observe that [N ′
Aσ : N ′

Aτ + spanZ(Avσ/τ )]vAσ/Aτ ≡ Avσ/τ (mod spanQ(ANτ )) and

[
N ′
Aσ : ANσ

] = [
N ′
Aσ : A(Nτ + spanZ(vσ/τ ))

]

= [
N ′
Aσ : ANτ + spanZ(Avσ/τ )

]

= [
N ′
Aσ : N ′

Aτ + spanZ(Avσ/τ )
] [

N ′
Aτ : ANτ

]
.

Hence,

∑

σ⊃τ

multX (σ ) · [N ′
Aσ : ANσ

] · vAσ/Aτ

= [
N ′
Aτ : ANτ

] ∑

σ⊃τ

multX (σ ) · [N ′
Aσ : N ′

Aτ + spanZ(Avσ/τ )
] · vAσ/Aτ

≡ [
N ′
Aτ : ANτ

] ∑

σ⊃τ

multX (σ )Avσ/τ ≡ 0 (mod spanQ(ANτ )).

This proves that the image of a neighborhood of τ is balanced with the multiplicities
given by formula (1). ��
Lemma 2.10. Let X be a tropical cycle and H be a tropical cycle whose support is
an affine hyperplane, both with positive multiplicities. Then X · H is also a tropical
cycle, possibly zero, with codim(X · H) = codim(X) + 1.

Proof From Lemma 2.6, we get dim(X · H) ≤ dim(X) − 1.
If X is contained in a finite union of hyperplanes parallel to H , then it is clear from

the definition that X · H is empty (hence a zero cycle).
Suppose X is not contained in finitely many hyperplanes parallel to H . We wish

to prove that every point ω in X · H is contained in a face of dimension dim(X) − 1
in X · H . By taking links if necessary, by Lemma 2.8, we may assume that ω = 0
and that X is a fan and H is a hyperplane through the origin. Also assume that H has
multiplicity 1.

Choose amaximal cone of X which is not contained in H and let S be its affine span.
LetU be a complementary subspace of S∩H in H , soU ⊂ H , dim(U ) = codim(X),
and S +U = NR.

Since the multiplicities are positive and X + U contains a full-dimensional cone,
we have X +U = NR with positive multiplicities. Consider cones of the form σ +U
where σ is amaximal cone of X and σ+U is full dimensional. These conesmust cover
all of NR, and they also cover all of H in particular. Hence, there is amaximal cone σ of
X such that dim(σ +U ) = n and dim((σ +U )∩H) = n−1. Since dim(σ +U ) = n,
we also have dim(σ + H) = n, so σ ∩ H ⊂ X · H by definition. Since σ +U is full
dimensional inside H , and dim(U ) = n− dim(X) = n− 1− (dim(X)− 1), we must
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have dim(σ ∩ H) ≥ dim((σ +U )∩ H)− dim(U ) = n− 1− dim(U ) = dim(X)− 1
as desired. This completes the proof that X · H has expected codimension.

We will now check that X · H is balanced. By taking links at a ridge of X · H and
quotienting out by the lineality space parallel to the ridge, we can assume that X is
a two-dimensional fan. For a generic vector v, H + v intersects X transversely, and
X · H consists of unbounded rays of X ∩ (H + v) counted with multiplicity. To show
the balancing of the rays of X · H , following the ideas leading to Eq. (4), it suffices to
show balancing at every vertex of X ∩ (H + v).

By taking links at vertices of X ∩ (H + v), we only have to consider the case when
X is a two-dimensional fan with one-dimensional lineality space τ and H does not
contain τ . In this case, for any facet σ in X , σ ∩ H is a ray in X · H . Let vσ be the
primitive lattice vector in the ray σ ∩ H . Then, by the definition of multiplicities in
stable intersections, we have

multX ·H (σ ∩ H) = multX (σ ) · [N : NH + Nσ ] = multX (σ ) · [N : NH + Nτ ]
[Nσ : spanZ(vσ ) + Nτ ] .

On the other hand, since X is balanced, we have

∑

σ⊃τ

multX (σ ) · vσ/τ ∈ spanQ(Nτ ).

Moreover, we have vσ − [Nσ : spanZ(vσ )+ Nτ ] · vσ/τ ∈ spanQ(Nτ ). Combining the
last two statements and multiplying through with [N : NH + Nτ ] gives

∑

σ⊃τ

multX ·H (σ ∩ H) · vσ ∈ spanQ(Nτ ) ∩ H = {0}.

This shows that X · H is balanced. ��
Lemma 2.11. Let X be an arbitrary tropical cycle with positive multiplicities. Sup-
pose Y is a tropical cycle of codimension r whose support is an affine linear space
such that Y = ((H1 · H2) · · · Hr ) where H1, . . . , Hr are tropical cycles with positive
multiplicities whose supports are affine hyperplanes. Then

X · Y = (((X · Hr ) · Hr−1) · · · H1).

In particular, it follows that X · Y is a tropical cycle since the right-hand side is a
tropical cycle by Lemma 2.10.

Proof Wewill use induction on r .When r = 1, the statement is trivial. Suppose r ≥ 2,
and by the inductive hypothesis, we have

(((X · Hr ) · Hr−1) · · · H1) = (X · Hr ) · L

where L = ((H1 · H2) · · · Hr−1). Hence, Y = L · Hr . It remains to prove that

(X · Hr ) · L = X · (Hr · L). (8)
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We know that (X · Hr ) · L is a tropical cycle because it is equal to (((X · Hr ) ·
Hr−1) · · · H1), which is a tropical cycle by the previous lemma. At this point, we have
not shown yet that X · (Hr · L) is a tropical cycle.

For simplicity of notation, let H = Hr . By taking links, for equality of the supports
in (8) it suffices to prove that (X · H) · L is non-empty if and only if X · (H · L) is
non-empty. For any linear space V , X · V is non-empty if and only if the projection
of X onto a complement V⊥ of V is surjective. Let πH , πL , and πHL be projections
from NR onto the H⊥, L⊥, and (H ∩ L)⊥, respectively. Since H + L = NR, we have
H⊥ ∩ L⊥ = {0}, so (H ∩ L)⊥ is a direct sum of H⊥ and L⊥, and πH + πL = πHL .

Suppose (X · H) · L is non-empty. Then, there is a cone σ ∈ X such that

dim(πH (σ )) = dim(H⊥) and dim(πL(σ ∩ H)) = dim(L⊥), so

dim(πHL(σ )) = dim(πH (σ )) + dim(πL(σ ))

= dim(H⊥) + dim(L⊥)

= dim((H ∩ L)⊥).

Thus, X · (H · L) is non-empty.
Now, suppose X ·(H ·L) is non-empty. Then, πHL(X) = H⊥+L⊥, so there exists

a σ ∈ X such that

dim(πHL(σ )) = dim(H⊥) + dim(L⊥), and

dim(πHL(σ ) ∩ L⊥) = dim(L⊥).

Then, dim(πH (σ )) = dim(H⊥), so σ ∩ H is a cone in X · H . We will show that
σ ∩ H ∩ L is a cone in (X · H) · L by showing that πL(σ ∩ H) ⊃ πHL(σ ) ∩ L⊥,
which is full dimensional in L⊥.

Let v ∈ πHL(σ ) ∩ L⊥. Let v′ ∈ σ such that πHL(v′) = v. Then,

πH (v′) = πHL(v′) − πL(v′) = v − πL(v′) ∈ L⊥,

but πH (v′) is also in H⊥, so πH (v′) = 0. Hence, v′ ∈ H , and

v = πHL(v′) = πL(v′) ∈ πL(σ ∩ H).

This proves that dim(πL(σ ∩ H)) ≥ dim(πHL(σ ) ∩ L⊥) = dim(L⊥). Therefore,
(σ ∩ H) ∩ L is a face of (X · H) · L , proving that (X · H) · L is non-empty.

We have proven that the supports of (X · H) · L and X · (H · L) coincide. Since
(X · H) · L is pure of expected dimension, X · (H · L) is as well.

To compute multiplicities, for simplicity suppose H and L have multiplicity 1
everywhere. After taking links and taking quotients, we may assume that the support
of the stable intersections on both sides of (8) consists only of the origin. For generic
v2 ∈ NR, we have by Definition 2.4

mult(X ·H)·L(0) =
∑

τ∈X ·H :
τ∩(L+v2) �=∅

multX ·H (τ )[N : NL + Nτ ]
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where, for generic v1 ∈ NR,

multX ·H (τ ) =
∑

σ∈X : σ∩(H+v1) �=∅
and τ=σ∩H

multX (σ )[N : NH + Nσ ].

Since multH ·L(H ∩ L) = [N : NH + NL ], we have

multX ·(H ·L)(0) =
∑

σ∈X :
σ∩((H∩L)+v3) �=∅

multX (σ )[N : NH + NL ][N : NH∩L + Nσ ]

for generic v3 ∈ NR.
For X , H and L fixed, let v and v2 be generic vectors in NR. Since X is a finite

polyhedral complex, for all sufficiently small ε > 0, the set of facets σ ∈ X such that
σ ∩ (H + εv) ∩ (L + v2) �= ∅ is constant. Let v1 = εv where ε > 0 is sufficiently
small and v3 = v1 + v2. We will show that the collections of σ ’s appearing in both of
the multiplicity formulas above are the same (where each τ has the form σ ∩ H ). For
this, we need

σ ∩ (H+ v1) �= ∅ and σ ∩ H ∩ (L+ v2) �= ∅ ⇐⇒ σ ∩ ((H ∩ L) + v1 + v2) �= ∅.

Since H + L = NR, we may assume without loss of generality that v1 ∈ L and
v2 ∈ H . Then, we have (H ∩ L) + v1 + v2 = (H + v1) ∩ (L + v2). Now suppose
that σ ∩ ((H ∩ L) + v1 + v2) �= ∅. Then, σ ∩ (H + v1) ∩ (L + v2) �= ∅. This is
true for all sufficient small v1’s and σ is closed, so we get σ ∩ (H + v1) �= ∅ and
σ ∩ H ∩ (L + v2) �= ∅.

Conversely, because σ ∩ H ∩ (L + v2) �= ∅ and v2 is generic, dim(σ ∩ H) is at
least the codimension of H ∩ (L + v2) in H , so

dim(σ ∩ H) ≥ dim(H) − dim(H ∩ L).

We assumed that X · (H · L) is 0-dimensional, and we have shown above that the
stable intersection of a tropical cycle and a linear space has the expected dimension,
so dim(σ ) = codim(H ∩ L). Then,

dim(σ ) − dim(σ ∩ H) ≤ dim(σ ) − dim(H) + dim(H ∩ L)

= codim(H ∩ L) − dim(H) + dim(H ∩ L)

= dim(NR) − dim(H)

= 1.

Moreover, σ is not contained in H , so dim(σ ) = dim(σ ∩ H) + 1. Combined with
σ ∩ (H +v1) �= ∅ and genericity of v2, this shows that offsetting (H ∩ L)+v2 a small
amount in direction v will keep the intersection σ ∩ ((H ∩ L)+ v2 + εv) non-empty.
This completes the proof that the σ ’s appearing in the sums are the same.
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Since Nτ = NH ∩ Nσ , to prove that the two multiplicities are equal, it suffices to
prove for subgroups A, B,C of an abelian group N with well-defined indices:

[N : A + C][N : B + (A ∩ C)] = [N : A + B][N : (A ∩ B) + C]

and apply this equation to A = NH , B = NL ,C = Nσ . All subgroups of which we
take indices contain A ∩ B. After quotienting out by A ∩ B, we may assume that we
are in the case where A ∩ B = {0}. Then,

[N : (A ∩ B) + C] = [N : C]
= [N : A + C][A + C : C]
= [N : A + C][A : A ∩ C]
= [N : A + C][A + B : (A ∩ C) + B]
= [N : A + C][N : B + (A ∩ C)]/[N : A + B].

The first and fourth equalities use the facts that A ∩ B = {0}. For the third equality,
notice that a + C = b + C if and only if a + A ∩ C = b + A ∩ C for all a, b ∈ A.
The rest follow from standard isomorphism theorems. ��
Lemma 2.12. Let X, L1, and L2 be tropical cycles with positive multiplicities, and
suppose that the supports of L1 and L2 are affine linear spaces. Then

X · (L1 · L2) = (X · L1) · L2.

Proof For each linear space L with multiplicity 1 and codimension r , we can find
hyperplanes H1, . . . , Hr with multiplicities 1 so that L = ((Hσ(1) · Hσ(2)) · · · Hσ(r))

for every permutation σ of {1, . . . , r}. To see this, choose a lattice basis B of L∩N and
extend this to a lattice basis B ′ = B∪{v1, . . . , vr } of N . For i = 1, . . . , r , let Hi be the
hyperplane in NR spanned by B ′\{vi }. Then, it is straightforward to see by induction
on i that the tropical cycle ((Hσ(1) · Hσ(2)) · · · Hσ(i)) has support Hσ(1) ∩ · · · ∩ Hσ(i)

with multiplicity 1 for each i = 1, . . . , r .
Without loss of generality, we may assume that both L1 and L2 have multiplicity 1

everywhere. As shown above, we can find hyperplanes H1, . . . , Hr and H ′
1, . . . , H

′
s

so that L1 = ((Hσ(1) · Hσ(2)) · · · Hσ(r)) for every permutation σ of {1, . . . , r} and
L2 = ((H ′

1 · H ′
2) · · · H ′

s). By Lemma 2.11 above, we have

(X · L1) · L2 = ((
((X · Hr ) · · · H1) · H ′

s

) · · · H ′
1

)

= X · ((((H ′
1 · H ′

2

) · · · H ′
s

) · H1
) · · · Hr

)

= X · (L2 · ((Hr · Hr−1) · · · H1))

= X · (L2 · L1)

= X · (L1 · L2) .

��
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