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Abstract We study properties of the tropical double Hurwitz loci defined by Bertram,
Cavalieri and Markwig. We show that all such loci are connected in codimension one.
If we mark preimages of simple ramification points, then for a generic choice of
such points, the resulting cycles are weakly irreducible, i.e. an integer multiple of an
irreducible cycle. We study how Hurwitz cycles can be written as divisors of rational
functions and show that they are numerically equivalent to a tropical version of a
representation as a sum of boundary divisors. The results and counterexamples in
this paper were obtained with the help of a-tint, an extension for polymake for
tropical intersection theory.

Keywords Hurwitz theory · Tropical geometry · Computational geometry

1 Introduction

Roughly speaking, Hurwitz numbers count covers of P1 by complex curves C of
some genus g—but with a given degree and some special ramification profile over
a certain number of points.1 For example, single Hurwitz numbers require the cover
C → P

1 to have a specific ramification profile over some special point (usually ∞)
and only simple ramification elsewhere. These numbers have played a significant
role in the study of the intersection theory of the moduli spaces Mg,n of curves.

1 In fact, one can consider this problem in even greater generality by counting covers C → C ′, where
C and C ′ are curves of prescribed genera g and g′.
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The ELSV formula [11] relates Hurwitz numbers to certain intersection products of
tautological classes on Mg,n . This was then used by Okounkov and Pandharipande
to prove Witten’s conjecture [32]—though the first proof of this is of course due to
Kontsevich [26].

To obtain double Hurwitz numbers, we fix the ramification over two points in P
1,

usually 0 and ∞. These numbers occur not only in algebraic geometry, but also in
representation theory and combinatorics—thus providing a strong connection between
a wide variety of disciplines. An overview over the different definitions of double
Hurwitz numbers can, for example, be found in [24]. An ELSV-type formula has been
conjectured by Goulden et al. in [18], where it is also shown that these numbers are
piecewise polynomial in terms of the ramification profile. By convention, one writes
the profile as x ∈ Z

n with
∑

xi = 0. The interpretation of this is that the positive part
x+ gives the ramification profile over 0 and the negative part x− gives the ramification
profile over∞. A special feature of doubleHurwitz numbers is the fact that the number
of simple ramification points only depends on the length of the ramification profile,
not on the multiplicities. The number of additional simple ramification points is then
n − 2 + 2g. This fact will be very helpful in defining higher-dimensional cycles.

The generalization to Hurwitz cycles is achieved by letting one or more of the
images of simple ramification points “move around” in P

1. In the general case, these
loci were defined and studied byGraber andVakil in [21]. In the genus 0 case, Bertram,
Cavalieri andMarkwig proved that these cycles are linear combinations of cycles with
coefficients that are piecewise polynomial in the entries of the ramification profile
[4]. They also considered tropical versions Htrop

k (x, p) and H̃
trop
k (x, p), respectively,

of double Hurwitz loci and showed that their combinatorics relate very nicely to the
combinatorics of the different strata of the algebraic loci via dualizing of graphs. Here,
H̃

trop
k (x, p) differs from H

trop
k (x, p) in that the preimages of the simple ramification

points pi are also marked.
Higher-dimensional Hurwitz loci were a key ingredient in the study of tautological

classes of Mg,n in [21]. For tropical geometers, they are also of particular interest
in the search for a more conceptual approach to enumerative geometry. So far, trop-
ical enumerative results could only be translated into results in algebraic geometry
by using correspondence theorems (e.g. [3,8,28,31]). These theorems only apply to
very specific enumerative problems. A more general result which could, for example,
relate intersection rings of algebraic and tropical moduli spaces, would make tropi-
cal enumerative geometry much more powerful. The fact that Hurwitz numbers (and
possibly, Hurwitz cycles) are so closely related to intersection theory on Mg,n makes
them a good starting point for this approach. A natural question to ask in this context
is whether the algebraic Hurwitz cycle somehow tropicalizes onto the tropical one.
In [4], the tropical Hurwitz cycles are obtained by translating a Gromov–Witten-type
formula to its tropical analogue.While the definition is rather simple and involves only
the well-known tropical moduli space of rational curves, the cycles itself are rather
large (in terms of ambient dimension and number of polyhedral cells) even for small
examples and difficult to study “by hand”. This makes it very hard to prove a more
concrete tropicalization result. Wewill therefore start by studying the tropical Hurwitz
cycles and their properties to make them more accessible.
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There are two main properties we want to consider in this paper: connectedness in
codimension one and irreducibility. The first is relevant for computational purposes, as
well as a necessary condition for the second property. Irreducibility itself is important
if one wants to prove equality of tropical cycles—thus providing an important step
towards a potential tropicalization statement relating classical and tropical Hurwitz
cycles. We will also consider how Hurwitz cycles can be written as divisors of ratio-
nal functions and how they relate to tropical translations of other representations of
algebraic Hurwitz cycles.

Classically, questions about irreducibility and connectedness of Hurwitz spaces
have been considered for a long time. Hurwitz [23] showed that the space of simple
branched covers of P1 is connected, using results of Clebsch and Lüroth [7]. Severi
[34] used this to show that Mg is irreducible. These questions become much more
difficult, however, if one allows target curves of higher genus or more complicated
ramification andmonodromy—this is a very actively researched topic, see for example
[5,16,25,37].

A very helpful tool in the study of Hurwitz cycles is a-tint2 [22], an extension
for polymake3 [17] for tropical intersection theory. With its focus on moduli of
curves, it provides an easy way to compute examples and a quick method for testing
conjectures.

In Sect. 2.1, we review the basic definitions of tropical geometry.We define tropical
varieties and the basic notions of tropical intersection theory. We give a definition
of connectedness and irreducibility and discuss their relevance in more detail. We
conclude this section with a short introduction to moduli of rational curves and stable
maps. In 2.2, we define algebraic and tropical Hurwitz cycles. We then look at the
latter in more detail, i.e. we describe the tropical covers that they parametrize and how
a tropical Hurwitz cycle can be computed. In Sect. 3.1, we study whether tropical
Hurwitz cycles are connected in codimension one. We give a combinatorial proof of
the following result:

Theorem (Theorem 3.9) For all k, p and x, the cycles H̃trop
k (x, p) and H

trop
k (x, p)

are connected in codimension one.

In 3.2, we use this to show that all marked Hurwitz cycles are weakly irreducible for
a generic choice of simple ramification points:

Corollary (Corollary 3.11) For any x and any pairwise different p j , H̃
trop
k (x, p) is

weakly irreducible.

We conclude that section with computational examples showing that this is the
strongest possible statement.

In 3.3, we study how Hurwitz cycles can be cut out by rational functions onMtrop
0,n .

We know from [12] that each subcycle of amatroidal fan (such asMtrop
0,n ) can bewritten

as the sumof products of rational functions, but the result is non-constructive.We show

2 See also https://github.com/simonhampe/atint.
3 See also www.polymake.org.
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thatHtrop
n−4(x, 0) can be cut out by the rational function that adds up distances of vertex

images of covers. To prove this, we define the push-forward of a rational function
under a morphism of equidimensional tropical varieties whose target is smooth.

Finally, in 3.4 we consider an alternative representation of the algebraic Hurwitz
cycle given in [4] and its “tropicalization”. We show that this new tropical cycle is
numerically equivalent to H

trop
k (x), thus obtaining a strong indicator that our notion

of naively tropicalizing is the correct one.

Remark A paper by Cavalieri, Markwig and Ranganathan [9], which appeared shortly
after the first submission of this paper, proves that indeed tropical Hurwitz cycles are
tropicalizations of algebraic Hurwitz cycles. As a corollary, they obtain the connected-
ness in codimension one for unmarked Hurwitz cycles (Theorem 3 and Corollary 4).

2 Preliminaries

2.1 Tropical geometry

2.1.1 Weighted polyhedral complexes

Notation 2.1 Let � be a lattice (i.e. a finitely generated free Abelian group) and
V := � ⊗Z R the associated vector space. We assume all polyhedra in V to be
rational, i.e. defined by inequalities g(x) ≥ α with g ∈ �∨. For a polyhedron σ , we
write Vσ := 〈a − b; a, b ∈ σ 〉R for the linear part of its affine space and�σ := Vσ ∩�

for its associated lattice.

Definition 2.2 A weighted polyhedral complex (�, ω) is a pure, rational, polyhedral
complex � in V = � ⊗Z R together with a weight function ω on its maximal cells,
taking values in Z. We write |�| := ⋃

σ∈� σ for the support of �.
Let σ be a rational d-dimensional polyhedron and τ a face of σ of dimension

d −1. The lattice normal vector of τ with respect to σ , denoted by uσ/τ , is the unique
generator of �σ /�τ

∼= Z, such that g(uσ/τ ) > 0 for all g ∈ �∨
σ with g|τ = 0 and

g|σ ≥ 0. By abuse of notation, we also write any representative of uσ/τ in V with the
same letter.

We call a weighted complex (�, ω) balanced, if for all codimension one cells τ

the following holds:

∑

σ>τ

ω(σ)uσ/τ ∈ Vτ .

A tropical cycle is the equivalence class of a balanced weighted complex modulo
refinement, i.e. we consider two balanced complexes to be the same, if they have a
common refinement respecting the weights. By abuse of notation, we will often use
the same letter for a tropical cycle and its polyhedral structure.

A tropical variety is a tropical cycle whose weights are greater than zero.
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Let (�, ω) be a weighted complex and τ any cell in �. We define the local fan at
τ to be the weighted fan

Star�(τ) := ({�(σ − τ); τ ≤ σ }, ωStar),

where � : Rn → R
n/Vτ is the residue map, σ − τ denotes the pointwise difference

and the weight function is defined by ωStar : �(σ − τ) �→ ω(σ).
The recession cone of a polyhedron σ ⊆ V is the set

rec(σ ) := {v ∈ V ; ∃x ∈ σ such that x + R≥0v ⊆ σ }.

If X is a tropical cycle, then by [33, Lemma 1.4.10], there exists a refinement X of its
polyhedral structure such that δ(X) := {rec(σ ); σ ∈ X } is a polyhedral fan (one can
use a construction similar to the one used for defining push-forwards). If we define a
weight function

ωδ(rec(σ )) :=
∑

σ ′:rec(σ ′)=rec(σ )

ωX (σ ′),

then (δ(X), ωδ) is a tropical cycle by [33, Theorem 1.4.12].
We call two tropical cycles rationally equivalent if δ(X) = δ(Y ) (up to refinement,

of course).
Let (X, ωX ) be a tropical cycle. A rational function on X is a function ϕ : X → R

that is piecewise affine linear with integer slopes with respect to some polyhedral
structure Xϕ of X .

The divisor of ϕ is the tropical cycle ϕ · X := (Y, ωϕ), with Y the codimension
one skeleton of Xϕ and

ωϕ(τ) :=
∑

σ>τ

ωX (σ )ϕσ (uσ/τ ) − ϕτ

(
∑

σ>τ

ωX (σ )uσ/τ

)

,

where ϕσ , ϕτ denote the linear part of the function restricted to the corresponding cell.
Amorphism of tropical cycles f : X → Y is a map from |X | to |Y |which is locally

a linear map and respects the underlying lattice, i.e. maps �X to �Y .
The push-forward of X is defined as follows: by [19, Construction 2.24], there

exists a refinement X of the polyhedral structure on X such that { f (σ ); σ ∈ X } is a
polyhedral complex. We then set

f∗(X) = { f (σ ); σ ∈ X ; f injective on σ }

with weights

ω f∗(X)( f (σ )) =
∑

σ ′: f (σ ′)= f (σ )

∣
∣� f (σ )/ f (�σ ′)

∣
∣ωX (σ ′).
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It is shown in [19, Proposition 2.25] that this yields a tropical cycle and does not
depend on the choice of X .

If f : X → Y is a morphism of tropical cycles and ϕ is a rational function on Y ,
then f ∗ϕ = ϕ ◦ f is the pullback of ϕ via f .

2.1.2 Connectedness and irreducibility

Definition 2.3 A tropical cycle X is connected in codimension one, if for any two
maximal cells σ, σ ′ there exists a sequence of maximal cells σ = σ0, . . . , σr = σ ′,
such that two subsequent cells σi , σi+1 intersect in codimension one (it is easy to see
that this does not depend on the actual choice of polyhedral structure).

We call X irreducible, if any (dim X)-dimensional subcycle Y (i.e. a tropical cycle
with |Y | ⊆ |X |) is an integer multiple of X .

We call X weakly irreducible if X is an integer multiple of an irreducible cycle.

Remark 2.4 We can measure irreducibility of a tropical cycle X by computing its
weight lattice �X : this is the lattice of weight functions making it balanced. It has
been shown in [22] that this does not depend on the choice of polyhedral structure
and that (X, ω) is irreducible if and only if the rank of �X and the greatest common
divisor of all weights ω(σ) are both 1. �X can be computed as the common solutions
of all local balancing equations, which in turn can be interpreted as linear equations
in the space of weight functions.

Somewhat contrary to the terminology, connectedness should probably be consid-
ered the “tropicalization” of irreducibility in the algebraic setting. It was shown in [10]
that the tropicalization of any irreducible variety over an algebraically closed field is
connected in codimension one. This property is also interesting from a computational
point of view: roughly speaking, a connected complex can be computed by starting
with a single maximal cell and recursively computing maximal cells that are attached
to codimension one faces. This often provides a more efficient approach (see [6] for
an example).

It is not as easy to find an analogue for tropical irreducibility. By [30, Theo-
rem 6.7.5], the weight lattice of a d-dimensional complex � in R

n is in bijection
to An−d(X�). From a purely tropical point of view, irreducibility is a helpful property
if you want to show equality of cycles, as one then only needs to prove one inclusion.

Connectedness in codimension one is clearly a necessary condition for irreducibil-
ity. Together with local irreducibility, we obtain a sufficient criterion:

Proposition 2.5 (This is an easy generalization of [33, Lemma 1.2.29].) Let X be a
tropical cycle. If X is locally (weakly) irreducible (i.e. StarX (τ ) is (weakly) irreducible
for each codimension one face τ ) and X is connected in codimension one, then X is
(weakly) irreducible.

2.1.3 Tropical rational curves, moduli spaces and Psi classes

We only present the basic notations and definitions related to tropical moduli spaces.
For more detailed information, see for example [19].
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Definition 2.6 An n-marked rational tropical curve is a metric tree with n unbounded
edges, labelled with numbers {1, . . . , n}, such that all vertices of the graph are at least
trivalent. We can associate with each such curve C its metric vector (d(C)i, j )i< j ∈
R(n2), where d(C)i, j is the distance between the unbounded edges (called leaves)
marked i and j determined by the metric on C .

Define �n : Rn → R(n2), a �→ (ai + a j )i< j . Then,

Mtrop
0,n := {d(C);C n − marked curve} ⊆ R

(n2)/�n(R
n)

is the moduli space of n-marked rational tropical curves.

Remark 2.7 The spaceMtrop
0,n is also known as the space of phylogenetic trees [36]. It

is shown (e.g. in [19]) that Mtrop
0,n is a pure (n − 3)-dimensional fan and if we assign

weight 1 to each maximal cone, it is balanced (though [19] does not use the standard
lattice, as we will see below). Points in the interior of the same cone correspond to
curves with the same combinatorial type: the combinatorial type of a curve is its
equivalence class modulo homeomorphisms respecting the labelings of the leaves, i.e.
morally we forget the metric on each graph. In particular, maximal cones correspond
to curves where each vertex is exactly trivalent. We call this particular polyhedral
structure on Mtrop

0,n the combinatorial subdivision.

The lattice for Mtrop
0,n under the embedding defined above is generated by the rays

of the fan. These correspond to curves with exactly one bounded edge. Hence, each
such curve defines a partition or split I |I c on {1, . . . , n} by dividing the set of leaves
into those lying on the “same side” of e. We denote the resulting ray by vI (note that
vI = vI c ). Similarly, given any rational n-marked curve, each bounded edge Ei of
length αi induces some split Ii |I ci , i = 1, . . . , d on the leaves. In themoduli space, this
curve is then contained in the cone spanned by the vIi and can be written as

∑
αivIi .

In particular, Mtrop
0,n is a simplicial fan.

There are several reasons why Mtrop
0,n should be considered the tropical analogue

of M0,n , the algebraic space of rational n-marked curves. Perhaps easiest to see is the
fact that there is a one-to-one, dimension-reversing relation between combinatorial
types of tropical rational curves and boundary strata of M0,n . Each boundary stratum
corresponds to a nodal curve X , to which we can assign a dual graph. This is a graph
which has a vertex for each component of X , a bounded edge for each node and an
unbounded leaf for each marked point.

A much stronger relation was proven in [20], where it is shown that (for the right
embedding) the tropicalization of M0,n is Mtrop

0,n and the closure of M0,n in the toric

variety X (Mtrop
0,n ) is M0,n (i.e. M0,n is a tropical compactification).

Definition 2.8 Let n ≥ 3 and i ∈ {1, . . . , n}. The i th Psi class is the subset ψi of
M0,n , consisting of the locus of all n-marked curves such that the i th leaf is attached
to a vertex that is at least four-valent.

Remark 2.9 In the combinatorial subdivision of M0,n, ψi is actually a codimension
one subfan and assigning weight 1 to each maximal cone produces a tropical variety.
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Fig. 1 On the left, the abstract 6-marked curve � = a · v{1,2,l0}. If we pick Δ =
((−1, 0), (−1, 0), (2, 2), (0, −2)) and fix h(l0) = 0 in R

2, we obtain the curve on the right-hand side
as h(�)

Tropical Psi classes were first defined by Mikhalkin in [29], as a direct translation of
the classical definition. In [27], the authors define Psi classes as divisors of rational
functions on M0,n and give a complete combinatorial description of all products of
Psi classes.

2.1.4 Tropical stable maps

To study covers of R in tropical geometry, we will need a tropical space of stable
maps. A precise definition can be found in [19, Section 4]. For shortness, we will use
their result from Proposition 4.7 as definition and explain the geometric interpretation
behind it afterwards.

Definition 2.10 Letm ≥ 4, r ≥ 1. For anyΔ = (v1, . . . , vn), vi ∈ R
r with

∑
vi = 0

we denote by

Mtrop
0,m(Rr ,Δ) := Mtrop

0,n+m × R
r

the space of stable m-pointed maps of degree Δ.

Remark 2.11 An element of Mtrop
0,m(Rr ,Δ) represents an (n + m)-marked abstract

curveC together with a continuous, piecewise integer affine linear (with respect to the
metric on C) map h : C → R

r . We label the first n leaves by {1, . . . , n} and require h
to have slope v1, . . . , vn on them. We denote the last m leaves by l0, . . . , lm−1. These
are contracted to a point under h. Since we want the image curve to be a tropical curve
in R

r , the slope on the bounded edges is already uniquely defined by the condition
that the outgoing slopes of h at each vertex have to add up to 0. This defines the map h
up to a translation in Rr . The translation is fixed by the Rr -coordinate, which can, for
example, be interpreted as the image of the first contracted end l0 under h (see Fig. 1
for an example). There are obvious evaluation maps evi : Mtrop

0,m(Rr ,Δ) → R
r , i =

0, . . . ,m − 1, mapping a stable map to h(li ). [19, Proposition 4.8] shows that these
are morphisms. Similarly, there is a forgetful morphism ft : Mtrop

0,m(Rr ,Δ) → Mtrop
0,n ,

forgetting the contracted ends and the map h.
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2.2 Hurwitz cycles

2.2.1 Algebraic Hurwitz cycles

Wewill only briefly cover algebraic Hurwitz cycles, as we will be working exclusively
on the tropical side. For a more in-depth discussion of its definition and properties,
see, for example, [4,21].

Let n ≥ 4. We define

Hn :=
{

x ∈ Z
n :

n∑

i=1

xi = 0

}

\ {0}.

Let x ∈ Hn and choose distinct points p0, . . . , pn−3−k ∈ P
1 \ {0,∞}. The double

Hurwitz cycleHk(x) is a k-dimensional cycle in themoduli space of rational n-marked
curves M0,n . It parametrizes curves C that allow covers C

π→ P
1 with the following

properties:

• C is a smooth connected rational curve.
• π has ramification profile x+ := (xi ; xi > 0) over 0 and ramification profile

x− := (xi ; xi < 0) over∞. The corresponding ramification points are the marked
points of C .

• π has simple ramification over the pi and at most simple ramification elsewhere.

The precise definition [4, Section 3] actually involves some moduli spaces. For the
sake of simplicity, we will just cite the following result that can be taken as a definition
throughout this paper.

Lemma 2.12 ([4, Lemma 3.2])

Hk(x) = st∗

(
n−2−k∏

i=1

ψiev
∗
i ([pt])

)

,

where

• the intersection product is taken in M0,n−2−k(x), the space of relative stable maps
to P1 with ramification profile x+, x− over 0 and∞ (see also [21] for a definition.
In their language, this is the space of maps to a rigid target).

• st : M0,n−2−k(x) → M0,n is the morphism forgetting the map and all marked
points but the ramification points over 0 and ∞ (and stabilizing the result by
contracting components that become unstable, i.e. contain less than three special
points).

2.2.2 Tropical Hurwitz cycles

We already have all ingredients at hand to “tropicalize” Lemma 2.12. Note that a
point q ∈ R can be considered as the divisor of the tropical polynomial max{x, q},
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so it can be pulled back along a morphism to R. Also, as Mtrop
0,n+m is a subcycle of

Mtrop
0,m(Rr ,Δ) = Mtrop

0,n+m × R
r , we can define Psi classes on the latter: for i =

0, . . . ,m − 1, we define

�i := ψ(li ) × R
r ,

where ψ(li ) is the Psi class ofMtrop
0,n+m associated with the leaf li we defined in 2.8.

Definition 2.13 ([4, Definition 6]) Let x ∈ Z
n \ {0} with

∑
xi = 0, k ≥ 0 and

N := n − 2 − k. Choose p := (p0, . . . , pN−1), pi ∈ R. We define the tropical
marked Hurwitz cycle

H̃
trop
k (x, p) :=

(
N−1∏

i=0

(�iev
∗
i (pi ))

)

· Mtrop
0,N (R, x).

We then define the tropical Hurwitz cycle

H
trop
k (x, p) := ft∗(H̃trop

k (x, p)) ⊆ Mtrop
0,n .

Remark 2.14 In [8], the authors show that Hurwitz numbers can be considered as a
weighted count of tropical covers of R, which are monodromy graphs of algebraic
covers. In particular, the ramification profile over 0 and ∞ appears on the tropical
side as the slopes of the ends going to ±∞. Thus, a tropical analogue of a cover
with prescribed ramification profile x is an element ofMtrop

0,N (R, x). Hence, the above
definition becomes the exact analogue of Lemma 2.12 and gives us k-dimensional
tropical cycles H̃trop

k (x, p),Htrop
k (x, p). While it formally depends on the choice of

the p j , two different choices p, p′ lead to rationally equivalent cycles Htrop
k (x, p) ∼

H
trop
k (x, p′). The reason for this is that any two points inR are rationally equivalent and

this is compatible with pullbacks and taking intersection products. In particular, if we
choose all pi to be equal (e.g. equal to 0), we obtain fans, which we denote by H̃

trop
k (x)

and H
trop
k (x). They are obviously the recession fans of H̃trop

k (x, p),Htrop
k (x, p) for

any p.

Example 2.15 Let us now see what kind of object these Hurwitz cycles represent. As
discussed in Remark 2.11, for any fixed x and any n-marked curveC , we obtain a map
h : C → R up to translation. To determine such a map, we have to fix an orientation
of each edge and leaf of C and an integer slope along this orientation. In informal
terms, the orientation determines how we position an edge or leaf on R (the “tip” of
the arrow points towards +∞). The slope can then be seen as a stretching factor.

The orientation of each leaf i is chosen so that it “points away” from its vertex if
and only if xi > 0. We define its slope to be |xi |. Any bounded edge e induces a split
Ie. Its slope is

∣
∣xIe

∣
∣, where xIe = ∑

i∈Ie xi . We pick the orientation such that at each
vertex, the sum of slopes of incoming edges is the sum of slopes of outgoing edges (it
is not hard to see that such an orientation exists and must be unique).
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Fig. 2 Covers defined by two 5-marked rational curves after fixing the image of a vertex q to be α = 0.
We chose x = (1, 1, 1, 1,−4) and denoted edge lengths by l, edge slopes by ω

Aswe discussed before, we can fix the translation of h by requiring the image of any
of its vertices q to be some α ∈ R. Denote by h(C, q, α) : C → R the corresponding
map. Figure2 gives two examples of this construction.

Now choose p0, . . . , pN−1 ∈ R. Then, Htrop
k (x, p) is (set theoretically) the set of

all curves C , where we can find vertices q0, . . . , qN−1 (each vertex q can be picked
a number of times equal to val(q) − 2), such that h(C, q0, p0)(ql) = pl for all l, i.e.
all curves that allow a cover with fixed images for some of its vertices. For example
in Fig. 2, we have

• C ∈ H
trop
1 (x, p = (0, 1)), but C /∈ H

trop
1 (x, p = (0, 0)).

• C ′ ∈ H
trop
1 (x, p = (0, 0)), but C ′ /∈ H

trop
1 (x, p = (0, 1)).

In particular, if we choose pi = 0 for all i,Htrop
k (x, p) is the set of all curves, such that

n − 2 − k of its vertices have the same image (again, counting higher-valent vertices
v with multiplicity val(v) − 2).

Of course there may be several possible choices of vertices that are compatible with
p. In H̃

trop
k (x, p), we fix a choice by attaching the contracted end li to the vertex we

wish to bemapped to pi ; i.e. H̃
trop
k (x, p) is the set of all curvesC , such that l0, . . . , lN−1

are attached to vertices and such that in the corresponding cover the vertex with leaf
li is mapped to pi . For example, in Fig. 2 on the left-hand side, there are two possible
choices of vertices that are compatiblewith p = (0, 1). Hence, there are two preimages
in H̃

trop
k (x, p) corresponding to attaching the contracted leaves l0, l1 either to q and

v1 or to v2 and q.

Remark 2.16 Let us see how the weight of a cell ofHtrop
k (x) is computed if we choose

the pi to be generic, i.e. pairwise different. Let τ be a maximal cell of Htrop
k (x) and

C the curve corresponding to an interior point of τ . Then, τ must lie in the interior
of a maximal cell σ of Mtrop

0,n , and for a generic choice of C , there is a unique choice
of vertices q0, . . . , qN−1 compatible with the pi (which fixes a cover). Marking these
vertices accordingly, we can consider σ as a cone in Mtrop

0,N (R, x). We thus obtain
well-defined and linear evaluation maps evi : σ → R, mapping each curve in σ to the
image of the vertex qi . Assume σ is spanned by the rays vI1 , . . . , vIn−3 , and then, we
can write evi in the coordinates of these rays as (ai1, . . . , a

i
n−3), where a

i
k = evi (vIk ).
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It is shown in [4, Lemma 4.4] that the weight of τ is then the greatest common divisor
of the maximal minors of the matrix (aik)k,i .

In the case that all pi are 0, we use the fact that H
trop
k (x, p) is the recession fan of

the Hurwitz cycle obtained for a generic choice of pi . By its definition, this means
that the total weight of a cell τ is obtained as

ω(τ) =
∑

τ⊆σ

∑

qi

gσ,qi ,

where the first sum runs over all maximal cones σ ofMtrop
0,n containing τ , the second

sum runs over all vertex choices q0, . . . , qN−1 that are compatible in σ with a generic
choice of pi and gσ,qi is the gcd we obtained in the previous construction. In fact, one
can easily see that the same method can be used for computing weights if only some
of the pi are equal.

2.3 Computation

If we approach this naively, we already have everything at hand to compute at least
marked Hurwitz cycles with a-tint: [22] tells us how to compute a product of Psi
classes (without having to compute the ambient moduli space, which will be huge!),
and then, we only have to compute divisors of tropical polynomials on this product.
However, this only works for small k, i.e. large codimension. Otherwise, the Psi class
product will already be too large to make this computation feasible.

Also, we will mostly be interested in unmarked Hurwitz cycles and computing
push-forwards is, computationally speaking, not desirable. One has to produce a very
fine polyhedral structure to make sure that the images of the cones form a fan. The
following approach to compute unmarked cycles directly proves to be more suitable:

Assume we want to compute H
trop
k (x, p = (p0, . . . , pN−1)) for x ∈ Z

n . Fix a
combinatorial type C of a trivalent rational n-marked curve, i.e. a maximal cone σ

of Mtrop
0,n . For each choice of distinct vertices q0, . . . , qN−1 of C , we obtain linear

evaluation maps on σ , by considering it as a cone of stable maps, where the additional
marked ends are attached to the qi . We can now refine σ by intersecting it with the
fan Fi , whose maximal cones are

F+
i := {x ∈ σ : evi (x) ≥ pi }, F−

i := {x ∈ σ : evi (x) ≤ pi }.
Iterating over all possible choices of qi , this will finally give us a subdivision σ ′ of σ .
The part of Htrop

k (x, p) that lives in σ is now a subcomplex of the k-skeleton of σ ′: it
consists of all k-dimensional cells τ of σ ′ such that there exists a choice of vertices
qi with the property that the corresponding evaluation maps fulfil evi (x) = pi for all
x ∈ τ . The weight of such a τ can then be computed using the method described in
Remark 2.16.

The full Hurwitz cycle can now be computed by iterating over all maximal cones
of Mtrop

0,n . This gives a feasible algorithm at least for n ≤ 8—after that, the moduli
space itself becomes too large.
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Fig. 3 Cube represents the three-dimensional cone in Mtrop
0,6 that corresponds to the combinatorial type

v{1,2}+v{4,5,6}+v{5,6} drawnon thebottom left part of the picture.Wedenote the length of the interior edges
byα, β, γ as indicated. The blue cells represent theHurwitz cycle living in this cone. The bottom right figure
indicates the corresponding cover. The parameters we chose here are k = 2, x = (2, 2, 6, −5,−4,−1) and
(p0, p1) = (0, 1) (Color figure online)

Example 2.17 We want to compute (part of) a Hurwitz cycle: we choose k = 2, x =
(2, 2, 6,−5,−4,−1) and (p0, p1) = (0, 1). Since the complete cycle would be rather
large and difficult to visualize (3755 maximal cells living inR9), we only consider the
part ofHtrop

2 (x, p) lying in the three-dimensional cone ofMtrop
0,6 corresponding to the

combinatorial type

C = v{1,2} + v{4,5,6} + v{5,6}.

Figure3 shows the corresponding cover, together with the part of the Hurwitz cycle
we computed using the method described above. Each cell of the cycle is obtained by
choosing specific vertices of C for the additional marked points p0 and p1. The corre-
spondence between these choices and the actual cells, together with the corresponding
equation, is laid out in Fig. 4. While there are of course in theory 4× 4 = 16 possible
choices, not all of them produce a cell: we only display choices of distinct vertices,
such that the image of the vertex for p1 = 1 is larger than the image of the vertex for
p0 = 0. This gives

(4
2

) = 6 valid choices.
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Fig. 4 Different choices of vertices yield different cells of Htrop
2 (x, p)
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3 Properties of Hurwitz cycles

In the first two parts of this section, we want to study whether tropical Hurwitz cycles
are irreducible. For this purpose, we will first prove that all (marked and unmarked)
Hurwitz cycles are connected in codimension one. We will go on to show that for a
generic choice of p j , all marked cycles H̃trop

k (x, p) are locally and globally a multiple

of an irreducible cycle. Finally,wewill see thatHtrop
k (x, p) is in general not irreducible.

3.1 Connectedness in codimension one

It is well known that Mtrop
0,n is connected in codimension one. In this particular case,

the property has a very nice combinatorial description: maximal cones correspond
to rational curves with n − 3 bounded edges. A codimension one face of a maximal
cone is attained by shrinking any of these edges to length 0, thus obtaining a single
four-valent vertex. This vertex can then be “drawn apart” or resolved in three different
ways, thus moving into a maximal cone again. Saying that Mtrop

0,n is connected in
codimension one means that we can transform any trivalent curve into another by
alternatingly contracting edges and resolving four-valent vertices.

A similar correspondence holds for Hurwitz covers. An element of a maximal cone
of H̃trop

k (x, p) ⊆ Mtrop
0,N (R, x) can be considered as an n-marked rational curve C

with N = n − 2− k additional leaves attached to vertices of C . By abuse of notation,
throughout this chapter we will also label these additional leaves by p0, . . . , pN−1.
By the valence of a vertex of an element of H̃trop

k (x, p), we will mean the valence of
the vertex in the underlying n-marked curve.

For a generic choice of p, maximal cells of H̃trop
k (x, p) will also correspond to

curves with n−3 bounded edges and codimension one cells are obtained by shrinking
an edge.Hence, the problemof connectedness can be formulated in the samemanner as
forMtrop

0,n . However, the requirement that the contracted leaves be mapped to specific
points excludes certain combinatorial “moves”, as we will shortly see.

Also note that the problem of connectedness does not really change if we allow
non-generic points: the combinatorial problem remains essentially the same, we just
allow some edge lengths to be 0. Hence, we will assume throughout this section that
p0 < p1 < · · · < pN−1.

We will first show connectedness in the case k = 1. In this case, the Hurwitz cycle
is a tropical curve, so saying that H̃trop

1 (x, p) is connected in codimension one is the
same as requiring that it is path-connected. So we will prove that for any two vertices
q, q ′ of H̃trop

1 (x, p), there exists a sequence of edges connecting them.
We will prove this by induction on n, the length of x . For the case n = 5, we will

simply go through all possible cases explicitly. For n > 5, we will first show that any
two covers of a special type, called chain covers, are connected. Having shown this,
we will then introduce a construction that allows us to connect any cover to a chain
cover.

The general case is then an easy corollary, since we mark fewer vertices in higher-
dimensional Hurwitz cycles, thus obtaining more degrees of freedom.
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Fig. 5 Curve on the left is a vertex of H̃trop
1 (1, 1, 1, 1, −4). In M0,7 it corresponds to a ray spanning a

cone with the curve on the right. However, the right curve is not an element of H̃trop
1 (1, 1, 1, 1,−4) (for

any edge length), since the edge direction is not compatible with the vertex ordering

Fig. 6 Invalid moves on a Hurwitz cover: in the first two cases, when moving the leaf/edge i along the
bounded edge e, the direction of e changes. In the third case, the edge direction of e remains the same, but
the direction is not compatible with the order of the pi

Remark 3.1 Before we start, we want to discuss why this problem is so difficult.
Since Mtrop

0,N is connected in codimension one, one would expect to be able to move
from one combinatorial type to another without problems. However, the intermediate
types need not be valid covers: a vertex of H̃trop

1 (x, p) can be considered as a point

in a codimension one cone of Mtrop
0,n , i.e. a curve with one four-valent vertex and

only trivalent vertices besides, with an additional marked end attached to every vertex.
Moving along an edge of H̃trop

1 (x, p)meansmoving an edge or leaf of that codimension
one type along a bounded edge. However, this cannot be done in an arbitrary manner,
since not all of these movements will produce valid covers (see Fig. 5 for an example).
Note that the p j already fix the length of all bounded edges of a vertex curve in
H̃

trop
1 (x, p) uniquely. So, we will usually identify each vertex of H̃trop

1 (x, p) with the
combinatorial type of the corresponding curve.

Recall that the weight or slope of an edge e is xe := ∣
∣∑

i∈I xi
∣
∣, where I is the split

on [n] induced by e. The orientation of e is chosen as in Example 2.15: e “points
towards I” if and only if

∑
i∈I xi > 0.

Now, when moving some leaf along a bounded edge, that edge might change direc-
tion. But the direction of the edges is dictated by the order of the pi , so this is not a
valid move. One can easily see the following (see Fig. 6 for an illustration): moving
an edge/leaf i to the other side of a bounded edge e changes the direction of that edge
if and only if one of them is incoming and one is outgoing (recall that we consider
leaves as incoming if they have negative weight) and |xi | > xe. Note that, even if the
direction of an edge does not change, moving an edge might be illegal (see the last
diagram in Fig. 6), if the resulting edge configuration does not agree with the order
on the p j .
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Definition 3.2 A vertex-type cover is any cover corresponding to a vertex of
H̃

trop
1 (x, p).

Lemma 3.3 For n = 5, the cycle H̃trop
1 (x, p) is connected in codimension one for any

p and x.

Proof Let q, q ′ be two vertices of H̃trop
1 (x, p) and C,C ′ the corresponding rational

curves. Both curves consist of a single bounded edge connecting contracted ends
p0 < p1 with three leaves on one side and two on the other. We distinguish different
cases, depending on how many leaves have to switch sides to go from C to C ′.

Assume first that both curves only differ by the placement of one leaf, i.e. wewant to
move one leaf i from the four-valent vertex in C to the other side of the bounded edge.
We can assume without restriction that the four-valent vertex in C is at p0. Assume
that moving i to the other side is an invalid move. Then, the direction of the bounded
edge would be inverted in C ′, which is a contradiction to the fact that p0 < p1.

Now assume that both curves differ by an exchange of two leaves. Again we assume
that the four-valent vertex in C (and hence also in C ′) is at p0. Denote the leaves in
C at p0 by i, a, b and the remaining two at p1 by j, c and assume that C ′ is obtained
by exchanging i and j . If we can move either i in C or j in C ′, then we are in the
case where only one leaf needs to be moved, which we already studied. So assume
that i and j cannot be moved in C and C ′, respectively. By Remark 3.1, this means
that xi < −xe < 0, where xe is the weight of the bounded edge in C . Furthermore,
xi + xa + xb = −xe, so xa + xb > 0. We assume without restriction that xa > 0.
Hence, we can move a along the bounded edge to obtain a valid cover C1, whose
four-valent vertex is at p1. Since we assumed that we cannot move j in C ′, we must
have x j < 0 (it must be an incoming edge). This implies that we can move it to the left
in C1 to obtain a cover C2. We now have i, j, b at p0 and c, a at p1. We want to show
that we can move i to the other side. Assume this is not possible. Then, −xi > x ′

e,
where x ′

e is the weight of the bounded edge in C2. But x ′
e = −xi − x j − xb. This

implies 0 > −x j −xb. Again, since j cannot be moved inC ′, we have−x j > xa +xb.
Finally, we obtain that 0 > xa + xb − xb = xa > 0, which is a contradiction. Thus,
we can move i to the right side to obtain a cover C3. This cover now only differs
from C ′ by the placement of leaf a, so we are again in the first case (see Fig. 7 for an
illustration).

Now assume we have to move three leaves (see Fig. 8). That means we have to
exchange two leaves i, j from the four-valent vertex in C (again assume it is at p0) for
one leaf k at p1. Assume we cannot move i in C . In particular, xi < 0. But that means

Fig. 7 Connecting two curves differing by an exchange of leaves. The leaf wemoved in each step is marked
by a red line (Color figure online)
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Fig. 8 Two vertex types differing by a movement of three leaves. Depending on the direction of i , we can
move it either in C or in C ′

Fig. 9 Standard cover for
x = (3, 2, 1, −3,−1,−3, 1) at
p3

we can move i in C ′ to obtain a cover C1. This cover differs from C by the exchange
of j and k, so we already know they are connected.

Finally, assume that four leaves have to switch sides, i.e. we exchange two leaves
i, j at the four-valent at p0 for the two leaves k, l at p1. Assume we can move neither
i nor j . This means that xi , x j < 0. But then xi + x j < 0 as well, so the edge direction
would be inverted in C ′, which is a contradiction. Hence, we can move i or j and
reduced the problem to the case where only three leaves need to be moved.

It is easy to see that these are all possible cases. In particular, it is impossible to let
all five leaves switch sides, since this would automatically invert the direction of the
bounded edge. ��

As mentioned above, we want to show that for n > 5, we can connect each vertex
type to a vertex corresponding to a standard cover. Let us define this:

Definition 3.4 Let x ∈ Hn . We define an order <x on [n] by:

i <x j : ⇐⇒ xi < x j or (xi = x j and i < j).

A chain cover for x is a vertex-type cover with the additional property that the vertex
markedwith pi is connected to the vertexmarkedwith p j , if andonly if |i − j | = 1 (i.e.
the p j are arranged as a single chain in order of their size). Fix an s ∈ {0, . . . , n − 4}.
The standard cover for x at ps is the unique chain cover, where the leaves are attached
to the p j according to their size (defined by <x ) and ps is at the four-valent vertex.
More precisely, if leaf i is attached to pk and leaf j is attached to pl , then i <x j ⇐⇒
pk < pl (see Fig. 9 for an example of this construction).

Lemma 3.5 Each standard cover is a valid Hurwitz cover.

Proof We have to show that the edge connecting p j and p j+1 points towards p j+1 for
all j . Note that the weight and direction of an edge only depend on the split defined
by it.

We will say that a leaf lies behind pk , if it is attached to some pk′ , k′ ≥ k. Denote
the leaves lying behind p j+1 by i1, . . . , il . Their weights are by construction larger
than or equal to all weights of remaining leaves. Considering that the sum over all
leaves is 0, this implies that

∑l
s=1 xis > 0 (if it was 0, then all xi would have to be 0).

Hence, the bounded edge points towards p j+1. ��
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Fig. 10 Two Hurwitz covers for n = 9. In each case, the split cover at the edge marked by e is a cover for
n = 6 (the labels at the leaves are just indices in this case, not weights)

We will also need another construction in our proofs:

Definition 3.6 Let C be a vertex-type cover and e any bounded edge in C connecting
the contracted ends p and q. Removing e, we obtain two path-connected components.
For any contracted end r , we write Ce(r) for the component containing r .

Now assume Ce(p) contains the four-valent vertex and at least one other bounded
edge. The split cover at e is a coverC ′ obtained in the following way: remove the edge
e and keep only Ce(p). Then attach a leaf to p whose weight is the original weight
of e (or its negative, if e pointed towards p). This is obviously a vertex-type cover for
some x ′ = (x ′

1, . . . , x
′
m), where m < n (see Fig. 10 for an example). We denote the

leaf replacing e by le and call it the splitting leaf.

We now want to see that all chain covers are connected:

Lemma 3.7 Let x ∈ Hn and let p0, . . . , pn−4 ∈ R with p j ≤ p j+1 for all j . Then,
all chain covers for x are connected to each other.

Proof We will show that all chain covers are connected to a standard cover at some
ps . We prove this by induction on n. For n = 5, all covers are chain covers and our
claim follows from Lemma 3.3.

So let n > 5 and C be any chain cover. We can assume without restriction that the
vertices at p0 and pn−4 are trivalent (if they are not, one can easily see that at least one
leaf can be moved away). Take any bounded edge e connecting some p j and p j+1.
Suppose there is a leaf k at p j and a leaf l at p j+1, such that k >x l. This means that
exchanging k and l still gives a valid cover. We can assume without restriction that
j > 0, i.e. e is not the first edge (if j = 0, we can use a similar argument using a split
cover at the edge connecting pn−5 and pn−4 ).

Let C ′ be the split cover at the edge connecting p0 and p1. This is a cover on n − 1
leaves. By induction we know that C ′ is connected to the cover which only differs
from C ′ by exchanging k and l. Let C ′′ be any vertex-type cover occurring along that
path. Since p0 is smaller than all p j , we can lift C ′′ to a cover on n leaves: simply
re-attach the splitting leaf to p0. (see Fig. 11 for an illustration of the split-and-lift
construction in a different case).
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Fig. 11 Branch sorting construction: (1) Take the split coverC ′ at e. (2) Move that split cover to a standard
cover using induction. (3) Move the splitting leaf to the smallest p j . (4) Consider the lift of this cover. (5)
Move the smallest leaf at p′

1 = p2 to p0 to obtain C ′′

Hence, we obtain a path between C and the cover C̃ , where k and l have been
exchanged.We can apply this procedure iteratively to sort all leaves to obtain a standard
cover at some ps .

Finally, note that all standard covers are connected: one can always move the small-
est leaf at the four-valent vertex to the left (except of course at p0) and the largest leaf
to the right. This way the four-valent vertex can be placed at any contracted end. ��
Lemma 3.8 Let x ∈ Hn. Then, H̃

trop
1 (x, p) is connected in codimension one.

Proof We prove this by induction on n. The case n = 5 was already covered in lemma
3.3. Also note that for n = 4, the Hurwitz cycle H̃trop

1 (x, p) is by definition equal to
a Psi class and hence a fan curve.

So assume n > 5 and let q be a vertex of H̃trop
1 (x, p) with corresponding rational

curve C . We want to show that it is connected to the standard cover on p0. First, we
prove the following technical statement:

1) Let e be a bounded edge connecting p0 and some p j , such that Ce(p j ) contains
the four-valent vertex. Let C ′ be the split cover at e with degree x ′ = (x ′

1, . . . , x
′
m).

Let P = {p′
1, . . . , p

′
m} be the set of contracted ends in C ′ and assume p′

1 < . . . < p′
m .

Then, C is connected to the cover C ′′, obtained in the following way: first, remove all
leaves and contracted ends contained in C ′ from C together with any bounded edges
that are attached to them. Then, attach all p ∈ P as an ordered chain to p0, i.e. p′

1 to
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Fig. 12 How to reduce the number of bounded edges at p0: first move the four-valent vertex to p0 using
the construction from 1). Then, move one bounded edge along another according to the size of the pe

p0, p′
2 to p′

1, . . . etc. Assume the leaves in C ′ have weights xi1 ≤ · · · ≤ xim−1 . Attach
leaf i1 to p0, i2 to p′

1 and so on (see Fig.11).
We know by induction that C ′ is connected to the standard cover for x ′ at any

p ∈ P . Choose p, such that the standard cover at p has the splitting leaf attached to
the four-valent vertex. Since the splitting leaf has negative weight, we can move it to
the smallest contracted end. This gives us a chain cover C2 connected to C ′. As in the
proof of Lemma 3.7, we can lift the connecting path to a path of covers with degree
x by attaching p0 to the splitting leaf. Denote the lift of C2 by C ′

2. This cover has its
four-valent vertex at p′

1. Denote by k the smallest leaf at p′
1 with respect to <x and let

ω be the weight of the edge connecting p0 and p′
1. By definition ω = ∑

i∈I xi , where
I is the set of all leaves contained in C ′. By construction, k is the minimal element of
I with respect to <x . Hence, ω > k and we can move k to p0 to obtain C ′′.

We can now use this to prove the following:
2) If p0 has only one bounded edge attached to it, then C is connected to the

standard cover at p0.
We can assumewithout restriction that p0 is not at the four-valent vertex (otherwise,

we can move at least one leaf). We now apply the construction described in 1) to the
single bounded edge at p0. This gives us a chain cover for x , which by Lemma 3.7 is
connected to the standard cover.

It remains to prove the following statement, which implies our theorem:
3) C is always connected to a cover C ′, in which p0 has only one bounded edge

attached to it.
As any vertex is at most four-valent, p0 can have at most four bounded edges

attached to it. First, assume that only two bounded edges e, e′ are attached to p0 and
their other vertices are attached to contracted ends pe ≤ pe′ . If p0 is four-valent, we
can move e′ along e to obtain a valid cover in which p0 has a single bounded edge
attached to it. If the four-valent vertex lies behind one of the edges, say e, we apply
the construction of 1) to this edge. This way we obtain a cover in which p0 is still
attached to two bounded edges and is also four-valent.

Assume p0 has three bounded edges e, e′, e′′ attached to it, connecting it to con-
tracted ends pe ≤ pe′ ≤ pe′′ . With the same argument as in the case of two bounded
edges, we can assume that the vertex at p0 is four-valent. Nowwe can move e′ along e.
Thus, we obtain a cover where p0 has only two bounded edges attached to it. A similar
argument covers the case of four bounded edges (see also Fig. 12 for an illustration in
the case of two edges). ��

Theorem 3.9 For all k, p and x, the cycles H̃trop
k (x, p) andHtrop

k (x, p) are connected
in codimension one.
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Fig. 13 Sorted maximal cover
in Htrop

2 (x) for
x = (1, 2, 3, −3,−5, 1, 1) on
S = {1, 3, 4}

Proof Note that it suffices to show the statement for H̃trop
k (x, p), since Htrop

k (x, p) =
ft(H̃trop

k (x, p)) and connectedness in codimension one is independent of the chosen
polyhedral structure.

The general idea of the proof is that for larger k, we mark fewer vertices with
contracted ends and thus have more degrees of freedom to “move around”, so we can
apply induction on k.

Similar to Definition 3.4, we define a sorted maximal cover for x on S, with S ⊆
[n − 2], |S| = n − 2− k: we obtain a trivalent curve by attaching the leaves to a chain
of n − 3 bounded edges sorted according to the ordering <x . We number the vertices
{1, . . . , n − 2} (from lowest leaf to highest). We then attach the contracted ends p j ,
in order of their size, to the vertices with numbers in S (see Fig. 13 for an example).

It is easy to see that all sorted maximal covers are connected in codimension one:
assume that ( j−1) /∈ S � j (i.e. there is a contracted end at vertex j but none at vertex
( j − 1)). Then, the sorted cover on (S \ { j}) ∪ { j − 1} shares a codimension one face
with this cover, obtained by shrinking the edge between the two vertices ( j − 1), j
to length 0. In this manner, we see that every sorted cover is connected to the sorted
maximal cover on S = {1, . . . , n − 2 − k}.

Now, we want to see that every maximal cell σ is connected to the maximal cone
of a sorted cover. The cell σ corresponds to a trivalent curve, with some of the vertices
marked with contracted ends p0, . . . , pn−3−k . We now add a further marking q ∈ R

on an arbitrary vertex such that it is compatible with the edge directions. This gives
us an element of H̃trop

k−1(x, p). By induction, the corresponding cell is connected to a
sorted cover on S′, with

∣
∣S′∣∣ = n − 3− k. We can “lift” each intermediate step in the

connecting path to a valid cover in H̃trop
k (x, p) simply by forgetting the mark q. Thus,

we have connected σ to a sorted maximal cover. ��

3.2 Irreducibility

We now want to see when a Hurwitz cycle is irreducible. We just proved that it is
connected in codimension one, so we can try to apply Proposition 2.5. To see whether
a Hurwitz cycle is locally irreducible, we will make use of our knowledge of the
local structure of Mtrop

0,N (Corollary 6.18 in [22]): if τ is a cone of the combinatorial

subdivision of Mtrop
0,N , corresponding to a curve C with vertices q1, . . . , qk , then

StarMtrop
0,N

(τ ) = Mtrop
0,val(q1)

× · · · × Mtrop
0,val(qk)

.

Lemma 3.10 For any x ∈ Hn and pairwise different p j , the cycle H̃
trop
k (x, p) is

locally at each codimension one face weakly irreducible.
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Fig. 14 Six possible resolutions
of a four-valent vertex with a
contracted end

Proof Let τ be a codimension one cell of H̃trop
k (x, p) andCτ the corresponding combi-

natorial type. Since we chose the p j to be pairwise different,Cτ has exactly one vertex
v adjacent to four bounded edges or non-contracted leaves. Depending on whether a
contracted end is also attached, the vertex is either four- or five-valent, corresponding
to anM4- or M5-coordinate.

Denote by S := Star
H̃

trop
k (x)(τ ). First let us assume that no contracted end is attached

to v. Then, there are three maximal cones adjacent to τ , corresponding to the three
different possible resolutions of v. The projections of the normal vectors to the M4-
coordinate of v are (multiples of) the three rays ofM4. In particular, there is only one
possible way to assign weights to these rays so that they add up to 0. Hence, the rank
of �S is 1, showing that S is a multiple of an irreducible cycle.

Now assume there is a contracted end p at v and four edges/non-contracted ends.
Then, there are six maximal cones adjacent to τ : consider v as a four-valent vertex
with an additional point for the contracted end. Then, we still have three possibilities
to resolve v, but in each case, we have two possibilities to place the additional point
(see Fig. 14). Now label the four ends and p with numbers 1, . . . , 5 and assume p is
labelled with 5. Then, the projections of the normal vectors are multiples of the vectors
v{i, j} ∈ M5 with i, j �= 5. The set of these vectors has been studied in [27], and it is
shown there that there is only one way to assign weights to these rays such that they
add up to 0. ��

Corollary 3.11 For any x ∈ Hn and any pairwise different p j , H̃
trop
k (x, p) is weakly

irreducible.

Example 3.12 We now want to see that this is the strongest possible statement (see
also the subsequent polymake example).

• Non-generic points: Let n = 5, k = 1, x = (1, 1, 1, 1,−4). If we choose
p0 = p1 = 0, then H̃trop

1 (x, p) is not irreducible: one can use a-tint to compute
that the rank of �

H̃
trop
1 (x) is 3.
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• Strict irreducibility: Let x ′ = (1, 1, 1, 1, 1,−5), k′ = 1. For (p0, p1, p2) =
(0, 1, 2), we obviously obtain a cycle with weight lattice �

H̃
trop
1 (x ′,p) of rank 1.

However, the gcd of all weights in this cycle is 2, so it is not irreducible in the
strict sense.

• Unmarked cycles: Again, choose x = (1, 1, 1, 1,−4), k′ = 1 and generic points
p0 = 0, p1 = 1. Passing to H

trop
1 (x, p), the rank of �

H
trop
1

(x, p) is 18. One

can also see that Htrop
1 (x, p) is not locally irreducible: it contains the two lines

{ 12v{1,2} + R≥0v{3,4}}, { 12v{3,4} + R≥0v{1,2}}, which intersect transversely in the
vertex 1

2v{1,2} + 1
2v{3,4}. Locally at this vertex, the curve is just the union of two

lines, which is of course not irreducible. However, one can again use the computer
to see that there are also vertices of H̃trop

1 (x, p) such that the map induced locally
by ft is injective, but such that the image of the local variety at that vertex is not
irreducible.

polymake example: computing Hurwitz cycles.
We compute the Hurwitz cycles from Example 3.12. First, we compute the cycle H̃trop

1 ((1, 1, 1, 1,−4), p)
for p0 = p1 = 0 (If no points are given, they are set to 0). A basis for its weight space is given as row vectors

of a matrix. We then compute H̃trop
1 ((1, 1, 1, 1, 1, −5), q) for generic points q = (0, 1, 2) (the first point is

always zero in a-tint) and display its weight space dimension. Finally, we computeHtrop
1 (1, 1, 1, 1,−4)

for generic points (0, 1) and the dimension of its weight space.

atint > $h1 = hurwitz_marked_cycle(1,(new Vector<Int>(1,1,1,1,-4)));
atint > print $h1->WEIGHT_SPACE->rows();
3
atint > $h2 = hurwitz_marked_cycle(1,(new Vector<Int>(1,1,1,1,1,-5)),

(new Vector<Rational>(1,2)));
atint > print $h2->WEIGHT_SPACE->rows();
1
atint > print gcd($h2->TROPICAL_WEIGHTS);
2
atint > $h3 = hurwitz_cycle(1,(new Vector<Int>(1,1,1,1,-4)),

(new Vector<Rational>([1])));
atint > print $h3->WEIGHT_SPACE->rows();
18

Remark 3.13 So far, we have not found a single example of an irreducible Hurwitz
cycle H

trop
k (x, p). If we pick p = 0, it is actually obvious that the cycle must be

reducible: for any i = 1, . . . , n it contains the Psi class product ψ
(n−3−k)
i as a non-

trivial k-dimensional subcycle. In fact, finding a canonical decomposition, e.g. in terms
of Psi class products, would be a large step towards finding a higher-dimensional
ELSV formula. However, while possible decompositions can be found with a-tint,
the problem proves computationally infeasible in all but the smallest cases.

3.3 Cutting out Hurwitz cycles

For intersection-theoretic purposes, it is very tedious to have a representation of the
cycle Htrop

k (x) only as a push-forward. We would like to find rational functions that
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successively cut out (recession fans of) Hurwitz cycles directly in the moduli space
Mtrop

0,n . It turns out that there is a very intuitive rational function cutting out the codi-

mension one Hurwitz cycle H
trop
n−4(x) in Mtrop

0,n . Alas, this seems to be the strongest
possible statement already that we can make in this generality. For n ≥ 7, we can find
examples where there is no rational function at all that cuts out Htrop

n−5 from H
trop
n−4(x).

It remains to be seen whether there might be other rational functions or piecewise
polynomials cutting out lower-dimensional Hurwitz cycles fromMtrop

0,n .

Throughout this section, we assume pi = 0 for all i , i.e. Htrop
k is a fan inMtrop

0,n .

3.3.1 Push-forwards of rational functions

We already know that H̃trop
n−4(x) can by definition be cut out from

ev∗
0(0) · �0 · �1 · Mtrop

0,2 (R, x) =: Mx

by the rational function ev∗
1(0) (note that there is an obvious isomorphism Mx ∼=

ψn+1 · ψn+2 · Mtrop
0,n+2). The forgetful map ft : Mtrop

0,2 (R, x) → Mtrop
0,n now induces a

(surjective) morphism of equidimensional tropical varieties (by abuse of notation we
also denote it by ft)

ft : Mx → Mtrop
0,n ,

which is injective on each cone of Mx . We will see that under these conditions, we
can actually define the push-forward of a rational function. Note that we call a tropical
variety X smooth, if it is locally at each point isomorphic to a matroidal fan (modulo
some linear space). We will not go into the details of matroids and matroidal fans,
which can, for example, be found in [2,14,35].

Definition 3.14 Let X,Y be d-dimensional tropical cycles and assume Y is smooth.
Let x ∈ X . If f : X → Y is a morphism, we denote by fx the induced local map

fx : StarX (x) → StarY ( f (x)) =: Vx .

We define the mapping multiplicity of x to be

mx := f ∗
x ( f (x)).

Note that, since Vx is a smooth fan, any two points in it are rationally equivalent by
[13, Theorem 9.5], so deg f ∗

x (·) is constant on Vx . In particular, to compute mx , we
can replace f (x) by any point y in a sufficiently small neighbourhood.

Now let g : X → R be a rational function. We define the push-forward of g under
f to be the function

f∗g : Y → R, y �→
∑

x : f (x)=y

mxg(x).
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Proposition 3.15 Under the assumptions above, f∗g is a rational function on Y .

Proof We can assume without restriction that X and Y have been refined in such a
manner that f maps cells of X to cells of Y and g is affine linear on each cell of X .
Let us first see that f∗g is well defined:

Let y ∈ Y and denote by τ the minimal cell containing it. We want to see that y has
only finitely many preimages x ∈ X with mx �= 0. Assume there is a cell ρ in X such
that f (ρ) = τ , but dim(ρ) > dim(τ ), so f|ρ is not injective. In particular, all maximal
cells ξ > ρ map to a cell of dimension strictly less than d. Now let x ∈ relint(ρ) with
f (x) = y. If we pick a point q ∈ Vy that lies in a maximal cone adjacent to τ , it has no
preimage under fx : all maximal cones in StarX (x) are mapped to a lower-dimensional
cone. It follows that mx = 0.

We now have to show that f∗g is continuous. Let σ be a maximal cell of Y . Denote
by

Cσ = {ξ ∈ X (d), f (ξ) = σ }.

Then, for each y ∈ relint(σ ), we have

f∗g(y) =
∑

ξ∈Cσ

ωX (ξ)ind(ξ)g( f −1
|ξ (y)),

where ind(ξ) := ∣
∣�σ / f (�ξ )

∣
∣ is the index of f on ξ . Since f|ξ is a homeomorphism,

this is just a sum of continuous maps, so ( f∗g)|relint(σ ) is continuous.
Assume τ is a cell of Y of dimension strictly less than d and contained in some

maximal cell σ . Let s : [0, 1] → σ be a continuous path with:

• s([0, 1)) ⊆ relint(σ )

• s(1) ∈ relint(τ )

We write yt := s(t) for t ∈ [0, 1]. Then, we have to show that limt→1 f∗g(yt ) =
f∗g(y1). If we denote by sξ = ( f −1

|ξ ◦ s) the unique lift of s to any ξ ∈ Cσ , we have

lim
t→1

f∗g(yt ) = lim
t→1

∑

ξ∈Cσ

ωX (ξ)ind(ξ)g(sξ (t))

=
∑

ξ∈Cσ

ωX (ξ)ind(ξ) lim
t→1

g(sξ (t))

=
∑

ξ∈Cσ

ωX (ξ)ind(ξ)g(lim
t→1

sξ (t)
︸ ︷︷ ︸

=:xξ

),

where the last equality is due to the continuity of g. Note that xξ lies in the unique
face ρξ < ξ such that f (ρξ ) = τ .

Conversely, let ρ be any cell of X with dim(ρ) = dim(τ ) and f (ρ) = τ . Assume
ρ has no adjacent maximal cell mapping to σ . Then, if we let x := f −1

|ρ (y), we must
again have mx = 0. We define
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Cτ := {ρ ∈ X (dim τ); f (ρ) = τ and there exists ξ > ρ with f (ξ) = σ }.

Then, we have

f∗g(y1) =
∑

ρ∈X (dim τ )

f (ρ)=τ

m f −1
|ρ (y1)

g( f −1
|ρ (y1))

=
∑

ρ∈Cτ

m f −1
|ρ (y1)

g( f −1
|ρ (y1)) (1)

If xρ := f −1
|ρ (y1), then for small ε, we have

m f −1
|ρ (y1)

= deg f ∗
xρ
y1−ε =

∑

ξ>ρ
f (ξ)=σ

ωX (ξ)ind(ξ).

If we plug this into (1), we see that each ξ ∈ Cσ occurs exactly once (since ξ cannot
have two faces ρ mapping to τ due to injectivity), so finally we have limt→1 f∗g(yt ) =
f∗g(y1). ��
Proposition 3.16 Let f : X → Y be a morphism of d-dimensional tropical cycles.
Assume Y is smooth and f is injective on each cell of X. Then,

f∗g · Y = f∗(g · X).

Proof By studying this identity locally and dividing out lineality spaceswe can assume
that:

• Y is a smooth one-dimensional tropical fan.
• X = ∐r

i=1 Xi is a disjoint union of one-dimensional tropical fan cycles.
• f|Xi : Xi → Y is a linear map.
• g is affine linear on each ray of Xi .

We write Z := f∗g · Y and Z ′ := f∗(g · X). We have to show that ωZ (0) = ωZ ′(0).
We know that

ωZ ′(0) =
r∑

i=1

ωg·Xi (0) =
r∑

i=1

∑

ρ∈X (1)
i

ωXi (ρ)g(uρ),

where uρ is the integer primitive generator of ρ. On the other hand, we have

ωZ (0) =
∑

σ∈Y (1)

f∗g(uσ )

=
∑

σ∈Y (1)

r∑

i=1

∑

ρ∈X (1)
i

f (ρ)=σ

ωXi (ρ)ind(ρ)g

(
uρ

ind(ρ)

)

.
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Fig. 15 A morphism where the
push-forward of a function does
not give the same divisor as the
push-forward of the divisor of
this function. All weights are 1,
and the function slopes of g and
f∗g are given in brackets

Obviously, each ray ρ can occur at most once in this sum, and by assumption, it occurs
at least once. Hence, we see that ωZ (0) = ωZ ′(0).

Example 3.17 Note that the assumption that f is injective on each cone is necessary.
Consider the morphism depicted in Fig. 15: in this case, we get that f∗(g · X) = 4
and f∗g · Y = 2.

3.3.2 Cutting out the codimension one cycle

By definition, we have

H
trop
n−4(x) = ft∗(H̃trop

n−4(x)) = ft∗(ev∗
1(0) · Mx )

andwe already discussed that ft : Mx → Mtrop
0,n is a morphism of (n−3)-dimensional

tropical varieties which is injective on each cone of Mx . Since Mtrop
0,n is smooth, we

immediately obtain the following result:

Corollary 3.18 The codimension one Hurwitz cycle can be cut out as

H
trop
n−4 = (ft∗(ev∗

1(0))) · Mtrop
0,n .

We now want to describe the rational function (ft∗(ev∗
1(0))) in more intuitive and

geometric terms:

Lemma 3.19 Let C be any curve in Mtrop
0,n . Given x ∈ Hn, this defines a cover of R

up to translation. Pick any such cover h : C → R. Let v1, . . . , vr be the vertices of
C. Then,

(ft∗(ev∗
1(0)))(C) =

∑

i �= j

(val(vi ) − 2)(val(v j ) − 2)
∣
∣h(vi ) − h(v j )

∣
∣ .
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Proof It suffices to show this for curves in maximal cones. Since (ft∗(ev∗
1(0))) is

continuous by Proposition 3.15, the claim follows for all other cones.
So let C be an n-marked trivalent curve with vertices v1, . . . , vn−2. We obtain all

preimages inMx by going over all possible choices of vertices vi , v j and attaching the
additional leaves l0 to vi and l1 to v j . We denote the corresponding n+2-marked curve
by C(i, j). Note that ev1 maps C(i, j) to the image of l1 under the cover obtained by
fixing the image of l0 to be 0. We immediately see the following:

• ev1(C(i, i)) = 0.
• ev1(C(i, j)) = −ev1(C( j, i)).
• |ev1(C(i, j))| = ∣

∣h(vi ) − h(v j )
∣
∣

Since ev∗
1(0)(x) = max{0, ev1(x)} and the forgetful map has index 1, the claim

follows. ��

3.4 Hurwitz cycles as linear combinations of boundary divisors

In [4], the authors present several different representations of Hk(x). One is given in

Lemma 3.20 ([4, Lemma 3.6])

Hk(x) =
∑

�∈Tn−3−k

⎛

⎝m(�)ϕ(�)
∏

v∈�(0)

(val(v) − 2)��

⎞

⎠ ,

where � runs over Tn−3−k , the set of all combinatorial types of rational n-marked
curves with n − 3 − k bounded edges and �� is the stratum of all covers with dual
graph �. Furthermore, m(�) is the number of total orderings on the vertices of �

compatible with edge directions and ϕ(�) is the product over all edge weights.

There is an obvious, “naive” tropicalization of this: Tn−3−k corresponds to the codi-
mension k skeleton of Mtrop

0,n . We will write m(τ ) := m(�τ ), xτ := ϕ(�τ ) for any
codimension k cone τ and its corresponding combinatorial type �τ . The boundary
stratum �� we translate like this:

Definition 3.21 Let (X , w) be a simplicial tropical fan. For a d-dimensional cone τ

generated by rays v1, . . . , vd we define rational functions ϕvi on X by fixing its value
on all rays:

ϕvi (r) =
{
1, if r = vi

0, otherwise

for all r ∈ X (1). We then write ϕτ := ϕv1 . . . ϕvd for subsequently applying these d
functions. In the case of X = Mtrop

0,n and vi = vI , we will also write ϕI instead of ϕvi .

As a shorthand notation, we will write Ck for all dimension k cells ofMtrop
0,n and Ck

for all codimension k cells (in its combinatorial subdivision) (Fig. 16).
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Fig. 16 We compute (ft∗(ev∗
1(0)))(C) for an example. We choose parameters x = (1, 1, 1, 1,−4) and

C = v{1,2} + 1
2 v{3,4}. In this case, Lemma 3.19 tells us that the value of the function at C is |a2 − a1| +

|a3 − a1| + |a3 − a2| = 1 + 2 + 1 = 4

Now, we define the following divisor of a piecewise polynomial (see, for example,
[12] for a treatment of piecewise polynomials. For now it suffices if we define them
as sums of products of rational functions):

Dk(x) :=
∑

τ∈Ck

m(τ ) · xτ ·
⎛

⎜
⎝

∏

v∈�
(0)
τ

(val(v) − 2)

⎞

⎟
⎠ · ϕτ · Mtrop

0,n ,

where ϕτ = ∏
vI∈τ (1) ϕI and the sum is to be understood as a sum of tropical cycles.

We can now ask ourselves, what the relation between Dk(x) andH
trop
k (x) is. They are

obviously not equal: Dk(x) is a subfan of Mtrop
0,n (in its coarse subdivision), but even

if we choose all pi to be equal to make Htrop
k (x) a fan, it will still contain rays in the

interior of higher-dimensional cones of Mtrop
0,n .

This also rules out rational equivalence (as defined in [1]): two cycles are equivalent,
if and only if their recession fans are equal.

But there is another, coarser equivalence onMtrop
0,n that comes from toric geometry.

Aswas shown in [20], the classicalM0,n can be embedded in the toric variety X (Mtrop
0,n )

and we have

Cl(X (Mtrop
0,n )) ∼= Pic(M0,n)

DI �→ δI ,

where DI is the divisor associated with the ray vI and δI is the boundary stratum of
curves consisting of two components, each containing the marked points in I and I c,
respectively. By [15], DI corresponds to some tropical cycle of codimension one in
Mtrop

0,n and [33, Corollary 1.2.19] shows that this is precisely ϕI · Mtrop
0,n . Hence, the

following is a direct translation of numerical equivalence in M0,n .

Definition 3.22 Two k-dimensional cyclesC, D ⊆ Mtrop
0,n arenumerically equivalent,

if for all k-dimensional cones ρ ∈ Ck , we have

ϕρ · C = ϕρ · D ∈ Z.
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Theorem 3.23 H
trop
k (x) is numerically equivalent to Dk(x).

Proof Note that for a generic choice of pi , the cycle H
trop
k (x) does not intersect any

cones of codimension larger than k and intersects all codimension k cones transversely.
For the proof, we will need the following result from [4, Proposition 5.4], describing
the intersection multiplicity of Htrop

k (x) with a codimension k-cell τ :

τ · Htrop
k (x) = m(τ ) · xτ ·

∏

v∈C(0)
τ

(val(v) − 2).

This implies that for any ρ ∈ Ck , we have

ϕρ · Htrop
k (x) =

∑

τ∈Ck

(τ · Htrop
k (x)) · ω

ϕρ ·Mtrop
0,n

(τ )

=
∑

τ∈Ck

m(τ ) · xτ ·
∏

v∈C(0)
τ

(val(v) − 2) · ω
ϕρ ·Mtrop

0,n
(τ )

=
∑

τ∈Ck

m(τ ) · xτ ·
∏

v∈C(0)
τ

(val(v) − 2) · (ϕτ · ϕρ · Mtrop
0,n )

= ϕρ · Dk(x),

where ω
ϕρ ·Mtrop

0,n
(τ ) = ϕτ · ϕρ · Mtrop

0,n by [12, Lemma 4.7]. ��
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