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Abstract Let G be a graph, and let I be the edge ideal of G. Our main results in this
article provide lower bounds for the depth of the first three powers of I in terms of

the diameter of G. More precisely, we show that depth R/I t ≥
⌈
d−4t+5

3

⌉
+ p − 1,

where d is the diameter of G and p is the number of connected components of G and
1 ≤ t ≤ 3. For general powers of edge ideals we show that depth R/I t ≥ p− t . As an
application of our results we obtain the corresponding lower bounds for the Stanley
depth of the first three powers of I .
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1 Introduction

Let R be either a Noetherian local ring or a standard graded k-algebra, where k is a
field. Let I be an ideal of R, and when R is graded, assume that I is a graded ideal.
Let d = dim R. A classical result by Burch [5], which was improved by Broadmann
[2], states that

lim
t→∞ depth R/I t ≤ d − �(I ),

where �(I ) is the analytic spread of I . Eisenbud and Huneke [11] showed that the

equality holds if the associated graded ring grR(I ) =
∞⊕
i=0

I i/I i+1 of I is Cohen–

Macaulay. Therefore, the limiting behavior of the depth is well understood. However,
the initial behavior of the depth of powers is still mysterious. Thus, it is natural to
investigate lower bounds for depth R/I t .

In the case of monomial ideals, lower bounds for the depth of the first power,
depth R/I , have been studied extensively [15,16,24]. Herzog and Hibi [21] deter-
mined that depth R/I t is a nonincreasing function if all the powers of I have a linear
resolution. They also obtained lower bounds for depth R/I t if all the powers of I have
linear quotients, a condition that implies that all the powers of I have linear resolu-
tions [21]. In particular, they showed that all edge ideals associated with a finite graph
whose complementary graph is chordal have linear quotients. Also, if I is a square-
free Veronese ideal (which includes the class of complete graphs), then all powers
of I have linear quotients. However, in general edge ideals and their powers do not
have linear resolutions. Even for monomial ideals the depth function can behave quite
wildly, see [1]. For square-free monomial ideals, it is known that depth R/I t will not
necessarily be a nonincreasing function, see [23, Theorem 13], but the question is still
open for edge ideals of graphs.

Another motivation for studying lower bounds for depth R/I t is the fact that these
lower bounds provide upper bounds for projdimR R/I t , the projective dimension of
R/I t . When I is the edge ideal of a graph, then an upper bound for the projective
dimension of a graph’s edge ideal provides a lower bound for the first nonzero homol-
ogy group of the graph’s independence complex [8, Observation 1.2]. Moreover, when
I is square-free monomial, its cohomological dimension and projective dimension are
equal, [12, Theorem 0.2] or [33, Corollary 4.2]. Many researchers have studied the
question of finding upper bounds for the projective dimension of R/I and upper bounds
for the cohomological dimension, see, for example, [13,14,19,25,28,29].

We now describe our setup. Let V = {x1, . . . , xn} be a set of n vertices and let G
be a simple graph (no multiple edges, no loops) on V . Let I be the edge ideal of G in
the ring R = k[x1, . . . , xn], where k is a field. By depth R/I t we mean the maximum
length of an R/I t -regular sequence in m = (x1, . . . , xn). When I is the edge ideal of
a bipartite graph, then depth R/I t ≥ 1, since m /∈ Ass(R/I t ), by [32, Theorem 5.9].
In a recent article, Morey gives lower bounds for the depths of all powers when I is
the edge ideal of a forest [27]. We focus our interest on studying lower bounds for the
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depths of powers of edge ideals of graphs without any restrictions on the shape of the
graph.

The article is organized as follows. In Sect. 2 we give the necessary definitions and
relevant background. In Sects. 3 and 4 we establish the main results of this article.
More precisely, we prove in Theorem 3.1 that when I is the edge ideal of a graph,
then depth R/I ≥ ⌈ d+1

3

⌉
, where d is the diameter of the graph. One can improve this

bound by considering the diameters of each connected component of the graph. We
show in Corollary 3.3 that when G has p connected components, then depth R/I ≥∑p

i=1

⌈
di+1
3

⌉
, where di is the diameter of the i th connected component of G.

We develop a series of lemmas that leads us to prove lower bounds for the second
and third powers of the edge ideal of a graph. We first prove in Proposition 4.3
that depth R/I t ≥ p − t for any t ; then, in Theorems 4.4 and 4.13 we show that
depth R/I 2 ≥ ⌈ d−3

3

⌉ + p − 1 and depth R/I 3 ≥ ⌈ d−7
3

⌉ + p − 1, where I is the
edge ideal of a graph G, d is the diameter of G, and p is the number of connected
components of G. It is worth noting here that in order to establish the bounds for the
second and third powers we need to deal with the depth of the edge ideal of a graph
that potentially has loops. We provide a lower bound on the depth of the edge ideal of
a graph with loops based on knowledge of the position of the loops. More precisely,
we prove in Proposition 3.5 that when I is the edge ideal of a graph with loops and
� is an integer such that there exists a vertex u with d(u, x) ≥ � for all vertices x for
which there is a loop on x , then depth R/I ≥ ⌈

�−1
3

⌉
. This result for the depth of the

edge ideal of a graph with loops is of independent interest.
We conclude the article by using [4, Proposition 2.6] or [31, Lemma 2.2] in place

of the Depth Lemma, to extend our results to provide lower bounds on the Stanley
depth of the powers of I . In particular, in Theorem 4.18 we show that sdepth R/I t ≥⌈
d−4t+5

3

⌉
+ p − 1 for 1 ≤ t ≤ 3, where sdepth denotes the Stanley depth.

2 Background

Let V = {x1, . . . , xn} be a set of n vertices, and let G be a graph on V = V (G).
Let E = E(G) denote the set of edges of G. Unless otherwise stated we will assume
that G is a simple graph, that is, without loops and without multiple edges. Let R =
k[x1, . . . , xn] be a polynomial ring, where k is a field. Note that we will not distinguish
between the vertices of a graph and the variables in the corresponding polynomial ring.
The edge ideal I (G) of a graph G is defined to be the monomial ideal in the ring R
generated by the monomials xi x j , where {xi , x j } ∈ E . Similarly, if I is a square-free
monomial ideal generated in degree two, G(I ) is the graph associated with I . That is,
{xi , x j } ∈ E(G(I )) if and only if xi x j is a generator of I .

We now collect some useful definitions from graph theory. For algebraic definitions
and background material, see [26] or [36].

Definition 2.1 Let G be a graph, let V = V (G) = {x1, . . . , xn} and let E = E(G).
Then,

(a) A path of length r −1 is a set of r distinct vertices xi1 , . . . , xir together with r −1
edges xi j xi j+1 , where xi j ∈ {x1, . . . , xn} and 1 ≤ j ≤ r − 1.
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(b) The distance between two vertices u and v is the length of the shortest path
between u and v and is denoted as d(u, v).

(c) The diameter of a connected graph is d(G) = max{d(u, v) | u, v ∈ V }. There-
fore, if d = d(G), then there exist vertices u, v ofG with d(u, v) = d. In this case
we say that a path of length d with endpoints u and v realizes the diameter of G.
Although technically the diameter of a disconnected graph is infinite, we will find
it useful to refer to the maximum of the diameters of the connected components
of G as the diameter of G when G is disconnected.

(d) Let u ∈ V . The neighbor set of u is the set N (u) = {v ∈ V (G) | {u, v} ∈ E}.
When N (u) = ∅, then u is called an isolated vertex, and when the cardinality of
N (u) is one, then u is called a leaf.

(e) A loop in a graph G is an edge both of whose endpoints are equal, that is, an edge
{x, x} ∈ E . A loop on x corresponds to a generator x2 in the edge ideal, so the
edge ideal of a graph with loops is no longer square-free. Note that if loops are
added to a graph, the distance between two vertices is unchanged.

When dealing with general graphs, it is helpful to consider a construction that is
commonly used to produce a spanning tree. Although the spanning tree produced will
not be used here, nonetheless the construction yields a partition of the vertices that we
will exploit.

Notation 2.2 Suppose G is a connected graph and u ∈ V (G). Let Xi
G(u) = {x ∈

V (G) | d(u, x) = i}. Note that X0
G(u) = {u} and that i runs from 0 to d, where

d = max {d(u, x) | x ∈ V (G)}. The sets Xi
G(u) form a partition of V (G). Once u has

been fixed, we will omit G and u from the notation when they are clear from context.
Wewill frequently choose u to be an endpoint of a path realizing the diameter, in which
case d will be the diameter of G. When a graph G is not connected, this construction
can be applied to the connected component of G containing u.

When a vertex u has been fixed inG, we will denote the connected component ofG
that contains u by uG. Thus, if I is an edge ideal and u has been fixed, then d(uG(I ))
denotes the diameter of the connected component of G(I ) containing u.

There are two basic facts about these sets that will prove useful in the sequel. Fix
u and form Xi = Xi

G(u). First note that if x ∈ Xi for i ≥ 1, then N (x) ∩ Xi−1 is
nonempty since there is a path from u to x of length precisely i by the definition of
Xi . Also, if u and v are the endpoints of a path realizing the diameter, then v ∈ Xd

and if y ∈ N (v), then y is not a leaf. If y were a leaf, d(u, y) = d +1, a contradiction.
The next lemma is well known, see, for example, [27, Lemma 2.2].

Lemma 2.3 Let I be an ideal in a polynomial ring R, let x be an indeterminate over
R, and let S = R[x]. Then depth S/I S = depth R/I + 1.

If x1 is an isolated vertex of a graph G, define R′ = k[x2, . . . , xn]. Notice that all
generators of I = I (G) lie in R′, and so by abuse of notation we can consider an ideal
I ′ = I R′ in the ring R′ generated by the edges of the graph G. Then, by Lemma 2.3,
depth R/I = depth R′/I ′ + 1. Thus we will assume that graphs are initially free of
isolated vertices and that all variables of R divide at least one generator of I .
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Throughout the paper we will perform operations on ideals that correspond to the
graph minors of contractions and deletions. A deletion minor is formed by removing
a vertex x from G and deleting any edge of G containing x . This corresponds to the
ideal (I, x), or more precisely the quotient ring R/(I, x). This process can result in
isolated vertices, whichwill increase the depth of the quotient ring as in Lemma 2.3. To
provide clarity we will count isolated vertices separately and will require connected
components of a graph to have at least two vertices. A contraction minor of G is
formed by removing redundancies from the set {e \ {x} | e ∈ E(G)} to obtain the
edge set of the contraction. Note that if y is a neighbor of x in G, it becomes an
isolated vertex of the contraction as any other edge containing y was removed as a
redundancy. This corresponds to forming the ideal (I : x). Note that N (x) ⊆ (I : x),
and so such an ideal may have variables as generators. However, if K = (J, x1) is a
minimal generating set of an ideal, then R/K ∼= k[x2, . . . , xn]/J . Thus, we will refer
to K as an edge ideal if J is an edge ideal.

For clarity and ease of reference, we now state several previously known results.

Lemma 2.4 Let I be a monomial ideal in a polynomial ring R, and let M be a
monomial in R. If y is a variable such that y does not divide M and K is the extension
in R of the image of I in R/y, then ((I : M), y) = ((K : M), y).

Proof See the proof of [18, Theorem 3.5]. �

Lemma 2.5 [27, Lemma 2.10] Suppose G is a graph, I = I (G), x is a leaf of G, and
y is the unique neighbor of x. Then (I t : xy) = I t−1 for any t ≥ 2.

We conclude this section with an extension of the preceding lemma that will allow
us to use any edge of the graph.

Lemma 2.6 Let G be a graph, I = I (G) and {x, y} ∈ E(G). Then (I 2 : xy) =
(I, E), where E =< xi y j |xi ∈ N (x), y j ∈ N (y) >. More generally, if x1 · · · x2t ∈
I t , then (I t+1 : x1 · · · x2t ) = (I, E), where E is the ideal generated by all degree two

monomials y1y2 supported on
2t⋃
i=1

N (xi ) satisfying y1y2x1 · · · x2t ∈ I t+1.

Proof Suppose first that a is aminimal generator of (I, E). If a ∈ I , then a ∈ (I 2 : xy)
since xy ∈ I . Else a = xi y j ∈ E and axy = xi xy j y ∈ I 2. Thus, (I, E) ⊆ (I 2 : xy).

Conversely, suppose b ∈ (I 2 : xy) but b /∈ I . Since (I 2 : xy) is a monomial ideal,
we may assume that b is a monomial. Then bxy ∈ I 2, so bxy = e1e2h, where ei are
degree two monomials corresponding to edges of G. Since b /∈ I , ei does not divide
b for i = 1, 2, and so without loss of generality, x divides e1 and y divides e2. Thus,
e1 = xxi and e2 = yy j for some xi ∈ N (x) and y j ∈ N (y). Thus, xi y j divides b,
and so b ∈ E ⊂ (I, E).

The proof of the generalized statement follows the same outline. Note that the xi
need not all be distinct. �


Note that the ideal (I, E) in Lemma 2.6 is no longer guaranteed to be square-free.
If z ∈ N (x) ∩ N (y), then z2 ∈ E . However, (I, E) is still a monomial ideal, and
if z2 and w2 are both generators of E , then zw ∈ (I, E). This follows easily since
z ∈ N (x) and w ∈ N (y).
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3 The first power

As a first step toward determining the depths of R/I t for arbitrary graphs, a lower
bound, similar to the one given in [27] for trees, is needed for depth R/I . This lower
bound is generally far from sharp; however, it is of a form that generalizes to higher
powers. Alternate bounds for this depth, or equivalently for the projective dimension
of R/I , exist in the literature [7–9,21]. However, the focus here is on providing a
bound that will serve as the basis for bounds on the depths of higher powers, using
techniques that will extend to higher powers. We first present the main result of this
section. An alternate proof has been communicated to us by Russ Woodroofe.

Theorem 3.1 LetG bea connected graphand let I = I (G). If there exist u, v ∈ V (G)

with d(u, v) = d, then depth R/I ≥ ⌈ d+1
3

⌉
.

Proof We proceed by induction on n, the number of vertices. Notice that for any fixed
d, we have that n ≥ d + 1. Since m /∈ Ass (R/I ), then depth R/I ≥ 1. Note that if
d ≤ 2, then

⌈ d+1
3

⌉ = 1, and so the result holds. If n = d + 1, the graph is a path, and
thus the result holds by [27, Lemma 2.8]. Hence, we may assume that n− 1 > d ≥ 3.

Let Xi = Xi
G(u) be as in Notation 2.2 and let w ∈ N (v) ∩ Xd−1. Consider first

(I : w) = (J, N (w)), where J is the ideal corresponding to the minor G ′ of G
formed by deleting the variables in N (w). Since d ≥ 3, then Xd−3

G ′ (u) �= ∅. Let
z ∈ Xd−3

G ′ (u), and notice that d(u, z) = d − 3. Moreover, w does not divide any
generator of (J, N (w)). Thus, (J, N (w)) ⊂ R′[N (w)], where R′ is the polynomial
ring formed by deleting w ∪ N (w). Then we have

depth R/(I : w) = depth R′[w, N (w)]/(J, N (w))

= depth R′[w]/J = depth R′/J + 1

≥
⌈
d − 3 + 1

3

⌉
+ 1 =

⌈
d + 1

3

⌉

by induction on n.
Next we consider (I, w) = (K , w), where K is the ideal of the minor G ′′ of G

formed by deleting w. If G ′′ is connected, then d(u, v) = d in G ′′, and therefore
depth R/(I, w) = depth R/(K , w) ≥ ⌈ d+1

3

⌉
by induction on n. If G ′′ is not con-

nected, then there is a vertex z ∈ uG ′′ with d(u, z) ≥ d − 2 and v /∈ uG ′′. If v is
an isolated vertex, then by Lemma 2.3 we obtain depth R/(K , w) ≥ ⌈ d−2+1

3

⌉ + 1 ≥⌈ d+1
3

⌉
. Otherwise, v is in a connected component of G ′′ that has depth at least one, so

by [36, Lemma 6.2.7], we have depth R/(K , w) ≥ ⌈ d−2+1
3

⌉ + 1 ≥ ⌈ d+1
3

⌉
. In either

case, depth R/(I, w) ≥ ⌈ d+1
3

⌉
.

Applying the Depth Lemma [3, Proposition 1.2.9] to the short exact sequence

0 → R/(I : w) → R/I → R/(I, w) → 0

yields depth R/I ≥ ⌈ d+1
3

⌉
, as desired. �


By selecting a pair of vertices u and v whose distance is maximal, we immediately
obtain the following corollary.
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Corollary 3.2 Let G be a connected graph of diameter d ≥ 1 and let I = I (G). Then
depth R/I ≥ ⌈ d+1

3

⌉
.

As an immediate corollary we extend Theorem 3.1 to graphs that are not necessarily
connected.

Corollary 3.3 Let G be a graph with p connected components, I = I (G), and let di
be the diameter of the i th connected component. Then depth R/I ≥ ∑p

i=1

⌈
di+1
3

⌉
. In

particular, depth R/I ≥ ⌈ d+1
3

⌉ + p − 1.

Proof This follows directly from Theorem 3.1 and [36, Lemma 6.2.7]. �

Thenext corollary is an interesting result that follows from the proof ofTheorem3.1.

Although the result could be used to prove the theorem above, it is difficult to obtain
independently. However, it can be useful in bounding the depths of higher powers.

Corollary 3.4 Let G be a graph, let I = I (G), and fix u ∈ V (G). Let w ∈ X� =
X�
G(u) for some 0 ≤ �. Then depth R/(I : w) ≥ ⌈

�+2
3

⌉
.

Proof Let w ∈ X�. Notice that (I : w) = (J, N (w)), where J is the ideal corre-
sponding to the minor G ′ of G formed by deleting the variables in N (w). Let R′ be
the polynomial ring formed by deleting w and the variables in N (w). As before we
have

depth R/(I : w) = depth R′[w, N (w)]/(J, N (w))

= depth R′[w]/J = depth R′/J + 1.

If � < 2 the result holds since depth R/(I : w) ≥ 1. Hence, we may assume that
� ≥ 2. Since the diameter of G ′ is at least � − 2, applying Theorem 3.1 yields

depth R′/J + 1 ≥
⌈

� − 2 + 1

3

⌉
+ 1 =

⌈
� + 2

3

⌉

and the result follows. �

We conclude this section with an extension of Theorem 3.1 that gives a bound for

the depth of the first power of the edge ideal of a graph with loops. This result is of
independent interest.

Proposition 3.5 Let G be a connected graph with loops and let I = I (G). If there
exists u ∈ V (G)with d(u, x) ≥ � for all x such that {x, x} ∈ E(G), then depth R/I ≥⌈

�−1
3

⌉
.

Proof Notice that if � < 2 the result is trivial. Thus we assume that � ≥ 2. We induct
on the number of loops. Let x be a variable corresponding to a vertex with a loop.
Notice that (I : x) = (I, N (x)) = (J, N (x)), where J is theminor formed by deleting
all vertices in N (x). Since x ∈ N (x), the number of loops of G(J ) is less than the
number of loops of G. Notice that since all deleted vertices are at least distance � − 1
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from u, d(uG(J )) ≥ � − 2 and d(u, z) ≥ � for all loops z. If uG(J ) has no loops,

then depth R/(I : x) ≥ ⌈
�−1
3

⌉
, by Theorem 3.1 since

⌈
d(G(J ))+1

3

⌉
≥ ⌈

�−2+1
3

⌉
. If

uG(J ) contains a loop y, then d(u, y) ≥ �, and hence depth R/(I : x) ≥ ⌈
�−1
3

⌉
, by

induction.
Now consider (I, x) = (K , x), where K is the minor formed by deleting x . Then,

d(uG(K )) ≥ � − 1 and G(K ) has fewer loops than G, so depth R/(I, x) ≥ ⌈
�−1
3

⌉
,

by either Theorem 3.1 or induction as above.
Applying the Depth Lemma [3, Proposition 1.2.9] to the short exact sequence

0 → R/(I : x) → R/I → R/(I, x) → 0

completes the proof. �


4 Depths of higher powers of edge ideals

Ourmain results in this section focus primarily on I 2 and I 3. Selected results are stated
for all powers since our methods can extend to higher powers, particularly when one
has some control over the structure of the underlying graph. The central idea of the
proofs will be to apply the Depth Lemma [3, Proposition 1.2.9] to families of short
exact sequences. We begin the section by introducing some notation.

We will frequently use deletion minors in the proofs, and often the minors will
be formed using a collection of vertices. Let G be a graph and let I = I (G). For
a ∈ V (G) we let Ia represent the edge ideal of the minor of G formed by deleting a.
We will refer to Ia as a minor of I . Given a collection of vertices y1, . . . , ys , define
I0 = I and for 1 ≤ i ≤ s define Ii to be the minor of I formed by deleting y1, . . . , yi .
Define Ri to be the corresponding polynomial ring, namely Ri = R/(y1, . . . , yi ).

Recall that an induced graph on a subset {x1, . . . , xr } of vertices of a graph G is
a graph G ′ with V (G ′) = {x1, . . . , xr } and E(G ′) = {{xi , x j } ∈ E(G) | xi , x j ∈
V (G ′)}.
Lemma 4.1 Let G be a graph, V = V (G) and I = I (G). Let x1, . . . , xr ∈ V
be such that the induced graph on x1, . . . , xr is connected and fix a vertex u in the

connected component of G containing x1, . . . , xr . Let {y1, . . . , ys} ⊂
r⋃

i=1
N (xi ) \

{x1, . . . , xr }. Then there exists an ordering of the vertices y1, . . . , ys such that for all
i < s, x1, . . . , xr ∈ uG(Ii ), where Ii is obtained by deleting y1, . . . , yi .

Proof Using the fixed vertex u, form Xi = Xi
G(u). Notice that u may be one of the yi .

Since x1, . . . , xr ∈ uG, then for each i , xi ∈ Xt for some t . Let k be the least positive
integer for which xi ∈ Xk for some i . Fix xq ∈ Xk . Then there is a path from u to xq
containing precisely one vertex in X j for each j ≤ k. Since for every i , yi ∈ N (x�)

for some �, then yi ∈
d⋃

j=k−1
X j for all i . Thus, at most one yi lies on the chosen path.

We may reorder the variables so that ys is this vertex (if any). Then, for all i < s, there
is a path in Ii from u to xq and there is a path from xq to xi for all other i , since the
induced graph on x1, . . . , xr is connected. �
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Oncewe have ordered a collection of neighboring vertices as inLemma4.1, deleting
the vertices in order will result in a series of graphs for which u and x1, . . . , xr are
in the same connected component, followed by a graph for which u and xi might be
disconnected. When r = 1 and {y1, . . . , ys} = N (x1), deleting all vertices except
ys will result in a graph for which x1 is a leaf. The next lemma formalizes how this
can be used to estimate depths. Although it will generally be used when M = x1 is a
single vertex or M = x1 · · · xr is the product of connected vertices and {y1, . . . , ys} =
N (xr ) \ {x1, . . . , xr−1}, the result holds in the more general situation described here.

Lemma 4.2 Let R be a polynomial ring over a field, I an ideal, and let M be a
monomial in R. Let {y1, . . . , ys} be variables such that for all i , yi does not divide M.
Let a, b be two nonnegative integers. If depth Ri−1/(I ti−1 : Myi ) ≥ a for all i ≥ 1
and depth Rs/(I ts : M) ≥ b, then depth Ri/(I ti : M) ≥ min{a, b} for each i ≥ 0. In
particular, depth R/(I t : M) ≥ min{a, b}.
Proof Consider the family of short exact sequences

0 → R/
(
I t : My1

) → R/
(
I t : M) → R/

((
I t : M)

, y1
) → 0

0 → R1/
(
I t1 : My2

) → R1/
(
I t1 : M) → R1/

((
I t1 : M)

, y2
) → 0

0 → R2/
(
I t2 : My3

) → R2/
(
I t2 : M) → R2/

((
I t2 : M)

, y3
) → 0

...

0 → Rs−1/
(
I ts−1 : Mys

) → Rs−1/
(
I ts−1 : M) → Rs−1/

((
I ts−1 : M)

, ys
) → 0.

Notice that by Lemma 2.4 the right hand term of sequence i is isomorphic to
Ri/(I ti : M), which is the center term of sequence i+1. Nowdepth Ri/(I ti : Myi ) ≥ a
by hypothesis and Rs−1/((I ts−1 : M), ys) ∼= Rs/(I ts : M), so by hypothesis,
depth Rs−1/((I ts−1 : M), ys) ≥ b. By applying the Depth Lemma [3, Proposi-
tion 1.2.9] repeatedly starting with the final sequence and working our way up we
see that depth Ri/(I ti : M) ≥ min{a, b} for each i from i = s − 1 to i = 0. Since
depth Rs/(I ts : M) ≥ b, the result holds for all i . �


We now give a first estimate on the depth of any power of an edge ideal in terms
of the number of connected components of the graph. Recall that we have defined
connected components to have at least two vertices. In Corollary 3.3 we were able to
achieve a better bound for the first power and later in this section we will improve this
bound for the second and third powers; however, the advantage of considering this
bound is that it is a bound for all the powers even though it might not be sharp.

Proposition 4.3 Let G be a graph with p connected components and let I = I (G).
Then, for every t ≥ 1

depth R/I t ≥ p − t.

Proof We prove this by induction on p, the case of p = 1 being clear. Suppose that
p ≥ 2 and I = (J, K ), where J ⊂ A = k[x1, . . . , xr ] is the edge ideal of the
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graph consisting of all but one of the connected components of G and K ⊂ B =
k[xr+1, . . . , xn] is the edge ideal of the remaining connected component of G. Then,
depth A/J ≥ p− 1 and depth B/K ≥ 1 by Corollary 3.3. By induction on p we have
depth A/J s ≥ p−1− s for all s ≥ 1. In particular, depth A/J t−i ≥ p−1− (t − i) =
p−t+i−1 for 1 ≤ i ≤ t−2 and depth A/J t− j+1 ≥ p−1−(t− j+1) = p−t+ j−2
for all 1 ≤ j ≤ t . Then, by [22, Theorem 2.4] we have

depth R/I t ≥ min
i ∈ [1, t − 1]
j ∈ [1, t]

{depth A/J t−i + depth B/Ki + 1,

depth A/J t− j+1 + depth B/K j }
= min

i ∈ [1, t − 2]
j ∈ [2, t]

{depth A/J t−i + depth B/Ki + 1,

depth A/J + depth B/K t−1 + 1, depth A/J t + depth B/K ,

depth A/J t− j+1 + depth B/K j }
= min

i ∈ [1, t − 2]
j ∈ [2, t]

{p − t + i − 1 + 0 + 1, p − 1 + 0 + 1,

p − t − 1 + 1, p − t + j − 2 + 0}
= min

i ∈ [1, t − 2]
j ∈ [2, t]

{p − t + i, p, p − t, p − t + j − 2} = p − t.

�

The next theorem establishes a sharper lower bound for the depth of the second

power of an edge ideal.

Theorem 4.4 Let G be a graph with p connected components, I = I (G), and let
d = d(G) be the diameter of G. Then

depth R/I 2 ≥
⌈
d − 3

3

⌉
+ p − 1.

Proof We proceed by induction on n, the number of vertices in G. Suppose n ≤ 4.
Then d ≤ 3 and p ≤ 2 since the number of connected components does not include
isolated vertices. If p = 1 the bound is trivial. If p = 2, for n ≤ 4 the graph must
be a forest consisting of two disconnected edges and the result follows from [27,
Theorem 3.4]. Note that in general, if p ≥ 2, then depth R/I 2 ≥ 1 by [6, Lemma 2.1].

We may now assume that n ≥ 5. Let u, v be the endpoints of a path that realizes the
diameter and let Xi = Xi

G(u). Letw ∈ N (v) and let {y1, . . . , ys} = N (w) be ordered
as in Lemma 4.1 so that d(u, w) is finite in Ii for i < s. Recall that I0 = I . Then, for
each 1 ≤ i ≤ s we have (I 2i−1 : wyi ) = (Ii−1, Ei−1), where Ei−1 is as in Lemma 2.6.
Now (Ii−1, Ei−1) is the edge ideal of a graph G ′, possibly with loops, of diameter at
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least d−1 since d(u, w) ≥ d−1 even with the additional edges. Thus, if (Ii−1, Ei−1)

is square-free, depth Ri−1/(Ii−1, Ei−1) ≥ � d(G ′)+1
3 � + p − 1 ≥ � d−1+1

3 � + p − 1
by Corollary 3.3. If (Ii−1, Ei−1) is not square-free, then there exists x ∈ V (G) such
that x2 ∈ Ei−1. Now x ∈ N (w), and so d(u, x) ≥ d − 2. Note that each connected
component of G((Ii−1, Ei−1)) other than uG((Ii−1, Ei−1)) will be square-free and
so have depth at least one. Thus, combining [36, Lemma 6.2.7] with Proposition 3.5
yields depth Ri−1/(Ii−1, Ei−1) ≥ � d−2−1

3 � + p − 1 for i ≤ s.
Now w is isolated in Is , so (I 2s : w) = I 2s and w is a free variable in

Rs/I 2s . Since d(uG(Is)) ≥ d − 3, then by induction and Lemma 2.3 we have
depth Rs/(I 2s : w) ≥ � d(uG(Is ))−3

3 � + p − 1 + 1 ≥ � d−3
3 � + p − 1. Hence, by

Lemma 4.2 we obtain depth R/(I 2 : w) ≥ � d−3
3 � + p − 1.

Finally, consider (I 2, w) = (I 2w,w). If v ∈ uG(Iw), then d(uG(Iw)) ≥ d and
depth R/(I 2, w) = depth Rw/I 2w ≥ � d−3

3 � + p − 1 by induction on n. Otherwise,
d(uG(Iw)) ≥ d − 2 and G(Iw) contains an additional connected component or an
isolated vertex, so

depth R/
(
I 2, w

)
= depth R/

(
I 2w,w

)

≥
⌈
d − 2 − 3

3

⌉
+ (p + 1) − 1 =

⌈
d − 2

3

⌉
+ p − 1.

By applying the Depth Lemma [3, Proposition 1.2.9] to the following exact
sequence

0 → R/
(
I 2 : w

)
→ R/I 2 → R/

(
I 2, w

)
→ 0

we see that depth R/I 2 ≥ ⌈ d−3
3

⌉ + p − 1 as desired. �

Remark 4.5 Notice that in the proof of Theorem 4.4 we required that u and v be
endpoints of a path that realizes the diameter. This was done in order to obtain the
best possible lower bound for the depth of R/I 2. However, one may take u and v to
be endpoints of any path of length � = d(u, v). Then, continuing as in the proof of
Theorem 4.4, we would obtain that depth R/I 2 ≥ ⌈

�−3
3

⌉ + p − 1. Although this is a
weaker lower bound, it can be useful in a more general setting.

As with the proof of Theorem 3.1 the proof of Theorem 4.4 yields the following
interesting corollary.

Corollary 4.6 Let G be a graph and let I = I (G). Fix u ∈ V (G) and let w ∈ X� =
X�
G(u) for some 0 ≤ �. Then depth R/(I 2 : w) ≥ ⌈

�−2
3

⌉
.

Proof First notice that when � < 2 there is nothing to show. Hence, we may assume
that � ≥ 2. Let {y1, . . . , ys} = N (w) be ordered as in Lemma 4.1. As in the proof of
Theorem4.4, for each 1 ≤ i ≤ s wehave (I 2i−1 : wyi ) = (Ii−1, Ei−1) as in Lemma2.6
and (Ii−1, Ei−1) is the edge ideal of a graph of diameter at least � since d(u, w) = �.
Thus, if (Ii−1, Ei−1) is square-free, depth Ri−1/(Ii−1, Ei−1) ≥ � �+1

3 � + p − 1 by
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Corollary 3.3. If x2 ∈ Ei−1, then d(u, x) ≥ � − 1 so combining [36, Lemma 6.2.7]
with Proposition 3.5 yields depth Ri−1/(Ii−1, Ei−1) ≥ � �−2

3 � for i ≤ s.
Noww is isolated in Is , and d(uG(Is)) ≥ �−2, so by Lemma 2.3 and Theorem 4.4

depth Rs/(I
2
s : w) = depth Rs/I

2
s + 1 ≥

⌈
� − 2 − 3

3

⌉
+ 1 =

⌈
� − 2

3

⌉
.

Hence, by Lemma 4.2 we have depth R/(I 2 : w) ≥ ⌈
�−2
3

⌉
. �


When exhausting the neighbors as in Lemma 4.2, we might end up with discon-
nected graphs. If the vertex w is not in the connected component containing u and
thus is not in Xi for any i , the bound above needs to be modified, but can still be found
using only the diameter of uG(I ).

Lemma 4.7 Let G be a graph and let I = I (G). Fix u ∈ V (G) and let w ∈ V (G)

be such that w /∈ uG. Then depth R/(I 2 : w) ≥ ⌈
�
3

⌉
, where � = d(uG).

Proof Suppose I = (J, K ), where K = I (wG). Let {z1, . . . , zs} be the neighbors
of w ordered as in Lemma 4.1. Note that Ii = (Ji , Ki ) and Ji = J for all i . As
in Lemma 2.6, we have (I 2i−1 : wzi ) = (Ii−1, Ei−1), where all the edges in Ei−1
have endpoints in V (wG). Recall that Ri−1 is the polynomial ring corresponding to
Ii−1 and let R′

i−1 be the polynomial ring with variables corresponding to V (G(Ji−1)).

Then depth Ri−1/(Ii−1, Ei−1) ≥ depth R′
i−1/Ji−1 ≥ ⌈

�+1
3

⌉
, by [36, Lemma 6.2.7]

and Theorem 3.1. Finally, w is an isolated vertex in Is , so (I 2s : w) = I 2s and w is a
free variable. Thus, depth Rs/(I 2s : w) ≥ depth Rs/I 2s + 1 ≥ ⌈

�−3
3

⌉ + 1 = ⌈
�
3

⌉
. The

result then follows from Lemma 4.2. �

The lower bound for the depth of the first power of edge ideals that we obtained in

Theorem 3.1 is realized by edge ideals of paths, as was shown in [27, Lemma 2.8].
Therefore, one cannot hope for any improvement of this bound for a general graph in
terms of the invariants used. However, the lower bound for the depth of higher powers
of edge ideals of paths given in [27, Proposition 3.2] is too high for general graphs. The
next example shows that the bound we established in Theorem 4.4 is indeed attained,
thus establishing that one cannot improve this bound in terms of the invariants used.

Example 4.8 Let R = k[x1, . . . , x5] and let I be the edge ideal of the graph G below

x1 x2

x3

x4 x5

Then d(G) = 3 and using Macaulay 2 [17] we have that depth R/I 2 = � d−3
3 � = 0,

which also follows from [6, Theorem 3.3]. Therefore, the bound in Theorem 4.4 is
sharp.
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We now prove a series of lemmas that will allow us to establish a bound for the
depth of the third power. Where possible, we give a general statement that holds for
all powers. The first lemma is an extension of Lemma 2.6.

Lemma 4.9 Let G be a graph and let I = I (G). Let t ≥ 1 be an integer and
let u, x1, . . . , x2t ∈ V (G) with x1 · · · x2t ∈ I t . If for some 0 ≤ � ≤ d we have

xi ∈
d⋃
j=�

X j for all i , where X j = X j
G(u), then depth R/(I t+1 : x1 · · · x2t ) ≥ ⌈

�−2
3

⌉
.

Proof Notice that (I t+1 : x1 · · · x2t ) = (I, E), where E is the ideal generated by all

degree two monomials y1y2 supported on
2t⋃
i=1

N (xi ) satisfying y1y2x1 · · · x2t ∈ I t+1

by Lemma 2.6. LetG ′ be the graph, possiblywith loops, associatedwith (I, E). Notice
that Xi

G(u) = Xi
G ′(u) for i ≤ � − 2 since both endpoints of any generator of E lie

in
d⋃

i=�−1
Xi
G . This also implies that all loops of G ′ are contained in

d⋃
i=�−1

Xi
G . So by

Proposition 3.5 we have depth R/(I, E) ≥ ⌈
�−2
3

⌉
. �


The general outline of the following lemmas is at each stage to reduce by one the
number of variableswithwhich a colon ideal is formed. In general, this is accomplished
using Lemma 4.2; however, one must first deal with the situation where there are no
neighbors to exhaust. This occurs when the graph is disconnected and one component
consists of the inducedgraphon the variables used to form the colon ideal. In examining
the later proofs in which the result is used, one sees that the goal is to create a path of
vertices. The difficult case will be when the induced graph on the vertices of the path
does not contain a leaf. Thus, we assume in the next lemma that the graph contains a
Hamiltonian cycle, that is, a cycle that passes through each vertex precisely once. To
simplify notation, we will at times use x in place of x1, . . . , xn when the number of
variables used is clear.

Lemma 4.10 Let G be a disconnected graph and let I = I (G). Suppose I = (J, K ),
where J ⊂ k[x1, . . . , xn], K ⊂ k[y1, . . . , y2t−1], and G(K ) contains a Hamiltonian

cycle. Then depth R/(I t+1 : y1y2 · · · y2t−1) ≥
⌈
d(J )−3

3

⌉
, where d(J ) = d(G(J ))

and R = k[x, y].
Proof Let M = ∏2t−1

i=1 yi and consider the family of short exact sequences

0 → R/(I t+1 : My1) → R/(I t+1 : M) → R/((I t+1 : M), y1) → 0

0 → R/(((I t+1 : M), y1) : y2) → R/((I t+1 : M), y1) → R/((I t+1 : M), y1, y2) → 0
...

0 → R/(((I t+1 : M), y′) : y2t−1) → R/((I t+1 : M), y′) → R/((I t+1 : M), y) → 0,

where y′ = {y1, . . . , y2t−2}.
We first handle the left hand term of each sequence by showing that for each

0 ≤ i ≤ 2t − 2, (((I t+1 : M), y1, . . . , yi ) : yi+1) = (J, Ki ) for some ideal Ki
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of k[y1, . . . , y2t−1]. Here, we define (((I t+1 : M), y0) : y1) = (I t+1 : My1) since
there is no element y0. By Lemma 2.4 and some straight forward computations we
have (((I t+1 : M), y1, . . . , yi ) : yi+1) = ((I t+1 : Myi+1), y1, . . . , yi ). Now since
M is a product of 2t − 1 variables that form a cycle and yi+1 is an element of the
cycle, Myi+1 ∈ I t for each i . Thus, by Lemma 2.6, ((I t+1 : Myi+1), y1, . . . , yi ) =
(I, Ei , y1, . . . , yi ), where Ei is the ideal generated by all degree two monomials

yi1 yi2 supported on
2t−1⋃
i=1

N (yi ) satisfying yi1 yi2Myi+1 ∈ I t+1. Now M = ∏2t−1
i=1 yi

and N (yi ) ⊂ k[y1, . . . , y2t−1] for each i , so (I, Ei , y1, . . . , yi ) = (J, Ki ) where
Ki ⊂ k[y1, . . . , y2t−1]. Thus, by [36, Lemma 6.2.7] and Theorem 3.1,

depth R/((I t+1 : M), y1, . . . , yi ) : yi+1) = depth k[x]/J + depth k[y]/Ki

≥ depth k[x]/J ≥
⌈
d(J ) − 3

3

⌉
.

Nowwe claim ((I t+1 : M), y1, . . . , y2t−1) = (J 2, y1 . . . , y2t−1). SinceM ∈ I t−1,
one inclusion is clear. Suppose aM ∈ I t+1 for some monomial a /∈ J 2. Then, aM =
e1 · · · e2t+1h for some monomial h and some edges ei . Note that if ei ∈ k[x], then
ei | a since M ∈ k[y]. Since a /∈ J 2, at most one edge ei is in k[x]. Thus, the y-degree
of e1 · · · e2t+1h is at least 2t , but the degree of M is 2t − 1, and hence, yi | a for some
i . Thus, (I t+1 : M) ⊆ (J 2, y1, . . . , y2t−1) and the second inclusion follows. Thus,

depth R/((I t+1 : M), y1, . . . , y2t−1) = depth R(J 2, y1, . . . , y2t−1)

= depth k[x]/J 2 ≥
⌈
d(J ) − 3

3

⌉

by Theorem 4.4. The result now follows from repeated applications of the Depth
Lemma [3, Proposition 1.2.9]. �


Wenowreturn to our computations concerning thedepths of various ideals involving
the third power of an edge ideal.

Lemma 4.11 Let G be a graph and let I = I (G). Let u, x1, x2, x3 ∈ V (G) and

suppose that that x1, x3 ∈ N (x2) and x1, x2, x3 ∈
d⋃

i=�

Xi , where Xi = Xi
G(u) for

some 0 ≤ � ≤ d. Then depth R/(I 3 : x1x2x3) ≥
⌈

�−5
3

⌉
.

Proof Wemay assume that � ≥ 6 since otherwise the bound is trivial. First suppose x3
is a leaf. Then, (I 3 : x1x2x3) = (I 2 : x1) and by Corollary 4.6 we have depth R/(I 3 :
x1x2x3) = depth R/(I 2 : x1) ≥ ⌈

�−2
3

⌉
.

Suppose x3 is not a leaf. We consider two cases. If x1x3 is a generator of I , let
{z1, . . . , zs} = N (x1) ∪ N (x2) ∪ N (x3) \ {x1, x2, x3}. If x1x3 is not a generator of
I , let {z1, . . . , zs} = N (x3) \ {x2}. In either case, order the vertices z1, . . . , zs as in
Lemma 4.1. Then, by considering uG(Ii−1), we have depth Ri−1/(I 3i−1 : x1x2x3zi ) ≥
⌈

�−3
3

⌉
by Lemma 4.9 since zi ∈

d⋃
i=�−1

Xi . If x1x3 ∈ I , then x1, x2, x3 forms a
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Hamiltonian cycle of a component that is disconnected from uG(Is), so byLemma4.10

we have that depth Rs/(I 3s : x1x2x3) ≥
⌈
d(Is )−3

3

⌉
≥

⌈
�−5
3

⌉
, since d(uG(Is)) ≥ �−2.

When x1x3 /∈ I , then x3 is a leaf in Is , so as above, (I 3s : x1x2x3) = (I 2s : x1). If
Is is disconnected, then d(uG(Is)) ≥ � − 2. Thus, by Lemma 4.7, or Corollary 4.6,
when uG(Is) is connected, we obtain depth Rs/(I 3s : x1x2x3) ≥ ⌈

�−2
3

⌉
. In either case,

applying Lemma 4.2 yields depth R/(I 3 : x1x2x3) ≥
⌈

�−5
3

⌉
. �


Lemma 4.12 Let G be a graph and let I = I (G). Fix u ∈ V (G) and suppose
that xy ∈ E(G) with x ∈ X�, where X� = X�

G(u) for some 0 ≤ � ≤ d. Then
depth R/(I 3 : xy) ≥ ⌈

�−6
3

⌉
.

Proof We may assume that � ≥ 7 since otherwise the bound is trivial. First suppose
either x or y is a leaf of G. Then, by Lemma 2.5 we have that (I 3 : xy) = I 2 and by

Theorem 4.4, we obtain depth R/(I 3 : xy) ≥
⌈
d(I )−3

3

⌉
+ p(I ) − 1. Since d(I ) ≥ �,

the result follows.
Next we assume that neither x nor y is a leaf ofG. Let {z1, . . . , zs} = N (x)\{y} be

ordered as in Lemma 4.1. Then depth Ri−1/(I 3i−1 : xyzi ) ≥ ⌈
�−6
3

⌉
, by Lemma 4.11

since x, y, zi ∈
d⋃

j=�−1
X j . Now x is a leaf of Is , so I 3s : xy = I 2s , by Lemma 2.5.

Let d(Is) = d(uG(Is)). Then, since zi ∈
d⋃

j=�−1
X j , we have d(Is) ≥ � − 2. Thus

depth Rs/(I 3s : xy) = depth Rs/I 2s ≥
⌈

�−5
3

⌉
by Theorem 4.4. Hence, by Lemma 4.2

we have depth R/(I 3 : xy) ≥ ⌈
�−6
3

⌉
. �


We are now ready to establish a bound for the depth of the third power of any edge
ideal.

Theorem 4.13 Let G be a graph with p connected components, I = I (G), and let
d = d(G) be the diameter of G. Then depth R/I 3 ≥ ⌈ d−7

3

⌉ + p − 1.

Proof We proceed by induction on n, the number of vertices. We first handle the
case when n ≤ 8, in which case d ≤ 7 and p ≤ 4. When p = 4, the result fol-
lows from Proposition 4.3 or from [27, Theorem 3.4]. By [6, Lemma 2.1] we know
depth (R/I t ) ≥ 1 for all t ≤ p, so the result holds for p = 3. If p = 1, or p = 2
and d ≤ 4, the bound is trivial. If p = 2 and d = 5, then the graph must consist of
two disconnected paths, so the result follows from [27, Theorem 3.4]. Thus, we may
assume that n ≥ 9.

Let u, v be the endpoints of a path that realizes the diameter of G and let Xi be as
in Notation 2.2. Let w ∈ N (v) ∩ Xd−1.

Notice that (I 3, w) = (J 3, w), where J is the minor of I formed by deleting w.
We have two cases to consider. If u and v are in the same connected component of J ,
then d(J ) ≥ d and p(J ) ≥ p, where p(J ) is the number of connected components
of the graph associated with J . Hence, by induction on n we have

depth R/(I 3, w) ≥
⌈
d(J ) − 7

3

⌉
+ p(J ) − 1 ≥

⌈
d − 7

3

⌉
+ p − 1.
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If u and v are not connected in J , then d(J ) ≥ d(uG(J )) ≥ d − 2 and p(J ) ≥ p+ 1,
or if v is isolated, Lemma 2.3 applies. Hence, again by induction on n we have

depth R/(I 3, w) ≥
⌈
d(J ) − 7

3

⌉
+ p + 1 − 1 ≥

⌈
d − 9

3

⌉
+ p + 1 − 1

≥
⌈
d − 7

3

⌉
+ p − 1.

Let {z1, . . . , zs} = N (w) be ordered as in Lemma 4.1. Since w ∈ Xd−1, then
depth Ri−1/(I 3i−1 : wzi ) ≥ ⌈ d−7

3

⌉
, by Lemma 4.12.

Now w is isolated in Is , and thus, (I 3s : w) = I 3s . Therefore, by induction on n we
have that

depth Rs/(I
3
s : w) = depth Rs/I

3
s ≥

⌈
d(Is) − 7

3

⌉
+ p(Is) − 1 + 1

≥
⌈
d − 3 − 7

3

⌉
+ p − 1 + 1 =

⌈
d − 7

3

⌉
+ p − 1,

since d(Is) ≥ d(uG(Is)) ≥ d − 3 and w is an isolated vertex. Hence, by Lemma 4.2
we have that depth R/(I 3 : w) ≥ ⌈ d−7

3

⌉ + p − 1.
By applying the Depth Lemma [3, Proposition 1.2.9] to the following exact

sequence

0 → R/(I 3 : w) → R/I 3 → R/(I 3, w) → 0

we have that depth R/I 3 ≥ ⌈ d−7
3

⌉ + p − 1. �

As in Remark 4.5 onemay take u and v in the proof of Theorem 4.13 to be endpoints

of a path of length � = d(u, v) and obtain depth R/I 3 ≥ ⌈
�−7
3

⌉ + p − 1. The next
corollary follows from the proof of Theorem 4.13.

Corollary 4.14 Let G be a graph and let I = I (G). Fix u ∈ V (G) and let w ∈ X�

for some 0 ≤ �, where Xi = Xi
G(u). Then depth R/(I 3 : w) ≥ ⌈

�−6
3

⌉
.

Proof We may assume that � ≥ 7 since otherwise the bound is trivial. Let
{z1, . . . , zs} = N (w) be ordered as in Lemma 4.1. By Lemma 4.12 we have
depth Ri−1/(I 3i−1 : wzi ) ≥ ⌈

�−6
3

⌉
.

Now w is isolated in Is , and thus (I 3s : w) = I 3s and d(Is) ≥ � − 2. Therefore, by
Theorem 4.13, we obtain

depth Rs/(I
3
s : w) ≥

⌈
d(Is) − 7

3

⌉
+ 1 ≥

⌈
� − 9

3

⌉
+ 1 =

⌈
� − 6

3

⌉
.

Hence, by Lemma 4.2, the result follows. �
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The next example shows that the bound for the depth of the third power of an
edge ideal given in Theorem 4.13 is attained. This example extends naturally, which
suggests a lower bound for the depth of any power.

Example 4.15 Let R = k[x1, . . . , x10] and let I be the edge ideal of the graph G
below

x1 x2

x3

x4 x5 x6 x7

x8

x9 x10

Then d(G) = 7 and using Macaulay 2 [17] we have that depth R/I = � d+1
3 � = 2,

depth R/I 2 = � d−3
3 � = 1, and depth R/I 3 = � d−7

3 � = 0. Therefore, the bound in
Theorem 4.13 is sharp.

Notice this is a graph with two copies of the graph in Example 4.8 attached by an
additional edge. One may attach more copies of the graph in Example 4.8 to obtain

examples of graphs where depth R/I t =
⌈
d−4t+5

3

⌉
+ p − 1 for any t ≥ 1.

Example 4.15 and Theorem 4.13 lead to the following natural question.

Question 4.16 Let G be a graph with p connected components, I = I (G), and let
d = d(G) ≥ 1 be the diameter of G. Then, is it true that for all t ≥ 1 we have that

depth R/I t ≥
⌈
d−4t+5

3

⌉
+ p − 1 or equivalently projdimR R/I t ≤ n −

⌈
d−4t+5

3

⌉
−

p + 1?

ClearlyTheorems3.1, 4.4 and4.13 show thatQuestion4.16has a positive answer for
t ≤ 3. If t = 4 and d ≤ 2, the bound in Question 4.16 reduces to depth R/I t ≥ p−4,
and so the result holds by Proposition 4.3. Indeed, if d ≤ 2, Proposition 4.3 gives
a positive answer to the question for all values of t and p. If d = 3 and t = 4, the
bound reduces to p − 3 and so is trivially true for p ≤ 3. However, for any ideal
J , depth (R/J ) ≥ 1 if and only if m /∈ Ass (R/J ). By [6, Lemma 2.1] we know
depth (R/I t ) ≥ 1 for all t ≤ p, and so the question again has an affirmative answer
for p = 4. Thus, the first case for which an answer to Question 4.16 is not known is
when d = 3, t = 4, and p = 5.

An answer to this question would provide higher power analogs for Theorems 4.4
and 4.13. The difficulty in extending the outline of the proofs of those theorems to
higher powers lies in generalizing the technical lemmas. For small powers, bounding
the depth of R/(I t : x1 · · · xi ) when the induced graph on x1, . . . , xi is connected is
manageable because the small number of xi needed restricts the possible forms the
induced graph can take. However, for higher powers of t , the products produced by
repeatedly exhausting neighbor sets can induce graphs with poor behavior, including
graphs for which x1 · · · xi /∈ I s for s = ⌊ i

2

⌋
.

We conclude this article by considering a few brief applications of our results.
When I is a square-free monomial ideal, then projdimR/I = reg(I∨), where I∨
is the Alexander dual of I , [35, Corollary 0.3]. Since I∨∨ = I , then reg(I ) =
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projdim(R/I∨) = n − depth R/I∨, where n = dim R. Using our result for the depth
of the first power of edge ideals we may obtain bounds on these invariants as well.
Another interesting invariant is Stanley depth. As a final application of our results we
obtain lower bounds on the Stanley depth of the first three powers of edge ideals.

Let R = k[x1, . . . , xn] be a polynomial ring over a field k. Let M be a nonzero
finitely generated Z

n-graded R-module, let u ∈ M be a homogeneous element
and let Z ⊂ {x1, . . . , xn}. Then, uk[Z ] is the k-subspace generated by all mono-
mials uv, where v is a monomial in k[Z ]. A presentation of M as a finite direct

sum of such spaces D: M =
r⊕

i=1
ui k[Zi ] is called a Stanley decomposition of M .

Let sdepthD = min{|Zi | : i = 1, . . . , r} and let sdepth M = max{sdepthD :
D is a Stanley decomposition of M}. Then, sdepth M is called Stanley depth of M .
It was conjectured by Stanley in [34] that sdepth M ≥ depth M for all Zn-graded
modules M . There has been considerable interest concerning this conjecture, see, for
instance, [20], and recently Duval et al. [10] found a counterexample to Stanley’s con-
jecture. However, finding classes for which the conjecture holds is still an interesting
endeavor.

For the case of edge ideals of graphs and their powers, we are able to obtain lower
bounds for the Stanley depth using our results from the previous sections as well as
the following version of the Depth Lemma for Stanley depth.

Lemma 4.17 [4, Proposition 2.6], [31, Lemma 2.2] Let R = k[x1, . . . , xn] be a poly-
nomial ring over a field k. Let 0 → M → N → L → 0 be a short exact sequence of
finitely generatedZn-graded R-modules. Then sdepth N ≥ min{sdepthM, sdepth N }.

Theorem 4.18 Let G be a graph with p connected components, I = I (G), and let
d = d(G) be the diameter of G. Then, for 1 ≤ t ≤ 3 we have

sdepth R/I t ≥
⌈
d − 4t + 5

3

⌉
+ p − 1.

Proof The proof follows by induction on n, the number of vertices of G. Given
Lemma 4.17, we can proceed the same way as in the proofs of Theorems 3.1, 4.4, 4.13
as long as we can establish the bounds for the base case of the induction, that is, when
n = d + 1 and G is the graph of a path. The required bounds are known to hold for
the Stanley depth, see, for example, [30, Theorem 2.7]. �


One consequence of Theorem 4.18 is that any class of ideals for which at least one
of the bounds in Theorems 3.1, 4.4, 4.13 is an equality will correspond to a class of
modules that satisfy the Stanley conjecture. Thus, discovering when the bounds are
achieved is an area of further interest.
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