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Abstract A Cayley graph for a group G is called normal edge-transitive if it admits
an edge-transitive action of some subgroup of the holomorph of G [the normaliser
of a regular copy of G in Sym(G)]. We complete the classification of normal edge-
transitive Cayley graphs of order a product of two primes by dealing with Cayley
graphs for Frobenius groups of such orders. We determine the automorphism groups
of these graphs, proving in particular that there is a unique vertex-primitive example,
namely the flag graph of the Fano plane.

Keywords Cayley graphs · Group theory · Algebraic graph theory ·
Frobenius groups

1 Introduction

Normal edge-transitive Cayley graphs were identified by the second author [1] in
1999 as a family of central importance for understanding Cayley graphs in general.
Such graphs have an edge-transitive subgroup of automorphisms which normalises a
copy of the group used to construct the Cayley graph. Moreover each normal edge-
transitive Cayley graph was shown to have, as a ‘normal quotient’, a normal edge-
transitive Cayley graph for a characteristically simple group. This raised the question
of reconstructing normal edge-transitive Cayley graphs from a given normal quotient.
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In this paper we answer the question in the smallest case, where the normal quotient
has prime order q and the group G of interest has order pq, where p also is prime.

Several cases for ‘small graphs’ of this type have been investigated. The case for
groups of prime order was solved in [1] (see Example 2.1 below), and the case for
abelian groups G of order pq was treated in the MSc thesis of Houlis [2]. After
submitting this paper we were made aware that the normal edge-transitive Cayley
graphs with 4p vertices, for p a prime, were classified by Darafsheh and Assari [3].
In this paper we complete the nonabelian case for |G| a product of two primes.

Theorem 1.1 Let G pq be a Frobenius group of order pq, where p and q are primes
and q < p, and let Γ be a connected normal edge-transitive Cayley graph for G pq

and Y = Aut Γ . Then one of the following holds:

(i) Γ ∼= Cq [Kp], with Y ∼= Sp wr D2q , valΓ = 2p if q is odd, and Y ∼=
Sp wr S2, valΓ = p if q = 2;

(ii) Γ ∼= Kp × Cq, with Y ∼= Sp × D2q , valΓ = 2(p − 1) if q is odd; or K p × K2
with Y = Sp × Z2, valΓ = p − 1 if q = 2; or

(iii) Γ = Γ (pq, �, i) as defined in Construction 2, for some proper divisor � of p−1
with � > 1, and either (q, i) = (2, 1) or 1 ≤ i ≤ (q − 1)/2, and either

Y ∼=
{
Gpq .Z� when q = 2 or q � �,

Gpq .Z�.Z2 when q ≥ 3, q | �,

with valΓ = 2�/ gcd(q, 2); or pq, �, i, valΓ,Y are as in one of the lines of
Table 1.

In Table 1 and throughout, valΓ denotes the valency of Γ . Figures 1, 2 show
examples arising from Constructions 1, 2 respectively, while Fig. 3 depicts a second
graph from Construction 1 having the same number of vertices and the same valency
as the graph in Fig. 1. The restriction to connected graphs is allowable as discussed in
[1, p. 213, Remark 1]. Every Cayley graph Γ = Cay(G, S) admits as a subgroup of
automorphisms the group N := ρ(G) � Aut(G)S , where ρ(G) is the group of right
multiplication maps ρg : x �→ xg (for g ∈ G) and Aut(G)S is the setwise stabiliser
in Aut(G) of S. The group N is the normaliser of ρ(G) in Aut Γ (see for example [1,
pp. 6–7]): if N is the full automorphism group then ρ(G) is normal in Aut Γ and Γ is
called a normal Cayley graph. In Theorem 1.1 (iii), if q ≥ 3 and q | �, then the group
Gpq is not normal in Y . Thus we have the following immediate corollary.

Corollary 1.1 Let Γ be a connected normal edge-transitive Cayley graph for G pq as
in Theorem 1.1. Then Γ is a normal Cayley graph if and only if Γ = Γ (pq, �, i), for
q = 2, or q � � as in Theorem 1.1 (iii), and (pq, �, i) are not as in Table 1.

Table 1 Exceptional normal
edge-transitive Cayley graphs
for Gpq

(p.q, �, i) valΓ Aut Γ References

(7.3, 2, 1) 4 PGL(3, 2).Z2 Figure 2, Proposition 4.1

(11.2, 5, 1) 5 PGL(2, 11).Z2 Lemma 4.10

(7.2, 3, 1) 3 PGL(3, 2).Z2 Lemma 4.10

(73.2, 9, 1) 9 PGL(3, 8).Z2 Lemma 4.10

123



J Algebr Comb (2015) 42:803–827 805

Fig. 1 The graph Γ (55, 2, 1) as in Construction 1

Remark 1.1 (i) There is a unique vertex-primitive, normal edge-transitive Cayley
graph of a Frobenius group Gpq of order pq, namely Γ (7 × 3, 2, 1) as defined
in Construction 2, and it is isomorphic to the flag graph of the Fano Plane (see
Fig. 2; Proposition 4.1). The other three graphs in Table 1 are incidence graphs of
the (11, 5, 2)-biplane, and the projective planes PG(2, 2) and PG(2, 8).

(ii) If q | � then Γ (pq, �, i) is a Cayley graph for Zp ×Zq as well as a Cayley graph
for Gpq (see Proposition 3.1).

(iii) The graphs Γ (pq, �, i) in Theorem 1.1 are arc-transitive if and only if q = 2 or
q | �. If q is odd and q � � then apart from the exceptions in Table 1, Γ (pq, �, i)
is edge-regular (often called half-arc-transitive in the literature).

(iv) The normal edge-transitive Cayley graphs of order a product of two primes are
now classified: they are the examples given in Theorem 1.1 (for Gpq ), and those
for abelian groups described in Sects. 3.1 and 3.3 (as originally given by Houlis
[2]).

Section 2 presents essential results about permutation groups and the structure of
normal edge-transitive Cayley graphs, and outlines the strategy for classification. In
Sect. 3 we summarise Houlis’ classification of normal edge-transitive Cayley graphs
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Fig. 2 The flag graph of the Fano plane [Γ (7.3, 2, 1) in the language of Construction 2]: the only vertex-
primitive graph in the classification

for abelian groups of order a product of two primes (since his results are not published)
andwe classify the normal edge-transitiveCayley graphs forGpq . In Sect. 4we resolve
questions of redundancy in our classification and determine the full automorphism
groups of the graphs obtained.

2 Background and examples

For a subset S of a group G such that 1G /∈ S and S contains s−1 for every s ∈ S,
the Cayley graph Γ = Cay(G, S) has vertex set V� = G, and edges the pairs {x, y}
for which yx−1 ∈ S. Each such graph admits the group ρ(G) ∼= G, acting by right
multiplication ρ(g) : x �→ xg, as a subgroup of the automorphism group Aut Γ , and
Γ is called normal edge-transitive if NAut Γ (ρ(G)) (which is ρ(G) � Aut(G)S) is
transitive on the edges of Γ (see Sect. 2.1 or [1]).

Remark 2.1 Normal edge-transitivity is a property that depends upon the group G as
well as the graph Γ . For example, for any groupG, the graph Cay(G,G \{1}) ∼= K|G|
is always edge-transitive, but its normal edge-transitivity is not guaranteed.

Given a graph Γ and a partitionP of the vertex set V�, the quotient graph ΓP has
vertex setP , with two blocks B, B ′ adjacent if there exists a pair of adjacent vertices
α, α′ ∈ V� with α ∈ B and α′ ∈ B ′. For an edge-transitive subgroup A = ρ(G).A0 of
ρ(G).Aut(G)S , a normal quotient of the Cayley graph Γ = Cay(G, S) is a quotient
ΓP , where P is the set of orbits of an A0-invariant normal subgroup M of G and
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is equal to Cay(G/M, SM/M) (see [1, Theorem 3]); we denote this quotient by
ΓM . The quotient ΓM admits an (unfaithful) normal edge-transitive action of A, with
kernel ρ(M).CA0(G/M). In particular each proper characteristic subgroup M of G is
A0-invariant, yielding a nontrivial normal quotient ΓM of Γ which is a normal edge-
transitive Cayley graph. The graph Γ is called a normal multicover of ΓM , since there
is a constant k such that, for adjacent blocks B, B ′ of ΓM each α ∈ B is adjacent in
Gamma to exactly k vertices of B ′.

The ‘basic’ members of the class of finite normal edge-transitive Cayley graphs
were thus identified in [1] as Cayley graphs for characteristically simple groups H
relative to a subgroup A0 of Aut(H), leaving invariant no proper nontrivial normal
subgroups of H .

To investigate the basic normal edge-transitive Cayley graphs, a natural starting
point is G = Zq , with q a prime; normal edge-transitive Cayley graphs for these
groups were described in [1, Example 2]. The result follows easily from Chao’s clas-
sification of symmetric (i.e. arc-transitive) graphs on q vertices [4]. The basic graphs
are circulants (essentially, edge-unions of cycles). We discuss this case in more detail
in Sect. 2.1.

With the simplest case complete, we look for multicovers of these most basic
cases, but again we seek to identify a kind of ‘basic’ reconstruction. Suppose that Γ =
Cay(G, S) is normal edge-transitive relative to A = ρ(G)A0, where A0 � Aut(G)S ,
and that Γ is a normal multicover of ΓN , where N is an A0-invariant normal subgroup
of G. We say Γ is a minimal normal multicover of ΓN relative to A if there is no way
to get to ΓN in more than one step from Γ : that is, there is no A0-invariant nontrivial
normal subgroup of G properly contained in N .

Again we see that the smallest case is when the index |G : N | is prime, and G has
order a product of two primes p, q. The groups G to consider are the abelian groups
Zq2 (with p = q) and Zp × Zq , and the nonabelian Frobenius group G pq , when
p ≡ 1 (mod q). The classification in the abelian cases was completed by Houlis in
his MSc Thesis [2]. The classification in the final (nonabelian) case is completed in
this paper, and since his thesis remains unpublished we also summarise Houlis’ results
(see Sect. 3.1).

Our classification result for these minimal normal multicovers (which we prove in
Sect. 3.3) is the following.

Proposition 2.1 Let Γ be a connected normal edge-transitive Cayley graph for G pq ,
where p, q are primes and q divides p − 1. Let T be the Sylow p-subgroup of G pq .
Then Γ is a normal multicover of ΓT ∼= K2 if q = 2 or ΓT ∼= Cq if q is odd, and Γ

is one of the graphs listed in Theorem 1.1.

Remark 2.2 The automorphismgroups of all connected normal edge-transitiveCayley
graphs for Gpq are determined in Proposition 4.1 and Theorem 4.1.

2.1 Normal edge-transitive Cayley graphs

Recall that ρ(G) is the subgroup of SymG consisting of all permutations ρ(g) : x �→
xg for g ∈ G, and that N := NAut Γ (ρ(G)) is ρ(G).Aut(G)S . Note that for normal
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edge-transitivity N need only be transitive on undirected edges, and may or may not
be transitive on arcs (ordered pairs of adjacent vertices). Normal edge-transitivity can
be described group-theoretically as follows. For g ∈ G and H � Aut G we denote by
gH = {gh | h ∈ H} the H -orbit of g, and we write g−H = (g−1)H .

Lemma 2.1 ([1], Proposition 1(c)) Let Γ = Cay(G, S) be an undirected Cayley
graph with S 
= ∅, and N = ρ(G).Aut(G)S. Then the following are equivalent:

(i) Γ is normal edge-transitive;
(ii) The set S = T ∪ T−1, where T is an Aut(G)S-orbit in G;
(iii) There exists H � Aut(G) and g ∈ G such that S = gH ∪ g−H .

Moreover ρ(G).Aut(G)S is transitive on the arcs of Γ if and only if Aut(G)S is
transitive on S.

Hence every normal edge-transitive Cayley graph for a group G is determined
by a (nonidentity) group element g and a subgroup H of AutG. This motivates the
following definition:

Definition 2.1 For a group G, g ∈ G \ {1} and H � AutG, define the normal
edge-transitive Cayley graph

Γ (G, H, g) := Cay(G, gH ∪ g−H ).

2.1.1 Use of symmetry in the analysis

Aclassification of normal edge-transitiveCayley graphs for a given groupG is reduced
to the study of the action of subgroups of AutG on G. We employ this strategy in
Sect. 4. For efficiency we use the following result to avoid producing too many copies
of each example.

Lemma 2.2 Let σ ∈ AutG. Then σ induces an automorphism from Γ (G, H, g) to
Γ (G, Hσ , gσ ). In particular if σ ∈ NAutG(H), then Γ (G, H, g) ∼= Γ (G, H, gσ ).

Proof For any x, y ∈ G we have xy−1 ∈ S if and only if xσ (yσ )−1 = (xy−1)σ ∈ Sσ ,
and so {x, y} ∈ E� if and only if {xσ , yσ } ∈ E�′. 
�

In particular for a given subgroup H , two elements of the same orbit in the action
of NAutG(H) on H -orbits in G generate isomorphic graphs, and so we need only
consider a single representative H -orbit from each NAutG(H)-orbit.

2.2 Examples and constructions

First we describe how Lemma 2.2 can be used to classify all normal edge-transitive
Cayley graphs of prime order p.

Example 2.1 Let G be the additive group of the ring Zp of integers modulo a prime
p, and Aut(G) = Z

∗
p = 〈m〉, the multiplicative group of units, where m is a primitive
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element. For every even divisor � of p − 1, and for � = 1 if p = 2, there is a unique
subgroup of Aut(G) of order �, namely

H� := 〈m(p−1)/�〉. (2.1)

The graph Γ (p, �) := Γ (G, H�, 1) is normal edge-transitive of valency � and since
Aut(G) normalises H� and is transitive on the H�-orbits in G \ {0}, it follows from
Lemma 2.2 that every normal edge-transitive Cayley graph for G is isomorphic to
Γ (p, �) for some �.

The notion of a product of two graphs may be defined in several ways: we present
two here, each of which arises in our study (see Construction 1 and Lemma 3.3).

Definition 2.2 Given graphs Σ,Δ, the direct product Γ = Σ × Δ has vertex set
V
 ×V�, with vertices (α1, β1), (α2, β2) adjacent if both α1 is adjacent to α2 and
β1 is adjacent to β2.

The direct product Σ × Δ is so named because the direct product AutΣ × AutΔ
is contained in Aut(Σ × Δ).

Definition 2.3 Given graphs Σ,Δ, the lexicographic product Γ = Σ[Δ] has vertex
set V
 ×V�, with vertices (α1, β1), (α2, β2) adjacent if either {α1, α2} ∈ E
, or
both α1 = α2 and {β1, β2} ∈ E�.

If bothΣ andΔ are regular, then their lexicographic product is regular with valency
valΔ+|V� | valΣ . The lexicographic product has (AutΔ)wr(AutΣ) as a subgroup
of automorphisms (which may be a proper subgroup: for example if Δ = Σ = K2
then Γ = Σ[Δ] = K4 and (AutΔ)wr(AutΣ) = D8 < S4 = Aut K4).

The following result determines a sufficient condition for a Cayley graph to have
a decomposition as a lexicographic product. If Γ = Cay(G, S) and M � G, then the
normal quotient ΓM of Γ is Cay(G/M, SM/M) (see [1, Theorem 3(b)]). For a graph
Γ and vertex α we denote by Γ (α) the set of vertices adjacent to α in Γ . Note that,
in Γ = Γ (G, H, g) we have Γ (g) = Sg, where S = gH ∪ g−H .

Proposition 2.2 Let G be a group, M a normal subgroup with m = |M |, and let
Γ = Cay(G, S) be a connected Cayley graph for G. Then Γ ∼= ΓM [Km] if and only
if S is a union of cosets of M.

Proof Since ΓM = Cay(G/M, SM/M), by Definition 2.3 it follows that Γ ∼=
ΓM [Km] if and only if Γ (1G) = S is equal to SM , that is to say, S is a union of
M-cosets. 
�

Remark 2.3 If the graph Γ in Proposition 2.2 is normal edge-transitive relative to
N � NAut Γ (ρ(G)), and if N normalises M , then ΓM is also normal edge-transitive,
as it is a normal quotient of Γ (see [1, Theorem 3]).
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Table 2 Simple normal
subgroups T and Schur
multipliers M(T ) of almost
simple 2-transitive groups of
prime degree p

T = Soc(G) p M(T ) Conditions

Ap p Z2, except p ≥ 5

Z6 if p = 7

PSL(n, r) rn−1
r−1 Zgcd(n,r−1), except n ≥ 2

Z2 if (n, r) = (2, 4), (n, r) 
= (2, 2)

(3, 2), (3, 3) n prime

PSL(2, 11) 11 Z2

M11 11 1

M23 23 1

2.3 Permutation groups and group actions

Weuse the basic definitions and notation found in [5], andwe assumeG is a finite group
acting on a set Ω . We denote by ρ, λ, ι, respectively, the right, left and conjugation
actions of G on itself. We use extensively the following well-known result. The first
assertions are due to Burnside, see [6, p. 1].

Proposition 2.3 Let G be a transitive permutation group of prime degree p. Then
G is primitive, and either G � AGL(1, p), or G is almost simple and 2-transitive
with socle T , where p, T and the Schur multiplier of T are as in one of the lines of
Table 2.

The socle T of an almost simple group G is its unique minimal normal subgroup
(which is a nonabelian simple group). The possibilities for p and T can be obtained
from, for example, Cameron [6, Table 7.4]. Their classification depends on the finite
simple group classification. The Schur multiplier M(T ) is obtained from [7, Section
8.4].

Our analysis in Sect. 4 deals, for the most part, with imprimitive groups. Given
a transitive group G and a nontrivial system of imprimitivity B, the group G acts
transitively on the set of blocks, inducing a subgroup GB of SymB. The setwise
stabiliser GB of a block B ∈ B in this action induces a transitive subgroup GB

B of
Sym B. These two actions play an important role in the structure of G; in particular
for distinct blocks B, B ′ ∈ B the induced groups GB

B and GB′
B′ are permutationally

isomorphic.
The kernel K = G(B) of the G-action on B acts on each block B ∈ B. We say

that the K -actions on B and B ′ are equivalent if there exists a bijection ϕ : B → B ′
such that for every α ∈ B, k ∈ K , we have (αϕ)k = (αk)ϕ . The following fact is
useful; the proof is straightforward and omitted.

Lemma 2.3 Let B = {B1, B2, . . . , Bk}. Then the set Σ := {Bi | K Bi is
equivalent to K B1} is a block of imprimitivity for the action of G on B. In partic-
ular if G is primitive then Σ = B or Σ = {B}.
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3 The classification

3.1 The abelian case

In [2], Houlis classified the normal edge-transitive Cayley graphs for the groups
Zp2 , Zp × Zp and Zp × Zq , for primes p, q.

Recall from Proposition 2.1 and Definition 2.1 that every normal edge-transitive
Cayley graph for a group G is equal to Γ (G, H, g) = Cay(G, gH ∪ (g−1)H ), where
H � Aut(G) and g ∈ G. Note that when G is abelian, the inversion operation σ lies
in Aut(G)S , where S = gH ∪ (g−1)H [1, p. 217], so we may assume that S = gH

and σ ∈ H . We summarise Houlis’ classification of the abelian case here by giving a
representative H and g for each isomorphism class of graphs.

Recall the definition of H� = 〈m(p−1)/�〉 in (2.1) that, for a divisor � of p − 1,
and note that H� contains the inversion operation if and only if � is even (unless
p = 2, in which case inversion is trivial). This notation will be used throughout
Sects. 3.1.1–3.1.3.

3.1.1 The case G = Zq × Zq (p 
= q)

NowAut(Zp×Zq) = Z
∗
p×Z

∗
q . Letm, y be primitive elements ofZ∗

p, Z
∗
q , respectively,

and suppose that d2, d1, d are integers satisfying the following conditions:

d2 > 0, d2 | (q − 1), d1 | (p − 1), 0 ≤ d < d1, d1d2 | d(q − 1) (3.1)

Define a subgroup of Z
∗
p × Z

∗
q = 〈m〉 × 〈y〉 as follows:

H(d2, d1, d) := 〈(md , yd2), (md1, 1)〉.
Theorem 3.1 [2, Theorem 8.1.6] Let p, q be primes with p 
= q, let G = Zp × Zq ,
and suppose that Γ is a connected normal edge-transitive Cayley graph for G. Then
there exist unique integers d2, d1, d satisfying the conditions (3.1), with q−1

d2
even

if q > 2 and p−1
gcd(d,d1)

even if p > 2, such that Γ ∼= Γ (G, H(d2, d1, d), (1, 1)).

Moreover Γ has valency p−1
d1

q−1
d2

.

Remark 3.1 It is not difficult to see that each subgroup of Z
∗
p × Z

∗
q is equal to

H(d2, d1, d) for some d2, d1, d satisfying (3.1), see for example [2, Section 2.6]. How-
ever while every subgroup H of Z

∗
p × Z

∗
q yields a unique set of parameters d2, d1, d,

this is not the only way of parametrising H : suppose that H = H(d1, d2, d). If d = 0,
set c1 := d2, c2 := d1 and c := 0. If d > 0 then set

c2 := gcd(d, d1), c1 := d1d2
gcd(d, d1)

, c := c1

gcd(c1,
p−1
c2

)
.

Then the parameters c2, c1, c satisfy the conditions (3.1) with p and q interchanged,
and H = 〈(mc2 , yc), (1, yc1)〉. This yields another parametrisation of H (and hence
of the normal edge-transitive Cayley graphs for G).
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3.1.2 The case G = Zp × Zp

When p = q, the automorphism group of G is larger than Z
∗
p × Z

∗
q : namely G is a

2-dimensional Zp-vector space, and Aut(G) = GL(2, Zp). There are two classes of
subgroups H � Aut(G) to consider. Let � be a divisor of p−1 which is even if p > 2.
Subgroups H in the first case have order p�, for such an �, and are conjugate to

H :=
{(

b 0
c d

)
| b 
= 0, d ∈ H�

}
� GL(2, p).

In this case the graph Γ (G, H, (1, 1)) is the lexicographic product Γ (Zp, H�, 1)[Kp]
(see [2, Definition 6.1.1(I), Theorem 6.1.5]).

In the second case H is a subgroup of the diagonalmatrices, and hence is isomorphic
to H = H(d2, d1, d) for some parameters d2, d1, d satisfying the conditions (3.1).

Theorem 3.2 [2, Theorem 6.1.5] Let p be a prime, let G = Zp × Zq , and suppose
that Γ is a connected normal edge-transitive Cayley graph for G. Then one of the
following holds:

(i) Γ ∼= Γ (Zp, H�, 1)[Kp], for H� as in Example 2.1, of valency p�, for some
� | (p − 1), with � even if p > 2; or

(ii) p is odd and there exist integers d2, d1, d satisfying the conditions (3.1), with p−1
d2

and p−1
gcd(d,d1)

even, such that Γ ∼= Γ (G, H(d2, d1, d), (1, 1)), of valency (p−1)2

d1d2
.

3.1.3 The case G = Zp2

Theorem 3.3 [2, Theorem 7.1.3] Let p be a prime, let G = Zp2 , and suppose that Γ
is a connected, normal edge-transitive Cayley graph for G. Then there exists a divisor
� of p − 1, with � even if p > 2, such that:

(i) Γ ∼= Γ (Zp, H�, 1)[Kp], of valency p�; or
(ii) p is odd and Γ ∼= Cay(G, S) of valency �, where S is the unique subgroup of

Z
∗
p2

of order �.

3.2 The Frobenius group of order pq

A nonabelian group G of order pq, for primes p and q with p > q ≥ 2, exists if and
only if q divides p − 1, and is a Frobenius group and unique up to isomorphism (see
for example [8, Theorem 7.4.11]). In this section we construct such a group G as a
subgroup of the 1-dimensional affine group AGL(1, p), and describe AutG.

The affine group A := AGL(1, p) consists of all affine transformations x �→ xa+b
of the field Zp for a, b ∈ Zp, with a 
= 0. It is generated by

t : x �→ x + 1, m : x �→ xm,

where m is a fixed primitive element of Zp. The element t has order |t | = p, and m
has order |m| = p − 1. The group A = 〈m, t〉 is the semidirect product 〈t〉 � 〈m〉.
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We use m to denote both the primitive element and the transformation induced by
right multiplication by m: with this abuse of notation we have that m−1tm = tm ,
where the left-hand side denotes composition of maps (i.e. multiplication in the group
A), and the right hand side denotes the mth power of the generator t . Each element of
A may be uniquely expressed as mi t j , with 0 ≤ i ≤ p − 2 and 0 ≤ j ≤ p − 1, and
for k ≥ 0 we have

(mi t j )t
k = mi t j+k(1−mi ), (mi t j )m = mi t jm . (3.2)

For a prime q dividing p−1 there is a unique subgroup Gpq of AGL(1, p) of order
pq; namely Gpq := 〈z, t〉, where z = m(p−1)/q . Since t z : x �→ x + z and z 
= 1,
it follows that t z 
= t and hence that Gpq is not abelian. We identify the nonabelian
group G of order pq with this subgroup Gpq , and denote the translation subgroup 〈t〉
by T . Note that

z−1t z = tm
(p−1)/q

. (3.3)

In view of the role played by AutG in our strategy for classifying normal edge-
transitive Cayley graphs (see 2.1), we need to understand the automorphism group
of Gpq and its actions. Since Gpq is the unique subgroup of A of order pq, it is a
characteristic subgroup of A. Thus Gpq is invariant under automorphisms of A and in
particular under conjugation by elements of A. We denote by ι the conjugation action
A → Aut Gpq , and with this notation ι(A) � AutGpq . In fact equality holds:

Lemma 3.1 Every automorphism of G = Gpq is induced by conjugation by an ele-
ment of A = AGL(1, p), that is, AutG = ι(A) ∼= A.

Proof It follows from (3.2) that ker ι = CA(G) is trivial, and so ι(A) ∼= A. The
subgroup T of translations is the unique Sylow p-subgroup of G := Gpq , and so
is invariant under AutG. Thus there is an induced homomorphism ϕ : AutG →
Aut T which is onto since 〈ϕ(ι(m))〉 ∼= Aut T , as both are cyclic of order p − 1. An
automorphism σ ∈ ker ϕ is uniquely determined by the image zσ of z. As 〈t〉 is normal
in G, zt z−1 ∈ T and hence is fixed by σ . Thus (zt z−1)σ = zt z−1.

Now zσ = zx t y for some x, y with 0 ≤ x ≤ q − 2, 0 ≤ y ≤ p − 1. It follows
that (zx t y)t (zx t y)−1 = zt z−1 and so tm

x(p−1)/q = tm
(p−1)/q

. Hence m(x−1)(p−1)/q ≡ 1
(mod p), or equivalently, x ≡ 1 (mod q), as m is a primitive element of Zp. Since
0 ≤ x ≤ q − 2 it follows that x = 1 and zσ = zt y . This leaves at most p choices for
zσ and so | ker ϕ| ≤ p, and |AutG| = (p − 1)| ker ϕ| ≤ p(p − 1) = |ι(A)|. On the
other hand |AutG| ≥ |ι(A)| = p(p − 1), and it follows that AutG = ι(A). 
�

Recall that a normal edge-transitive Cayley graph Γ (G, H, g) is connected if and
only if gH generates G. In particular if G contains a proper characteristic subgroup
which intersects gH nontrivially, then gH lies entirely in this subgroup, and Γ is not
connected (by [1, p. 213, Remark 1]). In the case of G = Gpq this implies that the
element g may not have order p, since all elements of order p lie in the characteristic
subgroup T . It follows then that o(g) = q and that the unique ι(H)-invariant normal
subgroup of G is T .
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We investigate the subgroups of AutG ∼= AGL(1, p) with a view to applying the
strategy described in Sect. 2.1. Since T has prime order, a subgroup of AGL(1, p)
either contains T or intersects it trivially. In the latter case H is cyclic, and we define,
for � | (p − 1) and 0 ≤ j ≤ p − 1,

H(�, j) := 〈m(p−1)/�t j 〉. (3.4)

Note that every element of AGL(1, p) \ T has order dividing p − 1 and |H(�, j)| = �

for each j .
Under the natural action of AGL(1, p) onGpq , the orbits are {1}, T \{1} and the left

cosets {zi T | 1 � i � q − 1}. The induced action of certain subgroups of AGL(1, p)
on these orbits is of interest if we intend to apply Lemma 2.2, and is the subject of the
following result.

Lemma 3.2 Let H be a nontrivial subgroup of AGL(1, p), acting by conjugation on
itself. Then

(i) if T ⊆ H, then for every i ∈ {1, . . . p−1}, ι(H) fixes setwise and acts transitively
on mi T ; and

(ii) if T ∩ H = 1 then H = H(�, j) for some �, j with � a divisor of p− 1, � > 1, 0 ≤
j ≤ p−1, and for each i ∈ {1, . . . , p−1}, ι(H) fixes the coset mi T setwise and
fixes a unique element ofmi T , namelymi tk where k ≡ j (mi−1)(m(p−1)/�−1)−1

(mod p). Moreover ι(H) permutes the other elements of mi T in p−1
�

orbits of
size �, and (miT )−1 ∩ miT = ∅.

Proof For (i), let mi t j ∈ miT . By (3.2) it follows that (mi t j )h ∈ miT for all h ∈ H .
Also m−i − 1 
≡ 0 (mod p) as 1 ≤ i ≤ q − 1. Setting k ≡ − j (1 − mi )−1 (mod p)
we have by (3.2), (mi t j )t

k = mi t j+k(1−mi ) = mi , and so T is transitive on the coset.
Thus H fixes setwise and is transitive on miT .

For (ii), if T ∩ H = 1 then H is cyclic and equal to H(�, j) = 〈m(p−1)/�t j 〉 for
some �, j with � > 1 since H 
= 1. It follows from (3.2) that ι(H) fixes miT setwise
and (miT )−1 = m−i T is disjoint from miT . An element mi tk of miT is fixed under
conjugation by m(p−1)/�t j if and only if (mi tk)m

(p−1)/�t j = mi tk , which, applying
(3.2), is equivalent to k ≡ j (mi − 1)(m(p−1)/� − 1)−1 (mod p). 
�

Recall that z = m(p−1)/q . It follows from Lemma 3.2 (ii) that ι(H(�, j)) fixes a
unique element of each orbit zi T for 0 ≤ i ≤ q − 1, and these elements form a cyclic
subgroup of Gpq of order q.

Notation 1 Let G = Gpq and H = H(�, j) as in (3.4) for some divisor � of p − 1,
with � 
= 1 and 0 ≤ j ≤ p − 1. Let X denote the set of elements of G fixed under
conjugation by H, so that (by the remarks above) X = 〈x〉 is a cyclic subgroup of
order q, where x = zt j (z−1)(m(p−1)/�−1)−1

. The cosets of X form a ρ(G)ι(H)-invariant
partition of G (recall that ρ, ι denote the actions of G on itself by right multiplication
and conjugation, respectively), and G = T � X.

Recall that we define Γ (G, H, g) = Cay(G, gH ∪ (g−1)H ).
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Construction 1 Let p and q be primes with p ≡ 1 (mod q). Then define the graph

Γ (pq) := Γ (Gpq , T, z),

of valency valΓ = 2p/ gcd(2, q), recalling that T is the translation subgroup of
G pq � AGL(1, p). The graph Γ (pq) is isomorphic to the lexicographic product
Cq [Kp] if q is odd and K2[Kp] = Kp,p if q = 2.

Construction 2 Let p and q be primes with q ≡ 1 (mod p), let � be a divisor of
p − 1 such that � > 1, and let i be an integer with 1 ≤ i ≤ q − 1. Then define the
graph

Γ (pq, �, i) := Γ (Gpq , H(�,1), z
i ),

of valency valΓ = 2�/ gcd(2, q), recalling that H(�,1) = 〈m(p−1)/�t〉.
Remark 3.2 If q ≤ 3, then Construction 2 produces a unique graph Γ (pq, �, 1) for
each divisor � > 1 of p − 1 (since 1 ≤ i ≤ (q − 1)/2 = 1). If q ≥ 5 and q | �, then
the graphs {Γ (pq, �, i) | 1 ≤ i ≤ (q −1)/2} are all isomorphic (see Proposition 3.1).
If q ≥ 5 and q � � then these (q − 1)/2 graphs are pairwise nonisomorphic (see
Corollary 4.1).

Remark 3.3 When q = 2, we have i = 1 and z = z−1. So H = H(�,1) acts transitively
on S = zH , and Γ (2p, �, 1) is ρ(G)ι(H)-arc transitive of valency �, by Lemma 2.1.

Lemma 3.3 Let � = p − 1, and let Γ = Γ (pq, �, i) as defined in Construction 2.
Then Γ, valΓ , and Aut Γ are as in Theorem1.1 (ii), and in particular Aut Γ has a
system of imprimitivity consisting of p blocks of size q.

Proof Set H = H(p−1,1) = 〈mt〉, so Γ = Γ (G, H, zi ). A vertex in Γ = Γ (pq, p −
1, i) is joined to the identity if and only if it is contained in the set S = zi H ∪ z−i H =
(T zi ∪ T z−i ) \ X . Similarly g ∈ G is joined to precisely (T zi g ∪ T z−i g) \ Xg.

Consider the two partitions PT = {Tg | g ∈ G} and PX = {Xg | g ∈ G}.
The quotient graphs ΓPT and ΓPX are isomorphic to Cq and Kp, respectively, and
two vertices in Γ are joined precisely when the corresponding vertices in the quotient
graphs are joined. This is the definition of Kp×Cq (see Definition 2.2). Thus Aut Γ �
Aut Kp × AutCq = Sp × D2q . It is not difficult to prove that equality holds, and so
PX is Aut Γ -invariant with blocks of size q. 
�

3.3 Normal edge-transitive Cayley graphs for G pq

3.3.1 Proof of Proposition 2.1

We divide the connected, normal edge-transitive Cayley graphs for Gpq into two
distinct classes. From now on we assume that G = Gpq = 〈t, z〉 as in Sect. 3.2, that
H � AutG = ι(AGL(1, p)), and that N = ρ(G)ι(H) acts edge-transitively on a
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Fig. 3 The graph Γ (55, 2, 2) as in Construction 1

connected Cayley graph Γ = Γ (G, H, g) = Cay(G, S) where S = gH ∪ g−H for
some g ∈ G \ {1}. Recall that T is the unique ι(H)-invariant normal subgroup of G
and that, by Example 2.1, ΓT = Γ (q, a) for some a | (q − 1) with a even if q > 2.

If T ⊆ H � G then, by Lemma 3.2 (i), for some i ∈ {1, . . . , p − 2}, the Cayley
graph Γ (G, H, g) = Cay(G, S) with S = miT ∪ m−i T , where g ∈ miT and gH =
miT . Hence by Lemma 2.2, Γ ∼= ΓT [Kp]. The quotient graph ΓT is K2 = Γ (2, 1) if
q = 2, orCq = Γ (q, 2) if q is odd (since it has valency two). Moreover as gH = miT
it follows from Proposition 2.1 that Γ is normal edge-transitive relative to N . Thus
we have proved the following.

Lemma 3.4 If p divides |H | then Γ ∼= ΓT [Kp], where ΓT = Γ (q, 2) ∼= Cq if q is
odd, or Γ (2, 1) = K2 if q = 2, and Γ is normal edge-transitive relative to ρ(G)ι(H)

of valency 2p/ gcd(2, q).

Note that this Lemma shows that all assertions of Proposition 2.1 hold if p divides
|H |, and in this caseΓ is as in Theorem1.1 (i). Also this Lemma impliesΓ (G, H, z) =
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Γ (G, T, z), and so if H contains T we assume without loss of generality that H = T .
We now consider the second case where H ∩ T = 1, and hence |H | | (p − 1).

Lemma 3.5 Let H = H(�, j) ⊆ AGL(1, p) (with � > 1, � | p − 1), and let g ∈ G :=
Gpq, and suppose that Γ = Γ (G, H, g) is connected. If � = |H | divides p − 1 then
� > 1 and Γ ∼= Γ (pq, �, i) as in Construction 2 for some i.

Proof By Lemma 3.2, H = H(�, j) for some divisor � of p − 1 and some j where
0 ≤ j ≤ p−1, andwe have g = zi tk for some i, k. UsingEq. (3.2) it is straightforward
to check that y1 := tk(m

i(p−1)/q−1)−1
conjugates g to zi and conjugates H(�, j) to H(�, j ′)

for some j ′. Since Γ is connected � = |H | > 1. If j ′ 
= 0 there exists r such that
j ′mr ≡ 1 (mod p) (interpreting m here as an element of Zp) and hence such that

(m(p−1)/�t j
′
)z

r = m(p−1)/�t . Thus H ι(y1mr )

(�, j) = H ι(mr )

(�, j ′) = H(�,1), and gι(y1mr ) =
(zi )m

r = zi (since zi ∈ 〈m〉)). So Γ ∼= Γ (G, H(�,1), zi ) = Γ (pq, �, i).
If j ′ = 0 then H(�,0) centralises zi and hence Γ ∼= Γ (G, H(�,0), zi ) = Cay(G, S)

where S = {zi , z−i } and so Γ is isomorphic to p.Cq , contradicting the connectivity
of Γ . 
�

Wenowcomplete the proof of Proposition 2.1.By the remarks followingLemma3.4
we may assume that H ∩ T = 1, and by Lemma 3.5, we may further assume that
Γ = Γ (Gpq , H(�,1), zi ) = Γ (pq, �, i) for some divisor � of p − 1 with � 
= 1 and
with 1 ≤ i ≤ q − 1. If q is odd then Γ (G, H(�,1), zi ) = Γ (G, H(�,1), zq−i ), since
(zq−i )H ∪ (z−q−i )H = (z−i )H ∪ (zi )H . So if q is odd we may assume 1 ≤ i ≤ q−1

2 .
If q = 2, then i = 1.

If � = p−1, then by Lemma 3.3, Γ is as in Theorem 1.1 (ii). In all other cases (that
is, 1 < � < p − 1), Γ is as in Theorem 1.1 (iii): the vertices of ΓT are the cosets of
T , and in all cases S = zi H ∪ z−i H , and so ST = zi T ∪ z−i T . Thus the connection
set of ΓT = ST/T = {zi T, z−i T }, which has size 1 if q = 2 and 2 if q is odd. Thus
ΓT = K2 if q = 2 and Cq when q is odd. Proposition 2.1 is now proved.

3.3.2 Cayley graphs for ρ(T ) × λ(X)

The graphs of case (iii) all seem essentially ‘the same’ at first glance. However the
structure of the graph differs fundamentally depending on the parameter �. This is
because we sometimes, but not always, have a regular abelian subgroup of Aut Γ (see
Lemma 3.6 below). In this caseΓ may be reinterpreted as aCayley graph for an abelian
group. Recall from Sects. 2.1 and 2.3 that N = ρ(G)Aut(G)S is the normaliser of
ρ(G) in Aut Γ , and λ(G) denotes the left regular action λg : x �→ g−1x of G.

Lemma 3.6 Let Γ = Γ (pq, �, i), and suppose q divides �. Then the following hold,
for X as in Notation 1:

(i) X � H;
(ii) λ(X) � N;
(iii) ρ(T ) × λ(X) is a regular subgroup of Aut Γ , and so Γ is a Cayley graph for

ρ(T ) × λ(X) = Zp × Zq;
(iv) As a Cayley graph for ρ(T ) × λ(X), Γ is normal edge-transitive.

123



818 J Algebr Comb (2015) 42:803–827

Proof Part (i) follows from the definition of X . For part (ii), observe that λ(X) �
ρ(X)ι(X) � ρ(G)ι(H) = N . Part (iii) then follows easily.

For (iv), note that since ρ(T ) char ρ(G) � N , we have ρ(T ) � N , and since X is by
definition fixed under ι(H), so is λ(X). So λ(X) is centralised by both ι(H) and ρ(G),
it is normal in the product, and so ρ(T )λ(X) � N . Thus N ⊆ NAut Γ (ρ(T )λ(X)), and
so the normaliser is transitive on E�. 
�

When q|� there is only one graph up to isomorphism: different choices of i give
isomorphic graphs.

Proposition 3.1 If q divides �, then Γ (pq, �, i) ∼= Γ (Zp × Zq , Ĥ , (1, 1)) where

Ĥ = H(
q−1
2 ,

p−1
�

, d) as in Sect. 3.1.1, and

d =
{
0 if � is even; and
p−1
2� if � is odd.

In particular Γ (pq, �, i) is independent of i up to isomorphism and has valency
2�/ gcd(2, q).

Proof By Lemma 3.6, L = ρ(T ) × λ(X) � Aut Γ . Since ρ(T ) is a characteristic
subgroup of ρ(G), we have that ρ(T ) is normalised by N . Since λ(X) is centralised
by ρ(G) (the left and right regular actions centralise one another) and is centralised
by ι(H) (since X � H and H is cyclic), we have that λ(X) is centralised by N . It
follows that N � NAut Γ (L).

Now since (by Lemma 3.6) Γ is a Cayley graph for L , we may identify the vertices
of Γ with the elements of L , and Γ ∼= Cay(L , S) for some S ⊆ L with S = S−1.
Then the automorphism ϕ : x → x−1 is an automorphism of L (since L is abelian)
and it fixes the connection set S, and so ϕ ∈ NAut Γ (L). Set N̂ = 〈N , ϕ〉, and set
Ĥ = N̂1G = 〈ι(H), ϕ〉.

Now Γ is normal edge-transitive as a Cayley graph for L (since N � NAut Γ (L)

and N is edge-transitive). So Ĥ is transitive on the connection set S (since ϕ switches
an element with its inverse). Moreover we have |Ĥ | = |S| = 2�, and N̂ is transitive
on the arcs of Γ .

We seek to determine the parameters d2, d1, d, such that Ĥ ∼= 〈(xd , yd2), (xd1 , 1)〉
� Z

∗
p × Z

∗
q

∼= Aut(ρ(T )) × Aut(λ(X)) (as in Theorem 3.1). Since ι(H) centralises

λ(X), the subgroup of Aut(λ(X)) induced by the action of Ĥ is isomorphic to Z2, and
sod2 = q−1

2 . Since ι(H) acts faithfully onρ(T ),wehave Ĥ∩(Aut(ρ(T ))×1) = ι(H),

and so d1 = p−1
�

.
Suppose that d > 0. Then the conditions in (3.1) give 0 < d ≤ d1 and d1 | 2d

which implies that d1 = 2d is even. Thus d = p−1
2� . In this case the first generator of

Ĥ = H(d2, d1, d) is (x (p−1)/2�,−1), which squares to the second generator (xd1 , 1).
Thus Ĥ is cyclic and so ϕ = (−1,−1) is the unique involution in Ĥ . The only element
in Ĥ with first entry −1 is (x (p−1)/2�,−1)� = (−1, (−1)�), and it follows that � is
odd.
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Suppose now that d = 0. Then Ĥ contains (1,−1) and since Ĥ also contains
ϕ = (−1,−1), we have (−1,−1) ∈ Ĥ ∩ (Aut(ρ(T ))× 1) = 〈(xd1 , 1)〉. This implies
that � = |xd1 | is even. 
�

In the case q � �, however, the graphs in Proposition 2.1 are pairwise nonisomorphic
(Corollary 4.1 below).

4 Redundancy and automorphisms

In this section we discuss the possibility of redundancy in our classification, that is,
isomorphisms between the graphs Γ (pq, �, i) for different choices of parameters. In
doing so we determine the automorphism groups of our graphs.

Recall the following: p and q are primes with q dividing p − 1, � is a proper
divisor of p − 1 with � > 1, i is an integer with 1 ≤ i ≤ (q − 1)/2, G = Gpq ,
H = H(�,1) = 〈m(p−1)/�t〉, and N = ρ(G)ι(H). Define Γ (pq, �, i) = Γ (G, H, zi ),
and Y = Aut Γ . In this section we determine Y for most values of (p, q, �, i) (see
Theorem 4.1), and decide when different sets of parameters yield isomorphic graphs
(Corollary 4.1).

It is obvious that different primes p and q generate nonisomorphic graphs, as
Γ (pq, �, i) has pq vertices. Each graph Γ (pq, �, i) has valency � or 2�, according
as q is odd or even. Thus different choices for � also yield nonisomorphic graphs. We
therefore need only decide whether Γ (pq, �, i) ∼= Γ (pq, �, i ′) implies i = i ′.

Theorem 4.1 Let Γ = Γ (pq, �, i) as defined in Construction 2, and let Y = Aut Γ .
Then

Y =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ(G).ι(H) when q = 2 or q � � and � < p − 1;
ρ(G).ι(H).Z2 when q ≥ 3, q | � and � < p − 1;
Sp × Z2 when � = p − 1 and q = 2; and

Sp × D2q when � = p − 1 and q = 3;

except in the cases (p, q, �, i) = (7, 3, 2, 1), (7, 2, 3, 1), (11, 2, 5, 1)and (73, 2, 9, 1).

We prove Theorem 4.1 over the course of this section. First we give a proof of Theo-
rem 1.1.

Proof (Proof of Theorem 1.1) That Γ satisfies one of Theorem 1.1 (i)–(iii) follows
from Proposition 2.1, and the structure of Y = Aut Γ follows from Theorem 4.1
in all cases except the four exceptional parameter sets of Theorem 4.1. The other
automorphism groups can be calculated manually (using, for example, GAP [9]). 
�

Next we deduce from Theorem 4.1 our claim about graph isomorphisms.

Corollary 4.1 Let Γ (pq, �, i), Γ (pq, �, i ′) be defined as in Construction 2, and sup-
pose that q � �. Then Γ (pq, �, i) ∼= Γ (pq, �, i ′) if and only if i = i ′.
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Table 3 Possibilities in the
proof of Proposition 4.1 Soc(Aut Γ ) p q � = valΓ

2

Ap p p−1
2

(p−2)(p−3)
4

PSL(2, 11) 11 5 2

PSL(2, 23) 23 11 2

PSL(2, p) p p−1
2

p+1
8 ,

p+1
4 ,

p+1
2

Proof Let Γ = Γ (pq, �, i), Γ ′ = Γ (pq, �, i ′). If q ≤ 3 then i = i ′ = 1, and so
we assume without loss of generality that q ≥ 5. An isomorphism ϕ : Γ → Γ ′ is a
permutation of G such that E�ϕ = E�′. We may assume without loss of generality
that ϕ fixes the identity of G, since both graphs are vertex transitive.

Now ϕ−1 Aut Γ ϕ = Aut Γ ′, but by Theorem 4.1, Aut Γ = Aut Γ ′ = ρ(G)ι(H),
and so ϕ−1(Aut Γ )ϕ = Aut Γ . Hence ϕ ∈ N1G = (NSymG(ρ(G)ι(H)))1G .

Since N normalises ρ(G), it is contained in the holomorph of G, namely
ρ(G).Aut(G), and hence N1G ⊆ Aut(G). But by Formula (3.2), the action of Aut(G)

fixes the cosets of T setwise. Now an isomorphism fixing 1G must map (zi )H ∪(z−i )H

to (zi
′
)H ∪ (z−i ′)H , and if q ≥ 5, 1 ≤ i ≤ (q − 1)/2 then this is possible only if

i = i ′, as (zi )H ⊆ zi T . 
�
Our first step in the proof of Theorem 4.1 is to identify one of the exceptional cases.

Proposition 4.1 Suppose Γ = Γ (pq, �, i) is vertex primitive. Then (p, q, �, i) =
(7, 3, 2, 1) and Γ is the flag graph ΓF of the Fano Plane (see Fig. 2), with automor-
phism group PGL(3, 2).Z2.

Proof If q = 2 then Γ is bipartite, hence imprimitive. Also if � = p − 1 then Aut Γ
is imprimitive by Lemma 3.3. Thus q ≥ 3, p ≥ 7 since q | p − 1, and � is a proper
divisor of p − 1. The edge-transitive, vertex-primitive graphs of order a product of 2
primes are classified in [10, Table I, Table III], along with their valency and whether
or not they are Cayley graphs. Requiring that Γ be a Cayley graph, and that q and
� = valΓ

2 are divisors of p − 1 with 1 < � < p − 1, we are left with the possibilities
in Table 3:

The fact that � > 1and �divides p−1 rules out line 1 and in line 4 implies that p = 7,
� = 2 and q = 3. Thus we have exactly three (p, q, �) to check further. Using Nauty
[11] and the package GRAPE [12] for GAP [9], we constructed the graphs Γ (pq, �, i)
for the three remaining possible p, q, � as in the table (and for every i ≤ (q − 1)/2)
and computed their automorphism groups, finding that the automorphism group acts
imprimitively for the graphs in lines 2 and 3 and that the graph Γ (21, 2, 1) is vertex
primitive and is the flag graph of the Fano plane as asserted. 
�

4.1 Main case: Aut Γ is imprimitive

By Proposition 4.1, if (p, q, �) 
= (7, 3, 2) then Aut Γ is imprimitive. Throughout this
section suppose Γ = Γ (pq, �, i) as defined in Construction 2, with either (q, i) =
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(2, 1) or q odd, 1 ≤ i ≤ (q − 1)/2 and (p, q, �) 
= (7, 3, 2), and let Y = Aut Γ . The
case � = p−1 has been dealt with in Lemma 3.3, so we assume 1 < � < p−1. By our
construction we know that N := ρ(G)ι(H) � Y ; thus any Y -invariant partition of V�

is also N -invariant. The following lemma describes the only N -invariant partitions,
and so the only feasible Y -invariant partitions.

Lemma 4.1 Let Γ = Γ (pq, �, i) with � < p − 1, and let N = ρ(G).ι(H). Then the
following are the only nontrivial N-invariant partitions of V�:

(i) The partition of G into the right cosets of T = 〈t〉, consisting of q blocks of size
p; and

(ii) The partition into the right cosets of the subgroup X (see Notation 1). consisting
of p blocks of size q.

Proof Let B be a block of imprimitivity for N containing 1G . By [1, Theorem 3(a)],
B is a subgroup of G. The setwise stabiliser of B in ρ(G) is ρ(B), and is a normal
subgroup of NB . Since ι(H) = N1G leaves B invariant (since 1G ∈ B), it follows that
B is H -invariant. Conversely each H -invariant subgroup of G is a block for N .

Since T is normal in AGL(1, p) and H ⊆ ι(AGL(1, p)), T is H -invariant and so
the cosets of T form an N -invariant partition as in (i). Any H -invariant subgroup L
of G with L 
= T has order q, and since by Formula (3.2) H fixes each coset of T
setwise, H must centralise L . Thus by Lemma 3.2 there is only one other H -invariant
subgroup, namely the subgroup X = 〈x〉, where x = mi t j (m

i−1)(m(p−1)/�−1)−1
(see

Notation 1), as in (ii). 
�
This gives us two possibilities for Y -invariant partitions of the vertex set: one into

p blocks of size q and the other into q blocks of size p. We prove the following lemma
in the course of the section:

Lemma 4.2 If (p, q, �, i) 
= (7, 3, 2, 1) and 1 < � < p − 1, then the cosets of T
form a Y -invariant partition of V�.

We begin by noting that in the case q = 2, the cosets of T form a bipartition of Γ ,
and hence a system of imprimitivity. Now we assume:

q ≥ 3 and the cosets of X form a Y -invariant partitionP. (4.1)

If (4.1) does not hold, then by Lemma 4.1 the result is proved.

Lemma 4.3 Assume (4.1) holds, and let s ∈ S = (zi )H ∪ (z−i )H . Then |S ∩ Xs| ∈
{1, 2} and is independent of the choice of s.

Proof Note first that s ∈ S ∩ Xs, and so |S ∩ Xs| ≥ 1. Now suppose |S ∩ Xs| ≥ 3.
Then since H has just two orbits on S, there exist distinct s1, s2 ∈ S ∪ Xs with
sh1 = s2 for some h ∈ H . Since s1, s2 ∈ Xs, we have s1s

−1
2 ∈ X , but on the other hand

s1s
−1
2 = s1s

−h
1 , and since H fixes the cosets of T setwise it follows that s1s

−1
2 ∈ T .

But T ∩ X = {1}, and so s1 = s2, contradiction.
If |S ∩ Xs| = 1 for each s ∈ S there is nothing more to prove, so suppose that

S ∩ Xs = {s, s′} with s 
= s′. Then by the above argument s′ cannot be in sH , and so
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s′ ∈ (s−1)H . So there exists h ∈ H with s′ = s−h . Now choose s2 ∈ S; then s2 is in
the H -orbit of either s or s′. Suppose s2 ∈ sH . Then for some h′ ∈ H , s2 = sh

′
. Then

s2sh2 = sh
′
sh

′h = (ssh)h
′ ∈ XH = X , so Xs2 = Xs−h

2 and so |S∩ Xs2| = 2 for every
s2 ∈ S. If s2 ∈ (s′)H then the same argument holds with s′ in place of s. 
�

We now investigate the structure of the kernel K = Y(P) and its action on each
member of the partition P of (4.1). We assume for the moment that K is nontrivial.
In this case K is transitive on every block (as YB acts primitively on each block B and
K is normal in YB , K is transitive). So if K 
= 1, the K -orbits are the cosets of X .
Moreover since K acts transitively on each block Xg and each block has prime size
q, by Proposition 2.3, K Xg is primitive.

Lemma 4.4 Assume (4.1) holds. Then the pointwise stabiliser K(X) is trivial, and so
K ∼= K X .

Proof If K = 1 there is nothing to prove so assume K 
= 1. Let s ∈ S. Since K(X) fixes
1G ∈ X it follows that K(X) fixes S setwise. Also K(X) < K = Y(P) fixes the block X
setwise and hence K(X) fixes S∩Xs setwise. ByLemma4.3, |S∩Xs| ≤ 2 < q = |Xs|,
and hence K(X) is not transitive on Xs. Since K is primitive on Xs, its normal subgroup
K(X) must therefore act trivially on Xs, and since this holds for all s ∈ S, it follows
by connectivity that K(X) = 1. 
�
Lemma 4.5 Assume (4.1) holds, and that K 
= 1. Then either K = λ(X) or K =
λ(X) � Z2 ∼= D2q , and in particular, λ(X) � Y .

Proof Let s ∈ S. Then s ∈ S ∩ Xs and by Lemma 4.3, |S ∩ Xs| ≤ 2. Suppose first
that S ∩ Xs = {s}. Then K1 fixes S ∩ Xs and so K1 � Ks . Since all K -orbits have
the same length, K1 = Ks , and this holds for every s ∈ S. By connectivity, K1 = 1,
and so |K | = q.

Now suppose S ∩ Xs = {s, s′}. Since K1 fixes S ∩ Xs setwise it follows that
|K1 : K1,s | ≤ 2 and K1,s ⊆ Ks,s′ . Thus |Ks : Ks,s′ | ≤ 2 and in particular if K Xs

is 2-transitive then q = 3 and K Xs = S3 = AGL(1, 3). Thus by Proposition 2.3,
in all cases K Xs � AGL(1, q) and Ks,s′ fixes Xs pointwise. We therefore have
|K Xs | = q|Ks : Ks,s′ | ≤ 2q.

Thus |K | is either q or 2q, and so K has a characteristic subgroup K0 ∼= Zq and
K0 � Y . We claim that K0 = λ(X). Consider the subgroup Y0 := 〈K0, ρ(T )〉 of
Sym(G). Now ρ(T ) ∩ K0 = 1 and ρ(T ) normalises K0 and hence |Y0| = pq. Since
p > q, ρ(T ) is a normal subgroup of Y0, and so Y0 = K0 × ρ(T ) and ρ(T ) �
CSymG(K0).

Now consider 〈ρ(X), K0〉. This group has order q2 and so is abelian. In particular,
ρ(X) ⊆ CSymG(K0), and so ρ(G) � CSymG(K0), as ρ(G) = 〈ρ(T ), ρ(X)〉. This
implies that K0 � CSymG(ρ(G)) = λ(G). So K0 = λ(X ′) for some subgroup X ′ ofG
of order q, and since K0 fixes X setwise wemust have that X ′ = X . If K = λ(X)�Z2
then K ∼= D2q as it cannot possibly be cyclic (all of its orbits have size q). 
�

This yields three cases, according to K : it is either D2q , Zq or 1.

Lemma 4.6 Assume (4.1) holds. If K ∼= D2q then the conclusion of Lemma 4.2 holds.
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Proof Observe that Fix K1 is a block of imprimitivity for Y in V�. If K ∼= D2q then
by Lemma 4.4, K acts faithfully as D2q on every block in P , and so K1 ∼= Z2 fixes
a unique point in each of the p blocks. By Lemma 4.1, Fix K1 must be a coset of T
and Lemma 4.2 is proved in this case. 
�

Thus wemay assume that K = 1 or K = λ(X). We consider these cases separately,
investigating the quotient graph ΓP and the group YP ∼= Y/K .

Lemma 4.7 Assume (4.1) holds. If K = 1 then the conclusion of Lemma 4.2 holds.

Proof Suppose that K = 1. Then Y ∼= YP , a primitive group of degree p which by
Proposition 2.3 is affine or almost simple and 2-transitive. If YP ∼= Y is affine of
degree p, then Y � AGL(1, p) and so ρ(T ) � Y and the ρ(T )-orbits are blocks of
imprimitivity for Y in VΓ , whence the conclusion of Lemma 4.2 holds. Thus we may
suppose that Y is almost simple with socle L and YP is 2-transitive with LP ∼= L as
in Table 2.

Since YP is 2-transitive, the quotient graph ΓP
∼= Kp. Let B ∈ P and α ∈ B.

Now LP is transitive, and if L is not transitive on V� then its orbits are blocks of
imprimitivity for Y of size p and as before the conclusion of Lemma 4.2 holds. Thus
we may assume that L is transitive on V�, so Lα < LB < L , and |LB : Lα| = q.
Since q ≥ 3 and q|(p−1), we have p ≥ 7 and q ≤ (p−1)/2.We consider separately
each line of Table 2. Note that, by Lemma 4.1, it is sufficient to prove either that Y
has a block of imprimitivity of size p, or that LB has no subgroup of index q.

If L = Ap with p ≥ 7, then LB = Ap−1 has no subgroup of index less than p− 1.
If L = PSL(2, 11) or M11, with p = 11, then q = 5, so Γ = Γ (55, �, i), with � = 2
or 5 and i = 1 or 2. Using GAP we construct each graph and verify that none has an
almost simple automorphism group. If L = M23 then q = 11 and LB = M22, which
has no subgroups of index 11 (see [13, page 39]).

Thus L = PSL(n, r), with p = rn−1
r−1 and n prime, and r = r f

0 with r0 prime. First
note that n ≥ 3, for if n = 2 then p = r + 1 and so p − 1 = r is even and so is a
power of 2, and hence not divisible by q since q ≥ 3.

Before seeking the subgroup Lα of index q in LB we obtain some further parameter
restrictions. The subgroup ρ(T ), being cyclic of prime order p = rn−1

r−1 , is a Singer
cycle of T , is self-centralising, and NY (ρ(T )) � ρ(T ).Zn .Z f , so |NY (ρ(T )) : ρ(T )|
divides n f (see [14, Satz 7.3]). Since ι(H) ∼= Z� normalises ρ(T ) it follows that �

divides n f and that valΓ ≤ 2n f . Moreover since ρ(T ) is self-centralising, T does
not contain λ(X) and so, by Lemma 3.6, q � �. Now the number of Γ -edges with one
vertex in B is |B| valΓ ≤ 2n f q. On the other hand since ΓP = Kp, this number is
at least p − 1, and hence

p − 1 ≤ 2n f q. (4.2)

Now LB = R � M � AGL(n − 1, r), where R is elementary abelian of order rn−1,
and SL(n − 1, r) � M � GL(n − 1, r) with M of index gcd(n, r − 1). The group
LB
B is transitive of prime degree q, and hence primitive. Suppose first that RB 
= 1.

Since R is a minimal normal subgroup of LB , R acts faithfully and transitively on B,
and since R is abelian it follows that RB is regular and q = rn−1, forcing n = 2 and
a contradiction. Thus RB = 1, and so LB

B = MB . Let S = SL(n − 1, r) � M . If
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SB = 1 then LB
B is cyclic of order dividing |M : S|, which divides r − 1. Hence by

(4.2), r(r
n−1−1)
r−1 = p− 1 ≤ 2n f (r − 1) < 2nr(r − 1) which implies n = 3 (since n is

prime) and so q divides p − 1 = r(r + 1). Since also q divides r − 1 it follows that
q = 2, a contradiction.

Thus SB 
= 1, so SB is primitive of odd prime degree q. Suppose first that
(n, r) = (3, 2) or (3, 3), so p is 7 or 13, respectively and q = 3 is the only odd
prime dividing p−1. Since q � � we have only the following two cases: (p, q, �, i) =
(13, 3, 2, 1), (13, 3, 4, 1) (since we are assuming that (p, q, �) 
= (7, 3, 2)). It is
easy to verify (say, in GAP) that the automorphism groups of these graphs are as
in Theorem 4.1, and in particular Y has a block of imprimitivity of size p so Lemma
4.2 holds. Thus we may assume that S is perfect and hence SB has PSL(n − 1, r)
as a composition factor. In particular SB is an insoluble primitive group of prime
degree q and so by Proposition 2.3, SB ∼= PSL(n − 1, r) and either q = rn−1−1

r−1 , or
(n, r, q) = (3, 11, 11), (3, 5, 5) or (3, 4, 5). In the last case p = 1 + 4 + 16 = 21
is not prime. In the previous two cases Y = PSL(3, r) does not contain a Frobenius
group Gpq . Thus q = rn−1−1

r−1 . Since q is prime, also n − 1 is prime, and since n is
prime this implies n = 3. Then p = 1 + r + r2 and q = 1 + r . If r = 2 we have the
case excluded in Lemma 4.2. If r > 2 then q prime forces r = 2a with a even, which
implies that p = 1 + r + r2 is divisible by 3, a contradiction. 
�

Finally we consider the case K = λ(X).

Lemma 4.8 Assume (4.1) holds. If K = λ(X) then the conclusion of Lemma 4.2
holds.

Proof Suppose K = λ(X). ThenY/K acts faithfully on the partitionP , and soY/K is
a transitive group of degree p, and so by Proposition 2.3, is either affine or 2-transitive
and almost simple.

IfY/K is affine, then YP � AGL(1, p), and so ρ(T ).K �Y . Since ρ(T ) centralises
K = λ(X), ρ(T ) is a characteristic subgroup of ρ(T )K and hence ρ(T ) � Y . The
ρ(T )-orbits in G are blocks of imprimitivity, and the conclusion of Lemma 4.2 holds.
Thus we may assume that Y/K is almost simple with socle as in Table 2.

Let K < L � Y be such that L/K = Soc(Y/K ). We consider the derived group
L ′ � L . Since K has prime order, either K ⊆ L ′ or K ∩ L ′ = 1.
Case 1 K ∩ L ′ = 1:

In this case K and L ′ are normal subgroupswhich intersect trivially, and L = L ′×K .
If L ′ is intransitive then its orbits are blocks of size p, and the conclusion of Lemma
4.2 holds by Lemma 4.1. So we may assume that L ′ is transitive. The argument in the
proof of Lemma 4.7 shows that L ′ = PSL(n, r) with n an odd prime and p = rn−1

r−1 .
This time we have that NY (ρ(T )) � (λ(X) × ρ(T )).Zn .Z f . So here we have that �

divides n f q (instead of n f ).
Since YP is 2-transitive, the quotient ΓP

∼= Kp. Moreover since P is the set of
λ(X)-orbits there is a constant c such that each vertex in B is joined to c vertices in
each of the blocks distinct from B. Thus there are exactly qc(p − 1) edges of Γ with
one vertex in B. On the other hand this number is |B| valΓ = 2q� ≤ 2q2n f , and so
again the inequality (4.2) holds: p − 1 ≤ 2n f q.
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Now the rest of the argument in the proof of Lemma 4.7 applies, ruling out all
parameter values except possibly PSL(3, r) with q = 3 and (r, p) = (2, 7) or (3, 13),
for every � dividing p − 1 with q | �, and by assumption, � < p − 1. This leaves
only the parameters (p, q, �, i) = (7, 3, 3, 1), (13, 3, 3, 1), (13, 3, 6, 1). A computer
check of these graphs confirms that the conclusion of Lemma 4.2 holds in all cases.
Case 2 K ⊆ L ′.

If K ⊆ L ′ then L is a perfect central extension of L/K , and so (see [15, Chapter
5.1]), K is a subgroup of the Schur multiplier of L/K . Table 2 displays the Schur
multipliers of the 2-transitive simple groups of prime degree: since q is an odd prime,
we eliminate each case with a Schur multiplier of size less than 3. We are left with
only two possibilities: A7 and PSL(n, r). In the former case we have p = 7, implying
that q = � = 3. Then the only parameter sets possible are (7, 3, 2, 1), (7, 3, 3, 1). The
former yields the unique primitive example of Proposition 4.1, and the second is ruled
out by computer search (as above in Case 1). In the latter case we have PSL(n, r),
with p = rn−1

r−1 , in which case the Schur multiplier is cyclic of order gcd(r − 1, n).
Thus q | r − 1 and q | n, and hence p = 1 + r + · · · + rn−1 ≡ n ≡ 0 (mod q), but
this implies q | p, which is a contradiction. 
�

The proof of Lemma 4.2 now follows from Lemmas 4.5–4.8.

4.2 Blocks of size p

By Lemma 4.2, the partition P = {Tg | g ∈ G} is Y -invariant. Since by (3.2)
(zi )H ⊆ zi T , the set S ∩ z j T has order � or 0, for any j . We dealt with the case
� = p − 1 in Lemma 3.3, and so we assume � < p − 1. Recall that we also assume
(p, q, �) 
= (7, 3, 2).

Lemma 4.9 The quotient graph ΓT is K2 if q = 2 and Cq if q is odd, and YP is Z2
or a subgroup of D2q containing Zq , respectively.

Proof If q = 2 then ΓP = K2 and YP ∼= Z2, so assume that q is odd. Then
ΓP = Cay(G/T, ST/T ), and |ST/T | = |((zi )HT )/T | + |((z−i )HT )/T |. Since
ι(H) fixes the cosets of T setwise, we have ((zi )HT )/T = {zi T }, and so |ST/T | = 2.
So since ΓT is connected, it is a cycle. 
�
Lemma 4.10 One of the following holds:

(i) The kernel K = Y(P) is ρ(T ).ι(H) with ρ(T ) � Y ;
(ii) (p, q, �, i) = (7, 2, 3, 1),Y = PGL(3, 2).2 and Γ is the incidence graph of

PG(2, 2);
(iii) (p, q, �, i) = (11, 2, 5, 1),Y = PGL(2, 11) and Γ is the incidence graph of the

(11, 5, 2)-biplane; or
(iv) (p, q, �, i) = (73, 2, 9, 1),Y = P�L(3, 8).2 and Γ is the incidence graph of

PG(2, 8).

Proof By Lemma 3.2 (i), ι(H) fixes each coset of T setwise, and so ι(H) � K . Also
since T �G it follows that ρ(T ) fixes each coset setwise, so ρ(T ) � K . Thus it suffices
to prove that either |K | � p�, or one of cases (ii)–(iv) holds.
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Claim: K ∼= KT .
Let T ′ be a block adjacent to T in ΓP . The pointwise stabiliser K(T ) is normal in

K , and so KT ′
(T ) � KT ′

, which is primitive (being transitive of prime degree) and is
transitive or trivial. However S ∩ T ′ is fixed setwise by K(T ), and |S ∩ T ′| ≤ � < p
so transitivity is impossible. Thus K(T ) fixes T ′ pointwise. Since Γ is connected, we
can repeat the same argument to show that K(T ) acts trivially on every block, and so
K(T ) = 1, and hence K ∼= KT .

Since ρ(T ) � K , K is transitive on each block of prime degree p, so by Proposi-
tion 2.3, this action is affine or 2-transitive and almost simple, and is given in Table 2.
Assume first that the latter holds. Now each almost simple 2-transitive group has at
most 2 inequivalent actions (see [6, Table 7.4]), and so if q ≥ 3 then there exist at
least two blocks on which K acts equivalently, and by Lemma 2.3, the actions of K
on all blocks are equivalent.

If q = 2 and the action of K on the two blocks T and T z are inequivalent, then
the only possibilities are Y � PGL(2, 11) with p = 11, or PSL(n, r) � Y �
Aut(PSL(n, r)) with p = rn−1

r−1 and n an odd prime. The former case can be checked
by a GAP calculation, or by hand, for both � = 2, 5: the graph Γ (22, 5, 1) is the
incidence graph of the (11, 5, 2)-biplane and Y = PGL(2, 11), so part (iii) holds; and
K = ρ(T ).ι(H) holds for Γ (22, 2, 1) ∼= C22.

In the latter case Y1 has orbits in T z of sizes rn−1−1
r−1 and rn−1 and hence � is one

of these integers. Since � divides p − 1, we have � = rn−1−1
r−1 . However in this case a

cycle of length p = rn−1
r−1 in Y is a Singer cycle and the normaliser NY (ρ(T )) has size

2pn f , where r = r f
0 with r0 prime. So the stabiliser (N )Y (ρ(T )))1 has size n f . Since

this subgroup contains ι(H), it follows that � divides n f . There are only two possible
choices of parameters (r0, f, n) satisfying this constraint along with the constraint that
p = rn−1

r−1 is prime, namely (r0, f, n) = (2, 1, 3), (2, 3, 3). These sets produce the
exceptional graphs Γ (14, 3, 1) and Γ (146, 9, 1), namely the incidence graphs of the
Fano plane PG(2, 2) and of PG(2, 8), respectively, with Y = P�L(3, r).Z2 so that
part (iii) or (iv) holds, respectively. Assume now that none of parts (ii)–(iv) holds.
Then (for all q) the K -actions on all blocks are equivalent. We now have that K1 fixes
a unique point α ∈ T ′. The set T ′ ∩ S of size �, where 1 < � < p− 1, is fixed setwise
by K1 and so K1 = Kα is not transitive on T ′ \ {α}. So KT is not 2-transitive, which
is a contradiction.

This completes consideration of the case where KT is insoluble. Suppose now that
KT � AGL(1, p). Since KT is affine, all K -actions on blocks are equivalent and the
stabiliser in KT of two points is trivial. Thus K1 fixes a point α ∈ T ′, and T ∩ Γ (α)

is fixed setwise by K1. Choose β in this set: then the orbit-stabiliser theorem gives
|βK1 ||K(1,β)| = |K1|. But as |βK1 | ≤ �, we have |K1| ≤ �, and so |K | ≤ p� as
required. 
�
Proof (Proof of Theorem 4.1) The four exceptional parameter sets are covered
by Proposition 4.1 and Lemma 4.10, so we may assume that (p, q, �, i) 
=
(7, 3, 2, 1), (7, 2, 3, 1), (11, 2, 5, 1), (73, 2, 9, 1). If � = p − 1 the result follows
from Lemma 3.3 so we may assume that 1 < � < p − 1. Then by Lemma 4.2,
the cosets of T form a Y -invariant partitionP of VΓ , and by Lemmas 4.9 and 4.10,
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YP ∼= T/(ρ(T )ι(H)) is Zq or D2q . Thus ρ(G)ι(H) has index at most 2 in Y and
hence is normal in Y .

Suppose first that q � �. Now ρ(G) is characteristic in ρ(G).ι(H), as it is the unique
Hall (p, q)-subgroup (since neither p nor q divides �), and hence ρ(G) � Y , so Y is
contained in the holomorph Hol(G) = ρ(G).Aut(G) ofG. If YΓT were dihedral there
would be an automorphism that fixes T and swaps the cosets z j T and z− j T ; but no
such automorphism of G exists (see Lemma 3.1), and so Y = ρ(G).ι(H) in this case.

Now suppose that q|�. By Lemma 3.6 (iii), Γ is a normal edge-transitive Cayley
graph for the abelian group ρ(T ) × λ(X). The map σ : x �→ x−1 (where the vertex
set of Γ is identified with L) is an automorphism of L since L is abelian, and fixes
Γ (1) setwise. Moreover σ is an automorphism of Γ . In fact it is in the normaliser
NY (ρ(L)), but σ is not contained in ρ(G)ι(H) as it swaps the cosets T zi and T z−i

and fixes the subgroup T . So ρ(G)ι(H) has index 2 in Y and so Y = ρ(G)ι(H).Z2.

�
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